Michael Zhang

I’m Michael Zhang, a fifth year PhD student at the University of Toronto and Vector Institute, where I am fortunate to be supervised by Jimmy Ba and supported by the NSERC CGS Fellowship.

I'm interested in improving our understanding of neural networks and developing algorithms which are theoretically motivated and work across a broad set of problems. I did my undergrad and Master's at the University of California, Berkeley, where I did robotics research in Pieter Abbeel's group. I've previously done internships at Tesla, Google Research, and LinkedIn.

You can contact me at [first name] @cs.toronto.edu.

CV  /  Google Scholar  /  Twitter  /  Substack

profile photo
  • May 2023: I'm grateful to receive the Schwartz Reisman Institute graduate fellowship!
  • Apr 2023: We released a new preprint on a prompt boosting algorithm with large language models: arxiv.
  • Feb 2023: Multi-Rate VAE received an oral presentation (top-5% of accepted papers) at ICLR.
  • Jan 2023: I am an instructor for CSC311: Intro to Machine Learning this semester!

Some topics I am currently interested in:
-improving our understanding of deep neural network optimization
-Can we make hyperparameter tuning easier (e.g. more efficient and automated)?
-How can we develop current and future AI models that are more likely to be socially positive?

A full list of publications is on Google Scholar.

Decomposed Prompting to Answer Questions on a Course Discussion Board
Brandon Jaipersaud, Paul Zhang, Jimmy Ba, Andrew Petersen, Lisa Zhang, Michael R. Zhang
AIED 2023

We propose and evaluate a question-answering system that uses decomposed prompting to classify and answer student questions on a course discussion board.

Multi-Rate VAE: Train Once, Get the Full Rate-Distortion Curve
Juhan Bae, Michael R. Zhang, Michael Ruan, Eric Wang, So Hasegawa, Jimmy Ba, Roger Grosse
ICLR 2023 (top-5% of accepted papers)

We propose Multi-Rate VAE (MR-VAE), a hypernetwork which is capable of learning multiple VAEs with different rates in a single training run.

Autoregressive Models for Offline Policy Evaluation and Optimization
Michael R. Zhang, Tom Le Paine, Ofir Nachum, Cosmin Paduraru, George Tucker, Ziyu Wang, Mohammad Norouzi
ICLR 2021
Paper / Video

Autoregressive models are better for learning dynamics models than standard feedforward models in the fixed dataset setting.

Analyzing Monotonic Linear Interpolation in Neural Network Loss Landscapes
James Lucas, Juhan Bae, Michael R. Zhang , Stanislav Fort, Richard Zemel, Roger Grosse
ICML 2021

We investigate and analyze why many neural networks have the loss decreasing monotonically in weight space from initialization to final solution.

Objective Social Choice: Using Auxiliary Information to Improve Voting Outcomes
Silviu Pitis, Michael R. Zhang
AAMAS 2020
Paper / Code / Video

Framework and aggregation rules for combining the preferences of multiple agents with noisy views of some ground truth.

Lookahead Optimizer: k steps forward, 1 step back
Michael R. Zhang, James Lucas, Geoffrey Hinton, Jimmy Ba
NeurIPS 2019
Paper / Code / Video

Optimization algorithm that speeds up training by using a search direction generated by multiple steps of an inner optimizer.

Reverse Curriculum Generation for Reinforcement Learning
Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, Pieter Abbeel
CoRL 2017
Webpage / Paper / Blog post

Approach for tackling sparse reward tasks by generating goals of intermediate difficulty.

Probabilistically Safe Policy Transfer
David Held, Zoe McCarthy, Michael Zhang, Fred Shentu, Pieter Abbeel
ICRA 2017
Paper / Video

Framework for safely transferring policies learning in simulation to the real world.


I enjoy teaching and am grateful to have had the opportunity to teach a variety of different subjects in computer science.


Toronto CSC311: Introduction to Machine Learning: Winter 2023

Teaching Assistant

Toronto CSC311: Introduction to Machine Learning : Fall 2021 (head TA)
Toronto CSC2547: Introduction to Reinforcement Learning : Winter 2021
Toronto CSC421/2516: Neural Networks and Deep Learning : Winter 2019
Toronto CSC2541: Deep Reinforcement Learning : Fall 2018
UC Berkeley CS170: Introduction to Algorithms - Spring 2018
UC Berkeley CS189: Introduction to Machine Learning - Fall 2017
UC Berkeley CS189: Introduction to Machine Learning - Spring 2017
UC Berkeley CS70: Discrete Math and Probability - Fall 2016
UC Berkeley CS70: Discrete Math and Probability - Spring 2016

At Berkeley, I was awarded the Outstanding Graduate Student Instructor award.


I try to adhere to the principle "journey before destination" (Brandon Sanderson). Some activities I enjoy: basketball, running, exploring new places, reading, improv.

2020 Book Recs

Template from here!