CSC 311: Introduction to Machine Learning
 Lecture 3 - Bagging, Linear Models I

Michael Zhang Chandra Gummaluru

University of Toronto, Winter 2023

Outline

(1) Introduction
(2) Bias-Variance Decomposition
(3) Bagging
(4) Linear Regression
(5) Vectorization
(6) Optimization
(7) Feature Mappings
(8) Regularization

Announcements

- HW1 is due next Tuesday at 5pm
- We have arranged TA office hours (on website) for the assignment.
- Go to the earliest possible ones you can attend.
- Manage your time well! If you wait till the last TA session, you may have a long wait to ask your question.

Today

- Ensembling methods combine multiple models and can perform better than the individual members.
- We've seen many individual models (KNN, decision trees)
- Bagging: Train models independently on random "resamples" of the training data.
- Linear regression, our first parametric learning algorithm.
- Illustrates a modular approach to learning algorithms.

(1) Introduction

(2) Bias-Variance Decomposition
(3) Bagging

4 Linear Regression
(5) Vectorization
(6) Optimization
(7) Feature Mappings
(8) Regularization

Bias/Variance Decomposition

- prediction y at a query \mathbf{x} is a random variable (where the randomness comes from the choice of dataset),
- y_{\star} is the optimal deterministic prediction, and
- t is a random target sampled from the true conditional $p(t \mid \mathbf{x})$.

$$
\mathbb{E}\left[(y-t)^{2}\right]=\underbrace{\left(y_{\star}-\mathbb{E}[y]\right)^{2}}_{\text {bias }}+\underbrace{\operatorname{Var}(y)}_{\text {variance }}+\underbrace{\operatorname{Var}(t)}_{\text {Bayes error }}
$$

Interpretations

$$
\mathbb{E}\left[(y-t)^{2}\right]=\underbrace{\left(y_{\star}-\mathbb{E}[y]\right)^{2}}_{\text {bias }}+\underbrace{\operatorname{Var}(y)}_{\text {variance }}+\underbrace{\operatorname{Var}(t)}_{\text {Bayes error }}
$$

Bias/variance decomposes the expected loss into three terms:

- bias: how wrong the expected prediction is (corresponds to under-fitting)
- variance: the amount of variability in the predictions (corresponds to over-fitting)
- Bayes error: the inherent unpredictability of the targets

Often loosely use "bias" for "under-fitting" and "variance" for "over-fitting".

Overly Simple Model

An overly simple model (e.g. KNN with large k) might have

- high bias
(cannot capture the structure in the data)
- low variance
(enough data to get stable estimates)

Overly Complex Model

An overly complex model (e.g. KNN with $k=1$) might have

- low bias
(learns all the relevant structure)
- high variance
(fits the quirks of the data you happened to sample)

Visual of Bias/Variance Decomposition

(1) Introduction

(2) Bias-Variance Decomposition

(3) Bagging

4 Linear Regression
(5) Vectorization
(6) Optimization
(7) Feature Mappings
(8) Regularization

Bagging Motivation

- Sample m independent training sets from $p_{\text {sample }}$.
- Compute the prediction y_{i} using each training set.
- Compute the average prediction $y=\frac{1}{m} \sum_{i=1}^{m} y_{i}$.
- How does this affect the three terms of the expected loss?
- Bias: unchanged, since the averaged prediction has the same expectation

$$
\mathbb{E}[y]=\mathbb{E}\left[\frac{1}{m} \sum_{i=1}^{m} y_{i}\right]=\mathbb{E}\left[y_{i}\right]
$$

- Variance: reduced, since we are averaging over independent predictions

$$
\operatorname{Var}[y]=\operatorname{Var}\left[\frac{1}{m} \sum_{i=1}^{m} y_{i}\right]=\frac{1}{m^{2}} \sum_{i=1}^{m} \operatorname{Var}\left[y_{i}\right]=\frac{1}{m} \operatorname{Var}\left[y_{i}\right]
$$

- Bayes error: unchanged, since we have no control over it

Bagging: The Idea

- In practice, $p_{\text {sample }}$ is often expensive to sample from. So training separate models on independently sampled datasets is very wasteful of data!
- Given training set \mathcal{D}, use the empirical distribution $p_{\mathcal{D}}$ as a proxy for $p_{\text {sample }}$. This is called bootstrap aggregation or bagging .
- Take a dataset \mathcal{D} with n examples.
- Generate m new datasets ("resamples" or "bootstrap samples")
- Each dataset has n examples sampled from \mathcal{D} with replacement.
- Average the predictions of models trained on the m datasets.
- One of the most important ideas in statistics!
- Intuition: As $|\mathcal{D}| \rightarrow \infty$, we have $p_{\mathcal{D}} \rightarrow p_{\text {sample }}$.

Bagging Example 1/2

Create $m=3$ datasets by sampling from D with replacement. Each dataset contains $n=7$ examples.

Bagging Example 2/2

Generate prediction y_{i} using dataset D_{i}. Average the predictions.

Aggregating Predictions for Binary Classification

- Classifier i outputs a prediction y_{i}
- y_{i} can be real-valued $y_{i} \in[0,1]$ or a binary value $y_{i} \in\{0,1\}$
- Average the predictions and apply a threshold.

$$
y_{\mathrm{bagged}}=\mathbb{I}\left(\frac{1}{m} \sum_{i=1}^{m} y_{i}>0.5\right)
$$

- Same as majority vote.

Bagging Properties

- A bagged classifier can be stronger than the average model.
- E.g. on "Who Wants to be a Millionaire", "Ask the Audience" is much more effective than "Phone a Friend".
- But, if m datasets are NOT independent, don't get the $\frac{1}{m}$ variance reduction.
- Reduce correlation between datasets by introducing additional variability
- Invest in a diversified portfolio, not just one stock.
- Average over multiple algorithms, or multiple configurations of the same algorithm.

Random Forests

- A trick to reduce correlation between bagged decision trees: For each node, choose a random subset of features and consider splits on these features only.
- Probably the best black-box machine learning algorithm.
- works well with no tuning.
- widely used in Kaggle competitions.

Bagging Summary

Reduces over-fitting by averaging predictions.
In most competition winners.
A small ensemble often better than a single great model.
Limitations:

- Does not reduce bias in case of squared error.
- Correlation between classifiers means less variance reduction. Add more randomness in Random Forests.
- Weighting members equally may not be the best. Weighted ensembling often leads to better results if members are very different.

(1) Introduction

(2) Bias-Variance Decomposition

(3) Bagging
(4) Linear Regression
(5) Vectorization
(6) Optimization
(7) Feature Mappings
(8) Regularization

Linear Regression

- Task: predict scalar-valued targets (e.g. stock prices)
- Architecture: linear function of the inputs

A Modular Approach to ML

- choose a model describing relationships between variables
- define a loss function quantifying how well the model fits the data
- choose a regularizer expressing preference over different models
- fit a model that minimizes the loss function and satisfies the regularizer's constraint/penalty, possibly using an optimization algorithm

Supervised Learning Setup

- Input $\mathbf{x} \in \mathcal{X}$ (a vector of features)
- Target $t \in \mathcal{T}$
- Data $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right.$ for $\left.i=1,2, \ldots, N\right\}$
- Objective: learn a function $f: \mathcal{X} \rightarrow \mathcal{T}$ based on the data such that $t \approx y=f(\mathbf{x})$

Model

Model: a linear function of the features $\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right) \in \mathbb{R}^{D}$ to make prediction $y \in \mathbb{R}$ of the target $t \in \mathbb{R}$:

$$
y=f(\mathbf{x})=\sum_{j} w_{j} x_{j}+b=\mathbf{w}^{\top} \mathbf{x}+b
$$

- Parameters are weights \mathbf{w} and the bias/intercept b
- Want the prediction to be close to the target: $y \approx t$.
- Highly interpretable model, useful for debugging.

Loss Function

Loss function $\mathcal{L}(y, t)$ defines how badly the algorithm's prediction y fits the target t for some example \mathbf{x}.

Squared error loss function: $\mathcal{L}(y, t)=\frac{1}{2}(y-t)^{2}$

- $y-t$ is the residual, and we want to minimize this magnitude
- $\frac{1}{2}$ makes calculations convenient.

Cost function: loss function averaged over all training examples also called empirical or average loss.

$$
\mathcal{J}(\mathbf{w}, b)=\frac{1}{2 N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right)^{2}=\frac{1}{2 N} \sum_{i=1}^{N}\left(\mathbf{w}^{\top} \mathbf{x}^{(i)}+b-t^{(i)}\right)^{2}
$$

(1) Introduction

(2) Bias-Variance Decomposition

(3) Bagging

44 Linear Regression
(5) Vectorization
(6) Optimization
(7) Feature Mappings
(8) Regularization

Loops v.s. Vectorized Code

- We can compute prediction for one data point using a for loop:

$$
\begin{aligned}
& y=b \\
& \text { for } j \text { in range (} M \text {): } \\
& \quad y+=w[j] * x[j]
\end{aligned}
$$

- But, excessive super/sub scripts are hard to work with, and Python loops are slow.
- Instead, we express algorithms using vectors and matrices.

$$
\begin{gathered}
\mathbf{w}=\left(w_{1}, \ldots, w_{D}\right)^{\top} \quad \mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)^{\top} \\
y=\mathbf{w}^{\top} \mathbf{x}+b
\end{gathered}
$$

- This is simpler and executes much faster:
$y=n p . \operatorname{dot}(w, x)+b$

Benefits of Vectorization

Why vectorize?

- The code is simpler and more readable. No more dummy variables/indices!
- Vectorized code is much faster
- Cut down on Python interpreter overhead
- Use highly optimized linear algebra libraries (hardware support)
- Matrix multiplication very fast on GPU

You will practice switching in and out of vectorized form.

- Some derivations are easier to do element-wise
- Some algorithms are easier to write/understand using for-loops and vectorize later for performance

Predictions for the Dataset

- Put training examples into a design matrix \mathbf{X}.
- Put targets into the target vector \mathbf{t}.
- We can compute the predictions for the whole dataset.

$$
\begin{gathered}
\mathbf{X w}+b \mathbf{1}=y \\
\left(\begin{array}{cccc}
x_{1}^{(1)} & x_{2}^{(1)} & \ldots & x_{D}^{(1)} \\
x_{1}^{(2)} & x_{2}^{(2)} & \ldots & x_{D}^{(2)} \\
\vdots & \vdots & & \vdots \\
x_{1}^{(N)} & x_{2}^{(N)} & \ldots & x_{D}^{(N)}
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{D}
\end{array}\right)+b\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)=\left(\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(N)}
\end{array}\right)
\end{gathered}
$$

Computing Squared Error Cost

We can compute the squared error cost across the whole dataset.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{X w}+b \mathbf{1} \\
& \mathcal{J}=\frac{1}{2 N}\|\mathbf{y}-\mathbf{t}\|^{2}
\end{aligned}
$$

Sometimes we may use $\mathcal{J}=\frac{1}{2}\|\mathbf{y}-\mathbf{t}\|^{2}$, without a normalizer. This would correspond to the sum of losses, and not the averaged loss. The minimizer does not depend on N (but optimization might!).

Combining Bias and Weights

We can combine the bias and the weights and add a column of 1's to design matrix.

Our predictions become

$$
\mathbf{y}=\mathbf{X w}
$$

$$
\mathbf{X}=\left[\begin{array}{cc}
1 & {\left[\mathbf{x}^{(1)}\right]^{\top}} \\
1 & {\left[\mathbf{x}^{(2)}\right]^{\top}} \\
1 & \vdots
\end{array}\right] \in \mathbb{R}^{N \times(D+1)} \quad \text { and } \mathbf{w}=\left[\begin{array}{c}
b \\
w_{1} \\
w_{2} \\
\vdots
\end{array}\right] \in \mathbb{R}^{D+1}
$$

(1) Introduction

(2) Bias-Variance Decomposition

(3) Bagging

4 Linear Regression
(5) Vectorization
(6) Optimization
(7) Feature Mappings
(8) Regularization

Solving the Minimization Problem

Goal is to minimize the cost function $\mathcal{J}(\mathbf{w})$.
Recall: the minimum of a smooth function (if it exists) occurs at a critical point, i.e. point where the derivative is zero.

$$
\nabla_{\mathbf{w}} \mathcal{J}=\frac{\partial \mathcal{J}}{\partial \mathbf{w}}=\left(\begin{array}{c}
\frac{\partial \mathcal{J}}{\partial w_{1}} \\
\vdots \\
\frac{\partial \mathcal{J}}{\partial w_{D}}
\end{array}\right)
$$

Solutions may be direct or iterative.

- Direct solution: set the gradient to zero and solve in closed form - directly find provably optimal parameters.
- Iterative solution: repeatedly apply an update rule that gradually takes us closer to the solution.

Minimizing 1D Function

- Consider $\mathcal{J}(w)$ where w is 1 D .
- Seek $w=w^{*}$ to minimize $\mathcal{J}(w)$.
- The gradients can tell us where the maxima and minima of functions lie
- Strategy: Write down an algebraic expression for $\nabla_{w} \mathcal{J}(w)$. Set $\nabla_{w} \mathcal{J}(w)=0$. Solve for w.

Direct Solution for Linear Regression

- Seek w to minimize $\mathcal{J}(\mathbf{w})=\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{t}\|^{2}$
- Taking the gradient with respect to \mathbf{w} and setting it to $\mathbf{0}$, we get:

$$
\nabla_{\mathbf{w}} \mathcal{J}(\mathbf{w})=\mathbf{X}^{\top} \mathbf{X} \mathbf{w}-\mathbf{X}^{\top} \mathbf{t}=\mathbf{0}
$$

See course notes for derivation.

- Optimal weights:

$$
\mathbf{w}^{*}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

- Few models (like linear regression) permit direct solution.

Iterative Solution: Gradient Descent

- Many optimization problems don't have a direct solution.
- A more broadly applicable strategy is gradient descent.
- Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.
- We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.

Deriving Update Rule

Observe:

- if $\partial \mathcal{J} / \partial w_{j}>0$, then decreasing \mathcal{J} requires decreasing w_{j}.
- if $\partial \mathcal{J} / \partial w_{j}<0$, then decreasing \mathcal{J} requires increasing w_{j}.

The following update always decreases the cost function for small enough α (unless $\partial \mathcal{J} / \partial w_{j}=0$):

$$
w_{j} \leftarrow w_{j}-\alpha \frac{\partial \mathcal{J}}{\partial w_{j}}
$$

Setting Learning Rate

Gradient descent update rule:

$$
w_{j} \leftarrow w_{j}-\alpha \frac{\partial \mathcal{J}}{\partial w_{j}}
$$

$\alpha>0$ is a learning rate (or step size).

- The larger α is, the faster \mathbf{w} changes.
- Values are typically small, e.g. 0.01 or 0.0001 .
- We'll see later how to tune the learning rate.
- If minimizing total loss rather than average loss, needs a smaller learning rate $\left(\alpha^{\prime}=\alpha / N\right)$.

Gradient Descent Intuition

- Gradient descent gets its name from the gradient, the direction of fastest increase.

$$
\nabla_{\mathbf{w}} \mathcal{J}=\frac{\partial \mathcal{J}}{\partial \mathbf{w}}=\left(\begin{array}{c}
\frac{\partial \mathcal{J}}{\partial w_{1}} \\
\vdots \\
\frac{\partial \mathcal{J}}{\partial w_{D}}
\end{array}\right)
$$

- Update rule in vector form:

$$
\mathbf{w} \leftarrow \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
$$

Update rule for linear regression:

$$
\mathbf{w} \leftarrow \mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
$$

- Gradient descent updates \mathbf{w} in the direction of fastest decrease.
- Once it converges, we get a critical point, i.e. $\frac{\partial \mathcal{J}}{\partial \mathbf{w}}=\mathbf{0}$.

Why Use Gradient Descent?

- Applicable to a much broader set of models.
- Easier to implement than direct solutions.
- More efficient than direct solution for regression in high-dimensional space.
- The linear regression direction solution $\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}$ requires matrix inversion, which is $\mathcal{O}\left(D^{3}\right)$.
- Gradient descent update costs $\mathcal{O}(N D)$ or less with stochastic gradient descent.
- Huge difference if D is large.

(1) Introduction

(2) Bias-Variance Decomposition

(3) Bagging

4 Linear Regression
(5) Vectorization
(6) Optimization
(7) Feature Mappings
(8) Regularization

Feature Mapping

Can we use linear regression to model a non-linear relationship?

- Map the input features to another space $\boldsymbol{\psi}(\mathbf{x}): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$.
- Treat the mapped feature (in \mathbb{R}^{d}) as the input of a linear regression procedure.

Modeling a Non-Linear Relationship

Polynomial Feature Mapping

Fit the data using a degree- M polynomial function of the form:

$$
y=w_{0}+w_{1} x+w_{2} x^{2}+\ldots+w_{M} x^{M}=\sum_{i=0}^{M} w_{i} x^{i}
$$

- The feature mapping is $\boldsymbol{\psi}(x)=\left[1, x, x^{2}, \ldots, x^{M}\right]^{\top}$.
- $y=\boldsymbol{\psi}(x)^{\top} \mathbf{w}$ is linear in w_{0}, w_{1}, \ldots.
- Use linear regression to find \mathbf{w}.

Polynomial Feature Mapping with $M=0$

$$
y=w_{0}
$$

[Pattern Recognition and Machine Learning, Christopher Bishop.]

Polynomial Feature Mapping with $M=1$

$$
y=w_{0}+w_{1} x
$$

Polynomial Feature Mapping with $M=3$

$$
y=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}
$$

[Pattern Recognition and Machine Learning, Christopher Bishop.]

Polynomial Feature Mapping with $M=9$

$$
y=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+\ldots+w_{9} x^{9}
$$

[Pattern Recognition and Machine Learning, Christopher Bishop.]

Model Complexity and Generalization

Under-fitting ($\mathrm{M}=0$): Model is too simple, doesn't fit data well.

Good model ($\mathrm{M}=3$): Small test error, generalizes well.

Over-fitting ($\mathrm{M}=9$):
Model is too complex, fits data perfectly.

Model Complexity and Generalization

Model Complexity and Generalization

	$M=0$	$M=1$	$M=3$	$M=9$
w_{0}^{\star}	0.19	0.82	0.31	0.35
w_{1}^{\star}		-1.27	7.99	232.37
w_{2}^{\star}			-25.43	-5321.83
w_{3}^{\star}			17.37	48568.31
w_{4}^{\star}				-231639.30
w_{5}^{\star}				640042.26
w_{6}^{\star}				-1061800.52
w_{7}^{\star}				1042400.18
w_{8}^{\star}				-557682.99
w_{9}^{\star}				125201.43

- As M increases, the magnitude of coefficients gets larger.
- For $M=9$, the coefficients have become finely tuned to the data.
- Between data points, the function exhibits large oscillations.

(1) Introduction

(2) Bias-Variance Decomposition

(3) Bagging

4 Linear Regression
(5) Vectorization
(6) Optimization
(7) Feature Mappings
(8) Regularization

Controlling Model Complexity

How can we control the model complexity?

- A crude approach: restrict \# of parameters / basis functions. For polynomial expansion, tune M using a validation set.
- Another approach: regularize the model. Regularizer is a function that quantifies how much we prefer one hypothesis vs. another.

L^{2} (or ℓ_{2}) Regularization

- Encourage the weights to be small by choosing the L^{2} penalty as our regularizer.

$$
\mathcal{R}(\mathbf{w})=\frac{1}{2}\|\mathbf{w}\|_{2}^{2}=\frac{1}{2} \sum_{j} w_{j}^{2} .
$$

- The regularized cost function makes a trade-off between the fit to the data and the norm of the weights.

$$
\mathcal{J}_{\mathrm{reg}}(\mathbf{w})=\mathcal{J}(\mathbf{w})+\lambda \mathcal{R}(\mathbf{w})=\mathcal{J}(\mathbf{w})+\frac{\lambda}{2} \sum_{j} w_{j}^{2}
$$

- If the model fits training data poorly, \mathcal{J} is large. If the weights are large in magnitude, \mathcal{R} is large.
- Large λ penalizes weight values more.
- Tune hyperparameter λ with a validation set.

L^{2} Regularization Picture

L^{2} Regularized Least Squares: Ridge regression

For the least squares problem, we have $\mathcal{J}(\mathbf{w})=\frac{1}{2 N}\|\mathbf{X w}-\mathbf{t}\|^{2}$.

- When $\lambda>0$ (with regularization), regularized cost gives

$$
\begin{aligned}
\mathbf{w}_{\lambda}^{\text {Ridge }}=\underset{\mathbf{w}}{\operatorname{argmin}} \mathcal{J}_{\text {reg }}(\mathbf{w}) & =\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2 N}\|\mathbf{X} \mathbf{w}-\mathbf{t}\|_{2}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2} \\
& =\left(\mathbf{X}^{\top} \mathbf{X}+\lambda N \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
\end{aligned}
$$

- $\lambda=0$ (no regularization) reduces to least squares solution!
- Can also formulate the problem as

$$
\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{X w}-\mathbf{t}\|_{2}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}
$$

with solution

$$
\mathbf{w}_{\lambda}^{\text {Ridge }}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{t} .
$$

Gradient Descent under the L^{2} Regularization

- Gradient descent update to minimize \mathcal{J} :

$$
\mathbf{w} \leftarrow \mathbf{w}-\alpha \frac{\partial}{\partial \mathbf{w}} \mathcal{J}
$$

- The gradient descent update to minimize the L^{2} regularized cost $\mathcal{J}+\lambda \mathcal{R}$ results in weight decay:

$$
\begin{aligned}
\mathbf{w} & \leftarrow \mathbf{w}-\alpha \frac{\partial}{\partial \mathbf{w}}(\mathcal{J}+\lambda \mathcal{R}) \\
& =\mathbf{w}-\alpha\left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}}+\lambda \frac{\partial \mathcal{R}}{\partial \mathbf{w}}\right) \\
& =\mathbf{w}-\alpha\left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}}+\lambda \mathbf{w}\right) \\
& =(1-\alpha \lambda) \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
\end{aligned}
$$

Conclusions

Linear regression exemplifies recurring themes of this course:

- choose a model and a loss function
- formulate an optimization problem
- solve the minimization problem using direction solution or gradient descent.
- vectorize the algorithm, i.e. represent in terms of linear algebra
- make a linear model more powerful using feature mappings
- improve the generalization by adding a regularizer

