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ABSTRACT
Deploying stream computing applications on edge networks brings
a new set of challenges including frequent reconfigurations due to
clientmobility and topology changes, geographical constraints from
application semantics, state management over wide-area networks,
andmore. Current stream processing frameworks do not adequately
address these challenges since they are designed for use inside data
centers and rely on global coordination between participating nodes.
Merlin is a new stream processing framework designed from the
ground up for stream processing on the edge. Merlin supports fast
reconfiguration without disrupting applications by decoupling data
delivery from data processing and removing the need for global
coordination.

CCS CONCEPTS
• Information systems → Stream management.
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1 INTRODUCTION
Our ability to support the acquisition, processing, and storage of
huge volumes of data has transformed business and culture, technol-
ogy and science [7]. Yet, if the technical challenge of last decade was
the exponential increase in the volume of data, then the challenge
of the next decade is the proliferation of geographically distributed
data. The advent of the Internet-of-Things (IoT), mobile devices,
and sensor networks is expected to lead to an exponential increase
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in the number of distributed data sources, with a predicted 27 bil-
lion connected devices by 2021 [4]. The prevailing cloud computing
paradigm is not a good match for this flood, and scaling computa-
tional resources in the cloud will not help if we cannot get the data
into the data center in the first place, due to bandwidth and latency
constraints.

Edge or fog computing is an emerging alternative [13, 14] that
uses nearby resources, as well as nodes on the path to the cloud,
to provide computation and storage over very large number of
geographically distributed sites. Such multi-tier hierarchies are ben-
eficial when latency requirements are stringent enough to render
cloud processing unviable, where client devices are too weak, and
when the computation requires both locally and globally relevant
information. Processing data near to the point of creation has sev-
eral benefits: it reduces wide-area network bandwidth demands by
aggregating data locally, it lowers the latency to compute results
that depend on local data, and it helps limit the geographic area
where sensitive data propagates.

Unfortunately, existing distributed stream processing frame-
works [1, 3, 6, 8, 17] are a poor match for edge computing. They
were designed to work inside data centers on nodes that connect
over high capacity, low-latency links. Moreover, these designs as-
sume a mostly static environment where data is produced by a
comparatively small and stable set of data sources, and a network
topology that changes infrequently. In contrast, edge deployments
are characterized by geographically distributed nodes connected
over links that (relative to the data center) have low bandwidth and
high latency. Moreover, in edge deployments, data is produced at
a large number of geographically distributed sources (e.g., smart
phones, intelligent transportation), and client mobility results in
frequent changes in network topology as clients move between
edge nodes.

We propose a new stream processing framework for running
applications on edge data centers. We assume a hierarchy of edge
data centers that has a traditional wide-area cloud data center at
its root, and additional layers of data centers that become progres-
sively smaller as we approach the edge of the network. We assume
that the data center hierarchy is shared infrastructure that will run
a large number of data streaming applications. Moreover, since
most data centers in the hierarchy have limited capacity, applica-
tion components have to be dynamically removed or deployed in
response to changes in usage patterns.

Consider for example a smart city traffic monitoring system
deployed over a wide area. The system collects streams of data from
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Figure 1: Reconfiguration in a trafficmonitoring application:
(a) initially all components run in the cloud; (b) additional
instances of A and B started in Toronto to handle increase in
load; (c) extra instance of A added to Downtown data center
to handle load spike; (d) reconfigure deployment as traffic
shifts to a new city.

road sensors, GPS-equipped vehicles, environmental monitors, and
other sources and aggregates them at multiple levels to manage
traffic. This huge volume of data could overwhelm network capacity
at the cloud data center, yet correct operation requires aggregating
data from multiple streets, neighborhoods, and cities. An edge
architecture provides an elegant solution, as data can be aggregated
locally and put to use exactly where it is needed, without flooding
network links at the upper layers.

Figure 1 illustrates how the deployment of the monitoring sys-
tem’s components evolves over time on a hierarchical data center
network with three layers. Initially, all the application’s compo-
nents (A, B, C) are only running at the cloud data center. At this
stage there is only a modest load and it is most convenient to send
all data for processing to the cloud. In the second stage, additional
instances of A and B are started on the Toronto data center to han-
dle an increase in data originating from this city. In stage three, an
instance of A is started on the Downtown data center to address
a sudden increase in traffic concentration. Finally, as traffic shifts
from Toronto to Montreal, new bolts are instantiated along this
route.

Dynamic deployment of streaming applications on a hierarchi-
cal data center network, however, presents several important chal-
lenges: the framework needs to be able to support the addition and
removal of computational elements with minimal disruption; the
state of the application needs to be rebalanced; developers must
be able to specify geographical constraints on placement; and the
system needs to be able to handle failure and intermittent connec-
tivity.

In this paper we take an initial step toward addressing the chal-
lenge of reconfiguration. We first introduce our vision for stream
processing on a hierarchical network of data centers, and discuss
key challenges.We then discuss the limitations of existing stream

processing architectures and illustrate the detrimental effects of re-
configurationwith experiments using the popular Apache Storm [6]
framework. We then introduce Merlin, our dynamic hierarchical
streaming prototype and show that it enables frequent dynamic
application reconfiguration without any stoppage time. Merlin
achieves this by decoupling data delivery from data processing
and by removing the need for global coordination.

2 VISION AND CHALLENGES
We next describe our vision for enabling dynamic stream processing
on a hierarchical network of edge data centers.

We assume the common operator graph model: stream process-
ing applications are represented as directed acyclic graphs (DAG)
consisting of nodes that originate or process streams of data. A
stream is made of individual data units called tuples, and nodes in
the graph are either spouts that emit tuples, or bolts that consume
and process tuples, and (optionally) emit new tuples1.

A developer parallelizes their application by decomposing their
algorithm into a collection of connected bolts and spouts, called
a logical plan, which can process tuples concurrently. The frame-
work then compiles a physical plan that determines the number
of instances of each bolt and spout to create and their placement
on the cluster. The logical plan for the sample traffic monitoring
application consists of: a spout that generates tuples with traffic,
GPS, and environmental data; bolt-A, which aggregates traffic by
neighborhood and emits new tuples with traffic predictions and
per-neighborhood summaries; bolt-B, which aggregates data by
city, provides traffic management, and emits a new tuple every few
seconds with the per-city summaries; and finally, bolt-C, which
aggregates the data for the entire country. When deployed on a
cloud data center, road sensors and vehicles upload information to
a central database on the cloud, from which they can be retrieved
by the spout.

Our goal is to enable the deployment of stream processing appli-
cations on a hierarchical network of data centers. We assume that
the data center hierarchy is organized as a tree that has a traditional
wide-area cloud data center at its root, and an arbitrary number
of additional layers of data centers that get progressively smaller
as we approach the edge of the network. We also assume that the
data center hierarchy is shared infrastructure that will run a large
number of data streaming applications, and that data centers that
are closer to the edge have limited capacity. For example, Figure 1(a)
illustrates a hierarchical network consisting of three levels: a tradi-
tional wide-area cloud data center, two city-scale data centers, and
several neighborhood-scale data centers.

We further assume that an application’s logical plan consists of
nodes that can all run at the cloud data center at the root of the
hierarchy. In addition, we assume that some (and potentially all)
of the nodes can also be instantiated on data centers closer to the
edge of the network, subject to developer-provided constraints that
indicate how close to the edge it is safe to place a node without
altering application semantics. In our traffic monitoring example,
bolt-A (neighborhood aggregation) can run correctly at any level
of the data center hierarchy. In contrast, bolt-B (city aggregation
and management) can only run at the root on a city-level data

1For simplicity, we adopt the nomenclature of Apache Storm [6].
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center. Running this bolt at a neighborhood-level data center will
result in an inaccurate statistics for the city as traffic reports from
other neighborhoods will be missed. In this scenario, sensors and
cars operate as spouts emitting reports (i.e., tuples) to the closest
neighborhood-level data center. Tuples are then either processed
by a locally-installed bolt, or get propagated up towards the root of
the hierarchy.

By default, an application is initially deployed on the cloud data
center. As the data stream starts to flow through the data center
hierarchy, additional instances of nodes can be dynamically added
progressively closer to the edge of the network, subject to developer
constraints and the load on the shared network. Figure 1 shows
how the deployment of our sample application evolves over time.
Initially, all three application bolts are only installed at the cloud
data center. At this stage the application is only experiencing mod-
est load and it is most convenient to send all reports to the cloud.
In the second stage, additional instances of bolt-A and bolt-B are
started on the Toronto data center to handle an increase in reports
emanating from this city. In stage three, an instance of bolt-A is
started on the Downtown data center to address a sudden increase
in traffic concentration in this neighborhood. In our traffic moni-
toring application, placing bolts close to the edge of the network
dramatically reduces the number of tuples that must be sent to the
the wide-area cloud data center, as the majority of the tuples get
processed locally, and only a much smaller number of updates will
propagate to the city-wide and wide-area cloud data centers. This
approach also reduces the latency for calculating neighborhood
and city-level statistics, as there is no need to wait for the data to
propagate all the way to the cloud and back. Finally, the approach
is better for privacy as individual reports are no longer available
on the cloud.

Stream processing on a multi-tier hierarchy of edge data centers,
however, introduces a new set of unique challenges:

• Frequent reconfiguration. Since data centers (particularly those
close to edge of the network) have limited resources, it is un-
reasonable to assume that all applications will be pre-installed
and run all the time at all locations. Instead, the physical map of
an application will have to change dynamically as users move
between edges, or as the need to run different applications on
a given edge arises. This requires mechanisms for reconfigura-
tion without disruption as well as policies that optimize system
performance.

• Programming interface. The developer needs to have a way to
instruct the streaming framework where to place elements. Spec-
ifying the parallelism factor for a bolt is not sufficient as the
number and location of data sources (e.g., road sensors and ve-
hicles) changes over time. In addition, the structure of the data
centre hierarchy may not be known to the developer, and the hi-
erarchy may not be uniform. (i.e., different parts of the hierarchy
may consist of different number of levels or may vary in their
geographic coverage).

• Support for failures and disconnection. Edge deployments may
involve large networks with a large number of links that may
experience intermittent failures. In addition, some scenarios may
require support for disconnected operation.
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Figure 2: Storm’s throughput drops to zero at the start of the
reconfiguration operation, and can take many seconds to re-
cover. Latency exacerbates this affect.

• Optimal resource allocation on a hierarchical data centre network
is challenging as there is a need to balance the multiple appli-
cation requirements in the face of heterogeneity in data center
resource and application demands. For example, the decision to
deploy a new instance of bolts A and B in the neighborhood data
center must be taken in the face of performance, load manage-
ment, and geographical constraints.

In the rest of this paper, we take an initial step to address the
first of these challenges – the need for frequent reconfiguration.
Addressing the other challenges is left for future work. Before we
introduce our new approach, however, we present results from a
simple experiment with Apache Storm that shows that existing
cloud-based streaming systems are poorly suited to the task of
handling frequent reconfiguration requests. While Apache Storm
is just one of many existing cloud-based streaming systems, we
argue that it is representative of a broad class cloud-based streaming
frameworks that would be expected to perform in a similar way.

3 APACHE STORM
We next explore the suitability of using an existing cloud stream
processing system on a hierarchical edge network. We focus our
evaluation on Apache Storm [6] because it is a widely-used frame-
work; however, we argue that our evaluation is representative of
a wide class of cloud-based stream processing systems, such as
Twitter Heron [8], Apache Flink [3], Spark [17], and Drizzle [15]. In
all these systems application components are tightly coupled: the
element that emits a tuple also directly delivers it to the element
that is meant to consume it. All these frameworks also rely on
global coordination, and require the topology to stop and restart in
order to add or remove nodes.

In our experiment, we deploy the spout and first two bolts of an
example aggregation application on an emulated two-tier hierar-
chical edge network composed of one wide-area cloud data center
and nine edge data centers connected over network links with 50
msec of latency.

We configured the cloud data center to run the Storm Master
(i.e., Nimbus), Zookeeper, and a single Storm worker, which ran
bolt-B for the duration of the experiment. We configure each of the
edge data centers to run two Storm workers: a spout and a bolt. At
the start of the experiment, we run a single instance of bolt-A and
a single spout on one of the edge data centers. After three minutes,
we use the Storm rebalance command to start an extra instance of
bolt-A and a new spout on one of the idle edge data centers. We
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repeated this process every 3 minutes until we ran out of idle edge
data centers.

Figure 2 depicts the throughput measured at the cloud data cen-
ter for the first 10 minutes of the experiment. The figure shows that
the throughput drops to zero at the start of every reconfiguration
operation, and can take many seconds to recover. To be fair, recon-
figuration is very rare in the cloud environments for which Storm
was designed. It is therefore not surprising that Storm experiences
multi-second disruption times when adding new components to
the topology. While this may not be a significant issue for tradi-
tional cloud deployment where reconfiguration is indeed rare, it
will significantly disrupt the operation of an edge network where
reconfiguration is expected to occur frequently.

Reconfiguration in Storm is a high latency operation that requires
the complete network topology to synchronize before making any
changes. Upon receiving the rebalance command, Storm halts all
spouts and bolts and allows them to flush their data. Storm coor-
dinates the entire process by communicating via Zookeeper and
this communication is based on a polling mechanism where the
Storm slave workers poll the Zookeeper server. Essentially the ‘stop
the world event’ causes the topology to be down for a significant
amount of time, making dynamic topology changes an extremely
expensive operation. The early-binding or tightly coupled design
of the framework where the component emitting data is directly
connected with the component processing the data is good for per-
formance; however, it makes reconfiguration hard. We conclude
that current stream processing engines are a poor match for the
edge computing setting due to their reliance on global coordination
between participating nodes.

4 MERLIN
Merlin is a new framework for stream processing on a hierarchi-
cal network of data centers. Merlin supports dynamic application
deployment and enables the frequent reconfiguration of an applica-
tion’s physical plan without requiring global coordination. Merlin’s
design in based on two key principles: decoupling tuple delivery
from processing, and the use of only local knowledge for routing
tuples. Merlin assumes that each data center in the hierarchy runs
four components: a local data store, one or more executors, a pusher,
and a router module. The data store provides reliable persistent
storage for tuples and can be locally replicated for performance and
durability. The executors run instances of locally installed applica-
tion bolts. In Merlin, bolts do not communicate directly with each
other. Instead, the Merlin router reads tuples from the data store,
and decides for each tuple whether to pass it to one of the executors
for processing by a local bolt, or leave it for the pusher, which will
propagate it to the next level of the hierarchy by inserting the tuple
into the data store of its parent. New tuples emitted by a local bolt
are written to the local data store and are subsequently handled by
the router.

For example, in the scenario shown in Figure 1 (c), tuples created
by road sensors in the Beaches neighborhood are initially stored in
the local store of the Beaches data center. The router running on
this data center reads the tuples and copies them to the Toronto
data center as there are no locally installed bolts that could process
them. In turn, the router running on the Toronto data center reads
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Figure 3: Application logical plan (a) and differentmappings
on to the edge network (b).

tuples from its local data store and forwards them to the locally
installed instance of bolt-A. Tuples emitted by bolt-A are initially
stored on the local data store of the Toronto data center where the
router will forward them to the locally installed instance of bolt-B.
Finally, tuples emitted by bolt-B are copied to the cloud data center
where they will be eventually passed to bolt-C.

The above design makes it possible for Merlin to handle the
addition and removal of bolts from a data center as a local operation.
Adding or removing a bolt only requires updating information on
the local router, which can then start forwarding compatible tuples
for local processing. Similarly, changes made to a data center do
not affect the routing decisions made by the rest of the data centers
in the network. Individual data centers do not know the global
placement of bolts, and their local router module only needs to
make a simple decision: consume the tuple locally or push it to
the parent. To ensure that it is always safe for the Merlin router
to propagate tuples towards the root of the data center hierarchy,
Merlin assumes that all application bolts are installed by default
on the root data center (Section 2). Merlin’s store-and-forward
approach is also a good match for applications that experience
intermittent connectivity, as tuples meant to be propagated up the
hierarchy can be kept in local storage until the connection to the
parent is re-established.

While Merlin assumes a simple hierarchy in the shape of a tree
to forward tuples, the framework supports more complex streaming
application topologies and allows bolts to emit tuples for multiple
destinations. For example, Figure 3(a) shows a logical plan consist-
ing of 4 bolts. Bolt A emits two types of tuples, which get consumed
by either bolt B or bolt C. Figure 3(b) shows a possible deployment
of this application on Merlin. The example assumes that the appli-
cation developer has indicated that application correctness would
not be impacted by running bolt A and bolt B, on neighborhood
and city-level data centres, respectively.

4.1 Prototype
We implemented a prototype of Merlin that provides at-least once
and out-of-order processing of data streams on a hierarchy of data
centers. Figure 4 illustrates the various components that Merlin
deploys on each data center. The prototype uses Cassandra DB [9]
as its local data store. As the figure shows, each data center deploys
an independent Cassandra ring. Every Merlin data center also runs
a router that reads tuples from its local Cassandra ring and either
delivers them to an executor for consumption by an application
bolt or to the pusher, which will transfer the tuple to the Cassandra
ring of the parent data center. The design provides at-least once
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Figure 4: Merlin architecture.

processing guarantee: in event of a failure, the data is available in
the Merlin node’s local data store; on recovery, the router will pick
up undelivered tuples and route them again. Merlin implements a
simple flow control algorithm that throttles pushers when available
free space on the parent drops below a configurable threshold. Bolts
in Merlin are Java objects that adhere to an API for consuming and
emitting tuples.

The prototype does not support the replication or migration
of application-specific bolt state, which is required to handle the
addition or removal of bolts that depend on application state to
operate. For example, adding an instance of bolt-A (neighborhood-
aggregation) to the Downtown data center (see Figure 1(c)) requires
replicating information about all Downtown streets that was up to
this point kept by the instance of bolt-A running on the Toronto
data center. We plan to explore the use of CloudPath [11] to run
bolts as stateless functions that rely on a hierarchical distributed
database (such as PathStore [10]) for application state management.

4.2 Preliminary Evaluation
Figure 5 presents experimental results for a topology that starts
with one Merlin edge data center and one Merlin data center. At the
300 second mark, we add another Merlin edge data center to the
topology. As the figure depicts, the new Merlin data center assimi-
lates into the topology and starts functioning with no disruption
or delay. The reconfiguration would be similarly immediate if an
edge data center were to leave the topology. By design, Merlin is
a loosly coupled system; Merlin nodes maintain no knowledge of
the global topology and only know their parent node. The tuples
are not emitted directly to the destination bolt for consumption but
are rather inserted into the local store of the parent node, which
routes them upstream. All a node has to do to join the topology
is to get the parent node information and start writing to it via a
Cassandra session. This loosely coupled design is well suited for
a dynamic edge architecture and IoT streaming applications as it
does not require stopping and synchronizing the entire topology
in order to reconfigure it.

5 RELATEDWORK
Existing work on edge stream processing focuses on resource al-
location, task placement, and effective parallelization. For exam-
ple, work on video streaming applications deals with optimizing
for lag-sensitive applications or pushing computation towards the
edge [16, 18, 19]. These works assume a static network topology,
and also use global optimization.
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Figure 5: Merlin throughput over 10 minutes. A new edge
data center was added after 5 minutes.

Most existing stream processing engines require global coordina-
tion. They are designed for large cloud data centers [1–3, 6, 8, 17],
and assume that data is first propagated to the cloud and that all
nodes in the cluster communicate over low latency and high band-
width links. For example, adding new workers to a running Apache
Storm [6] topology requires checkpointing and stopping the entire
topology, reconfiguring it, and starting it again. Similarly, Apache
Flink [3] requires global coordination of the dataflow [5] for failure
recovery and for reconfiguration.

Kafka Streams similarly relies on global coordination (for exam-
ple to provide end-to-end message processing guarantees) and low-
latency communication between all nodes and the Kafka brokers.
Drizzle [15] introduces group scheduling which reduces reconfigu-
ration to within several seconds for small groups, but still requires
10 to 100 seconds when adding new nodes, and requires centralized
scheduling which is infeasible across data centers. SpanEdge [12]
allows placing of processing tasks at the edge for applications that
require low latency and to reduce bandwidth usage on the WAN. It
is built on top of Storm which suffers from the same restart delay
when reconfiguration of the topology is required. To maintain their
low latency goals, only a static topology can be used. In contrast,
Merlin is designed from the ground up to enable fast and frequent
reconfiguration by avoiding global coordination and by decoupling
tuple delivery from processing.

6 CONCLUSION AND FUTUREWORK
This paper lays the groundwork for a new kind of streaming plat-
form designed for edge computing and mobile settings. Unlike ex-
isting stream computing engines such as Storm and Flink, Merlin’s
loosely-coupled design allows quick and non-disruptive reconfigu-
ration – regardless of network size. There are many research and
engineering challenges that we plan to tackle including state man-
agement for stateful operators, exactly-once processing semantics,
in order execution semantics, an Application Programming Inter-
face (API) for user code, a higher level query processing engine, a
mechanism to specify geographic constraints for deployment, load
balancing and more sophisticated flow control, dynamic scaling of
routers on the nodes, and generation of a physical plan from the
logical plan.
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