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Announcements

HW1 is due next Tuesday at 5pm

We have arranged TA o�ce hours (on website) for the assignment.

Go to the earliest possible ones you can attend.

Manage your time well! If you wait till the last TA session,
you may have a long wait to ask your question.
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Today

Ensembling methods combine multiple models and can perform better
than the individual members.

I We’ve seen many individual models (KNN, decision trees)

Bagging: Train models independently on random “resamples” of the
training data.

Linear regression, our first parametric learning algorithm.

I Illustrates a modular approach to learning algorithms.
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Bias/Variance Decomposition

prediction y at a query x is a random variable
(where the randomness comes from the choice of dataset),

y? is the optimal deterministic prediction, and

t is a random target sampled from the true conditional p(t|x).

E[(y � t)2] = (y? � E[y])2| {z }
bias

+ Var(y)| {z }
variance

+ Var(t)| {z }
Bayes error
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Interpretations

E[(y � t)2] = (y? � E[y])2| {z }
bias

+ Var(y)| {z }
variance

+ Var(t)| {z }
Bayes error

Bias/variance decomposes the expected loss into three terms:

bias: how wrong the expected prediction is
(corresponds to under-fitting)

variance: the amount of variability in the predictions
(corresponds to over-fitting)

Bayes error: the inherent unpredictability of the targets

Often loosely use “bias” for “under-fitting” and “variance” for
“over-fitting”.

Intro ML (UofT) CSC311-Lec3 7 / 58

70 20 z o

d irreducible
ELYK

fit trainingdata
perfectly no

bias



Overly Simple Model

An overly simple model (e.g. KNN with large k) might have

high bias
(cannot capture the structure in the data)

low variance
(enough data to get stable estimates)
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Overly Complex Model

An overly complex model (e.g. KNN with k = 1) might have

low bias
(learns all the relevant structure)

high variance
(fits the quirks of the data you happened to sample)
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Visual of Bias/Variance Decomposition
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Bagging Motivation

Sample m independent training sets from psample.
Compute the prediction yi using each training set.
Compute the average prediction y = 1

m

Pm
i=1 yi.

How does this a↵ect the three terms of the expected loss?
I Bias: unchanged,

since the averaged prediction has the same expectation

E[y] = E
"

1

m

mX

i=1

yi

#
= E[yi]

I Variance: reduced,
since we are averaging over independent predictions

Var[y] = Var

"
1

m

mX

i=1

yi

#
=

1

m2

mX

i=1

Var[yi] =
1

m
Var[yi].

I Bayes error: unchanged,
since we have no control over it
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Bagging: The Idea

In practice, psample is often expensive to sample from. So training
separate models on independently sampled datasets is very
wasteful of data!

Given training set D, use the empirical distribution pD as a proxy
for psample. This is called bootstrap aggregation or bagging .

I Take a dataset D with n examples.
I Generate m new datasets (“resamples” or “bootstrap samples”)
I Each dataset has n examples sampled from D with replacement.
I Average the predictions of models trained on the m datasets.

One of the most important ideas in statistics!
I Intuition: As |D|!1, we have pD ! psample.
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Bagging Example 1/2

Create m = 3 datasets by sampling from D with replacement.
Each dataset contains n = 7 examples.
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Bagging Example 2/2

Generate prediction yi using dataset Di.
Average the predictions.
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Aggregating Predictions for Binary Classification

Classifier i outputs a prediction yi

yi can be real-valued yi 2 [0, 1] or a binary value yi 2 {0, 1}

Average the predictions and apply a threshold.

ybagged = I
 

1

m

mX

i=1

yi > 0.5

!

Same as majority vote.
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Bagging Properties

A bagged classifier can be stronger than the average model.
I E.g. on “Who Wants to be a Millionaire”, “Ask the Audience”

is much more e↵ective than “Phone a Friend”.

But, if m datasets are NOT independent, don’t get
the 1

m variance reduction.

Reduce correlation between datasets by introducing
additional variability

I Invest in a diversified portfolio, not just one stock.
I Average over multiple algorithms,

or multiple configurations of the same algorithm.
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Random Forests

A trick to reduce correlation between bagged decision trees:
For each node, choose a random subset of features
and consider splits on these features only.

Probably the best black-box machine learning algorithm.
I works well with no tuning.
I widely used in Kaggle competitions.
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Bagging Summary

Reduces over-fitting by averaging predictions.

In most competition winners.
A small ensemble often better than a single great model.

Limitations:

Does not reduce bias in case of squared error.

Correlation between classifiers means less variance reduction.
Add more randomness in Random Forests.

Weighting members equally may not be the best.
Weighted ensembling often leads to better results if members are
very di↵erent.
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Linear Regression

Task: predict scalar-valued targets (e.g. stock prices)

Architecture: linear function of the inputs
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A Modular Approach to ML

choose a model describing relationships between variables

define a loss function quantifying how well the model fits the data

choose a regularizer expressing preference over di↵erent models

fit a model that minimizes the loss function and satisfies the
regularizer’s constraint/penalty, possibly using an optimization
algorithm
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Supervised Learning Setup

Input x 2 X (a vector of features)

Target t 2 T

Data D = {(x(i), t(i)) for i = 1, 2, ..., N}

Objective: learn a function f : X ! T based on the data
such that t ⇡ y = f(x)

Intro ML (UofT) CSC311-Lec3 23 / 58

I

5
ER



Model

Model: a linear function of the features x = (x1, . . . , xD) 2 RD

to make prediction y 2 R of the target t 2 R:

y =f(x) =
X

j

wjxj + b = w>x + b

Parameters are weights w and the bias/intercept b

Want the prediction to be close to the target: y ⇡ t.

Highly interpretable model, useful for debugging.
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Loss Function

Loss function L(y, t) defines how badly the algorithm’s prediction y fits
the target t for some example x.

Squared error loss function: L(y, t) = 1
2(y � t)2

y � t is the residual, and we want to minimize this magnitude
1
2 makes calculations convenient.

Cost function: loss function averaged over all training examples
also called empirical or average loss.

J (w, b) =
1

2N

NX

i=1

⇣
y(i) � t(i)

⌘2
=

1

2N

NX

i=1

⇣
w>x(i) + b� t(i)

⌘2
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Loops v.s. Vectorized Code

We can compute prediction for one data point using a for loop:

y = b

for j in range(M):

y += w[j] * x[j]

But, excessive super/sub scripts are hard to work with, and
Python loops are slow.

Instead, we express algorithms using vectors and matrices.

w = (w1, . . . , wD)> x = (x1, . . . , xD)>

y = w>x + b

This is simpler and executes much faster:

y = np.dot(w, x) + b
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Benefits of Vectorization

Why vectorize?

The code is simpler and more readable. No more dummy
variables/indices!

Vectorized code is much faster
I Cut down on Python interpreter overhead
I Use highly optimized linear algebra libraries (hardware support)
I Matrix multiplication very fast on GPU

You will practice switching in and out of vectorized form.

Some derivations are easier to do element-wise

Some algorithms are easier to write/understand using for-loops
and vectorize later for performance
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Predictions for the Dataset

Put training examples into a design matrix X.

Put targets into the target vector t.

We can compute the predictions for the whole dataset.

Xw + b1 = y

0

BBBB@

x(1)
1 x(1)

2 . . . x(1)
D

x(2)
1 x(2)

2 . . . x(2)
D

...
...

...

x(N)
1 x(N)

2 . . . x(N)
D

1

CCCCA

0

BBB@

w1

w2
...

wD

1

CCCA
+ b

0

BBB@

1
1
...
1

1

CCCA
=

0

B@
y(1)

...
y(N)

1

CA
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Computing Squared Error Cost

We can compute the squared error cost across the whole dataset.

y = Xw + b1

J =
1

2N
ky � tk2

Sometimes we may use J = 1
2ky � tk2, without a normalizer.

This would correspond to the sum of losses, and not the averaged loss.
The minimizer does not depend on N (but optimization might!).
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Combining Bias and Weights

We can combine the bias and the weights and
add a column of 1’s to design matrix.

Our predictions become

y = Xw.

X =

2

64
1 [x(1)]>

1 [x(2)]>

1
...

3

75 2 RN⇥(D+1) and w =

2

6664

b
w1

w2
...

3

7775
2 RD+1
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Solving the Minimization Problem

Goal is to minimize the cost function J (w).

Recall: the minimum of a smooth function (if it exists) occurs at a
critical point, i.e. point where the derivative is zero.

rwJ =
@J

@w
=

0

B@

@J
@w1
...

@J
@wD

1

CA

Solutions may be direct or iterative.

Direct solution: set the gradient to zero and solve in closed form
— directly find provably optimal parameters.

Iterative solution: repeatedly apply an update rule that gradually
takes us closer to the solution.

Intro ML (UofT) CSC311-Lec3 33 / 58

vector of partial
derivatives

Efron

gradientdescent



Minimizing 1D Function

Consider J (w) where w is 1D.

Seek w = w⇤ to minimize J (w).

The gradients can tell us where the maxima and minima of
functions lie

Strategy: Write down an algebraic expression for rwJ (w).
Set rwJ (w) = 0. Solve for w.
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J (w)
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Direct Solution for Linear Regression

Seek w to minimize J (w) = 1
2kXw � tk2

Taking the gradient with respect to w and setting it to 0, we get:

rwJ (w) = X>Xw �X>t = 0

See course notes for derivation.

Optimal weights:
w⇤ = (X>X)�1X>t

Few models (like linear regression) permit direct solution.
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Iterative Solution: Gradient Descent

Many optimization problems don’t have a direct solution.

A more broadly applicable strategy is gradient descent.

Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.
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Deriving Update Rule

Observe:
if @J /@wj > 0, then decreasing J requires decreasing wj .
if @J /@wj < 0, then decreasing J requires increasing wj .

The following update always decreases the cost function
for small enough ↵ (unless @J /@wj = 0):

wj  wj � ↵
@J

@wj
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Setting Learning Rate

Gradient descent update rule:

wj  wj � ↵
@J

@wj

↵ > 0 is a learning rate (or step size).

The larger ↵ is, the faster w changes.

Values are typically small, e.g. 0.01 or 0.0001.

We’ll see later how to tune the learning rate.

If minimizing total loss rather than average loss,
needs a smaller learning rate (↵0 = ↵/N).
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Gradient Descent Intuition

Gradient descent gets its name from the gradient,
the direction of fastest increase.

rwJ =
@J

@w
=

0

B@

@J
@w1

...
@J

@wD

1

CA

Update rule in vector form:

w w � ↵
@J

@w

Update rule for linear regression:

w w �
↵

N

NX

i=1

(y(i) � t(i))x(i)

Gradient descent updates w in the direction of fastest decrease.

Once it converges, we get a critical point, i.e. @J
@w = 0.
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Why Use Gradient Descent?

Applicable to a much broader set of models.

Easier to implement than direct solutions.

More e�cient than direct solution for regression in
high-dimensional space.

I The linear regression direction solution (X>X)�1X>t
requires matrix inversion, which is O(D3).

I Gradient descent update costs O(ND)
or less with stochastic gradient descent.

I Huge di↵erence if D is large.
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Feature Mapping

Can we use linear regression to model a non-linear relationship?

Map the input features to another space  (x) : RD
! Rd.

Treat the mapped feature (in Rd) as the input of a linear
regression procedure.
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Modeling a Non-Linear Relationship
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Polynomial Feature Mapping

Fit the data using a degree-M polynomial function of the form:

y = w0 + w1x + w2x
2 + ... + wMxM =

MX

i=0

wix
i

The feature mapping is  (x) = [1, x, x2, ..., xM ]>.

y =  (x)>w is linear in w0, w1, ....

Use linear regression to find w.
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Polynomial Feature Mapping with M = 0

y = w0

x

t

M = 0

0 1

−1

0

1

[Pattern Recognition and Machine Learning, Christopher Bishop.]
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Polynomial Feature Mapping with M = 1

y = w0 + w1x

x

t

M = 1

0 1

−1

0

1

[Pattern Recognition and Machine Learning, Christopher Bishop.]
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Polynomial Feature Mapping with M = 3

y = w0 + w1x + w2x
2 + w3x

3

x

t

M = 3

0 1

−1

0

1

[Pattern Recognition and Machine Learning, Christopher Bishop.]
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Polynomial Feature Mapping with M = 9

y = w0 + w1x + w2x
2 + w3x

3 + . . . + w9x
9

x

t

M = 9

0 1

−1

0

1

[Pattern Recognition and Machine Learning, Christopher Bishop.]
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Model Complexity and Generalization

x

t

M = 0

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Under-fitting (M=0):
Model is too simple,
doesn’t fit data well.

Good model (M=3):
Small test error,
generalizes well.

Over-fitting (M=9):
Model is too complex,
fits data perfectly.

Intro ML (UofT) CSC311-Lec3 49 / 58

highbias low bias



Model Complexity and Generalization
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Model Complexity and Generalization

x

t

M = 9

0 1

−1

0

1

As M increases, the magnitude of coe�cients gets larger.

For M = 9, the coe�cients have become finely tuned to the data.

Between data points, the function exhibits large oscillations.
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Controlling Model Complexity

How can we control the model complexity?

A crude approach: restrict # of parameters / basis functions.
For polynomial expansion, tune M using a validation set.

Another approach: regularize the model.
Regularizer is a function that quantifies how much we prefer one
hypothesis vs. another.

Intro ML (UofT) CSC311-Lec3 53 / 58

Occam's razor



L2
(or `2) Regularization

Encourage the weights to be small
by choosing the L2 penalty as our regularizer.

R(w) = 1
2kwk

2
2 =

1

2

X

j

w2
j .

The regularized cost function makes a trade-o↵
between the fit to the data and the norm of the weights.

Jreg(w) = J (w) + �R(w) = J (w) +
�

2

X

j

w2
j .

If the model fits training data poorly, J is large.
If the weights are large in magnitude, R is large.

Large � penalizes weight values more.

Tune hyperparameter � with a validation set.
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L2
Regularization Picture
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L2
Regularized Least Squares: Ridge regression

For the least squares problem, we have J (w) = 1
2N kXw � tk2.

When � > 0 (with regularization), regularized cost gives

wRidge
� = argmin

w
Jreg(w) = argmin

w

1

2N
kXw � tk22 +

�

2
kwk22

=(X>X + �NI)�1X>t

� = 0 (no regularization) reduces to
least squares solution!

Can also formulate the problem as

argmin
w

1

2
kXw � tk22 +

�

2
kwk22

with solution
wRidge

� = (X>X + �I)�1X>t.
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Gradient Descent under the L2
Regularization

Gradient descent update to minimize J :

w w � ↵
@

@w
J

The gradient descent update to minimize the L2 regularized cost
J + �R results in weight decay:

w w � ↵
@

@w
(J + �R)

= w � ↵

✓
@J

@w
+ �

@R

@w

◆

= w � ↵

✓
@J

@w
+ �w

◆

= (1� ↵�)w � ↵
@J

@w
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Conclusions

Linear regression exemplifies recurring themes of this course:

choose a model and a loss function

formulate an optimization problem

solve the minimization problem
using direction solution or gradient descent.

vectorize the algorithm, i.e. represent in terms of linear algebra

make a linear model more powerful using feature mappings

improve the generalization by adding a regularizer
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