
WristO2: Reliable Peripheral Oxygen Saturation
Readings from Wrist-Worn Pulse Oximeters

Caleb Phillips, Daniyal Liaqat, Moshe Gabel and Eyal de Lara
Department of Computer Science

University of Toronto
Toronto, Canada

{caleb, dliaqat, mgabel, delara}@cs.toronto.edu

Abstract—Peripheral blood oxygen saturation (SpO2) is a vital
health signal with many clinical applications. Modern wrist-
worn devices, such as the Apple Watch, FitBit, and Samsung
Gear, have pulse oximeter sensors, making them theoretically
capable of measuring SpO2. However, current techniques for
SpO2 measurements using pulse oximeter sensors are based on
readings taken from the fingertip. Readings collected from the
wrist are unreliable and often inaccurate, due to motion and
insufficient skin contact. Enabling accurate oxygen saturation
monitoring on wearable devices would allow continuous health
monitoring and open up new avenues of research.

In this work, we explore the reliability of SpO2 measurements
from the wrist. Using a custom wrist-worn pulse oximeter, we find
that existing algorithms used in traditional fingertip SpO2 sensors
are a poor match for taking measurements from the wrist and can
lead to over 90% of readings being inaccurate. We further show
that skin tone, IMU sensors, and user-level calibration affect
measurement error, and must be considered when designing
wrist-worn SpO2 sensors and measurement algorithms.

Next, based on our findings, we propose WristO2, an al-
ternative approach for reliable SpO2 sensing. By selectively
pruning unreliable data, WristO2 achieves an order of magnitude
reduction in error compared to existing algorithms, while still
providing sufficiently frequent readings for continuous health
monitoring.

Index Terms—Health care, Pervasive computing, Sensors

I. INTRODUCTION

Peripheral oxygen saturation (SpO2) is a measure of the
percent of oxygenated blood, and its usefulness extends across
domains such as sleep apnea diagnosis [1], monitoring oxygen
therapy results for COPD patients [2], and patient recovery
monitoring in the ICU [3]. It is also a critical measure for
monitoring patients with COVID-19 [4]. Enabling frequent,
unobtrusive, and reliable ambulatory monitoring of oxygen
saturation could be a game changer in such domains, for
example by allowing early interventions that could drastically
improve health outcomes and reduce health care costs [5].

However, current approaches for home SpO2 monitoring
only provide intermittent readings since they require active
user interaction. To measure their SpO2 levels, users must
press their fingertip closely to the sensor for 30 seconds at
a time. As part of the growing mobile health monitoring
movement, some smartphone manufacturers have provided
an built-in pulse oximeter on the back of smartphones (e.g

Samsung Galaxy S81) that requires the user to press a fingertip
against the sensor to obtain an SpO2 reading.

Wrist-worn smartwatches such as the Apple Watch, FitBit,
and Samsung Gear already contain pulse oximeters albeit
they tend only to be used to derive heart rate. Interestingly,
these pulse oximeters in theory could also be used to extract
SpO2. Additionally, the device is in constant contact with the
user’s skin which eliminates the need for active interaction.
In practice, however, SpO2 readings from the wrist are no-
toriously inaccurate. While the pulse oximeters sensors on
these devices are fundamentally the same as the ones used in
hospital and commercial fingertip SpO2 monitors, calculating
oxygen saturation from a wrist-worn sensor leads to unreliable
measurements due to poorly-fitting devices, wrist and arm
motion, low blood perfusion, interference from ambient light,
motion, and the effects of skin tone [6]–[9]. For example,
while the recently released Apple Watch 6 uses a pulse
oximeter to provide SpO2 readings, users have found the
measurements to be unreliable2 and its fine print asserts it
is not intended for clinical purposes.

Despite the fact that most pulse oximeter readings from
a wrist-worn device are unreliable, we hypothesize that occa-
sionally, readings taken from such a device will be sufficiently
reliable. Consider a patient that currently tracks her oxygen
saturation twice per day using an at home fingertip sensor
kit. If she can use her smartwatch to identify even a single
reliable SpO2 reading every ten minutes, we have removed the
need for active user interaction and succeeded in increasing the
amount of available data by almost two orders of magnitude.
Therefore, even if only a small fraction of oxygen saturation
readings are reliable, as long as they can be confidently iden-
tified among a majority of noisy readings we can improve the
overall usefulness of wrist-worn oxygen saturation monitors.

Our Contributions: In this work, we demonstrate that a
reliable SpO2 signal can be taken automatically from the wrist
using pulse oximeter sensors similar to those currently em-
ployed in existing wrist-worn devices. We describe WristO2,
which uses pulse oximetry, as well as motion data from an
IMU sensor (gyroscope and an accelerometer), to detect and
reject unreliable readings. WristO2 consists of a pipeline of

1https://www.samsung.com/global/galaxy/galaxy-s8/specs/
2https://www.washingtonpost.com/technology/2020/09/23/apple-watch-

oximeter/



automated feature extraction and a gradient boosting classifier
that labels signals as reliable or unreliable. In a preliminary
study, we show that WristO2 reduces the average error in SpO2
readings from 14.5 percentage points to 1.5 percentage points
compared to a baseline implementation, while generating a
reading on average at least every three minutes. We also
investigate the effects of skin tone, IMU data, and per-user
fine-tuning on the accuracy of WristO2.

II. THE CHALLENGE OF WRIST-BASED PULSE OXIMETRY

Pulse oximeters allow non-invasive monitoring of blood
oxygen saturation. Light emitted by LEDs interact with the
users blood and is then captured by photodetectors to produce
a photoplethysmogram, or PPG. An estimate of oxygen satura-
tion is produced from the PPG by calculating a ratio of ratios
between the amount of red (660nm, absorbed mostly by non-
oxygenated blood) and infrared (940nm, absorbed mostly by
oxygenated blood) light detected, as described in Equation 1:

SpO2 = y0 −m×
(

ACRed/DCRed

ACIR/DCIR

)
(1)

AC and DC denote the alternating and direct current mea-
sured by the photodetector for each light source. A small
window of the PPG data, usually four seconds, is used to
calculate an SpO2 reading [10]. In general, transmissive pulse
oximeters that cover the fingertip are considered more accurate
than reflective ones: motion and ambient light artifacts can
produce unreliable SpO2 readings, especially when measured
from the wrist, where good contact is not guaranteed.

To evaluate the feasibility of using pulse oximetry to mea-
sure SpO2 from the wrist, we collect data using a MAX30102
sensor from Maxim Integrated [11], a manufacturer-grade
reflective pulse oximeter similar to those found in modern
commodity smartwatches, fitness bands, phones, and other
personal electronics. We use the SpO2 calculation algorithm
provided by the manufacturer as a baseline. We also consider
an enhanced version of the baseline algorithm that discards
PPG readings where the Pearson correlation coefficient be-
tween the red and infrared wavelengths is below 0.4, a
potential indicator of motion artifacts.

We compare the SpO2 output of the MAX30102 sensor from
each algorithm with a Berry BM3000B [12], a commercial
transmissive oximeter. We collected data from 10 subjects who
wore the two SpO2 readers on the non-dominant hand (reflec-
tive on the index finger, transmissive on the middle finger) for a
period of 12 minutes each. The mean measurement difference
between devices is 1.84%, with standard deviation of 1.32%
– indicating good agreement between sensors except a small
bias, which remained consistent across all users.

After recalibrating the reflective sensor to remove bias,
the mean absolute difference drops to 1.01% with standard
deviation of 0.77% indicating strong agreement. Over 99% of
reflective sensor readings are within ±2% of the transmissive
sensor readings. We conclude that our reflective SpO2 sensor
produces reliable measurements when placed on the fingertip.
In the remainder of this paper, we use measurements collected

0.0 2.5 5.0 7.5 10.0
Error vs Fingertip Sensor

0.00

0.25

0.50

0.75

1.00

CD
F

Baseline
Enhanced

Fig. 1. CDF of absolute difference
between wrist and fingertip readings.

Fig. 2. PPG trace for a fingertip vs.
wrist attached sensor (taken from
the PPG web platform described in
Section III).

with our reflective SpO2 sensor mounted on the fingertip as
ground truth. Using the same sensor allows us to measure re-
liability across different measurement sites, rather than across
different hardware manufacturers.

Naı̈vly applying existing algorithms to PPG traces obtained
from the wrist results in mostly unreliable SpO2 measure-
ments. Figure 1 shows the cumulative distribution function
(CDF) of absolute error of readings taken from the wrist using
both existing algorithms compared with the same MAX30102
sensor on the fingertip. Despite the increase in performance
of the enhanced algorithm, more than 10% of the readings
across all users have an error of 5 percentage points or more
compared to the fingertip readings, which we consider to be
too big a margin of error, given that the healthy range for
individuals is 90% to 100%.

Figure 2 shows two PPG traces obtained from the same
user at the same time using identical reflective sensors. The
top PPG was captured from a fingertip-worn reflective pulse
oximeter over several seconds. The strong periodic signal
captures the change in flow of oxygenated blood through the
fingertip. The bottom PPG was taken from the wrist. Even with
clean contact to the skin, this trace is much noisier. Algorithms
used to produce reliable SpO2 readings from a wrist-worn
sensor must be able to mitigate these errors.

III. SYSTEM

WristO2 is a filtering system designed to identify which
signal windows captured from the wrist-worn sensor will pro-
duce reliable SpO2 readings. WristO2 uses statistical machine
learning techniques to train a model to classify wrist-readings
as reliable or unreliable. As input to our classifier we compute
features from 4 signal sources: red and infrared LEDs, and
gyroscope and accelerometer magnitude.

To collect training and evaluation data, we take PPG mea-
surements from two points of contact on a single user, namely
the fingertip and the wrist. PPG traces and IMU data are
collected from all sensors simultaneously. A custom wrist-
worn device is attached to the dominant hand of a user
during experiments, and allows for users to maintain range
of motions in their wrist. Movement throughout the duration
of experiments is encouraged. Custom hardware was required
because commodity wrist-worn PPG sensors either did not
have the appropriate LEDs (Samsung), or did not provide
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Fig. 3. The data collection platform. Fig. 4. Custom wrist wearable.

access to raw sensor data at sub-second granularity (Apple).
Readings are collected and synchronized from sensors using
a microcontroller at a rate of 25Hz.

The wrist-worn device in Figure 4 houses a MAX30102
and an MPU9250 IMU sensor, sewn into a fitness band for
stability and consistency across measurements. The user wears
the device with the pulse oximeter facing the top of the wrist
so that it matches the sensor placement in a vast majority of
consumer grade wristbands and smartwatches.

We use a signal window size of 100 sensor readings, or 4
seconds of data, when extracting features. We use the level
of agreement with a more reliably collected signal as the
ground truth label. Specifically, agreement between the same
MAX30102 sensor applied to both the wrist and fingertip. We
label wrist-worn readings as reliable if they are within a margin
of error from the fingertip reading. Initially this threshold is
set to ±2.0 percentage points. The readings from the fingertip
sensor are only used for creating the reliability label during
training, and not used at test time.

A. Reliability Classifier

To train our classifier, we first extract features from the
wrist-worn sensors to be used as inputs when predicting
the reliability of the signal. We sample 4 signals, two raw
LED radiance signals from the red and infrared channels,
and two signals from the magnitude of the gyroscope and
accelerometer in the MPU9250.

We use the Tsfresh [13] library to extract features from the
time series data. The library calculates and evaluates signifi-
cance for a comprehensive list of features. Depending on the
training data provided, 900-1000 features are selected by the
library, though many have a very low significance and can be
removed without affecting classifier performance. Table I show
the 14 most significant features. Features calculated on the red
and infrared channels provide the most significance, followed
by the gyroscope. Accelerometer data provides significantly
less information.

The classifier is trained with XGBoost [14] using a learning
rate of 0.1, 100 estimators, a max depth of 3, minimum child
weight of 3, regularization alpha of 0.3, a subsample ratio

of 0.9, and a logistic binary objective. Classifier selection
and tuning was performed empirically using a cross-validated
hyperparameter search. The classifier is trained using leave-
one-out cross validation across participants, and evaluated
on held out validation sets. During training, non-overlapping
windows are used to ensure that feature data is independent,
however new data is evaluated with a sliding window. Data is
split in time to ensure a look-ahead bias is avoided.

B. Data Collection

We collect data from 10 participants. Each user has the
wrist-band with the pulse oximeter and IMU sensor attached
to their dominant hand, and a MAX30102 sensor attached
directly to their fingertip on the opposing hand. Trials on
each participant are conducted for approximately 12 minutes,
during which time users are encouraged to continue using
their dominant hand in an effort to provide the most naturally
acquired readings. To reduce motion artifacts when acquiring
ground truth readings, participants are asked to keep their non-
dominant hand motionless for the duration of the experiment.
Users range from 20-55 years of age and vary in skin colour.
The proportion of unreliable readings measured from each user
ranges from 30%-99%, relative to the fingertip ground truth.
Variables such as skin colour, device tightness, wrist thickness,
movement, and ambient light, can all affect the number of
reliable readings.

IV. EVALUATION

We evaluate WristO2 on three metrics. First, precision, the
fraction of truly reliable readings out of those classified as
reliable. We emphasize precision over recall: few intermittent
reliable SpO2 readings are preferable to a continuous stream of
potentially false readings. Intuitively, due to the relatively low
fluctuations of oxygen saturation levels, SpO2 can be reliably
interpolated with frequent enough measures. Second, we report
the root mean squared error, RMSE, of readings taken from
the wrist-worn sensor as compared with the fingertip sensor.
We take the RMSE before pruning values with WristO2,
and then calculate the RMSE after pruning to determine any
improvement. Finally, to avoid pruning too many PPG traces
and making the system unusable, we measure the time between
valid readings: the longest interval where WristO2 produces
no SpO2 readings.

TABLE I
TSFRESH FUNCTION CALL FOR TOP 14 FEATURES.

1. longest strike below mean(‘ir’) 8. autocorrelation(‘ir’, 4)

2. autocorrelation(‘ir’, 6) 9. ar coefficient(‘red’,
{”coeff”: 0, ”k”: 10})

3. autocorrelation(‘ir’, 5) 10. spkt welch density(’red’,
{“coeff”: 2})

4. autocorrelation(‘ir’, 7) 11. ar coefficient(‘ir’,
{”coeff”: 0, ”k”: 10})

5. autocorrelation(‘ir’, 8) 12. mean(‘gyro’)
6. autocorrelation(‘ir’, 9) 13. sum values(‘gyro’)

7. cid ce(’ir’, normalize=True) 14. fft coefficient(‘gyro’,
{”coeff”: 0, ”attr”: ”abs”})
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Fig. 6. SpO2 measurements over
time from one trace.

TABLE II
MEAN RMSE (AND STANDARD DEVIATION) ACROSS ALL 10 USERS.

Baseline RMSE Enhanced RMSE WristO2 RMSE

14.5% (6.9%) 6.7% (4.4%) 1.5% (0.7%)

A. Performance of WristO2

Filtering readings with WristO2 shows a drastic reduction in
error compared to existing methods. Table II shows the mean
RMSE across all users for the baseline algorithm, enhanced
algorithm and WristO2; Figure 5 shows the resulting absolute
errors of wrist sensor readings. WristO2 achieved an average
precision of 72% across users. WristO2 reduces RMSE of
SpO2 measurement by an order of magnitude compared to the
baseline algorithm, and by 4.5 times for the enhanced baseline.

To illustrate the effect of WristO2, Figure 6 shows part of a
trace for a single user. The blue line representing the enhanced
algorithm applied to a PPG trace collected from the wrist, and
the orange line representing the enhanced algorithm applied to
the signal collected from the fingertip during the same session.
Finally, the black line represents the readings remaining after
WristO2 prunes unreliable results. Spikes and inaccuracies are
clearly visible even with the Enhanced algorithm. WristO2

successfully rejects many of these unreliable readings.
The reduction in error comes at the cost of producing less

readings compared to the existing algorithms. Figure 7 shows
the CDF of the maximum size of an interval where WristO2

produced no readings across all users. The average interval
between readings across all users is approximately 3 minutes,
with the worst case for a single user at approximately 6
minutes and 40 seconds. Given that the current state-of-the-art
for acquiring reliable SpO2 readings requires a user to actively
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Fig. 7. CDF of longest delay between valid readings.

TABLE III
EFFECTS OF SKIN TONE ON SPO2 ACCURACY.

Skin tone Precision RMSE

Training Testing WristO2 Enhanced WristO2

Dark Dark 37% (28%) 8.0% (5.0%) 1.6% (0.5%)
Dark Light 80% (20%) 5.2% (3.2%) 1.3% (1.0%)
Light Dark 42% (32%) 8.0% (5.0%) 4.3% (3.3%)
Light Light 69% (27%) 5.2% (3.2%) 2.6% (2.0%)

clip a commercial pulse oximeter to their fingertip and wait,
the time between readings from existing methods would be
collected in the order of several hours or even half a day. A
mean interval of less than 3 minutes for automatic collection
of reliable readings is a dramatic improvement.

B. Effect of Skin Tone

As discussed in section VI, it has been shown that it is more
difficult to collect a reliable signal when darker pigment exists
on the skin, whether naturally or artificially from tattoo ink.
We aim to quantify potential difficulty in collecting reliable
PPG traces from users of various skin tones. As five of our
ten participants had light skin tone, we partition them into two
groups lighter- or darker-skinned, and evaluate classifiers with
all permutations of training and testing groups. Mean (and Std.
Dev.) are shown across users of the testing group. In cases
where the training and testing groups are the same, leave-one-
out cross-validation is used across user’s of the group.

Table III shows that precision is improved when classifying
on lighter skin as opposed to darker skin, regardless of the
skin-tone used during training. We caution that our sample size
is too small to draw strong conclusions about the magnitude of
effects, and much more data will be needed to adequately char-
acterize performance discrepancies between pigment groups.
Regardless, in both groups the error is reduced by WristO2;
and we have shown that the classifier will generalize to
pigment colours that it was not trained on.

C. Per-User Training

We explore the viability of building a personalized WristO2

classifier on a per user basis. Consider a user that has a
wrist-worn device with a pulse oximeter capable of measuring
SpO2, such as a smartwatch, and a similar fingertip sensor
such as those that exist in the back of certain Samsung smart-
phones. During a calibration phase, the user can be instructed
to wear the smart watch while simultaneously pressing their
finger against the sensor on the smart phone. Once sufficient
calibration data can be captured, the classifier can be retrained
with the additional data to provide the user with more reliable
readings from smartwatch.

We train a classifier with 9 users and test it on an unseen
user. We then add 2 minutes of data from the previously unseen
user to the training set and retrain the model. And again with
10 minutes. The results are summarized in Table IV. Pruning
signal windows with WristO2 reduces the RMSE to 3.8% even
when no calibration data is used. Using a small amount of user



TABLE IV
PERFORMANCE WITH USER CALIBRATION DATA.

Precision RMSE

Calibration Data WristO2 Enhanced WristO2

None 33% 9.3% 3.8%
+ 2 minutes 34% 9.3% 3.3%
+ 10 minutes 41% 9.3% 3.1%

TABLE V
EFFECTS OF IMU FEATURES ON CLASSIFICATION.

Precision RMSE

Input # Features WristO2 Enhanced WristO2

LED Only 489 69% (19%) 6.7% (4.4%) 1.8% (0.9%)
IMU Only 497 47% (35%) 6.7% (4.4%) 5.5% (5.2%)
LED + IMU 986 73% (19%) 6.7% (4.4%) 1.5% (0.7%)

specific training data on top of the original training set further
reduces the RMSE by up to 0.7 percentage points.

D. Importance of Accelerometer and Gyroscope

To study the effect of the features extracted from the IMU
signal on classification, we evaluated the WristO2 classifier
with different combinations of features from the LEDs and
IMU sensor as input. Table V summarizes the results.

Approximately half of the features extracted and selected
by the TSfresh pipeline are features from the IMU. Although
features from the LED channels alone contribute to a signifi-
cant reduction in the RMSE, adding the 497 features extracted
from the IMU signals further reduces the RMSE to 1.5%. It
is sensible that the LED channels contribute a majority of the
performance increase considering the LEDs are used directly
to calculate SpO2. We verify that this is the case by training
the classifier with traces solely from the IMU, which shows a
negligible increase in performance.

E. Effects of window size and varied thresholds

Window size is measured to be optimal at the original set
value of 100 readings, or 4 seconds. Reducing the window to
50 increases RMSE by approximately 1%, and reducing it to
25 increases RMSE by an additional 1.5%. Smaller window
sizes could be used to reduce compute requirements.

Figure 8 shows varied sizes of reliability thresholds used
to generate labels, and their corresponding RMSE results.
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Fig. 8. RMSE for different thresholds.
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Fig. 9. The trade-off between quantity and quality of readings for different
reliability thresholds. For every threshold, the X axis shows the resulting
worst-case interval between reliable readings, and the Y axis shows the
resulting RMSE.

Although it would appear that lower threshold values improve
results overall, it is worth noting that the frequency of acquired
readings is inversely proportional to the expected RMSE, as
Figure 9 demonstrates for the varied threshold sizes.

V. LIMITATIONS AND FUTURE WORK

Our small sample size warrants a larger study to validate
results. Ideally the study should be deployed in a clinical
setting where data can be collected from patients with a variety
of conditions affecting arterial oxygen saturation. Validating
WristO2 on patients outside of the healthy range is essential
to guaranteeing effectiveness. Our results support that more
study is needed on the effect of skin tone on wrist-worn pulse
oximeters.

We consider extending the classifier to multi-label classi-
fication for different confidence ranges, or regression. That
is, predict not whether a signal will produce a reliable label
within a certain threshold, but rather the confidence that the
label will be produced within multiple thresholds (i.e., 1%,
3%, and 10%). A similar technique was used in [15] to control
the trade-off between accuracy and time between readings in
respiratory rate extraction.

The feature set could be pruned enough such that feature
extraction can be performed live on a mobile device. Work
similar to Sidewinder [16] could be used to offload signal
reliability calculation to a lower powered processor, and sub-
sequently wake the device when a usable signal is detected.
Deploying WristO2 on an existing smartwatch platform that
provides low level access to the LED sensor readings and
the correct spectrum’s could improve experimental consistency
and results through higher quality hardware.

VI. RELATED WORK

Existing work on reflective sensors is focused on heart rate
measurement, such as rule based detection of heart rate for
reliability [17]. Ra et al. perform reliability detection in the
context of wrist heart-rate measurement on existing smart-
watches [18]. There has been work done to improve reliability
in fingertip sensors through signal preprocessing and noise
reduction [10] [19]. Possible wearability sites, including the
wrist, and various sensor configurations have been considered
in the context of telehealth monitoring [6], [20]. Reflective
pulse oximeters are widely used and studied in medicine in



places where transitive pulse oximeters are not feasible, such
as infant monitoring [21]. See [22] for a comprehensive review
of state-of-the-art research on heart rate estimation from wrist-
worn PPG signals, and a brief review of fundamentals.

Jarchi et al. [23] explored using the common information
between red and infrared wavelengths to improve SpO2 mea-
surements from the wrist, although their study is based on
only 5 subjects. Our approach is complementary, and can be
used in parallel. Yao et al. [24] used simple motion sensing
to remove noise from movement artifacts to improve signal
reliability in ambulatory environments. Yan et al. [25] used
more sophisticated feature extraction to remove motion from
pulse oximeters used for telehealth monitoring.

Severinghaus et al. [26] showed that bias in SpO2 mea-
surements increases during a state of anemia (low red blood
cell count). Emery et al. [27] and Cote et al. [28] explore
the effects of dark skin pigmentation and ink in fingertip
worn pulse oximeters. Lee et al. [29] showed that lower true
pulse oximetery values were overestimated for a set of people
from Singapore due to darker pigmentation. Sjoding et al. [30]
conducted a study of fingertip pulse oximetry in an ICU setting
with similar conclusions. Ray et al. [31] find that for dark skin,
smartwatches report lower-confidence heart rate measurements
even when they are reliable.

Liaqat et al. are currently working on using wrist-worn
devices to aid COPD patients in treatment and disease man-
agement in the context of the WearCOPD project [32], [33].
Although they currently do not employ SpO2 in their consid-
eration of patient health, reliable SpO2 readings could improve
COPD monitoring [2].

VII. CONCLUSION

In this work we study the reliability of SpO2 measurements
from a wrist-worn pulse oximeter, and show that existing algo-
rithms often provide unreliable readings. We propose WristO2,
which uses automated feature extraction and statistical ma-
chine learning to identify reliable peripheral oxygen saturation
readings taken from the wrist. After pruning unreliable results
with WristO2, we show that error in measurements taken
from the wrist can be reduced by an order of magnitude.
Additionally we demonstrate that after pruning results, the
frequency of reliable readings is still high enough to be useful.
We discuss the effects of skin tone, IMU information, and
propose platforms for user level calibration.
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