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Abstract—Compressive imaging systems with spatial-temporal encoding can be used to capture and reconstruct fast-moving objects.

The imaging quality highly depends on the choice of encoding masks and reconstruction methods. In this paper, we present a new

network architecture to jointly design the encoding masks and the reconstruction method for compressive high-frame-rate imaging.

Unlike previous works, the proposed method takes full advantage of denoising prior to provide a promising frame reconstruction. The

network is also flexible enough to optimize full-resolution masks and efficient at reconstructing frames. To this end, we develop a new

dense network architecture that embeds Anderson acceleration, known from numerical optimization, directly into the neural network

architecture.

Our experiments show the optimized masks and the dense accelerated network respectively achieve 1.5 dB and 1 dB improvements

in PSNR without adding training parameters. The proposed method outperforms other state-of-the-art methods both in simulations and

on real hardware. In addition, we set up a coded two-bucket camera for compressive high-frame-rate imaging, which is robust to imaging

noise and provides promising results when recovering nearly 1,000 frames per second.

Index Terms—high-frame-rate imaging, deep neural network, computational camera

✦

1 INTRODUCTION

As a well-developed technique, compressive sensing
(CS) is widely applied in reconstructing images with low
sampling rates [1], [2]. In particular, a variety of mask-based
CS cameras have been demonstrated for capturing high-
dimensional image data (e.g., spectra, video, etc.) using a
two-dimensional camera with encoding capacity. Compared
to conventional cameras employing brute-force sampling
strategies, such CS cameras have significant advantages in
acquisition efficiency, storage consumption, and potentially
cost [3], [4].

High-frame-rate imaging is concerned with recording
videos at rates in excess of hundreds of frames per sec-
ond. However, with bandwidth being a limiting factor,
conventional cameras record either a very low spatial res-
olution with a relatively high frame rate, or at relatively
high spatial resolution with a low frame rate. Using mask-
based compressive sensing, it becomes feasible to capture
high-frame-rate and high-spatial-resolution videos with an
efficient spatio-temporal encoding. This approach is a good
fit for recently developed image sensors with high-speed
per-pixel programmable exposure control [5]. The exposure
control can be viewed as an encoding of the captured frames
with a set of binary temporal masks. With such cameras, it is
possible to encode multiple subframes into a captured image
and decode them later using frame reconstruction methods
(Fig. 1).

Much research has focused on the improvement
of the reconstruction techniques, usually by employing
optimization-based approaches (see Section 2 for more de-
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Fig. 1. Illustration of the encoding and reconstruction within the com-
pressive high-frame-rate imaging system. In the system, T subframes
with resolution M × N are encoded with masks φ. The reconstruction
network reconstructs the frames from the measurement Y and the
known mask φ.

tail). Less work has concentrated on the derivation of good
encoding masks: it can be shown that optimal mask se-
lection in CS is NP-complete, but random (Bernoulli or
Gaussian) patterns are satisfactory with high probability [6].
However, the encoding and decoding components of the
imaging system are highly interdependent. Based on this
observation, we focus on the joint end-to-end design of
encoding masks and reconstruction methods for improving
both encoding efficiency and reconstruction accuracy. We
put forward a compact end-to-end neural network that can
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handle the mask optimization for the whole image with
fewer training parameters. We also show that this network
design corresponds to Anderson acceleration, a well-known
acceleration technique in numerical optimization [7].

Both simulations and experiments on real hardware
show that our network outperforms existing methods. In
addition, we show that our masks can also improve the re-
construction quality of existing methods. Our contributions
can be summarized as follows:

• We present the first work to jointly design full-
resolution coding masks and reconstruction meth-
ods for compressive high-frame-rate imaging using
an end-to-end network. Our approach outperforms
state-of-the-art methods by 2.2dB in PSNR.

• We show that the acceleration of the gradient de-
scent algorithm is equivalent to adding dense skip
connections to iterative optimization-unrolling neu-
ral networks. This speeds up training convergence
and helps to design a compact and efficient network
architecture.

• Experiments on both simulation and real hardware
demonstrate the effectiveness of our reconstruction
method and the designed masks. The two-bucket
design of our camera shows improved noise sup-
pression and can provide promising results in re-
constructing video of frame rates up to almost 1,000
frames per second.

2 RELATED WORK

Many approaches have been developed to solve the ill-
conditioned inverse problem in CS. The existing methods
can be divided into model-based optimization methods,
deep discriminative learning methods, and unrolled itera-
tive optimization methods.

Model-based methods.

Model-based methods utilize designed image priors for
regularization, which can reduce the number of possible
solutions and remove artifacts in frame reconstruction.
For example, the Total Variation (TV) prior [4], [8] can
simultaneously preserve edges while smooth away noise
in flat regions; optical flow [9] can estimate the motion
of moving objects and helps to eliminate ghosting effects;
Gaussian mixture models [10] and dictionary learning meth-
ods [11], [12] take into account image statistics and recon-
struct frames using learned atoms; non-local low-rank pri-
ors [13], [14] consider the correlation between small patches
in the frames for denoising. Such model-based methods
are straightforward to adapt to different sensing matrices
without retraining, and the sensing matrix can be optimized
based on the analysis of mutual coherence in dictionary-
learning based methods [15]. However, such model-based
methods have their respective drawbacks, and none of
them is suitable for all scenes. In addition, these methods
can be computationally expensive, especially compared to
learning-based methods.

Learning-based methods.

In recent years, deep discriminative learning methods have
shown drastic improvements in image reconstruction qual-
ity. Some deep neural networks (DNNs) have been proposed
for compressive imaging as well. Convolutional neural net-
works [16], [17], [18] and fully-connected networks [19],
[20] were developed to reconstruct small image patches.
However, none of the convolutional networks are capable
of simultaneously designing masks and optimizing param-
eters in the network. Compared to model-based methods,
these DNN-based methods are efficient but difficult to adapt
to different masks. These networks usually use random code
masks, such as Gaussian or Bernoulli random masks [21],
and thus cannot achieve optimal reconstruction quality. On
the other hand, fully connected networks, suffer from a
large search space, and can in practice only optimize a
small repeated mask by preserving the essential connec-
tions. While repeated masks significantly reduce the scale
of the optimization problem, they may also introduce struc-
tured artifacts during reconstruction. Other deep learning
methods [22], [23] selecting the most representative linear
combinations of signals to optimize small sensing matrix are
not suited for the full-resolution binary mask optimization
in our problem.

Unrolling iterative optimization methods.

More recently, a class of networks constructed by unrolling
iterative optimization methods have started to be used
in image reconstruction (e.g. LISTA [24]ADMM-net [25],
LDAMP [26], IRCNN [27], ISTA-Net [28]). Such network
architectures combine the advantages of both model-based
methods and deep discriminative learning methods, and
provide an efficient and flexible plug-and-play framework
to solve inverse problems. Previous works have utilized
the multistage iterative network for image restoration [29]
and illumination optimization [30]. In this paper, we claim
that such networks are effective in jointly optimizing the
sensing matrix and reconstruction method if the elements
of the sensing matrix are treated as trainable parameters
in the network. Crucially, we also show how to improve
the design of such unrolled networks to embed Anderson
acceleration directly into the network architecture. This
improvement will be applicable and useful far beyond our
specific application scenario.

Computational video cameras.

Many different prototype designs for computational video
cameras have been proposed. Raskar et al. modified a
conventional DSLR camera and added a control unit for
high-speed control of the exposure pattern over the full
frame. The camera can then be used for deblurring [31]
and video compressive sensing [32]. Liu et al. used an
LCoS to implement a single exposure mask and applied
dictionary learning to reconstruct the scene [33]. To achieve
a high-speed encoding, Bub et al. used a DMD for high-
frame-rate imaging [34]. Llull et al. changed from active to
passive codes to reduce the power consumption [4]. In their
design, the static mask is spatially shifted over time, which
provides a very limited design space for the spatio-temporal
encoding.
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Recently, several image sensor designs have been pro-
posed that can implement the CS mask directly on the
sensor. Luo et al. [35] invented a CMOS sensor that allows
for active control of the exposure pattern in each pixel, and
applied this design for image deblurring. Zhang et al. [36]
a CMOS sensor for both high-speed and high-dynamic-
range imaging [37]. However, since there is no charge bucket
connect with PD, every pixel can only expose once during
a frame. Sonoda et al. [38] built a sensor with quasi pixel-
wise programmable control, but pixels on the sensor can
only be controlled in blocks. Therefore, their camera cannot
generate arbitrary mask patterns [39]. Sarhangnejad et al.
[40] implemented a coded-exposure-pixel camera with two-
bucket pixels that has 180 subframes per second. In this
camera every pixel is programmable and can expose many
times during a single frame. Wei et al. use this system
for a one-shot photometric stereo and develop an image
formation model for computational video cameras [5].

3 METHOD

Our goal is to jointly learn both the full-resolution masks
for encoding and the reconstruction method for decoding
that together minimize subframe reconstruction error. We
achieve this by training an end-to-end network that consist
of K stages with dense skip connections and a mask layer,
as shown in Fig. 4. Given a video sequence, the mask
layer modulates each subframe using the learned mask and
integrates all subframes into a single captured image; the K
stages constructed via unrolling the optimization iterations
for reconstruction can decode the captured images into
multiple subframes.

In the following, we first present the encoding and
decoding parts of our neural network architecture along
with training details. Then we describe a set of simulations
for comparing the proposed method with other existing
methods. Lastly, we implement our approach on a real
camera and evaluate the effectiveness of our network.

Image formation.

The image formation model for our compressive video
capture system is shown in Fig.1, and can be formulated
as:

Y =
T
∑

i=1

φ(i) ⊙X(i) +N, (1)

where φ(i) ∈ R
M×N denotes the i-th binary encoding mask,

X(i) ∈ R
M×N represents the i-th subframe we need to re-

construct, ⊙ denotes the element-wise product, N ∈ R
M×N

denotes the imaging noise, and Y is the M × N captured
image. The system has a compression ratio of 1 : T , i.e.
T successive subframes are encoded into a single captured
image.

Eq. 1 can be transformed into the following equation:

y = Φx+ n, (2)

where Φ ∈ R
MN×TMN is the sensing matrix with diagonal

blocks consisting of the masks φ:

Φ = [diag(V ec(φ(1))), · · · , diag(V ec(φ(T )))], (3)

x represents the TMN × 1 vectorized subframes of X, y is
the MN ×1 vectorized captured image of Y, and n denotes
the vectorized noise of N.

3.1 Mask generation

A layer containing only bias values is constructed to gen-
erate the encoding masks φ. Since different pixels in the
subframes are encoded independently, the operation Φx

can be realized by an element-wise multiplication of φ

and X and a summation of the multiplication results; the
operation ΦTy can be realized by a repeat copy operation
of Y and an element-wise multiplication, as shown in Fig.3.
The two operations are beneficial for efficient calculation, as
well as reduced storage requirements. Since the masks used
in high-frame-rate imaging are binary, we need to add a
constraint that the outputs of the mask layer must be either
0 or 1 during propagation. Inspired by the Binaryconnect
method [41], this can be achieved by a simple but efficient
deterministic binarization operation:

b̂ =

{

1, when b > 0,
0, else.

, (4)

where b̂ is the binarized value of the mask layer, and b

is the real value. The sign function binarizes the values
straightforwardly, however it is only activated during the
forward and backward propagations but not during the
parameter update since it is necessary to maintain good
precision weights during the updates.

3.2 Subframe reconstruction

Unrolled network reconstruction.

To present the subframe reconstruction method, we first
mathematically formulate the reconstruction procedure as
an unconstrained problem, and then loop-unroll the opti-
mization to construct our multi-stage network. Subframe
reconstruction is an optimization problem

argmin
x

1

2
||y −Φx||2 + λJ(x), (5)

where J(x) is the denoising prior for regularization
weighted by parameter λ. The first data fidelity term guar-
antees a minimal re-sensing error while the regularization
term ensures that the reconstructed frames satisfy the de-
sired prior model. Different from designed priors in model-
based method, denoising prior depicts intrinsic statics of
images and results in better image reconstruction.

By introducing an auxiliary variable v, Eq. 5 can be
reformulated as a constrained optimization problem:

(x,v) = argmin
x,v

1

2
||y −Φx||2 + λJ(v), st. x = v. (6)

Inspired by previous image restoration works [27], we
adopt the half-quadratic splitting method to convert the
constrained optimization problem into an unconstrained
one:

(x,v) = argmin
x,v

1

2
||y −Φx||2 +

τ

2
||x− v||2 + λJ(v), (7)
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Fig. 2. Our deep network architecture. The overall network consists of a mask layer for generating masks and K stages for reconstruction. Note that
the skip connections of residuals among stages make the network denser and more compact. (Here show is the case where the number of skip
connections of each stage is m = 1.)

Fig. 3. Two matrix-vector multiplication operations: (a) Φx and (b) ΦTy.

where τ is a weight term. Then, Eq. 7 can be solved by
alternatively optimizing the two sub-problems with respect
to z and x, respectively:

⎧

⎪

⎨

⎪

⎩

xi+1 = argminx
1

2
||y −Φx||2 +

τ

2
||x− vi||2

vi+1 = argminv
τ

2
||xi+1 − v||2 + λJ(v)

(8)

By analyzing Eq. 8, it is evident that the optimization of x in
the first line is a quadratic problem, while optimization of v
in the second line is actually a denoising problem. To solve
the first problem, we can calculate the closed-form solution

xi+1 = (ΦTΦ+ τI)−1(ΦTy + τvi). (9)

However, the matrix inversion is time consuming. More
importantly, such inverse models consisting of the trainable
sensing matrix Φ are harder to train, compared to a forward
model of Φ. Previous work [29] suggests that using gradient
descent algorithms to obtain an inexact solution in each step
can also effectively and efficiently optimize the problem. In
the general gradient descent method, the update step of x
can be performed as:

xi+1 = xi − αig(xi)

= xi − αi(ΦTΦxi −ΦTy + τ(xi − vi))
(10)

where g(.) is the gradient function of x, and αi is the length
of the gradient descent step.

Anderson acceleration.

Many efforts have been devoted to developing acceleration
methods for the gradient descent algorithm [42]. For exam-
ple, the wildly used Momentum acceleration method takes
into account the previous gradients in the update step at
each iteration [43]; Anderson acceleration uses the residuals
of previous m iterations to adjust the current iteration
point [7]. We claim that acceleration methods not only speed
up convergence but can also inform the network’s architecture.
Specifically, we use the general acceleration form:

xi+1 = xi −
m′

∑

j=1

wi
jd

i−j − αig(x
i −

m′

∑

j=1

wi
jd

i−j), (11)

where di−j is the descent direction in the j-th iteration prior
to iteration i, and wi

j is the weight of the descent direction in
iteration i. We choose m′ = min(m, i) to ensure that i−m′

is a non-negative integer in the early layers.
Note that the form of Eq. 11 is exactly that of Anderson

acceleration [7], [44], except that the parameters of Anderson
acceleration are manually estimated while ours are learned
from the network. Specifically, when m = 1, our acceleration
becomes Nesterov’s accelerated gradient method [45].

Since the norm of the residual in each iteration can be
absorbed by its weights wi

j , without loss of generality, we
directly let

di = xi − xi−1. (12)

Combining Eq. 11 and the definition of g(.) in Eq. 10, the
update step of x can be rewritten as:

xi+1 = [(1−βi)I−αiΦTΦ](xi−
m′

∑

j=1

wi
jd

i−j)+αiΦTy+βivi,

(13)
where αiτ is denoted as βi. We show the detailed operations
and connections in and between stages in Fig. 4 (a). Com-
pared to general unrolling networks, the skip connections
between stages in our model make the network denser and
more compact, and transform it from a Resnet to a Densenet.

The denoising network we used to solve the second sub-
problem in Eq. 8 consists of two cascaded residual blocks.
The architecture of the denoising network is as shown in
Fig. 4 (b). The number of used residual blocks is chosen
empirically. Previous work [46] gave some convergence
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(a) (b)

Fig. 4. (a)Illustration of two stages in our network.(here we show the case m = 1) (b) The architecture of our denoising network.

analysis and also showed that two residual blocks provide
the best results for learning the proximal operator. Note that
we can also apply non-local attention [47] and a multi-scale
architecture [48], [49]. But to ensure the decoding network
has a limited parameter count to prevent overfitting, each
residual block in the denoising network contains only five
convolutional layers, and all layers generate feature maps
with 3× 3 kernels.

Algorithm 1 Accelerated subframe reconstruction

Input: Sensing matrix Φ, captured image y, number m
Output: Reconstructed subframes x

1: Initialize x0 = ΦTy, x−1 = x0 (i = 1, ...,m), d0 = 0
2: for i = 1, 2, . . . ,K do
3: vi−1 = D(xi−1)
4: m′ = min(m, i)

5: zi = xi−1 −
∑m′

j=1 w
i
jd

i−j

6: xi = [(1− βi)I− αiΦTΦ]zi + αiΦTy + βivi−1

7: di = xi − xi−1

8: end for

3.3 Training

We constructed an end-to-end network by unrolling the
algorithm shown in Algorithm 1. The proposed model
mainly consists of a mask layer and a K-stage reconstruction
network using convolutional layers. The input subframes x
are encoded using a trainable mask layer φ. We multiply
the transpose of the mask ΦT and the captured images y

to generate an initial guess x0 = ΦTy. We then feed the
initial image into the reconstruction. All layers use ReLU as
their activation function, except the output layer, which uses
a sigmoid. We choose the mean square error (MSE) as our
loss function, expressed as

L(φ, w;α;β; θ) =
1

k

k
∑

i=1

||f(x;φ;w;α;β; θ)− x||2, (14)

where k is the number of the training samples, θ are the
denoising network weights, φ are the mask layer weights,
and (w;α;β) are the optimization parameters. We trained
the proposed network to learn these parameters simultane-
ously. The parameters of each stage are set to be different,
and the α are set to be channel-wise.

The model was trained on an Intel Xeon E5 workstation
with an NVIDIA GeForce RTX 2080 Ti GPU and 512 GB
main memory. Our network is implemented using Keras
2.2.5 and trained using the Adam optimizer [50]. The initial
learning rate is set to 10−4 and decayed by a factor of 10 at
the 20th iteration. We train the model for 80 iterations with
a batch size of 1, which takes about two days to complete.

4 SIMULATIONS

In this section, we conduct numerical simulations to show
the effectiveness of our proposed network and compare our
method with other state-of-the-art compressive reconstruc-
tion methods.

Datasets and Training. The data we used for the sim-
ulations are two popular databases: the SumMe database
from https://gyglim.github.io/me/vsum/index.html [51]
and the ”Sports Videos in the Wild” database from http:
//cvlab.cse.msu.edu/project-svw.html [52]. We randomly
cropped and selected 3,000 video sequences of size 256 ×
256 × 32 to train our network, and selected 800 video
sequences of the same size for testing.

TABLE 1
Ablation Studies. The compression factor here is 1:8.

Methods
Noiseless Noisy (σ = 0.01)

PSNR SSIM PSNR SSIM

Unopt [29] 30.68 0.896 28.52 0.861

Opt 32.35 0.921 30.52 0.897

Opt + SC (m=1) 33.18 0.930 31.24 0.905

Opt + SC (m=2) 33.30 0.932 31.43 0.908

Opt + SC (m=3) 33.32 0.932 31.46 0.909

Ablation studies. To clearly understand the effect of
each component as well as choosing an appropriate m

in our end-to-end network, we carried out five ablation
simulations. We present our observations and quantitative
results in Table 1. For all the simulations in the ablation
study, we used the architecture shown in Fig. 4 with 39
stages for frame reconstruction, and calculated the average
PSNR and SSIM of the reconstructed results in the presence
and absence of noise. The baseline for comparison is model

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 10,2023 at 10:47:36 UTC from IEEE Xplore.  Restrictions apply. 



Unopt, a multistage network without mask optimization
and dense skip connections, which is the same network
architecture as in previous work [29]. Compared to this
baseline, our method leads to a significant improvement
in reconstruction quality as well as to a reduction of the
number of training epochs needed for the same accuracy.

Fig. 5. The comparison of the first binary pattern(upper) and their
spectrum distribution(bottom) of the three used masks sequences. (a)
Bernoulli pattern used in [53] and [8]. (b) Optimized repeated pattern
of [19]. (c) Our optimized pattern. Note that the patterns were cropped
into 160× 160 for visulization.

Optimized vs. fixed mask: For the Unopt model, we used
a randomly shifted Bernoulli binary masks as shown in
Fig. 5(a) while in other Opt models we used optimized
masks as shown in Fig. 5(c). PSNRs can be improved by
nearly 1dB when replacing the random masks by the op-
timized masks. It is worth noting that the loss of Unopt
is relatively low in the initial few epochs since random
Bernoulli masks are suitable for compressive reconstruc-
tion [54]. However, Opt models catch up with and surpass
the Unopt model as the number of epochs increases, as
shown in Fig. 7. The results indicate that our network has
learned more efficient masks after several epochs of training.

Skip connections (SC) vs. no skip-connections: We tested the
effect of skip connections in our network. It is obvious that
skip connections can enhance reconstruction quality and
accelerate the convergence of training loss. The PSNRs are
improved by nearly 1dB when three skip connections for
a single stage (m = 3) are applied. However, denser skip
connections require more memory, so we need to choose
an appropriate m for the best trade-off between memory
consumption and reconstruction accuracy. As shown in
Table 1, the model with m = 3 outperforms the one with
m = 2, but only by a small margin in both PSNR and SSIM.
Therefore, we choose m = 2 as an empirical setting for our
reconstruction network.

Comparison methods. We compared the proposed
method with two representative DNN-based methods:
DeepMask [19] and Deep Tensor ADMM-Net (DTAN) [53];
and two state-of-the-art traditional methods: GAP-TV [8]
and GMM [10]. Following previous literature, we used
masks to modulated every eighth consecutive frame. Thus
we reconstructed 32 subframes from 4 measurements in the
simulations. To be specific, DeepMask is the only existing

method which can jointly optimize masks and reconstruc-
tion method; it learns 4×4×8 repeated masks for encoding
and reconstructs frames via a fully-connected network. The
other three methods use a 256 × 256 × 8 shifting Bernoulli
binary masks. The masks of different methods and their
frequency spectra are shown in Fig. 5. It can be observed
that our masks perform as a ’high-pass filter’ that blocks
low-frequency spatial content.

TABLE 2
The comparison of reconstruction quality of the five methods with T=8

subframes.

Methods
Noiseless Noisy(σ = 0.01)

PSNR SSIM PSNR SSIM

GAP-TV [8] + random 29.82 0.857 27.99 0.835

GAP-TV + optimized 30.72 0.884 29.04 0.843

GMM [10] + random 27.24 0.797 27.00 0.774

GMM + optimized 27.35 0.807 27.10 0.785

DTAN [53] + random 26.08 0.803 25.12 0.799

DTAN + optimized 27.28 0.816 26.45 0.813

DeepMask [19] 31.05 0.905 29.28 0.882

Ours 33.32 0.932 31.43 0.908

TABLE 3
The comparison of reconstruction quality of the four methods with

T=32 subframes.

Methods
Noiseless Noisy(σ = 0.01)

PSNR SSIM PSNR SSIM

GAP-TV [8] + random 23.44 0.725 23.15 0.700

GMM [10] + random 22.19 0.589 22.16 0.583

DeepMask [19] 27.58 0.814 25.46 0.792

Ours 28.01 0.840 26.15 0.810

Quantitative results. The PSNR and SSIM results of
different methods with different masks are shown in Ta-
ble 2. As an optimization method, GAP-TV is effective and
efficient in reconstructing subframes, but the reconstruction
quality is not competitive compared to ours due to the
used handcrafted priors. The GMM approach reconstructs
frames patch-by-patch, and also cannot produce competi-
tive results. To our surprise, DTAN performs worst among
these methods, although it works well on its ’NBA’ dataset.
This might be because the non-local low-rank prior fails in
reconstructing spatial high-frequency content. Due to the
joint design of masks and reconstruction, the average PSNR
and SSIM of DeepMask exceed 31dB and 0.9, respectively.
However, we found serious structured artifacts in the recon-
structed images of DeepMask (see Fig. 6) caused by the use
of repeated masks. Our method outperforms state-of-the-art
methods by more than 2.2dB in PSNR and more than 0.03 in
SSIM. This is further confirmed by visual comparisons of the
reconstructed images in Fig. 6, where we show ground truth
and the reconstructed results of four frames. Our method
generates much more visually pleasant images with more
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Ground Truth GAP-TV
(Bernoulli random masks)

GMM
(Bernoulli random masks)

DTAN
(Bernoulli random masks)

DeepMask
(Optimized repeated masks)

Ours
(Our optimized masks)

p=18.40
s=0.530

p=19.93
s=0.489
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s=0.435
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s=0.675
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p=23.19
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p=19.99
s=0.407

p=27.66
s=0.660

p=29.02
s=0.693

Fig. 6. The comparison of reconstructed frames and the statistics on the PSNR and SSIM. From top to bottom: ground truth;reconstructed results
of GAP-TV, GMM, Deep Tensor Admm-net, DeepMask, and ours.
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Fig. 7. Training loss vs number of epochs on the neural network models
in ablation study.

accurate detail information. We also compared our method
with GAP-TV, GMM, and DeepMask with T=32 subframes.
In this simulation, 64 frames are reconstructed from two
encoded images. The results are shown in Table 3. Com-
pression ratios of 1:32 are very challenging for compressive
sensing algorithms in general, so the results are worse than
for 8 subframes, however our approach still dominates the
comparison methods.

Mask evaluation. We also evaluated our optimized
mask by comparing it with random masks using the same

reconstruction method. Since GAP-TV is a model-based
optimization method which does not memorize data, we
reconstructed frames using GAP-TV with random masks
and our proposed masks respectively to present the be-
havior of the two masks. Fig. 8 shows the reconstructed
results. The frames reconstructed from the image encoded
by our masks are significantly better than those by random
masks, especially around the edges. We also observed the
improvement brought by the optimized masks using other
existing method [53]).

5 REAL EXPERIMENTS

Previous work on mask-based video compressive sensing
uses either a static mask that is shifted over time, or a
setup with some form of spatial light modulator, such as a
DMD or LCOS, which can be controlled with high temporal
resolution. However, the drawback of these methods is that
they are difficult to align and rather bulky due to the need
for re-imaging optics [55].

Fortunately, recent developments in image sensor tech-
nology allow us to directly implement the CS mask on the
sensor itself. Specifically, there are now several prototypes
of image sensors with per-pixel programmable exposure
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(Our optimized masks)
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Fig. 8. The comparison of reconstructed results using GAP-TV method with different encoding masks.

control [5], [40]. In this paper, we use the Coded two-
Bucket (C2B) camera from Wei et al. [5]. In this camera, each
pixel has two charge-collection sites (i.e., two buckets). The
exposure control signal for each pixel can select which of the
two buckets integrates incident light at any given point in
time. The major advantage of this design is that it makes
use of all incident photons and simultaneously encodes
subframes with a pair of complementary masks. Using this
camera, subframes are reconstructed from the pair of cap-
tured complementary images. The spatial resolution of the
camera is 312× 320, and the frame rate can reach 30 frames
per second with over 100 different masks per frame. In our
experiments we use only up to 32 masks per frame since a
compression ration of 1:32 is already extremely challenging
for all compressive sensing approaches.

Fig. 9. The setup of our experiments.

We captured several dynamic scenes using the camera to
compare the reconstruction quality of four different meth-
ods: GAP-TV [8], GMM [10], DeepMask [19], and ours. The
setup for our experiments is shown in Fig. 9. Unlike the
simulation, here, the number of subframes we used is 32 to
explore the limits of the four methods; thus, a high-frame-
rate (32× 30 = 960) imaging can be achieved. In the exper-
iment, the first two methods used 312 × 320 × 32 random
masks, DeepMask used optimized repeated 4×4×32 masks,
and our method used 312× 320× 32 optimized masks. We
reconstructed 64 subframes from two successively captured
images. Fig. 10 shows two examples of the reconstructed
results. It can be seen that the GAP-TV method created
watercolor-like artifacts due to the drawbacks of the hand-
crafted prior; GMM and DeepMask introduced significant
structured artifacts in the patch-by-patch reconstruction.
The proposed methods, on the other hand, can produce
better results with fewer artifacts, clearer contents, and

higher contrast compared with the other three methods
(please zoom in for details).

We also investigated the improvement brought by the
two bucket mechanism of the camera. With the two-bucket
mechanism each subframe is encoded by a pair of com-
plementary masks, so that the number of measurements
is doubled when compared to the one-bucket mechanism.
To demonstrate the improvements due to the two-bucket
design, we captured a fan with varying rotation speeds and
reconstructed 64 subframes from two one-bucket images
and four two-bucket images respectively. The results are
shown in Fig. 11. It can be seen that the reconstructed
results from two-bucket images are significantly better than
those from one-bucket images. We can also observe that the
advantages of our method over the state-of-the-art are even
more compelling in real experiments than in simulation.
That is because our method depends on a deep denoising
prior rather than handcrafted priors and thus can better
handle complicated video content found in real scenes.

6 CONCLUSION AND FUTURE WORKS

We have presented a new end-to-end learned method and a
prototype system for video reconstruction from mask-based
compressive sensing cameras. Unlike existing approaches,
the proposed method is suited for optimizing full-resolution
masks, and can reconstruct subframes efficiently. The re-
construction quality of the proposed method significantly
outperforms that of previous methods due to the utilized
denoising prior. We implemented a two-bucket camera for
high-frame-rate imaging; the frame rate can reach close to
1,000 frames with superior image quality compared to other
CS video approaches.

In addition to providing a superior solution to the
compressive sensing video reconstruction problem, we also
make a fundamental improvement to loop-unrolled neural
network architectures for image reconstruction problems
in general: we demonstrate that dense skip connections
can implement Anderson acceleration directly in the neural
network to make it compact and efficient. The proposed
dense network is not limited to CS problems, but can be
applied to solve other inverse problems directly.

We believe that the frames in the near future can be
predicted from previously reconstructed frames. Therefore,
in future work, we plan to explore the more efficient frame
reconstruction and adaptively optimize masks in real-time
for even better results.
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Fig. 10. The reconstructed results of (a)an opening hand and (b) a rotating fans using four methods. Left-top: GAP-TV; Right-top: GMM; Left-bottom:
DeepMask; Right-bottom: our method. Here shows the 1st, 30th, and the 64th subframes reconstructed from two one-bucket images. The rotating
speed of the fans is 2.5 rounds pre second. Note thayt the reconstructed subframes are scaled by the maximum intensity for visualization.

Fig. 11. The 1st, 30th, and 64th subframes of a rotating fans reconstructed from two one-bucket encoded images and four two-bucket encoded
images. The fans are captured under the rotating speeds (a) 2.5 rounds and (b) 7 rounds per second. Note that our method can reconstruct clear
results from the two-bucket encoded images with heavy motion-blur.
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