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Announcements

e HW1 is due next Tuesday at S5pm
e We have arranged TA office hours (on website) for the assignment.
@ Go to the earliest possible ones you can attend.

e Manage your time well! If you wait till the last TA session,
you may have a long wait to ask your question.
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Today

@ Ensembling methods combine multiple models and can perform better
than the individual members.

» We've seen many individual models (KNN, decision trees)

@ Bagging: Train models independently on random “resamples” of the
training data.

@ Linear regression, our first parametric learning algorithm.

» Illustrates a modular approach to learning algorithms.
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© Bias-Variance Decomposition
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Bias/Variance Decomposition

@ prediction y at a query x is a random variable
(where the randomness comes from the choice of dataset),

@ 1, is the optimal deterministic prediction, and

e tis a random target sampled from the true conditional p(¢|x).

El(y — )% = (s« — Ely])® + Var(y) + Var(t

bias variance Bayes error
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Interpretations

<20 20 Z 0
El(y —t)°] = (y« — E[y])® + Var(y) + Var(t)
™~ ~~ S—— ~——
J bias variance Bayes error
‘rreducibole

ECyi]

Bias/variance decomposes the expected loss into three terms:

@ bias: how wrong the expected prediction is .F i+ 4rainin ? doata
(

(corresponds to under-fitting) perfec -[-' no
ba

e variance: the amount of variability in the predictions
(corresponds to over-fitting)

@ Bayes error: the inherent unpredictability of the targets

Often loosely use “bias” for “under-fitting” and “variance” for
“over-fitting”.
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Overly Simple Model

An overly simple model (e.g. KNN with large k) might have
o high bias (neer Size of detaserf)

(cannot capture the structure in the data)

e low variance
(enough data to get stable estimates)

alesef, @ f
eften
s W0 A romone  preol
contours of qﬂ&fu’d training set ¢ fralal
expected loss eaCV‘ X C J affes e vj

o daleset

residual . %
Nee--mT T X/

[y< ) )

y )
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Overly Complex Model

An overly complex model (e.g. KNN with £ = 1) might have

o low bias
(learns all the relevant structure)
@ high variance
(fits the quirks of the data you happened to sample)

!
!
1

contours of
expected loss
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Visual of Bias/Variance Decomposition
con €u( with \')ﬂjj‘ j

Low Variance High Variance

@€
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@ Bagging
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Bagging Motivation

e Sample m independent training sets from psample-

e Compute the prediction y; using each training set.

o Compute the average prediction y = = el S 113

@ How does this affect the three terms of the expected loss?

» Bias: unchanged,
since the averaged prediction has the same expectation

1 m
=1 va((c K)‘

» Variance: reduced, C‘ \Ial(x]
since we are averaging over independent predictions

Zyz} - 7712 Zvar[yi] = %Var[yi].

—

» Bayes error: unchanged,
since we have no control over it
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Bagging: The Idea

e In practice, Psample 1S Often expensive to sample from. So training
separate models on independently sampled datasets is very

wasteful of data! sownpling wliin eplccenment

e Given training set D, use the empirical distribution pp as a proxy
for psample. This is called bootstrap aggregation or bagging .

Take a dataset D with n examples.

Generate m new datasets (“resamples” or “bootstrap samples”)
Each dataset has n examples sampled from D with replacement.
Average the predictions of models trained on the m datasets.

vV v.v Vv

@ One of the most important ideas in statistics!
> Intuition: As |D| — oo, we have pp — Dsample-
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Bagging Example 1/2

Create m = 3 datasets by sampling from D with replacement.
Each dataset contains n = 7 examples.

336 336 383

= { \_...l zy © 2y T5 o } D1
Wwith reP\aceme

e | L7 Le I3 T1 3
L7 - -4 A © 0 6 0 A O D,
L2 Xo

. ‘/'U6 with replacement

A sa’"D/e
T4 Yith rep e X1 g L7 g Tg I3
©Meng {A.OOQQQ}D3
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Bagging Example 2/2

Generate prediction y; using dataset D;.

Average the predictions.

Ze L6 I3
{ ® O A O A } D4
I2 T4 5135 £B2

7 g T3 I
{AOQQ.AQ}Dz
X2

*r“’\\f\ mm\

train model

> Y1

and predict for query

Prediction

train model

\/

and predict for query

m
yz—»Z yi/m
i=1

train model

v
<
w

and predict for query
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Aggregating Predictions for Binary Classification

e Classifier ¢ outputs a prediction ;
e y; can be real-valued y; € [0, 1] or a binary value y; € {0,1}
@ Average the predictions and apply a threshold.

1 m
Ybagged — I <E ;yz > 05)

@ Same as majority vote.
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Bagging Properties

@ A bagged classifier can be stronger than the average model.

» E.g. on “Who Wants to be a Millionaire”, “Ask the Audience”
is much more effective than “Phone a Friend”.

e But, if m datasets are NOT independent, don’t get
the % variance reduction.

@ Reduce correlation between datasets by introducing

additional variability (decerelate

T . | frees)
» Invest in a diversified portfolio, not just one stock.

» Average over multiple algorithms,
or multiple configurations of the same algorithm.
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Random Forests

A._—_ (0O -CQdures

e
gample |0 featused

@ A trick to reduce correlation between bagged decision trees:
For each node, choose a random subset of features
and consider splits on these features only.

@ Probably the best black-box machine learning algorithm.

» works well with no tuning.
» widely used in Kaggle competitions.
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Bagging Summary

Reduces over-fitting by averaging predictions.

In most competition winners.
A small ensemble often better than a single great model.

Limitations:

@ Does not reduce bias in case of squared error.

@ Correlation between classifiers means less variance reduction.

Add more randomness in Random Forests.
houstin

o Weighting members equally may not be the best. Adeobeest
Weighted ensembling often leads to better results if members are
very different.
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@ Lincar Regression
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Linear Regression

P(@dic‘(’ eleckica! bw“"j(’“
F{eiuendej
house prices

o Task: predict scalar-valued targets (e.g. stock prices)

@ Architecture: linear function of the inputs
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A Modular Approach to ML

@ choose a model describing relationships between variables
e define a loss function quantifying how well the model fits the data
@ choose a regularizer expressing preference over different models

@ fit a model that minimizes the loss function and satisfies the
regularizer’s constraint /penalty, possibly using an optimization
algorithm

CSC311-Lec3 22 /58
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Supervised Learning Setup

X ()]
x(t)
N .

x ™)
o Input x € X (a vector of features)

@ Targett € T C’—R
o Data D = {(x t@) for i =1,2,..., N}

@ Objective: learn a function f : X — 7T based on the data
such that t =~ y = f(x)
—_—

—
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Model w0 O

House prices (4 of (coms) (94 Fetege)
o0 1O
Sca‘clls
m
Model: a linear function of the features x = (x1,...,zp) € RP

to make prediction y € R of the target t € R:
2 W X, tWiK ... + WgoXp

y=f(X)=ijxj+b=wa+b
j =

o Parameters are weights w and the bias/intercept b
@ Want the prediction to be close to the target: y ~ t.
e Highly interpretable model, useful for debugging.

CSC311-Lec3 24 / 58
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LLoss Function

Loss function L(y,t) defines how badly the algorithm’s prediction y fits
the target ¢ for some example x. €(x)

l
Squared error loss function: L£(y,t) = 3(y — t)?

@ y —t is the residual, and we want to minimize this magnitude

° % makes calculations convenient.

Cost function: loss function averaged over all training examples
also called empirical or average loss.

N Ci N
1 : A\ 2 1 . O\ 2
_ (i) _ <z>) _ ( T (3) _ <z>)
J(w,b) N ;:1 (y t N 2 w x\ +b—t
“neal
| \ (e,j(eédov\
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© Vectorization
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Loops v.s. Vectorized Code

@ We can compute prediction for one data point using a for loop:
y = Db
for j in range(M):
y += wljl * x[j]
e But, excessive super/sub scripts are hard to work with, and
Python loops are slow.

e Instead, we express algorithms using vectors and matrices.

w = (wi,...,wp)" x = (z1,...,2p)"

(s 7244
ve Yy = WTX + b é

e This is simpler and executes much faster: ~
xs( X, A )
y = np.dot(w, x) + b
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Benefits of Vectorization

Why vectorize?

@ The code is simpler and more readable. No more dummy
variables/indices!
@ Vectorized code is much faster

» Cut down on Python interpreter overhead
» Use highly optimized linear algebra libraries (hardware support)
» Matrix multiplication very fast on GPU X‘(‘ A x

: : e . g\ (odient
You will practice switching in and out of vectorized form. 7 "

@ Some derivations are easier to do element-wise 2A X

e Some algorithms are easier to write/understand using for-loops
and vectorize later for performance
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Predictions for the Dataset

@ Put training examples into a design matrix X.
—_—
e Put targets into the target vector t.

@ We can compute the predictions for the whole dataset.

Xw+b1 =y

(wl x%)\ /wl\ /1\ e

(2) (.2) . mg ?1?2 b 1 _ f
Kx(N) (N) . :cgv) ) \w.D) \1) y
L/
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Computing Squared Error Cost

We can compute the squared error cost across the whole dataset.
y = Xw + 01

, N : size obdeateset
J = 5 Hy —t2

Sometimes we may use J = %Hy — t||2, without a normalizer.

This would correspond to the sum of losses, and not the averaged loss.

The minimizer does not depend on N (but optimization might!).
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Combining Bias and Weights

We can combine the bias and the weights and
add a column of 1’s to design matrix.

Our predictions become

y = XW
1 x)T b
w1
X = |1 [X(z)]T c RVX(D+D) gnd w = woy | € RP+1
1 . :
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© Optimization
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Solving the Minimization Problem

Goal is to minimize the cost function J(w).
Recall: the minimum of a smooth function (if it exists) occurs at a
critical point, i.e. point where the derivative is zero.

9F vectce ok partial

ow1

— 0F — : olelivettives
ow

VwJ

oJ
3wD

23

Solutions may be direct or iterative. 0w«

@ Direct solution: set the gradient to zero and solve in closed form
— directly find provably optimal parameters.

e Iterative solution: repeatedly apply an update rule that gradually
takes us closer to the solution. g Alent descent

CSC311-Lec3 33 /58
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Minimizing 1D Function

o Consider J(w) where w is 1D.
o Seek w = w* to minimize J (w).

@ The gradients can tell us where the maxima and minima of
functions lie

o Strategy: Write down an algebraic expression for V,,J (w).
Set VJ(w) = 0. Solve for w.

A A
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Direct Solution for Linear Regression

o Seek w to minimize J(w) = || Xw — t]|?
e Taking the gradient with respect to w and setting it to 0, we get:
VwJ(w)=X"Xw-X"t=0

See course notes for derivation.

e Optimal weights:
wh = (X'X)"1X "¢

o Few models (like linear regression) permit direct solution.

e O
No€ 4 B
V\mQ‘\ Sv\
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Nl

Jlw) = ”Xw el -

nxd .bq nx\
e KO L -0 (xe-t)
7.
e L (WX £ (Kw- -t)
¢R"-R
axt ) 24w xw-Qtﬁ‘L’rtt]
dxa nxd g nd dx|
X'X
del mmeirlc)
T oy
w
cj, WlAw = 2Aw
¢ {,Tw) = L{2xXw= 2|
wTxtt = XXJ=Xt =0
’r - -
: )'<—-u: w¥e (<K X7t
QTb = b(O\ ‘ Pse'ﬁddvvefcc
a, S———!
a,
: [ [b .. b.
a"l
A b‘fc‘\b.,_-l,-
5 a4,




[terative Solution: Gradient Descent

weiqln‘s
e Many optimization problems don’t have a direct solution.

@ A more broadly applicable strategy is gradient descent.

e Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

o We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.

7., 3(w) = XAw-X't

= X (Xw-t)
LA‘
?(‘edi&ﬁw\ - <vue
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Deriving Update Rule

Observe:
o if 0J /0w, > 0, then decreasing J requires decreasing w;.
o if 0J /0w, < 0, then decreasing J requires increasing w;.

The following update always decreases the cost function
for small enough o (unless 07 /0w; = 0):

Wi — w; — ozg% _1 one %lvﬂ\e cevpunent

J

7w}

L A
5 J(w)
‘Yercion? &

=Y
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Setting Learning Rate

Gradient descent update rule:

N/

Wi +— Wi — O ——
7 J ,
8109

a > 0 is a learning rate (or step size).
@ The larger « is, the faster w changes.
@ Values are typically small, e.g. 0.01 or 0.0001.
e We'll see later how to tune the learning rate.

e If minimizing total loss rather than average loss,
needs a smaller learning rate (a/ = a/N).
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Gradient Descent Intuition

e Gradient descent gets its name from the gradient,
the direction of fastest increase.

gj
veg =27 _|
ow o7
dwp
e Update rule in vector form:
oJ
W W — a—
ow
Update rule for linear regression: Tw’d (W)
0N
_ = (4) _ 4(2)) 5 (2)
WEewW o Zl(y ) x Q
M (Xw-t)
e Gradient descent updates w in the direction of fastest decrease.

@ Once it converges, we get a critical point, i.e. g—V{ =
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Why Use Gradient Descent?

e Applicable to a much broader set of models.

e Easier to implement than direct solutions.

@ More efficient than direct solution for regression in
high-dimensional space.

» The linear regression direction solution (X' X)71X "t
requires matrix inversion, which is O(D?).

» Gradient descent update costs O(N D) x‘([ Kw=t)
or less with stochastic gradient descent.

» Huge difference if D is large.
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‘\0
@ Feature Mappings \2:1
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Feature Mapping

Can we use linear regression to model a non-linear relationship?
o Map the input features to another space 1 (x) : RP? — RY.

o Treat the mapped feature (in R?) as the input of a linear
regression procedure.
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Modeling a Non-Linear Relationship

1 o
. o
{
o
o
O
! o
© o
o
_1 -
0 - |
OSC811-Loc3 1575




Polynomial Feature Mapping

%
| x x¥ x*..-
Fit the data using a degree-M polynomial function of the form:
M
y = wo + wix + wex® + ... + wyz™ = Zwixz
o The feature mapping is ¥ (z) = [1,z,22,...,2M]".
T . . . —
o y =(x) W is linear in wq, wr, ....
@ Use linear regression to find w. (P(K‘)
V(<e)
. | KM\
CSC311-Lec3 44 / 58




Polynomial Feature Mapping with M = 0

Yy = Wo
1 (@) M =0
O
t
© e
ot / o\ °
O
_1 R
0 o
[Pattern Recognition and Machine Learning, Christopher Bishop.]
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Polynomial Feature Mapping with M =1

Yy = wo +wx

[Pattern Recognition and Machine Learning, Christopher Bishop.]
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Polynomial Feature Mapping with M = 3

2 3
Y = Wy + wi1x + wax” + w3x

[Pattern Recognition and Machine Learning, Christopher Bishop.]
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Polynomial Feature Mapping with M =9

X
__ 2 3 9
| Y = wo + wix + wex” +w3xr” + ...+ W9k
e ]
O
| > 1 =9
t
o o
X Q
OF 1
| v
L2 48 X
( OO0 |1
\ v O . |
0 1
2 .3 o
A i ¢
[Pattern Recognition and Machine Learning, Christopher Bishop.]
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Model Complexity and Generalization

o ol | lowbas

Under-fitting (M=0):  Good model (M=3):  Over-fitting (M=9):
Model is too simple, Small test error, Model is too complex,
doesn’t fit data well.  generalizes well. fits data perfectly.
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Model Complexity and Generalization

—©— Training
—— Test

0 3 M 6 9
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Model Complexity and Generalization

M=0 M=1 M=3 M =9

u 0.19 0.82 0.31 0.35

u -1.27 7.99 232.37 X

u -25.43 5321.83 !

17.37 48568.31
-231639.30 yH
640042.26
-1061800.52
1042400.18
-557682.99 . .
125201.43 0 v 1

o e =~

~
—~

O CO% ~I% OV UTok ik CO¥ D% =% O

~
—

@ As M increases, the magnitude of coeflicients gets larger.
@ For M =9, the coeflicients have become finely tuned to the data.

e Between data points, the function exhibits large oscillations.
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© Regularization
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Controlling Model Complexity

How can we control the model complexity?

@ A crude approach: restrict # of parameters / basis functions.
For polynomial expansion, tune M using a validation set.

@ Another approach: regularize the model.
Regularizer is a function that quantifies how much we prefer one

hypothesis vs. another. . ¢
yp OQCMS (aZ0
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L? (or ¢5) Regularization

@ Emncourage the weights to be small
by choosing the L? penalty as our regularizer.

1
2 2
R(w) = Slwl3 = 5 3" w?.
— J
@ The regularized cost function makes a trade-oft
between the fit to the data and the norm of the weights.

Treg(w) = T (W) + AR(W) = T (w) + 5 3" w?,

e If the model fits training data poorly, J is large.
If the weights are large in magnitude, R is large.

e Large A penalizes weight values more.

@ Tune hyperparameter A with a validation set.
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L? Regularization Picture

loss

(W)

1
“W“p
regularizer
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L? Regularized Least Squares: Ridge regression

For the least squares problem, we have J(w) = 7% || Xw — t[|2.

@ When X\ > 0 (with regularization), regularized cost gives

. 1 A
id . .
Wi argmin g (w) = argmin s [Xw — ] + 5wl
W A%
=(X"X + ANIN'X 't —
@ A =0 (no regularization) reduces to N oflects
least squares solution! oéh.jceof y |
e Can also formulate the problem as
: 2, A 2
arguin - [ Xw — t]3 + 5 [w]
with solution |
])?\ildge _ (XTX 4 )\I)—IXTt
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Gradient Descent under the L? Regularization

o Gradient descent update to minimize J:

W%W—Ozij
ow

o The gradient descent update to minimize the L? regularized cost
J + AR results in weight decay:

Wew—aa%(j%—)dz)
goZ. :W—Oz(a—j—l—)\a—R>
0. biainie oW oW
¥ 3w veldetieA  — <g—§ + )\W)
= (1 —a\Nw — ag—j
— w

\eom«\% 1ef@ . ( ﬂau\nﬁzﬁl‘“\ﬂ\
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Conclusions

Linear regression exemplifies recurring themes of this course:
@ choose a model and a loss function
e formulate an optimization problem

@ solve the minimization problem
using direction solution or gradient descent.

e vectorize the algorithm, i.e. represent in terms of linear algebra
@ make a linear model more powerful using feature mappings

@ improve the generalization by adding a regularizer
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