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Reinforcement Learning Problem

@ Recall: we categorized types of ML by how much information they
provide about the desired behavior.

e Supervised learning: labels of desired behavior
e Unsupervised learning: no labels
o Reinforcement learning: reward signal evaluating the outcome of

past actions mode|
o

@ More commonly, we focus on sequential decision making: an agent
chooses a sequence of actions which each affect future possibilities
available to the agent.

An agent observes the takes an action and with the goal of
world its states changes achieving long-term
rewards.

Intro ML (UofT)

CSC311-Lecl2 3/62




Reinforcement Learning

Most RL is done in a mathematical framework called a Markov Decision Process

(MDP).
policy
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MDPs: States and Actions

@ First let’s see how to describe the dynamics of the environment.

@ The state is a description of the environment in sufficient detail to
determine its evolution.
e Think of Newtonian physics.

e What would be the state variables for a puck sliding on a
frictionless table?

e Markov assumption: the state at time ¢ 4+ 1 depends directly on the
state and action at time ¢, but not on past states and actions.

o To describe the dynamics, we need to specify the transition
probabilities P(Si41 | St, At).

@ In this lecture, we assume the state is fully observable, a highly
nontrivial assumption.
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MDPs: States and Actions

@ Suppose you're controlling a robot hand. What should be the set

of states and Sactioms? ‘
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@ In general, the right granularity of states and actions depends on
what you're trying to achieve.
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MDPs: Policies
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e The way the agent chooses the action in each step is called a
policy.
e We'll consider two types:

o Deterministic policy: A; = w(S;) for some function 7: S — A
o Stochastic policy: A; ~ w(-|.S;) for some function 7 : S — P(A).
(Here, P(A) is the set of distributions over actions.)

e With stochastic policies, the distribution over rollouts, or
trajectories, factorizes:

p(s1,a1,..., sT,ar) =p(s1) (a1 |s1) P(s2|s1,a1)nw(az|s2) - -P(st|sr—1,ar—1) w(ar |sT)

@ Note: the fact that policies need consider only the current state is
a powerful consequence of the Markov assumption and full
observability.

o If the environment is partially observable, then the policy needs to
depend on the history of observations.
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MDPs: Rewards

@ In each time step, the agent receives a reward from a distribution
that depends on the current state and action

Rt g R( ’ St, At)
e For simplicity, we’ll assume rewards are deterministic, i.e.
Rt = T(St, At)

e What’s an example where R; should depend on A;?

@ The return determines how good was the outcome of an episode.
e Undiscounted: G = Rg+ R;{ + Ry + - --
o Discounted: G = Ry + YR +v*Ry+--- 0K \( <

o The goal is to maximize the expected return, E|G].

@ 7 is a hyperparameter called the discount factor which determines
how much we care about rewards now vs. rewards later.

e What is the effect of large or small ~7? Y swmall = M‘[OP‘C
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MDPs: Rewards

e How might you define a reward function for an agent learning to
play a video game?
o Change in score (why not current score?)
o Some measure of novelty (this is sufficient for most Atari games!)

e Consider two possible reward functions for the game of Go. How
do you think the agent’s play will differ depending on the choice?

e Option 1: +1 for win, O for tie, -1 for loss
o Option 2: Agent’s territory minus opponent’s territory (at end)
@ Specifying a good reward function can be tricky.
https://www.youtube.com/watch?v=t10IHko8ySg
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https://www.youtube.com/watch?v=tlOIHko8ySg
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In these settings, I'll define deception as “fooling or manipulating the supervisor rather than doing the

desired task (e.g. of providing true and relevant answers), because doing so gets better (or equal)

reward”. This definition doesn’t say anything about the intent of the ML system---it only requires that

the behavior is misleading, and that this misdirection increases reward.

Any given system exhibits a combination of deceptive and non-deceptive behaviors, and we can

observe simple forms of deception even in current language models:!Z

* Instruct-GPT's responses frequently start with a variant of “There is no single right answer to this

question”, creating false balance in cases where there is a clear right answer.

* The RLHF model in Bai et al. (2022) often says “I'm just an Al assistant with no opinion on
subjective matters” to avoid answering politically charged questions. This is misleading, as it

often does provide subjective opinions!, and could exacerbate automation bias.

e Similarly, Chat-GPT frequently claims incorrectly to not know the answers to questions. It can
also gaslight users by claiming things like “When | said that tequila has a ‘relatively high sugar
content,’ | was not suggesting that tequila contains sugar.” Addendum: Bing's Sydney exhibits

an even starker example of gaslighting here, partially reproduced in the footnotes4].
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Markov Decision Processes

@ Putting this together, a Markov Decision Process (MDP) is defined by a
tuple (S, A,P,R,7).

o &: State space. Discrete or continuous

o A: Action space. Here we consider finite action space, i.e.,
A: {CLl,...,CL|A|}.

e P: Transition probability

e R: Immediate reward distribution

o v: Discount factor (0 < v < 1)

@ Together these define the environment that the agent operates in, and
the objectives it is supposed to achieve.
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Finding a Policy

e Now that we’ve defined MDPs, let’s see how to find a policy that
achieves a high return.

@ We can distinguish two situations:

e Planning: given a fully specified MDP.
o Learning: agent interacts with an environment with unknown
dynamics.

e l.e., the environment is a black box that takes in actions and
outputs states and rewards.

@ Which framework would be most appropriate for chess? Super
Mario?
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