
CSC 311: Introduction to Machine Learning

Lecture 12 - k-means, Reinforcement Learning

Michael Zhang Chandra Gummaluru

University of Toronto, Winter 2023

Intro ML (UofT) CSC311-Lec12 1 / 62

Outline

1 Value Functions

2 Dynamic Programming and Value Iteration

3 Q-Learning

4 Function Approximation

5 Closing Thoughts

Intro ML (UofT) CSC311-Lec12 2 / 62

3

Reinforcement Learning Problem

Recall: we categorized types of ML by how much information they
provide about the desired behavior.

Supervised learning: labels of desired behavior
Unsupervised learning: no labels
Reinforcement learning: reward signal evaluating the outcome of
past actions

More commonly, we focus on sequential decision making: an agent
chooses a sequence of actions which each a↵ect future possibilities
available to the agent.Reinforcement Learning (RL)

An agent observes the
world

takes an action and
its states changes

with the goal of
achieving long-term
rewards.

Reinforcement Learning Problem: An agent continually interacts with the
environment. How should it choose its actions so that its long-term rewards are
maximized?
Also might be called:
• Adaptive Situated Agent Design
• Adaptive Controller for Stochastic Nonlinear Dynamical Systems

Intro ML (UofT) CSC311-Lec12 3 / 62

model

Reinforcement Learning

Most RL is done in a mathematical framework called a Markov Decision Process
(MDP).

Intro ML (UofT) CSC311-Lec12 4 / 62

too 1,21

I

MDPs: States and Actions

First let’s see how to describe the dynamics of the environment.

The state is a description of the environment in su�cient detail to
determine its evolution.

Think of Newtonian physics.
What would be the state variables for a puck sliding on a
frictionless table?

Markov assumption: the state at time t + 1 depends directly on the
state and action at time t, but not on past states and actions.

To describe the dynamics, we need to specify the transition
probabilities P(St+1 | St, At).

In this lecture, we assume the state is fully observable, a highly
nontrivial assumption.

Intro ML (UofT) CSC311-Lec12 5 / 62

MDPs: States and Actions

Suppose you’re controlling a robot hand. What should be the set
of states and actions?

In general, the right granularity of states and actions depends on
what you’re trying to achieve.

Intro ML (UofT) CSC311-Lec12 6 / 62

imitation
learning

Ay Ay

A
simulatedenv

what J rotatingRubik'scube driving
the
cubepas is s camera inputs

d vehiclewheel petals

realworld pixels torques tofingers
r get to destinationquie

MDPs: Policies

The way the agent chooses the action in each step is called a
policy.

We’ll consider two types:
Deterministic policy: At = ⇡(St) for some function ⇡ : S ! A
Stochastic policy: At ⇠ ⇡(· | St) for some function ⇡ : S ! P(A).
(Here, P(A) is the set of distributions over actions.)

With stochastic policies, the distribution over rollouts, or
trajectories, factorizes:

p(s1, a1, . . . , sT , aT) = p(s1)⇡(a1 | s1)P(s2 | s1, a1)⇡(a2 | s2) · · · P(sT | sT�1, aT�1)⇡(aT | sT)

Note: the fact that policies need consider only the current state is
a powerful consequence of the Markov assumption and full
observability.

If the environment is partially observable, then the policy needs to
depend on the history of observations.

Intro ML (UofT) CSC311-Lec12 7 / 62

self driving car Stateofwouldat time 0 0.5 I etc

MDPs: Rewards

In each time step, the agent receives a reward from a distribution
that depends on the current state and action

Rt ⇠ R(· | St, At)

For simplicity, we’ll assume rewards are deterministic, i.e.

Rt = r(St, At)

What’s an example where Rt should depend on At?

The return determines how good was the outcome of an episode.
Undiscounted: G = R0 + R1 + R2 + · · ·
Discounted: G = R0 + �R1 + �2R2 + · · ·

The goal is to maximize the expected return, E[G].

� is a hyperparameter called the discount factor which determines
how much we care about rewards now vs. rewards later.

What is the e↵ect of large or small �?

Intro ML (UofT) CSC311-Lec12 8 / 62

Oc Y ca

Y smalls myopic
immediate

MDPs: Rewards

How might you define a reward function for an agent learning to
play a video game?

Change in score (why not current score?)
Some measure of novelty (this is su�cient for most Atari games!)

Consider two possible reward functions for the game of Go. How
do you think the agent’s play will di↵er depending on the choice?

Option 1: +1 for win, 0 for tie, -1 for loss
Option 2: Agent’s territory minus opponent’s territory (at end)

Specifying a good reward function can be tricky.
https://www.youtube.com/watch?v=tlOIHko8ySg

Intro ML (UofT) CSC311-Lec12 9 / 62

M

term

GPT unsupervised compression

I
instructionfinetuning
RLAF

https://www.youtube.com/watch?v=tlOIHko8ySg

Rewards in LLMs

From Jacob Steinhardt:

Intro ML (UofT) CSC311-Lec12 10 / 62

RLAF
humanpreferences

emergent
deception Ggivefeedback

ongeneration

Markov Decision Processes

Putting this together, a Markov Decision Process (MDP) is defined by a
tuple (S, A, P, R, �).

S: State space. Discrete or continuous
A: Action space. Here we consider finite action space, i.e.,
A = {a1, . . . , a|A|}.
P: Transition probability
R: Immediate reward distribution
�: Discount factor (0  � < 1)

Together these define the environment that the agent operates in, and
the objectives it is supposed to achieve.

Intro ML (UofT) CSC311-Lec12 11 / 62

Finding a Policy

Now that we’ve defined MDPs, let’s see how to find a policy that
achieves a high return.

We can distinguish two situations:
Planning: given a fully specified MDP.
Learning: agent interacts with an environment with unknown
dynamics.

I.e., the environment is a black box that takes in actions and
outputs states and rewards.

Which framework would be most appropriate for chess? Super
Mario?

Intro ML (UofT) CSC311-Lec12 12 / 62

