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Reinforcement Learning Problem

Recall: we categorized types of ML by how much information they
provide about the desired behavior.

Supervised learning: labels of desired behavior
Unsupervised learning: no labels
Reinforcement learning: reward signal evaluating the outcome of
past actions

More commonly, we focus on sequential decision making: an agent
chooses a sequence of actions which each a↵ect future possibilities
available to the agent.Reinforcement Learning (RL)

An agent observes the 
world

takes an action and 
its states changes

with the goal of 
achieving long-term 
rewards.

Reinforcement Learning Problem: An agent continually interacts with the 
environment. How should it choose its actions so that its long-term rewards are 
maximized?
Also might be called: 
• Adaptive Situated Agent Design 
• Adaptive Controller for Stochastic Nonlinear Dynamical Systems
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Reinforcement Learning

Most RL is done in a mathematical framework called a Markov Decision Process
(MDP).
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MDPs: States and Actions

First let’s see how to describe the dynamics of the environment.

The state is a description of the environment in su�cient detail to
determine its evolution.

Think of Newtonian physics.
What would be the state variables for a puck sliding on a
frictionless table?

Markov assumption: the state at time t + 1 depends directly on the
state and action at time t, but not on past states and actions.

To describe the dynamics, we need to specify the transition
probabilities P(St+1 | St, At).

In this lecture, we assume the state is fully observable, a highly
nontrivial assumption.
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MDPs: States and Actions

Suppose you’re controlling a robot hand. What should be the set
of states and actions?

In general, the right granularity of states and actions depends on
what you’re trying to achieve.
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MDPs: Policies

The way the agent chooses the action in each step is called a
policy.

We’ll consider two types:
Deterministic policy: At = ⇡(St) for some function ⇡ : S ! A
Stochastic policy: At ⇠ ⇡(· | St) for some function ⇡ : S ! P(A).
(Here, P(A) is the set of distributions over actions.)

With stochastic policies, the distribution over rollouts, or
trajectories, factorizes:

p(s1, a1, . . . , sT , aT ) = p(s1)⇡(a1 | s1)P(s2 | s1, a1)⇡(a2 | s2) · · · P(sT | sT�1, aT�1)⇡(aT | sT )

Note: the fact that policies need consider only the current state is
a powerful consequence of the Markov assumption and full
observability.

If the environment is partially observable, then the policy needs to
depend on the history of observations.
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MDPs: Rewards

In each time step, the agent receives a reward from a distribution
that depends on the current state and action

Rt ⇠ R(· | St, At)

For simplicity, we’ll assume rewards are deterministic, i.e.

Rt = r(St, At)

What’s an example where Rt should depend on At?

The return determines how good was the outcome of an episode.
Undiscounted: G = R0 + R1 + R2 + · · ·
Discounted: G = R0 + �R1 + �2R2 + · · ·

The goal is to maximize the expected return, E[G].

� is a hyperparameter called the discount factor which determines
how much we care about rewards now vs. rewards later.

What is the e↵ect of large or small �?
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MDPs: Rewards

How might you define a reward function for an agent learning to
play a video game?

Change in score (why not current score?)
Some measure of novelty (this is su�cient for most Atari games!)

Consider two possible reward functions for the game of Go. How
do you think the agent’s play will di↵er depending on the choice?

Option 1: +1 for win, 0 for tie, -1 for loss
Option 2: Agent’s territory minus opponent’s territory (at end)

Specifying a good reward function can be tricky.
https://www.youtube.com/watch?v=tlOIHko8ySg
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Rewards in LLMs

From Jacob Steinhardt:
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Markov Decision Processes

Putting this together, a Markov Decision Process (MDP) is defined by a
tuple (S, A, P, R, �).

S: State space. Discrete or continuous
A: Action space. Here we consider finite action space, i.e.,
A = {a1, . . . , a|A|}.
P: Transition probability
R: Immediate reward distribution
�: Discount factor (0  � < 1)

Together these define the environment that the agent operates in, and
the objectives it is supposed to achieve.
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Finding a Policy

Now that we’ve defined MDPs, let’s see how to find a policy that
achieves a high return.

We can distinguish two situations:
Planning: given a fully specified MDP.
Learning: agent interacts with an environment with unknown
dynamics.

I.e., the environment is a black box that takes in actions and
outputs states and rewards.

Which framework would be most appropriate for chess? Super
Mario?
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