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Outline

1 K-Means for Clustering

2 Gaussian Mixture Models (optional)

3 Expectation-Maximization (E-M) (optional)

4 Why EM Works (Optional)
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Final Exam

3 hours.

One double-sided aid sheet, created by yourself.

Cumulative up to k-means, with emphasis on post-midterm topics.

Past exams posted and two review sessions next week. Upvote
conceptual questions others have asked.

Slides, recordings, o�ce hours.
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Feedback

Please take some time to fill out the course feedback form.

The main changes we made to the past iteration were adding the Math
Diagnostic and an open-ended project option. We also made tutorials
more problem-solving oriented.

Helpful for us to hear what supports your learning.

Feel free to write to the course email if you have more detailed thoughts.

Intro ML (UofT) CSC311-Lec11 4 / 61

generativemodel



Overview

In the previous lecture, we covered PCA, Autoencoders and
Matrix Factorization—all unsupervised learning algorithms.

I Each algorithm can be used to approximate high dimensional data
using some lower dimensional form.

Those methods made an interesting assumption that data depends
on some latent variables that are never observed. Such models are
called latent variable models.

I For PCA, these correspond to the code vectors (representation).

Today:
I K-means, a simple algorithm for clustering, i.e. grouping data

points into clusters
I Reformulate clustering as a latent variable model and apply the EM

algorithm
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1 K-Means for Clustering

2 Gaussian Mixture Models (optional)

3 Expectation-Maximization (E-M) (optional)

4 Why EM Works (Optional)

Intro ML (UofT) CSC311-Lec11 6 / 61



Clustering

Sometimes the data form clusters, where samples within a cluster
are similar to each other, and samples in di↵erent clusters are
dissimilar:
Such a distribution is multimodal, since it has multiple modes, or
regions of high probability mass.

Clustering: grouping data points into clusters, with no observed
labels. It is an unsupervised learning technique.
E.g. clustering machine learning papers based on topic (deep
learning, Bayesian models, etc.) But topics are never observed
(unsupervised).
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K-means Intuition

There are k clusters, and each point is close to its cluster center, or
mean (the mean of points in the cluster).

How do we compute the cluster assignments?

Given the cluster assignments, we could easily compute the cluster
centers.

Given the cluster centers, we could easily compute the cluster
assignments.

Chicken and egg problem!

Simple heuristic - start randomly and alternate between the two!
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K-Means

Randomly initialize cluster centers

Alternate between two steps:
I Assignment step: Assign each data point to the closest cluster
I Refitting step: Move each cluster center to the mean of its members.

Assignments Refitted 
means 
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K-Means Example

Figure from Bishop Simple demo: http://syskall.com/kmeans.js/
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What is K-means Optimizing?

K-means Objective:
Find cluster centers m and assignments r to minimize the sum of squared
distances of data points {x(n)} to their assigned cluster centers

min
{m},{r}

J({m}, {r}) = min
{m},{r}

NX

n=1

KX

k=1

r(n)k ||mk � x
(n)||2

s.t.
X

k

r(n)k = 1, 8n, where r(n)k 2 {0, 1}, 8k, n

where r(n)k = 1 means that x(n) is assigned to cluster k (with center mk)

Finding the exact optimum can be shown to be NP-hard.

K-means can be seen as block coordinate descent on this objective
(analogous to ALS for matrix completion)

I Assignment step = minimize w.r.t. {r(n)k }
I Refitting step = minimize w.r.t. {mk}
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Alternating Minimization

Optimization problem:

min
{mk},{r(n)}

NX

n=1

KX

k=1

r(n)k ||mk � x
(n)||2

If we fix the centers {mk} then we can easily find the optimal assignments
{r(n)} for each sample n

min
r(n)

KX

k=1

r(n)k ||mk � x
(n)||2

Assign each point to the cluster with the nearest center

r(n)k =

⇢
1 if k = argminj kmj � x

(n)k2
0 otherwise

E.g. if x(n) is assigned to cluster k̂,

r
(n) = [0, 0, ..., 1, ..., 0]>| {z }

Only k̂-th entry is 1

Intro ML (UofT) CSC311-Lec11 12 / 61

fixed the centers
easy to
minimize the

loss foreach

point
np.orgmin



Alternating Minimization

Likewise, if we fix the assignments {r(n)} then can easily find optimal
centers {mk}

0 =
@

@ml

NX

n=1

KX

k=1

r(n)k ||mk � x
(n)||2

=2
NX

n=1

r(n)l (ml � x
(n)) =) ml =

P
n r

(n)
l x

(n)

P
n r

(n)
l

K-Means simply alternates between minimizing w.r.t. assignments and
centers. This is an instance of alternating minimization, or block
coordinate descent.
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The K-means Algorithm

Initialization: Set K cluster means m1, . . . ,mK to random values

Repeat until convergence (until assignments do not change):

I Assignment (Optimize w.r.t {r})
Each data point x(n) assigned to nearest center.

r(n)k =

⇢
1 if k = argminj kmj � x

(n)k2
0 otherwise

I Refitting (Optimize w.r.t. {m})
Each center is set to mean of data assigned to it.

mk =

P
n r

(n)
k x

(n)

P
n r

(n)
k

.
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Why K-means Converges

K-means algorithm reduces the cost at each iteration.

If the assignments do not change in the assignment step, we have
converged (to at least a local minimum).

Convergence will happen after a finite number of iterations,
since the number of possible cluster assignments is finite
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Local Minima

The objective J is non-convex.

Coordinate descent on J is not guaranteed to converge to the
global minimum.

Nothing prevents k-means getting stuck at local minima.

We could try many random starting points

A bad local optimum 
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K-means for Vector Quantization

Figure from Bishop

Given image, construct “dataset” of pixels represented by their RGB
pixel intensities

Run k-means, replace each pixel by its cluster center
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K-means for Image Segmentation

Given image, construct “dataset” of pixels, represented by their RGB
pixel intensities and grid locations

Run k-means (with some modifications) to get superpixels
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Soft K-means

Instead of making hard assignments of data points to clusters, we
can make soft assignments.

For example, one cluster may have a responsibility of .7 for a
datapoint and another may have a responsibility of .3.

This allows a cluster to use more information about the data in
the refitting step.

How do we decide on the soft assignments?

We already saw this in multi-class classification: 1-of-K encoding
vs softmax assignments.
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Soft K-means Algorithm

Initialization: Set K means {mk} to random values

Repeat until convergence (measured by how much J changes):

I Assignment: Each data point n given soft “degree of assignment” to
each cluster mean k, based on responsibilities

r(n)k =
exp[��kmk � x

(n)k2]P
j exp[��kmj � x(n)k2]

=) r
(n) = softmax(��{kmk � x

(n)k2}Kk=1
)

I Refitting: Cluster centers are adjusted to match sample means of
datapoints they are responsible for:

mk =

P
n r

(n)
k x

(n)

P
n r

(n)
k
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Questions about Soft K-means

Some remaining issues

How to set �?

Clusters with unequal weight and width?

These aren’t straightforward to address with K-means.
Instead, we’ll reformulate clustering using a generative model.
As � ! 1, soft k-Means becomes k-Means! (Exercise)

Intro ML (UofT) CSC311-Lec11 21 / 61

GMM fixessome
of theissues


