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@ Introduction

© Decision Trees

© Bias-Variance Decomposition
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Today

@ Announcement: Math diagnostic due Friday, HW1 released soon

@ Decision Trees

» Simple but powerful learning algorithm

» Used widely in Kaggle competitions

» Lets us motivate concepts from information theory (entropy, mutual
information, etc.)

@ Bias-variance decomposition
» Concept to motivate combining different classifiers.
@ Ideas we will need in today’s lecture

» Trees [from algorithms]
» Expectations, marginalization, chain rule [from probability]
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© Decision Trees
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Lemons or Oranges

Scenario: You run a sorting facility for citrus fruits
@ Binary classification: lemons or oranges

@ Features measured by sensor on conveyor belt: height and width
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Decision Trees

@ Make predictions by splitting on features according to a tree structure.

E/vidth > 6.5cm? ]

Yes No

helght >9.5cm? helght > 6.0cm?

/\ l\
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Decision Trees

@ Make predictions by splitting on features according to a tree structure.

Test example

A

[width > 6.5cm? ]

Yes (o)

{height>9.5cm? ] [height>6.0cm? J
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Decision Trees—Continuous Features

@ Split continuous features by checking whether that feature is greater
than or less than some threshold.

@ Decision boundary is made up of axis-aligned planes.

Jl(

E/vidth > 6.5cm?

Yes No

£

[height>9.50m? ] [height>6.0cm? ]

Yes/\do Yes N

height (cm)

41 ® oranges
A lemons

4 6 8 10
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Decision Trees

E/vidth > 6.5cm? ] |

Yes No

[height >9.5cm? Jﬁ [height >6.0cm? Jﬂ

Yes/\No Yes N

@ Internal nodes test a feature$g
@ Branching is determined by the feature value

@ Leaf nodes are outputs (predictions)

MOX
Question: What are the hyperparameters of this model? sepra
B ot vodes
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Decision Trees—Classification and Regression

@ Each path from root to a leaf defines a region R,,

of input space - H 0
£ 9 “A 8% ﬁ
o Let {(x(m1), ¢t(m)y . (x(ms) t(mx))) be the “1
training examples that fall into R,, ) T
@ m = 4 on the right and £ is the same across each -~
region
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Decision Trees—Classification and Regression

@ Each path from root to a leaf defines a region R,,
of input space

o Let {(z(m1), ¢(m)y (x(mx) t(me))1 be the
training examples that fall into R,,

@ m = 4 on the right and £ is the same across each
region

{|
@ Regression tree: (house P“Ce)
» continuous output

» leaf value y™ typically set to the mean value in {t(ml), . ,t(m’*ﬁ)}

@ Classification tree (we will focus on this):
» discrete output

» leaf value y™ typically set to the most common value in
[Hom) | pmiy
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Decision Trees—Discrete Features

@ Will I eat at this restaurant?

Patrons?

WaitEstimate?

Alternate? Hungry?
No Yes No Yes

Reservatlon'? Fn/Sat" Alternate"

Yes
Bar? Raining?
No/ \Y No Yes

Intro ML (UofT)
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Decision ']

‘rees—Discrete Features

@ Split discrete features into a partition of possible values.

Example Input Attributes
Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type Est
r X1 Yes| No| No | Yes| Some | $$8 | No | Yes| French | 0-10
X9 Yes| No | No | Yes| Full $ No | No Thai 30-60
X3 No | Yes| No | No | Some $ No | No | Burger | 0-10
‘] X4 Yes| No | Yes| Yes| Full $ Yes | No Thai | 10-30
AUXO\ X5 Yes| No | Yes| No | Full | $88 | No | Yes| French| >60
X6 No| Yes| No | Yes| Some | $% | Yes| Yes | |Italian | 0-10
X7 No | Yes| No | No | None $ Yes | No | Burger | 0-10
Xg No| No| No | Yes| Some| $$ | Yes| Yes| Thai 0-10
Xg No | Yes| Yes| No | Full $ Yes | No | Burger | >60
X10 Yes | Yes| Yes| Yes| Full | $$$ | No | Yes | |Italian | 10-30
9 X11 No| No | No | No | None $ No | No Thai 0-10
X192 Yes | Yes | Yes| Yes | Full $ No | No | Burger | 30-60
il Alternate: whether there is a suitable alternative restaurant nearby.
2 Bar: whether the restaurant has a comfortable bar area to wait in.
3. Fri/Sat: true on Fridays and Saturdays.
4. Hungry: whether we are hungry.
5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
6. Price: the restaurant's price range ($, $$, $$%).
7. Raining: whether it is raining outside.
8. Reservation: whether we made a reservation.
9. Type: the kind of restaurant (French, Italian, Thai or Burger).
Features- 10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Intro ML (UofT)
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WillWait
y1 = Yes
Yo = No
ys = Yes
ys = Yes
ys = No
Y = Yes
yr = No
ys = Yes
Yo = No
Y10 = No
y11 = No
Y12 = Yes
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Learning Decision Trees

@ Decision trees are universal function approximators.

» For any training set we can construct a decision tree that has
exactly the one leaf for every training point, but it probably won’t
generalize.

» Example - If all D features were binary, and we had N = 2" unique
training examples, a Full Binary Tree would have one leaf per
example.

@ Finding the smallest decision tree that correctly classifies a training set is
NP complete. (hard pichlen)
—_————

» If you are interested, check: Hyafil & Rivest’76.

@ So, how do we construct a useful decision tree?

Intro ML (UofT)
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Learning Decision Trees

@ Resort to a greedy heuristic:

» Start with the whole training set and an empty decision tree.
» Pick a feature and candidate split that would most reduce a loss
» Split on that feature and recurse on subpartitions.

®© What is a loss? meiric +0 wmeasure pel Eormance

L I o N
» When learning a model, we use a scalar number to assess whether

we're on track
» Scalar value: low is good, high is bad

@ Which loss should we use?

CSC311-Lec2 14 / 55
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Choosing a Good Split

@ Consider the following data. Let’s split on width.

e Classify by majority.

height

®
A

> o o

Intro ML (UofT)
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Choosing a Good Split

@ Which is the best split? Vote!

A B
o] e e ® oo
£ ® oranges
2 A O Al® .
- emons
® A ® A
1\ width width
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Choosing a Good Split

o A feels like a better split, because the left-hand region is very
certain about whether the fruit is an orange.

e Can we quantify this?

A B

e e e e oo

= ® oranges

Ry

Qo A O Al® A lemons

® A ® A
width width
CSC311-Lec2 17/ 55




Choosing a Good Split

@ How can we quantify uncertainty in prediction for a given leaf node?

» If all examples in leaf have same class: good, low uncertainty
» If each class has same amount of examples in leaf: bad, high
uncertainty

@ Idea: Use counts at leaves to define probability distributions; use a
probabilistic notion of uncertainty to decide splits.

@ There are different ways to evaluate a split. We will focus on a common
way: entropy.

@ A brief detour through information theory...

Intro ML (UofT)
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Entropy - Quantitying uncertainty

@ You may have encountered the term entropy quantifying the state of
chaos in chemical and physical systems,

@ In statistics, it is a property of a random variable,

@ The entropy of a discrete random variable is a number that quantifies
the uncertainty inherent in its possible outcomes.

@ The mathematical definition of entropy that we give in a few slides may
seem arbitrary, but it can be motivated axiomatically.

» If you’re interested, check: Information Theory by Robert Ash or
Elements of Information Theory by Cover and Thomas.

@ To explain entropy, consider flipping two different coins...

Intro ML (UofT)
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We Flip Two Different Coins

Each coin is a binary random variable with outcomes 1 or 0:

Sequence 1.
0200100000000000100 ... 7

Sequence 2:
1010111010011 0101 ... 7

CSC311-Lec2 20 /55
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We Flip Two Different Coins

Each coin is a binary random variable with outcomes 1 or 0:

Sequence 1.

000100000000000100 ...

10101110100110101 ...

Sequence 2:
16
2
I—
1

/L has |ese vmce(*u‘«'\‘"
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Quantifying Uncertainty = S-pl)legqel)
A ) (\

@ The entropy of a loaded coin with probabilify p of heads is given by

\
A = | 2 \q*f —plogy(p) — (1 —p)logy(1 —p) 29(“639(.
ACBC 1/9 |j|j
0o\00 —=

\O o 1

8 Lé_’\'\J1 |

) o 1 ~ 4 4 5 5

910g2 9 910g2 9~ 3 —§log2 9 §log2 9 ~ 0.99

@ Notice: the coin whose outcomes are more certain has a lower entropy.

@ In the extreme case p = 0 or p = 1, we were certain of the outcome before
observing. So, we gained no certainty by observing it, i.e., entropy is O.

Intro ML (UofT)
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Quantifying Uncertainty

@ Can also think of entropy as the expected information content of a
random draw from a probability distribution.

entropy

, \ * {
1.0 E\Oj : T ‘i(oraf
2

0.8

0.6; :*‘5(“32%‘;\7)2
_
e
0.2 0.4 06 08 A probability p of heads
P

@ Claude Shannon showed: you cannot store the outcome of a random
draw using fewer expected bits than the entropy without losing
information.

@ So units of entropy are bits; a fair coin flip has 1 bit of entropy.

Intro ML (UofT)
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Entropy

@ More generally, the entropy of a discrete random variable Y is given by

ZP ) logy p(y)

yey

@ “High Entropy”:

» Variable has a uniform like distribution over many outcomes
» Flat histogram
» Values sampled from it are less predictable

[Slide credit: Vibhav Gogate]
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Entropy

@ More generally, the entropy of a discrete random variable Y is given by

ZP ) logy p(y)

yey

@ “High Entropy”:

N\

» Variable has a uniform like distribution over many outcomes
» Flat histogram
» Values sampled from it are less predictable

@ “Low Entropy”
» Distribution is concentrated on only a few outcomes ’_ﬂh\

» Histogram is concentrated in a few areas
» Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]
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Entropy

@ Suppose we observe partial information X about a random variable Y
» For example, X = sign(Y).

@ We want to work towards a definition of the expected amount of
information that will be conveyed about Y by observing X.

» Or equivalently, the expected reduction in our uncertainty about Y
after observing X. T

: (initial clie]
. S.de( ‘
(split we con ) of \ctbels)
e et 24755




Entropy of a Joint Distribution

@ Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy |[Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

H(X,Y) = =Y Y pla,y)logyp(z,y)

reX yeyY

24, 24 1 L 25 25 50 50
— —— 10 —_— — — 10 _ _ _—

100 2827100~ 100 227100 100 227100 100 2100
~ 1.56bits
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Conditional Entropy

@ Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy |Not Cloudy p(cﬂwd“rquMﬂ)
= —
(ﬂng 24/100 1/1%> P (dwhﬂfi«lﬂ
- (C(‘LV\‘M
Not Raining| 25/100 | 50/100 p 29)
- @
@ What is the entropy of cloudiness Y, given that it is raining? *25. —
v
H(Y|X = = —
(VX = ) > plo)logspylz) e~ .
yey 2 =2
24 24 1 1 *
= ) legpl = ——logy —— —logy,—
.Z P2 legeli] 25 0225 25 0225  ceay (oo
{
~ 0.24bits

o We used: p(y|z) = 2% and p(z) = >, p(z,y) (sum in a row)
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Conditional Entropy

Cloudy |[Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

Z P(K'v«) H(\/I?(zx)
5 blkes) Z-pli=yhes)

HY|X) = E.[H[Y|z] e logP“‘Y“")
= D P@HYIX=2) @), Vey)

reX

= -y Zp(a:f)logz p(y|x)

reX yeyY

@ The expected conditional entropy:

Intro ML (UofT)
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Conditional Entropy

@ Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy |[Not Cloudy

Raining 24/100 1/100 ]

24 |
T ™ b
\Ww (o

Not Raining| 25/100 50/100

1
H
2
b‘

@ What is the entropy of cloudiness, given the knowledge of whether or not
it is raining?

HY|X) = ) p@)H(Y|X =)
reX
1 L 3 .
= 7 H (cloudylis raining) + ZH (cloudy|not raining)
~ 0.75 bits

Intro ML (UofT)
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Conditional Entropy

@ Some useful properties:

» H is always non-negative

» Chain rule: H(X,Y)=H(X|Y)+ H(Y)=H(Y|X)+ H(X)

» If X and Y independent, then X does not affect our uncertainty
about Y: H((Y|X)=H(Y)

» But knowing Y makes our knowledge of Y certain: H(Y|Y) =0

» By knowing X, we can only decrease uncertainty about Y':
HY|X)<H(®Y)

e

Intro ML (UofT)
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Information Gain

Cloudy |[Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ How much more certain am I about whether it’s cloudy if I'm told
whether it is raining? My uncertainty in Y minus my expected
uncertainty that would remain in Y after seeing X.

@ This is called the information gain IG(Y|X) in Y due to X, or the
mutual information of ¥ and X

IGY|X)=H(Y)-H®Y|X) 20 (1)

o If X is completely uninformative about Y: IG(Y|X) =0

@ If X is completely informative about Y: IG(Y|X) = H(Y) HLY) = HEY)-
I HY)
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=0
Revisiting Our Original Example HEYI)

@ Information gain measures the informativeness of a variable,
which is exactly what we desire in a decision tree split!

@ The information gain of a split: how much information (over the training
set) about the class label Y is gained by knowing which side of a split
you're on.

CSC311-Lec2 el 155
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Information Gain of Split B

@ What is the information gain of split B? Not terribly informative...

B Y d:s{(lbq('ion ee (abels
X X, width= 1O leH
P ole Xy WKhZ (0 CghY
c ® oranges
o
o Al® A lemons
@ A
2L blues
J widtff S reds 2
4 \7
@ Entropy of class outcome before split: [ofad o
H(Y) =—2logy(2) — 21logy(2) ~ 0.86  \ 7 7.at \ G
U 27
@ Conditionatemttopy of class outcome after split:
-~ . U (L 3 SHls E
H(Y|left) ~ 0.81, H(Y |right) = 0.92 4 H(a‘ﬂ) + 2 iz,
o IG(split) =~ 0.86 — (2-0.81+ 2.0.92) ~ 0.006 0,8 o
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Information Gain of Split A

@ What is the information gain of split A? Very informative!

A
e e e
< ® oranges
S A O Pl
- emons
® A ] )
T Z
(5%
£ width

@ Entropy of class outcome before split: 0
H(Y) = ~2loga(2) — logy(3) = 0.86 56

@ Conditional entropy of class outcome after split:
H(Y|left) =0, H(Y |right) ~ 0.97

o IG(split) ~0.86 — (2-0+ 2-0.97) ~ 0.17!!
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Constructing Decision Trees

ENidth > 6.5cm? ]

Yes No

é [height> 9.5cm? ] [height> 6.0cm? ]
o®
®
4! o @ oranges Yes No Yes No
A lemons

. 4 éwidth cm ’ " V
(5iven aounch ot data

@ At each level, one must choose:

1. Which feature to split.
2. Possibly where to split it.

height (cm

@ Choose them based on how much information we would gain from the
decision! (choose feature that gives the highest gain)

Intro ML (UofT)
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Decision Tree Construction Algorithm® & ®
g <
£ 2{)_% 3‘1 5,‘ €, ¥

@ Simple, greedy, recursive approach, builds up tree node-by-node

1. pick a feature to split at a non-terminal node

2. split examples into groups based on feature value
3. for each group:

> if no examples — return majority from parent
> else if all examples in same class — return class
> else loop to step 1

@ Terminates when all leaves contain only examples in the same class or
are empty.

@ (Questions for discussion:

» How do you choose the feature to split on?
» How do you choose the threshold for each feature?

CSC311-Lec2 35/ 55
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Back to Our Example

Example Input Attributes Goal
Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type Est WillWait

X1 Yes| No| No | Yes| Some| $$8$ | No | Yes| French | 0-10 | y, = Yes
X9 Yes| No| No | Yes| Full $ No | No Thai | 30-60 | 1y = No
X3 No | Yes, No | No | Some $ No | No | Burger | 0-10 | y3 = Yes
X4 Yes| No | Yes | Yes Full $ Yes | No Thai 10-30 | y4 = Yes
X5 Yes| No| Yes| No | Full | $38 | No | Yes| French| >60 | vy5= No
X6 No| Yes| No | Yes| Some| $% | Yes | Yes| lItalian | 0-10 | yg = Yes
X7 No | Yes| No | No | None $ Yes | No | Burger| 0-10 | y; = No
Xg No| No| No| Yes| Some| $% | Yes | Yes| Thai 0-10 | yg = Yes
Xg No | Yes| Yes| No | Full $ Yes | No | Burger | >60 | y9= No
X10 Yes | Yes| Yes| Yes| Full | $%%5 | No | Yes | Italian | 10-30 | 10 = No
X11 No| No| No| No | None $ No | No Thai 0-10 | yi11 = No
X19 Yes | Yes | Yes| Yes Full $ No | No | Burger | 30-60 | yi2 = Yes

1. Alternate: whether there is a suitable alternative restaurant nearby.

2. Bar: whether the restaurant has a comfortable bar area to wait in.

3. Fri/Sat: true on Fridays and Saturdays.

4. Hungry: whether we are hungry.

5. Patrons: how many people are in the restaurant (values are None, Some, and Full).

6. Price: the restaurant's price range ($, $$, $$9%).

7. Raining: whether it is raining outside.

8. Reservation: whether we made a reservation.

9. Type: the kind of restaurant (French, Italian, Thai or Burger).

Features: 10. | | WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60). [from: Russell & Norvig]

Intro ML (UofT)
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Feature Selection

Tt

Type?

IG(Y) = H(Y) — H(Y|X)

2 2 4 4
IG(type) =1 — [—H(Y\Fr.) + EH(Y\It.) + — H(Y|Thai) + 1—2H(Y\Bur.)] =0

12 12
2 4 6 2 4
IG(Pat =1—|—=H(0,1 —H(1 —H(—=,-)| = 0.541
G(Patrons) [12 (0, )—I—12 ( ,O)—|—12 (6’6)] 0.5
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Which Tree is Better? Vote!

Patrons?

None Some Full

WaitEstimate?

Alternate?

'\V\es

| Patrons? |
None Some Full
| Hungry? |
French Italian

Reservation? Fri/Sat?

No Yes No Yes
Bar?
No / \ Yes

Intro ML (UofT)

Fri/Sat?

No

Hungry?
No Yes
Alternate?
No Yes
Raining?
No Yes

CSC311-Lec2
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What Makes a Good Tree?

@ Not too small: need to handle important but possibly subtle distinctions
in data

Intro ML (UofT)
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What Makes a Good Tree?

@ Not too small: need to handle important but possibly subtle distinctions
in data

@ Not too big:

» Computational efficiency (avoid redundant, spurious attributes)
» Avoid over-fitting training examples
» Human interpretability

Intro ML (UofT)
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What Makes a Good Tree?

@ Not too small: need to handle important but possibly subtle distinctions
in data

@ Not too big:

» Computational efficiency (avoid redundant, spurious attributes)
» Avoid over-fitting training examples
» Human interpretability

@ “Occam’s Razor”: find the simplest hypothesis that fits the observations

» Useful principle, but hard to formalize (how to define simplicity?)
» See Domingos, 1999, “The role of Occam’s razor in knowledge
discovery”

Intro ML (UofT)
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What Makes a Good Tree?

@ Not too small: need to handle important but possibly subtle distinctions
in data

@ Not too big:

» Computational efficiency (avoid redundant, spurious attributes)
» Avoid over-fitting training examples
» Human interpretability

@ “Occam’s Razor”: find the simplest hypothesis that fits the observations

» Useful principle, but hard to formalize (how to define simplicity?)
» See Domingos, 1999, “The role of Occam’s razor in knowledge
discovery”

@ We desire small trees with informative nodes near the root

Intro ML (UofT)
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Decision Tree Miscellany

@ Problems:

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

Intro ML (UofT)
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Decision Tree Miscellany

@ Problems:

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

@ Handling continuous attributes

Intro ML (UofT)
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Decision Tree Miscellany

@ Problems:

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

@ Handling continuous attributes

» Split based on a threshold, chosen to maximize information gain

Intro ML (UofT)
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Decision Tree Miscellany

@ Problems: -0 -5 | K

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

@ Handling continuous attributes

» Split based on a threshold, chosen to maximize information gain

@ Decision trees can also be used for regression on real-valued outputs.

Intro ML (UofT)
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Decision Tree Miscellany

@ Problems:

» You have exponentially less data at lower levels
» Too big of a tree can overfit the data
» Greedy algorithms don’t necessarily yield the global optimum

@ Handling continuous attributes
» Split based on a threshold, chosen to maximize information gain

@ Decision trees can also be used for regression on real-valued outputs.
Choose splits to minimize squared error, rather than maximize
information gain.

Intro ML (UofT)
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KNN versus Decision Trees

Advantages of decision trees over KNNs

Intro ML (UofT)
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KNN versus Decision Trees

Advantages of decision trees over KNNs

@ Simple to deal with discrete features, missing values, and poorly scaled

data
. IKNNs = ook of all tyaial
?
@ Fast at test time (why?) \ &0%] es
@ More interpretable l nuwber of levels 0€ teees
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KNN versus Decision Trees

Advantages of decision trees over KNNs

@ Simple to deal with discrete features, missing values, and poorly scaled
data

@ Fast at test time (why?)
@ More interpretable

Advantages of KNNs over decision trees

CSC311-Lec2 41 /55

Intro ML (UofT)




KNN versus Decision Trees

Advantages of decision trees over KNNs

@ Simple to deal with discrete features, missing values, and poorly scaled
data

@ Fast at test time (why?)
@ More interpretable

Advantages of KNNs over decision trees
@ Few hyperparameters

@ Can incorporate interesting distance measures (e.g. shape contexts)

CSC311-Lec2 41 /55
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Ensembling

@ We can combine multiple classifiers into an ensemble, which is a set of
predictors whose individual decisions are combined in some way to
classify new examples

» Leverages “wisdom of the crowd”
» E.g., (possibly weighted) majority vote

@ For this to be nontrivial, the classifiers must differ somehow, e.g.

» Different algorithm

» Different choice of hyperparameters

» Trained on different data

» Trained with different weighting of the training examples

@ Next lecture, we will study some specific ensembling techniques.

Intro ML (UofT)
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© Bias-Variance Decomposition
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e Today, we deepen our understanding of generalization
through a bias-variance decomposition.

» This will help us understand ensembling methods.
e What is generalization?

» Ability of a model to correctly classify/predict from unseen
examples (from the same distribution that the training data was
drawn from).

» Why does this matter? Gives us confidence that the model has
correctly captured the right patterns in the training data and will
work when deployed.
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Bias-Variance Decomposition

@ Overly simple models underfit the data,
and overly complex models overfit.

e We can quantify underfitting and overfitting
in terms of the bias/variance decomposition.

k = Number of Nearest Neighbors

D 8 - Linear
=1

R 110

& H O k&\ !
A : Lillad
QQ /_/
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Basic Setup for Classification

Mought experineat

® PDsample 18 @ data generating distribution.
For lemons and oranges, psample characterizes heights and widths.

o Pick a fixed query point x (denoted with a green x).
We want to get a prediction y at x.

@ A training set D consists of pairs (x;,t;) sampled
independent and identically distributed (i.i.d.) from pgample-

e We can sample lots of training sets independently from psampie-
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Basic Setup for Classification

dc&u dist.
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Basic Setup for Classification

@ Run our learning algorithm on each training set,
and compute its prediction y at the query point x.

@ We can view y as a random variable, where the randomness comes
from the choice of training set.

@ The classification accuracy is determined by the distribution of y.

@ Since y is a random variable, we can compute its expectation,
variance, etc.

e .
o ® o.o'.." . :‘ ~ . N . . e
. S, .‘.. : . .o . . ... ..0 : .. '.u 2 Al :
[ L 2 .. Y - - - C * - ) ..: ° Q- [ ] - . .‘ ° - E .4
. LI W v o® . - Lo e g °
o ‘o X 'J . ot ®. ;.’C‘ o ‘e * . O
1 .:.f ....’ ® . 1- '.:. '. o.o. it 1 e *e % . 3 L
: f’-. o* ~ - ‘ .".:0. ° * a® 4o * .
. o > ® * . *
i 1 2 3 e 1 2 3 i 1 2 3
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Basic Setup for Regression

fit to dataset 1 fit to dataset 2 fit to dataset 3
0- ; 0- E c- E
. : :
- - —l'. ('?/?l é 3 - - - [ Zli. 2 3 - - - 0 Zli. 2 3
uery location
query lots of fits histogram of y
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Basic Setup e, bt

D X | t (ol puts)
e Fix a query point x. ()2

e Repeat: /‘

» Sample a random training dataset D i.i.(?.ﬂfrom the data generating
distribution psample.

» Run the learning algorithm on D to get a prediction y at x.

» Sample the (true) target from the conditional distribution p(¢|x).

» Compute the loss L(y,t).

Comments:

e Notice: y is independent of t. (Why?)
we just see the semgles
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Basic Setup

e Fix a query point x.

@ Repeat:

» Sample a random training dataset D i.i.d. from the data generating
distribution psample.

» Run the learning algorithm on D to get a prediction y at x.

» Sample the (true) target from the conditional distribution p(¢|x).

» Compute the loss L(y,t).

Comments:
e Notice: y is independent of t. (Why?)

e This gives a distribution over the loss at x, with expectation
E[L(y,t) | x]. ( candornesg in dedeset)

@ For each query point x, the expected loss is different. We are
interested in minimizing the expectation of this with respect to

X ™~ Psample-
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Choosing a prediction y

o Consider squared error loss, L(y,t) = 2 (y — t)*.

@ Suppose that we knew the conditional distribution p(¢|x).
What value of y should we predict?

> 'Treat ¢ as a random variable and choose y.  yar(u) = E(q’b]_, E[“—]z

Losfore g Lorom ] ECT vl eCe]?

"y - E( y-2ytetlx]
=E[y*Ix]- e(2yelx ] efe"Ix ]
A -2y e[t ELEK]
= -2y E[t(x]qur(tl&)‘f ECU‘]

/\__/ ~——
\\*":E(,b\"’\ - «, E[uq) fvar(t)x)
_ 20
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Choosing a prediction y

1

o Consider squared error loss, L(y,t) = 5(y — t)*.

@ Suppose that we knew the conditional distribution p(¢|x).
What value of y should we predict?

» Treat t as a random variable and choose y.
@ Claim: y, = E[t|x] is the best possible prediction.

@ Proof:

El(y —t)*|x] = E[y* — 2yt + t*| x]
=y — 2yE[t | x] + E[t? | x]
=y® — 2yE[t|x] + E[t | x]* + Var[t | X]
= y® — 2yy. + y; + Var[t| x]
= (y — y)? + Var[t| x]
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Bayes Optimality

\& o4 knew Psampe ‘(’[E&"‘] (X, £)~ Z::
El(y —1)*|x] = (y — y)* + Vart ]
meaa ches eief
Qtv.weol
el

@ The first term is nonnegative, and can be made 0 by setting y = v,.

@ The second term is the Bayes error, or
the noise or inherent unpredictability of the target ¢.

» An algorithm that achieves it is Bayes optimal.
» This term doesn’t depend on y.
» Best we can ever hope to do with any learning algorithm.

@ This process of choosing a single value y, based on p(t|x) is an example
of decision theory.
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Decomposition Continued

@ Now let’s treat y as a random variable
(where the randomness comes from the choice of dataset).

@ We can decompose the expected loss further
(suppressing the conditioning on x for clarity):

E[(y —1)°] = E[(y — y«)?] + Var(t) |

N\ )
1 = E[y; — 2y.y + y°] + Var(t)

= y? — 2. Ely] + E[y?] + Var(t) | ineacty
= v% — 20.Ely] + Ely)” + Var(y) + Var(t) vefene
= (4 —E[y)? + Var(y) + Var() 7

b ~~ d ~—— ~——

bias variance Bayes error
— J
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Bayes Optimality

E[(y —t)°] = (y« —E[y])* + Var(y) + Var(t)
NV SN g i

bias variance Bayes error

We split the expected loss into three terms:
M ean squased ercor

@ bias: how wrong the expected prediction is
(corresponds to underfitting)

@ variance: the amount of variability in the predictions
(corresponds to overfitting)

@ Bayes error: the inherent unpredictability of the targets

CSC311-Lec2 g4t 5
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Bias and Variance

e Throwing darts = predictions for each draw of a dataset

Low Variance High Variance

ne\ps

Low Bias

High Bias

@ Be careful, what doesn’t this capture?
» We average over points x from the data distribution.
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