Unsupervised Anomaly Detection
in Large Datacenters

Moshe Gabel

Unsupervised Anomaly Detection
in Large Datacenters

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Moshe Gabel

Submitted to the Senate
of the Technion — Israel Institute of Technology
Sivan 5773 Haifa June 2013

This research was carried out under the supervision of Prof. Assaf Schuster in the

Faculty of Computer Science, and Dr. Ran Gilad-Bachrach in Microsoft Research.

Some results in this thesis have been published during the course of the author’s
research period in a conference article by the author and research collaborators, the

most up-to-date version of which being:

M. Gabel, A. Schuster, R.-G. Bachrach, and N. Bjorner. Latent fault detection in large
scale services. In Dependable Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP
International Conference on, pages 1-12, 2012.

Acknowledgements

I would like to express my gratitude to my advisors, Prof. Assaf Schuster and Dr. Ran
Gilad-Bachrach, for their continuous instruction and patience. I have learned much from
them, and where I did not — the fault surely lies with me. Their invaluable guidance
and their persistent encouragement over the years has made this work possible.

I would also like to thank our co-author, Dr. Nikolaj Bjgrner, for his insightful
suggestions and good humor at stressful times.

To my friends, who let me practice conference talks on them, or even worse — thank
you! You know who your are.

Finally, a special thank you for my family. Without your constant and uncompro-

mising support I would not have made it to the finish line.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Figures

List of Tables

Abstract

Abbreviations and Notations

1 Introduction

1.1 Background: Monitoring and Fault Detection
1.2 This Work: Early Detection of Faults

1.3 Related Work

2 Framework
2.1 Overview
2.2 Preprocessing

2.3 Framework Analysis

3 Derived Tests
3.1 The Sign Test
3.2 The Tukey Test
3.3 The LOF Test

4 Empirical Evaluation
4.1 Protocol Used in the Experiments
4.2 The LG Service
4.3 PR and SE Services
4.4 VM Service

4.5 Estimating the Number of Latent Faults

4.6 Comparison of Tests

4.7 Filtering Counters in Preprocessing

5 Conclusion and Future Work

o -3 ot Ot

11
11
13
17

25
25
27
28

31
32
33
35
37
37
39
39

43

List of Figures

2.1

2.2

2.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

4.10

Histogram of number of reports for two kinds of counters. The report rate

across different machines of the event-driven counter has higher variance.

Counter values for 8 machines. The counter in 2.2a shows different
means for individual machines. On the other hand, despite unpredictable
variation over time, in 2.2b all machines act in tandem.

The case where |[vpy,|| —0 >, and 0 < E[||vp||]] < |lom]]. - - - -

Cumulative failures on LG service, with the 5%-95% inter-quantile range
of single day results for the best performing test, the Tukey test. Most
of the faults detected by the sign test and the Tukey test become failures
several days after detection.
ROC and P-R curves on LG service. Highlighted points are for significance
level a =0.01.. oL
Tukey performance on LG across 60 days, with 14-day horizon. It shows
the test is not affected by changes in the workload, quickly recovering
from service updates on days 22 and 35. Lower performance on days
45-55 is an artifact of gaps in counter logs and updates on later days.

ROC and P-R curves on the SE service. Highlighted points are for
significance level a = 0.01.o L oL
Aberrant counters for suspicious VM machine (black) compared to the
counters of 14 other machines (gray).

Detection performance on known failures in LG service. At least 20-25%

of failures have preceding latent faults. Highlighted points are for a = 0.01.

Three synthetic “counters” for 8 “machines”. The highlighted machine
(black) has a synthetic latent fault (aberrant counter behavior).

Performance on types of synthetic latent faults
Histogram of counter mean variability for all services. The majority of
counters have variability below 2. 0000
Sign test performance on one day of the LG service at difference mean

variability thresholds.

14

15
22

34

35

36

36

38

38

39
40

41

List of Tables

4.1 Summary of terms used in evaluation. 31
4.2 Prediction performance on LG with significance level of 0.01. Numbers
in parenthesis show the 5%-95% inter-quantile range of single day results. 34
4.3 Prediction performance on SE, 14-day horizon, significance level 0.01. . 37
4.4 Average number of counters removed. Many counters remain after auto-
mated filtering. 40

Abstract

Unexpected machine failures, with their resulting service outages and data loss, pose
challenges to datacenter management. Complex online services run on top of datacenters
that often contain thousands of machines. With so many machines, failures are common,
and automatic monitoring is essential.

Many existing failure detection techniques do not adapt well to the unpredictable and
dynamic environment of large-scale online services. They rely on static rules, obsolete
historical logs or costly (often unavailable) training data. More flexible techniques are
impractical, as they require on deep domain knowledge, unavailable console logs, or
intrusive service modifications.

We hypothesize that many machine failures are not a result of abrupt changes but
rather a result of a long period of degraded performance. This is confirmed in our
experiments on large real-world services, in which over 20% of machine failures were
preceded by such latent faults.

We propose a proactive approach to failure prevention by detecting performance
anomalies without prior knowledge about the monitored service. We present a novel
framework for statistical latent fault detection using only ordinary machine counters
collected as standard practice. The main assumption in our framework is that that at
any point in time, most machines function well. By comparing machines to each other,
we can then find those machines that exhibit latent faults.

We demonstrate three detection methods within the framework, and apply them
to several real-world production services. The derived tests are domain-independent
and unsupervised, require neither background information nor parameter tuning, and
scale to very large services. We prove strong guarantees on the false positive rates of

our tests, and show how they hold in practice.

Abbreviations and Notations

<

~

3 N00
D
3

[)
o~
<

N QE

mean
STD
P90(.5)
MAD
LOF

the set of all tested machines

the set of all counters selected by the pre-processing algorithm

the set of all counters available in the system (before pre-processing)
the set of time points when counters were sampled during preprocessing
specific machines, m,m’ € M

specific counters, ¢, € C

specific times, t,t' € T

the number of machines, M = | M|

the number of counters selected by the preprocessing algorithm, C' = |C|
the number of times points where counters were sampled, 7' = |T|
the number of times machine m reported the counter ¢

the last value of counter ¢ on machine m before time ¢

vector of C' preprocessed counter values for machine m at time ¢

the value of preprocessed counter ¢ on machine m at time ¢

vectors at time ¢ for all M machines, z(t) = {z(m,t)|m € M}

test function assigning score vector (or scalar) to machine m at time ¢

score vector or scalar for machine m

empirical mean, mean;cg(X;) = §Z cs Xi
standard deviation, STD;cg(X;) = % Y ics (Xi — mean;eg(X;))?

the 90*"-percentile of S
Median Absolute Deviation
Local Outlier Factor

Chapter 1

Introduction

In recent years the demand for computing power and storage has increased. Modern
web services and clouds rely on large datacenters, often comprised of thousands of
machines [Ham07]. For such large services, it is unreasonable to assume that all
machines are working properly and are well configured [PLSW06, NDO11].

Monitoring is essential in datacenters, since unnoticed faults might accumulate to
the point where redundancy and fail-over mechanisms break. Yet the large number of
machines in datacenters makes manual monitoring impractical. Instead machines are
usually monitored by collecting and analyzing performance counters [BGF*10, CJY07,
Isa07, SOR™03]. Hundreds of counters per machine are reported by the various service
layers, from service-specific metrics (such as the number of queries for a database) to
general metrics (such as CPU utilization).

This work describes a statistical framework for detecting latent faults — performance
anomalies that indicate a fault, or could eventually result in a fault. Our method does
not require historical data, nor background knowledge about the monitored service. It
adapts to changes in workload and monitored service, and provides statistical guarantees
on the rate of false positives.

Our experiments provide evidence that latent faults are common even in well-
managed datacenters. We show that these faults can be detected days in advance with
high precision, without extensive knowledge of the service, learning from historical logs, or
tuning the mechanism to the specific system. This enables a proactive approach [NMO7]:
machine failures can be predicted and handled effectively and automatically without

service outages or data loss.

1.1 Background: Monitoring and Fault Detection

The challenge of monitoring stems from the unpredictable and dynamic environment
that large-scale online services must live in. First, workload is often difficult to predict
and is constantly changing. Second, software (and sometimes hardware) is frequently

updated, changing the service’s baseline behavior. Third, obtaining expertly-labeled

historical data is expensive, since it requires manual inspection of the data by people
with extensive knowledge of the service and deep insight into how it works. Finally,
false alarms can be costly since they involve support engineers responding to the alarm.
Ubiquitous false alarms also give rise to “alarm fatigue”, where personnel start ignoring
alarms since most of them are false.

Most existing failure detection techniques are inflexible — they do not adapt to the

frequent changes in the monitored service and its environment.

Rule-based Monitoring

Existing automated systems for detecting failures are mostly rule-based. A set of
watchdogs [Isa07, NMO07] is defined. In most cases, a watchdog monitors a single counter
on a single machine or service: the temperature of the CPU or free disk space, for
example. Whenever a predefined threshold is crossed, an action is triggered. These
actions range from notifying the system operator to automatic recovery attempts.
Rule-based failure detection suffers from several key problems. Thresholds must
be made low enough that faults will not go unnoticed. At the same time they should
be set high enough to avoid spurious detections. However, since the workload changes
over time, no fixed threshold is adequate. Moreover, different services, or even different
versions of the same service, may have different operating points. Therefore, maintaining

the rules requires constant, manual adjustments, often done only after a “postmortem’

examination.

Learning From the Past

Others have noticed the shortcomings of these rule-based approaches. More advanced
methods model service behavior from historical logs. Supervised machine learning
approaches [BGFT10, CZL104, CGKS04, PBYH'08, SOR 03] propose training a de-
tector on historic annotated data. Others [CJY07, BLB"10] analyze logs from periods
from when the service is guaranteed to be healthy to extract model parameters.

Such approaches can fall short because they are sensitive to deviations in workloads
and changes in the monitored service itself [ZCGT05, HCSAO07]. After such changes the
historical logs and the learned model are no longer relevant. These approaches can also
be expensive since they require labeled data for operations, and re-labeling when the

service changes. Obtaining this labeled data can be difficult.

Console Log Analysis

More flexible, unsupervised approaches to failure detection have been proposed for high
performance computing (HPC). Typical approaches [OAS08, LEY 10, XHFT09] analyze
textual console logs to detect system or machine failures by examining occurrence of log
messages. In this work, we focus on large scale online services. This setting differs from

HPC in several key aspects. Console logs are impractical in high-volume services for

bandwidth and performance reasons: transactions are very short, time-sensitive, and
rapid. Thus, in many environments, nodes periodically report aggregates in numerical
counters. Console log analysis fails in this setting: console logs are non-existent (or
very limited), and periodically-reported aggregates exhibit no difference in rate for
faulty, slow or misconfigured machines. Rather, it is their values that matter. Moreover,
console logs originate at application code and hence expose software bugs. We are
interested in counters collected from all layers to reveal both software and hardware

problems.

Domain Specific and Other Approaches

Some approaches [KTGN10, KGNO08| are unsupervised and flexible, but are not domain
independent. They make use of domain insights and knowledge into monitored service,
for example in the domain of distributed file systems, and are therefore limited to
specific systems. Others have proposed injecting code into the monitored service to
periodically examine it [PLSWO06]. This approach is intrusive and hence prohibitive in

many cases.

1.2 This Work: Early Detection of Faults

Recent approaches to the monitoring problem [KGN08, KDJ*12] focus on early detection
and handling of performance problems, or latent faults. Latent faults are machine
behaviors that are indicative of a fault, or could eventually result in a fault, yet fly
under the radar of monitoring systems because they are not acute enough, or were not
anticipated by the monitoring system designers.

The challenge in designing a latent fault detection mechanism is to make it agile
enough to handle the variations in a service and the differences between services. It
should also be non-intrusive yet correctly detect as many faults as possible with only a
few false alarms. As far as we know, we are the first to propose a general framework
and methods that address all these issues simultaneously using aggregated numerical
counters normally collected by datacenters.

We focus on detecting anomalous machine behavior — latent faults. Not all machine
failures are the outcome of latent faults. Power outages and malicious attacks, for
instance, can occur instantaneously, with no visible machine-related warning. However,
even our most conservative estimates show that at least 20% of machine failures have a
long incubation period during which the machine is already deviating in its behavior
but is not yet failing (Section 4.5).

We develop a domain independent framework for identifying latent faults (Chap-
ter 2). Our framework is unsupervised and non-intrusive, and requires no background
information. Typically, a scalable service will use (a small number of) large collections

of machines of similar hardware, configuration, and load. Consequently, the main idea in

this work is to use standard numerical counter readings in order to compare similar ma-
chines performing similar tasks in the same time frames, similar to [KTGN10, OAS08].
A machine whose performance deviates from the others is flagged as suspicious.

To compare machines’ behavior, the framework uses tests that take the counter
readings as input. Any reasonable test can be plugged in, including non-statistical
tests. We demonstrate three tests within the framework and provide strong theoretical
guarantees on their false detection rates (Chapter 3). We use those tests to demonstrate
the merits of the framework on several production services of various sizes and natures,
including large scale services, as well as a service that uses virtual machines (Chapter 4).

Our technique is agile: we demonstrate its ability to work efficiently on different
services with no need for tuning, yet with a guaranteed false positive rate. Moreover,
changes in the workload or even changes to the service itself do not affect its performance:
in our experiments, suspicious machines that switched services and workloads remained

suspicious.

1.3 Related Work

The problem of automatic machine failure detection was studied by several researchers in
recent years, and the techniques they proposehave so far relied on historical knowledge,

domain-specific insights, or textual console logs.

Approaches That Rely on Historical Data

These approaches model the service behavior based on historical logs, often using
supervised machine learning. Such approaches are not flexible to changes in workload
or the monitored system, and can also require expertly labeled data that is difficult to
obtain.

Chen et al. [CZL104] presented a supervised approach based on learning decision
trees, and successfully applied it to a large real-world service. The system requires
labeled examples of failures and domain knowledge. Moreover, supervised approaches
are less adaptive to workload variations and to platform changes. Cohen et al. [CGKSO04]
induce a tree-augmented Bayesian network classifier. Although this approach does not
require domain knowledge other than a labeled training set, the resulting classifier is
sensitive to changing workloads. Ensembles of models are used in [ZCGT05] to reduce
the sensitivity of the former approach to workload changes, at the cost of decreased
accuracy when there are too many failure types ([HCSA07]). Sahoo et al. [SORT03]
compare three approaches to failure event prediction: rule-based, Bayesian network, and
time series analysis. They successfully apply their methods to a 350-node cluster for a
period of one year. Their methods are supervised and furthermore rely on substantial
knowledge of the monitored system. Pelleg et al. [PBYH'08] explore failure detection in

virtual machines using decision trees on a set of 6 manually selected hypervisor counters.

Though the basis is domain independent, the system is supervised, requiring training
on labeled examples and manually selected counters.

Chen et al. [CJY07] separate metrics into workload counters and internal measure-
ments. They analyze the correlation between these sets of metrics and track them over
time. This approach requires training the system to model baseline correlations. It
also requires domain knowledge when choosing counters. Bronevetsky et al. [BLBT10]
monitor state transitions in MPI applications, and observe timing and probabilities
of state transitions to build a statistical model. Their method requires no domain
knowledge, but is limited to MPI-based applications and requires potentially intrusive
monitoring. It also requires training on sample runs of the monitored application to
achieve high accuracy. Bodik et al. [BGF110] produce fingerprints from aggregate
counters that describe the state of the entire datacenter, and use these fingerprints
to identify system crises, points in time where the system performance falls below
acceptable values. As with other supervised techniques, the approach requires labeled
examples and is sensitive to changes in the monitored system or workload. The authors
present quick detection of system failures that have already occurred, whereas we focus

on detection of latent faults ahead of machine failures.

Approaches Requiring No Historical Data

Palatin et al. [PLSWO06] propose sending benchmarks to servers in order to find execution
outliers. Like our method, their approach is based on outlier detection, is unsupervised,
and requires no domain knowledge. However, through our interaction with system
architects we have learned that they consider this approach intrusive, because it requires
sending jobs to be run on the monitored hosts, thus essentially modifying the running
service.

Kasick et al. [KTGN10] analyze selected counters using unsupervised histogram and
threshold-based techniques. Their assumptions of homogenous platforms and workloads
are also similar to ours. However they consider distributed file systems exclusively,
relying on expert insight and carefully selected counters. Our technique requires no
knowledge and works for all domains.

Kavulya et al. [KGNO08| present Gumshoe, which detects performance problems in
replicated file systems, and is the most similar to our work. As we do, they assume
that the system is comprised of homogenous machines, most of which are error free.
Moreover, they compare machines using carefully selected performance metrics, and
their method detects anomalies while still being workload invariant. Metrics of different
machines are assumed to be correlated to each other, either in their raw counter form
or a summary time series that represents their changes. Similar to [KTGN10], their
work only considers replicated file systems, and uses a small set of manually selected
counters appropriate to such systems. Unlike this work, their algorithm requires tuning

parameters for each system, and it is sensitive to the choice of parameters. Finally, they

do not provide statistical guarantees on performance.

Textual Console Log Analysis

There are several unsupervised textual console log analysis methods. Oliner et al.
[OAS08] present Nodeinfo: an unsupervised method that detects anomalies in system
messages by assuming, as we do, that similar machines produce similar logs. Xu et al.
[XHF*09] analyze source code to parse console log messages and use principal component
analysis to identify unusual message patterns. Lou et al. [LFY*10] represent code flow
by identifying linear relationships in counts of console log messages. Unlike [OASO0S,
LFY*10], our method has a strong statistical basis that can guarantee performance,
and it requires no tuning. All three techniques focus on the unusual occurrences of
textual messages, while our method focuses on numerical values of periodic events.
Furthermore, we focus on early detection of latent faults in either hardware or software.
Finally, console log analysis is infeasible in large-scale services with high transaction

volume.

10

Chapter 2

Framework

Large-scale services are often made reliable and scalable by means of replication. That
is, the service is replicated on multiple machines with a load balancing process that
splits the workload. Therefore, similar to [KTGN10, KGN08, OAS08], we expect all
machines that perform the same role, using similar hardware and configuration, to
exhibit similar behavior. Whenever we see a machine that consistently differs from the
rest, we flag it as suspicious for a latent fault. As we show in our experiments, this

procedure flags latent faults weeks before the actual failure occurs.

2.1 Overview

To compare machine operation, we use performance counters. Machines in datacenters
often periodically report and log a wide range of performance counters. These counters
are collected from the hardware (e.g., temperature), the operating system (e.g., number
of threads), the runtime system (e.g., garbage collected), and from application layers
(e.g., transactions completed). Hundreds of counters are collected at each machine. More
counters can be specified by the system administrator, or the application developer, at
will. Our framework is intentionally agnostic: it assumes no domain knowledge, and
treats all counters equally. Figure 4.5 shows several examples of such counters from
several machines across a single day.

We model the problem as follows: there are M machines each reporting C' perfor-
mance counters at every time point t € 7. We denote the vector of counter values
for machine m at time ¢ as x(m,t). The hypothesis is that the inspected machine is
working properly and hence the statistical process that generated this vector for machine
m is the same statistical process that generated the vector for any other machine m’.
However, if we see that the vector x(m,t) for machine m is notably different from the
vectors of other machines, we reject the hypothesis and flag the machine m as suspicious
for a latent fault. (Below we simply say the machine is suspicious.)

After some common preprocessing (see Section 2.2), the framework incorporates

pluggable tests (aka outlier detection methods) to compare machine operation. At any

11

time ¢, the input z(t) to a test S consists of the vectors x(m,t) for all machines at time
t: z(t) = {z(m,t)jm € M. The test S(m,x(t)) analyzes the data and assigns a score
(either a scalar or a vector) to machine m at time ¢.

The framework generates a wrapper around the test, which guarantees its statistical
performance. Essentially, the scores for machine m are aggregated over time, so that
eventually the norm of the aggregated scores converges, and is used to compute a
p-value for m. The longer the allowed time period for aggregating the scores is, the
more sensitive the test will be. At the same time, aggregating over long periods of
time creates latencies in the detection process. Therefore, in our experiments, we have
aggregated data over 24 hour intervals, as a compromise between sensitivity and latency.

The p-value for a machine m is a bound on the probability that a random healthy
machine would exhibit such aberrant counter values. If the p-value falls below a
predefined significance level «, the null hypothesis is rejected, and the machine is flagged
as suspicious. In Section 2.3 we present the general analysis used to compute the p-value
from aggregated test scores.

Given a test S, and a significance level o > 0, we can present the framework as

follows:

1. Preprocess the data as described in Section 2.2 (can be done once, after collecting

some data; see below);

2. Compute for every machine m the vector v, = = >, S(m,z(t)) (integration

phase);
3. Using the vectors v,,, compute p-values p(m);

4. Report every machine with p(m) < « as suspicious.

To demonstrate the power of the framework, we describe three test implementations
in Chapter 3.

Notation

The cardinality of a set G is denoted by |G|, while for a scalar s, we use |s| as the
absolute value of s. The Ly norm of a vector y is ||y||, and y - ¢/ is the inner product of
y and 3'. M denotes the set of all machines in a test, m,m’ denote specific machines,
and M = | M| denotes the number of machines. C is the set of all counters selected by
preprocessing step (step 1), ¢ denotes a specific counter, and C' = |C|. T are the time
points where counters are sampled during preprocessing (for instance, every 5 minutes
for 24 hours in our experiments), ¢,¢ denote specific time points, and T' = |T|. Let
x(m,t) be the vector of preprocessed counter values for machine m at time t, z.(m,t)
the value of counter ¢ for machine m at time ¢, and z(t) the set of all counter values for
all machines at time ¢. z and 2’ denote sets of inputs z(m, t) and z’(m,t), respectively,
for all m and ¢. Finally, in the preprocessing section Section 2.2 C’ denotes the set of all

counters available in the system, i.e. before the preprocessing step.

12

Assumptions

In modeling the problem we make several reasonable assumptions (see, e.g., [KTGN10,
KGNO08, OAS08]) that we will now make explicit. While these assumptions might not
hold in every environment, they do hold in many cases, including the setups considered

in Chapter 4 (except where otherwise noted).

e The majority of machines are working properly at any given point in time.

e Machines are homogeneous, meaning they perform a similar task and use similar
hardware and software. (If this is not the case, then we can often split the

collection of machines to a few large homogeneous clusters.)
e On average, workload is balanced across all machines.
e Counters are ordinal and are reported at the same rate.

e Counter values are memoryless in the sense that they depend only on the current

time period (and are independent of the identity of the machine).

Formally, we assume that z(m, t) is a realization of a random variable X (t) whenever
machine m is working properly. Since all machines perform the same task, and since the
load balancer attempts to split the load evenly between the machines, the homogeneous
assumption implies that we should expect x(m,t) to show similar behavior. We do
expect to see changes over time, due to changes in the workload, for example. However,

we expect these changes to be similarly reflected in all machines.

2.2 Preprocessing

Clearly, our model is simplified, and in practice not all of its assumptions about
counters hold. Thus the importance of the preprocessing algorithm Algorithm 2.1:
it eliminates artifacts, normalizes the data, and automatically discards counters that
violate assumptions and hinder comparison. Since we do not assume any domain
knowledge, preprocessing treats all counters similarly, regardless of type. Furthermore,
preprocessing is fully automatic and is not tuned to the specific nature of the service
analyzed.

First, not all counters are reported at a fixed rate, and even periodic counters might
have different periods. Non-periodic and infrequent counters hinder comparison because
at any given time their values are usually unknown for most machines. They may also
bias statistical tests. Such counters are typically event-driven, and have a different
number of reports on different machines, as demonstrated in Figure 2.1; hence they
are automatically detected by looking at the variability of the reporting rate and are

removed by the preprocessing.

13

$ 4500 —

< 4000 Periodic counter s
S 3500 Event-driven counter . -
© 3000

E 2500

© 2000

o 1500

IEJ 1000

3 508 . -—

260 280 300 320 340 360
Reports per day

Figure 2.1: Histogram of number of reports for two kinds of counters. The report rate
across different machines of the event-driven counter has higher variance.

For each counter ¢ and machine m, let n.(m) be the number of times machine m
reported the counter ¢ during the test period. We expect all machines to have similar
number of reports for a periodic counters. To robustly detect the typical number of
reports for the counter ¢ we compute the median number of reports, denoted by n..
This median is used to compute a robust notion of the variability in the number of
reports, which is similar to standard deviation: the Median Absolute Deviation (MAD)
(see, e.g., [SM09]). The MAD of a sample S is defined as

MAD(S) = medianges (|s — mediangeg(s)|)

n. is also used to scale variability so that the same threshold can be used for frequent
and infrequent counters. We therefore define the variability as the 90 percentile
of |(ne(m)—nc)/n.| and eliminate counters for which this number is too large. In our
implementation this threshold is set to 0.01. The choice of the 90" percentile represents
our assumption that most of the machines (at least 90%) are working properly. We also
eliminate infrequent counters: in our implementation, counters that are being reported
less than 6 times a day are discarded.

After eliminating the non-periodic counters, preprocessing samples counter values
at equal time intervals (5 minutes in our implementation), so that machines can be
compared at those time points ¢t € 7. At this stage the counters are also normalized to
have zero mean and a unit variance (across all machines and times), in order to eliminate
artifacts of scaling and numerical instabilities. Counters with the same constant value
across all machines are discarded.

Finally, some counters violate the assumption of being memoryless. For example,
a counter that reports the time since the last machine reboot cannot be considered
memoryless. Such counters usually provide no insight into the correct or normal
behavior because they exhibit different behavior on different machines. Consequently,
preprocessing drops those counters. Automatic detection of such counters is performed
similarly to the detection of event-driven counters, by looking at the variability of counter
means across different machines. Due to our assumptions, we expect that counters will

have similar means when measured on different machines (see, e.g. Figure 2.2). On

14

|\
l

g g] J A M

[©

> >

2 S TH A

c c

=1 =

o o OB AR 1]

o)

I
T T T T T T T T T T T
Time Time
(a) Large mean diversity (b) Small mean diversity

Figure 2.2: Counter values for 8 machines. The counter in 2.2a shows different means
for individual machines. On the other hand, despite unpredictable variation over time,
in 2.2b all machines act in tandem.

the other hand we cannot simply eliminate all counters with deviations from the mean,
since we would have no counters left to detect malfunctioning machines. Additionally

machines may skew mean and variance calculations since they are outliers.

Therefore, we use robust statistics in the following way. We first compute p.(m),
the median of the value of the counter ¢ on machine m, for every machine m € M. Let
e be the median of the median values: p. = median,,ea(pe(m)). As before, we use

the median absolute deviation as a robust version of standard deviations. Hence we,

compute the 90" percentile of
‘ :UJC(m) — M

mad.(m)

where mad.(m) = MAD;c7({zc(m,t)}). We ignore counters for which this value is

greater than a threshold (2 in our experiments).

The process of dropping counters is particularly important when monitoring virtual
machines. It eliminates counters affected by “cross-talk” between virtual machines
sharing the same physical host. In our experiments, after the above filtering operations,
we were typically left with more than one hundred useful counters (over two hundred in

some systems); see Table 4.4.

The preprocessing algorithm Algorithm 2.1 has three parameters that need to be
tuned. However, as demonstrated in Section 4.7 the same parameter values can be used
for very different services, and furthermore our tests are robust to moderate changes
in preprocessing parameter values: such changes do not affect performance in any

significant way.

15

Algorithm 2.1 The preprocessing algorithm. Receives the raw counters, eliminates
problematic counters and normalizes the data. pgo(.S) denotes the 90*P-percentile of S.
Let 1 =0.01,0%? = 2,0" =
Let z.(m,t) = the last value of counter ¢ on machine m before time ¢
Let n.(m) = number of reports for counter ¢ on m
for all counter ¢ € C' do
Ve < mean,e p 17 (2e(m, t))
Oc < STDmEM,tGT(ZC(ma t))
for all machine m € M and time t € T do
yC(m7t) — ZC(ma"t)iyc
end for ‘
for all machine m € M do
te(m) < mediange7(ye(m,t))
mad.(m) < MADe7(ye(m, 1))
end for
ne < median,,e v (ne(m

(m)
Ui oo (2

e medlanmeM (e(m)

Y2 < poo (7mgd)(“)C)
if (¥! <6') and (n, > 60") and (¥? < 6?) then
Add counter ¢ to set of selected counters C
for all machine m € M and time t € 7 do

Ze(m,t) < ye(m,t)
end for
else
Discard counter ¢
end if

end for

Ne m) Ne

16

2.3 Framework Analysis

In this section we show how the p-values (step 3 in the framework) are computed. We
use two methods to compute these values, encapsulated as two lemmas.
Recall that that the framework defines the scoring function of a single machine as

follows:

[omll =

1
» Zs<m,x<t>>H

teT
To compute a p-value for a machine, we compare ||v,,|| to its expected value, or to its
empirical mean if the expected value is unknown.

The first method assumes the expected value of the scoring function is known a priori
when all machines work properly. In this case, we compare v, to its expected value
and flag machines that have significant deviations (recall that vy, = 7 >_,c S(m, z(t));
see framework step 2).

The second method for computing the p-value is used when the expected value of
the scoring function is not known. In this case, we use the empirical mean of ||v,,|| and
compare the values obtained for each of the machines to this value. Both methods take
the number of machines M into account. The resulting p-values are the probability of
one false positive or more across 7T, regardless of the number of machines.

In order to prove the convergence of v,,, we require that test functions be bounded

as follows:

Definition 2.3.1. A test S is Ly, Lo-bounded if the following two properties hold for

any two input vector sets z and 2/, and for any m and t:
1. ||S(m,z(t)) — S(m,2'(t))]] < Ly.

2. Let be x where z(m/,t) is replaced with z’(m’,t). Then for any m # m/,
15 (m, z(t)) — S(m, Z(t))|| < La.

The above definition requires that the test is bounded in two aspects. First, even if we
change all the inputs, a machine score cannot change by more than Li. Moreover, if we
change the counter values for a single machine, the score for any other machine cannot
change by more than L.

For a test S that is Lj, Lo-bounded as in Definition 2.3.1, Lemma 2.3.2 and
Lemma 2.3.2 below provide probability guarantees for the divergence of ||v,|| from its

expected value or from its empirical mean, respectively.

Bounded Differences Inequality and Triangle Inequality

Our lemmas rely on the bounded differences inequality, as well as on the triangle

inequality and its reverse.

17

The independent bounded differences inequality [McD89] gives a concentration result
for functions of bounded random variables. It provides an upper bound on the probability

that such a function deviates from its expected value:

Theorem ([McD89, Lemma 1.3]). Let Xi,...,X,, be independent random wvariables,
with Xy, taking values in the set Ay for each k. Suppose that the measurable function
f I A — R satisfies

(@) - F(@') < o)

whenever the vectors x and x' differ only in the k-th coordiate. Let'Y be the random
variable f (X1,...,Xy). Then for anyt >0,

2t
Prly —E[Y] >] <exp 2 o
k=1Ck

and
Pr([Y —E[Y] > f] < 2e (2t*)
r - ZU S 2€XP\ —=n 3
Zkzlci

The triangle inequality is
lz 4+ yll < [l=]| + lly

Consequently, the reverse triangle inequality is
[zl =Nyl <l =yl

When the Expected Value E [||v,,[|] is Known

When E [||vy,]|]] is known a priori, we use Lemma 2.3.2 to give an upper bound on the
probability that the score of a healthy machine is above the expected value by some

amount .

Lemma 2.3.2. Consider a test S that is L1, Lo- bounded as in Definition 2.3.1. Assume
that Vm,t, x(m,t) ~ X(t). Then for every vy >0,

2T ~?
Pr[3m s.t. |[vm] = E[|lvml]l] + 1] < M exp (— LZ)
1

Proof. We have T independent random variables X (¢), each taking values in R. Our

measurable function is

1

£(@) = ol = 7

ZSWI@))H ,

teT

18

and from the triangle inequality we can write:

> S(m,z(t)

teT

< = SIS, x| (21)

teT

Jomll = =

For every time t/, for any x and 2’ which differ only at one time ¢, then Vt #
t',S(m,z(t)) = S(m,2'(t)). By applying the triangle inequality, and since S is Ly, Lo-
bounded we can write:

[£(@) = £ = |7 | D S(m, (1) H 2 S(m.a'(1) H‘
teT teT
:% ZS(m,:p(t))H— ZS(m,m’(t))H
teT teT
DN ECEDEDS H8<m,w’<t>>H|
teT teT
1 ’ 1l
= = | IsGn, 2| = ||s0m, ')
1 / 1[4
< o [S(m,2(t) = S(m. o' (1)
L
S% (2.2)

We can now apply the bounded differences inequality Theorem ([McD89, Lemma

1.3]) to derive a bound for one specific machine m:

272
Pr [l = B [Joml] >] < exp (—L>

ZteTT%
(7)
R)
TH
2T~
= — . 2.3
o (5) o

Finally, we apply the union bound Pr[U;4;] < >, Pr(4;) to (2.3) to arrive at a
bound for all machines:

Pr[Fm s.t. [[umll = E{llvml] +9]1 < > Prfoml = E[oml] >]
meM

which completes the proof. O

19

When the Expected Value E [||v,,]|] is Unknown

When E [||vp,||] is not known a priori, we use the empirical mean as a proxy for the true
expected value. Lemma 2.3.3 gives upper bound on the probability that the score of a

healthy machine is above the empirical mean value by some amount ~.

Lemma 2.3.3. Consider a test S that is L1, Lo- bounded as in Definition 2.3.1. Assume
that ¥m,t, a(m,t) ~ X(2), and that Ym,m', B[[vm|] = E [Jon|]. Denote by o the

empirical mean of vy, :
. 1
M I

meM

Then for every v > 0,

2T M~?
<L1 (1 + \/M) + Ly (M — 1)>2

Pr[3m s.t. |lom]| >0+~ < (M +1)exp | —

Proof. We will first limit the divergence of the empirical mean from the true expectation,

using the bounded differences inequality.

The empirical ¢ is itself a function of MT random variables, ||vn,(z(t))|| for every
meMteT:

b= i(e) = 1 3 oGO = 1o S

meM meM

Zs<m,x<t>>H

teT

Let z, 2" differ only in a single coordinate (m/,t'), meaning at time ¢’ for machine

m/. Then since S is L1, Lo-bounded, we can show that

< L4 +L2(M— 1)
- MT

i(x) — o(z")]
Ly
T
% for every m # m’. Formally, from (2.2) and with similar steps, we use the triangle

This is because |||vy,(x)|| — ||vm(2)]|] is upper bounded by # when m = m/, and by

20

inequality and the fact that Vt # ¢/, S(m,z(t)) = S(m, 2/(t)) to derive the bound:

1 1
o@) =) = |7 Y lom@) | == > lom(e H‘
Mme./\/l MmEM
Z [[om(@)]| = llvm (2 H‘
meM
1 /
= 57 | lom @) = [lom (2]l +* D lom@) = om(a)]]
m#£m/
m=m' m#Em/’

ZSm:U S(m, 2 (t))

teT

Ly 1
< = 4
<8 T | 2

m#£m/

l

= D | S (180, a(E) — S(m, (1)

MT+MT
m#£m/
Ly LQ(M—l) L1+L2(M—1)
< = . 24
_MT+ MT MT (2:4)

We are now ready to apply the bounded differences inequality to 0:

X) 27
Prjo <E[p] —9] <exp | — 5
D <L1+L2(M—1)>
meMET MT
2
= exp <— 2MTy 2) . (2.5)
(L1 + La(M — 1))

Now that we know how the empirical mean is concentrated around the true expected
value, we will combine (2.5) with Lemma 2.3.3 to yield a bound for L;, La-bound tests.
In intuitive terms, we limit how far ||v,,|| is allowed to stray from the true mean E [||v,,],
and how far the empirical mean ¢ is allowed to stray from the true mean.

From linearity of expectation, and since Vm,m’' : E[||v,]|] = E[||lvp||], we know

that the empirical mean of ||v,,|| converges to the expectation:

1
MZvaH] 37 2 Ellonll =Ellval]

meM me/\/l

We now combine (2.5) with Lemma 2.3.3 using an affine combination parameter
0 < a < 1, which we will set later. If there exists m such that ||v,| — 0 > v, we use «
to restrict where ||vy,|| can be in relation to the empirical mean and the expected value
(the true mean). One or both of the following must hold: either ||vy,| — E[||lvm|l] > ay
(meaning |lv,|| is far enough above its expected value), or 0 < E[||vn|]] — (1 — a)y
(meaning the empirical mean is far enough above the expected value). For the case

where E[||lvn|]] < © < [|vm]|, it is trivially so. Figure 2.3 illustrates the case where

21

0 E [[[om||] [vm]

o< L J > < > @
(1-a)y oy

(a) Expected value is below split.

0 E[[[om|l] [[om |

o < > < {] > @
i)y i

(b) Expected value is above split.

Figure 2.3: The case where ||vy,| — 0 > v, and 0 < E [[|[om]|] < ||vm]|-

0 < E[|luml|]] < |lvm]|. Since the expected value E [||vy,]|] is between the empirical mean
and ||vy,||, either it is below the «y split point and therefore ||v,|| is far enough above
the expected value (Figure 2.3a), or E [||v,,||] is above the split point and therefore far

enough above the empirical mean v (Figure 2.3b).

We can therefore state, combining Lemma 2.3.3 with (2.5):

Pr[3m s.t. ||Jom| >0+ 7]
< Pr[3m s.t. |vml > E[[Jomll] + o]
+Pr[o <E[0] - (1 -)]

2T a2 2MT(1 — a)?4?
27 texp | — ! 2
L1 (Ll + LQ(M - 1))

< M exp (—

Finally, choosing

o VML,
L (1+x/M)+L2(M—1)

22

and substituting

Pr[3m s.t. ||vm]|| > 0+ 7]

2T %2 2MT(1 — a)?~?
< M exp (— OZQ’Y)—i—exp (— ()™y 2)
Ll (L1—|—L2(M—1))

ML? 2
2T L
= M exp (<(L1(1+m)+L2(M_1))2> 7

L3

(L1 (14+VM)+L2(M-1))
(Ly + (M —1)Ly)*

2
o MIT ((L1(1+\/M)+L2(M1))\/ML1> .2
+exp | —

~ Mexp | - 2MT’y2
<L1 (1 + \/M) + Lo (M — 1)>2
fep | - 2MT? (L1 + Lo (M — 1))?
(L1 (1 + \/M) + Lo (M — 1))2 (L1 + La(M — 1))?
2MT~?

(Ll <1+\/M) + Lo (M — 1)>2

yields the stated result.

23

24

Chapter 3

Derived Tests

Using the general framework described in Chapter 2, we describe three test implemen-
tations: the sign test (Section 3.1), the Tukey test (Section 3.2), and the LOF test
(Section 3.3). Their analyses provide examples of the use of the machinery developed
in Section 2.3. Other tests can be easily incorporated into our framework. Such tests
could make use of more information, or be even more sensitive to the signals generated
by latent faults. For many well-known statistical tests, the advantages of the framework
will still hold: no tuning, no domain knowledge, no training, and no need for tagged
data.

3.1 The Sign Test

The sign test [DM46] is a classic statistical test. It verifies the hypothesis that two
samples share a common median. It has been extended to the multivariate case [Ran89].
We extend it to allow the simultaneous comparison of multiple machines. The “sign” of
a machine m at time ¢ is the average direction of its vector z(m,t) to all other machines’
vectors, and its score vy, is the sum of all these directions, divided by T

The intuition is that healthy machines are similar on average, and any differences
are random. Average directions are therefore random and tend to cancel each other out
when added together, meaning v, will be a relatively short vector for healthy machines.
Conversely, if m has a latent fault then some of its metrics are consistently different
from healthy machines, and so the average directions are similar in some dimensions.
When summing up these average directions, these similarities reinforce each other and
therefore v, tends to be a longer vector.

Formally, let m and m' be two machines and let x(m,t) and z(m/, t) be the vectors

of their reported counters at time ¢t. We use the test

1 x(m,t) —x (m/,t)
=1 2 Tetmid) —a (. 0]

m/#m

S (m, z(t)) =

as a multivariate version of the sign function. If all the machines are working properly,

25

we expect this value to be zero. Therefore, the sum of several samples over time is also

expected not to grow far from zero.

Algorithm 3.1 The sign test. Output a list of suspicious machines with p-value
below significance level a.
for all machine m € M do)
1 z(m,t)—x(m’t
o <m’x1(t)) o Zm'#m [lz(m,t)—z(m/)|l
U 4= 72 S (m,z(t))
end for
CRERE S
for all machine m € M do
v < max (0, [[vp[| —)
__ TMy*
p(m) < (M + 1) exp (2(\/M+2)2>
if p(m) < a then
Report machine m as suspicious

end if
end for

The following theorem shows that if all machines are working properly, the norm of

U, should not be much larger than its empirical mean.

Theorem 3.1. Assume that Vm € M and ¥Vt € T,x(m,t) is sampled independently
from X(t). Let vy, and ¥ be as in Algorithm 3.1. Then for every v > 0,

—TM~?
2 (\/MJr 2)2

Pr[3m e M s.t. ||lvm]| >0+ < (M +1)exp

Proof. The sign test is 2, ﬁ—bounded since

Applying Lemma 2.3.3, we obtain the stated result. O

x(m,t) —x

e H =1

Theorem 3.1 proves the correctness of the p-values computed by the sign test. For
an appropriate significance level «, Theorem 3.1 guarantees a small number of false
detections.

A beneficial property of the sign test is that it also provides a fingerprint for the
failure in suspicious machines. The vector v, scores every counter. The test assigns
high positive scores to counters on which the machine m has higher values than the rest
of the population and negative scores to counters on which m’s values are lower. This
fingerprint can be used to identify recurring types of failures [BGF*10]. It can also be

used as a starting point for root cause analysis, which is a subject for future research.

26

3.2 The Tukey Test

The Tukey test is based on a different statistical tool, the Tukey depth function [Tuk75].
Given a sample of points Z, the Tukey depth function gives high scores to points near
the center of the sample and low scores to points near the perimeter. For a point z,
it examines all possible half-spaces that contain the point z and counts the number
of points of Z inside the half-space. The depth is defined as the minimum number of
points over all possible half-spaces. Formally, let Z be a set of points in the vector space
R? and z € R%; then the Tukey depth of z in Z is:

Depth(:12) = inf (|{='€ Z st 2w < 2w}

inf
wERY

Algorithm 3.2 The Tukey test. Output a list of suspicious machines with p-value
below significance level a.
Let I =5
fori+1,...,1 do
7; < random projection R — R?
for all time t € T do
for all machine m € M do
d(i,m,t) < Depth (m;(x(m,t))|x(t))
end for
end for
end for
for all machine m € M do
S(m,x(t)) + m > d(i,m,t)
U = 7 20, S (ma())
end for
D 37 D Um
for all machine m € M do
7 = max(0,9 — [luml])

2T M~?
p(m) < (M + 1) exp <_W+3)2
if p(m) < o then
Report machine m as suspicious
end if

end for

In our setting, we say that if the vectors x(m,t) for a fixed machine m consistently
have low depths at different time points ¢, it means that m tends to be outside the
sample of points — an outlier. Hence m is likely to be behaving differently than the rest
of the machines.

However, there are two main obstacles in using the Tukey test. First, for each
point in time, the size of the sample is exactly the number of machines M and the
dimension is the number of available counters C'. The dimension C' can be larger than

the number of points M and it is thus likely that all the points will be in a general

27

position and have a depth of 1. Moreover, computing the Tukey depth in high dimension
is computationally prohibitive [Cha04]. Therefore, similarly to [CANROS], we select a
few random projections of the data to low dimension (R?) and compute depths in the

lower dimension.

We randomly select a projection from R® to R? by creating a matrix C' x 2 such that
each entry in the matrix is selected at random from a normal distribution. For each time
t, we project z(m,t) for all the machines m € M to R? several times, using the selected
projections, and compute depths in R? with a complexity of only O (M log(M)), to
obtain the depth d(i,m,t) for machine m at time ¢ with the ¢’th projection. The score

used in the Tukey test is the sum of the depths computed on the random projections:
Sm, z(t) = ———— 3" d (i, m, 1)
) - I (M o 1) -) I

If all machines behave correctly, v,, should be concentrated around its mean. How-
ever, if a machine m has a much lower score than the empirical mean, this machine is
flagged as suspicious. The following theorem shows how to compute p-values for the
Tukey test.

Theorem 3.2. Assume that Vm € M and ¥Vt € T,x(m,t) is sampled independently
from X (t). Let vy, and ¥ be as in Algorithm 3.2. Then for every v > 0,

—2TM~?
(\/MJr 3)2

Pridme M s.t. vy, <0—7] < (M +1)exp

Proof. The Tukey test is 1, ;27-bounded since 0 < d (i,m,t) < [#71] [Cha04]. Ap-

plying Lemma 2.3.3 with —v,,, and —9, we obtain the stated result. O

3.3 The LOF Test

The LOF test is based on the Local Outlier Factor (LOF) algorithm [BKNS00], which
is a popular outlier detection algorithm. The LOF test attempts to find outliers by
comparing density of local neighborhoods. Vectors of faulty machines will often be
dissimilar to those of healthy machines, and therefore end up with lower local density
than their neighbours.

The greater the LOF score is, the more suspicious the point is, but the precise
value of the score has no particular meaning. Therefore, in the LOF test the scores are
converted to ranks. The rank r(m, z(¢)) is such that the machine with the lowest LOF
score will have rank 0, the second lowest will have rank 1, and so on. If all machines

are working properly, the rank r(m,x(t)) is distributed uniformly on 0,1,..., M — 1.

28

Therefore, for healthy machines, the scoring function

S, (1)) = 220

has an expected value of 1. If the score is much higher, the machine is flagged as

suspicious. The correctness of this approach is proven in the next theorem.

Algorithm 3.3 The LOF test. Output a list of suspicious machines with p-value
below significance level a.
for all time t € T do
l(m,t) < LOF of z(m,t) in x(t)
for all machine m € M do
r(m,x(t)) < rank of I(m,t) in {I(m/,¢) }em
S(m, a(t)) « Zlmet)
end for
end for
for all machine m € M do
Upy 4— % oS (m,z(t))
v« max(0, v, — 1)
p(m) < M exp (—TTWQ)
if p(m) < « then
Report machine m as suspicious
end if
end for

Theorem 3.3. Assume that Vm € M and ¥t € T,x(m,t) is sampled independently
from X (t). Let v, be as defined in Algorithm 3.3. Then for every v > 0,

2

T
Pr[3me M s.t. vy, > 14+v] < Mexp <—;)

Proof. The LOF test is 2, ;2-bounded since 0 < r (m,z(t)) < M — 1. Moreover,
under the assumption of this theorem, the expected value of the score is 1. Applying

Lemma 2.3.2, we obtain the stated result.]

29

30

Chapter 4
Empirical Evaluation

We conducted experiments on live, real-world, distributed services with different charac-
teristics. The LG (“large”) service consists of a large cluster (~ 4500 machines) that is
a part of the index service of a large search engine (Bing). The PR (“primary”) service
runs on a mid-sized cluster (~ 300 machines) and provides information about previous
user interactions for Bing. It holds a large key-value table and supports reading and
writing to this table. The SE (“secondary”) service is a hot backup for the PR service
and is of similar size. It stores the same table as the PR service but supports only write
requests. Its main goal is to provide hot swap for machines in the PR service in cases of
failures. Work distribution in the PE and SE services is static, rather than dynamic.
Requests are sent to machines based on the key, rather than the current load on the
service. The VM (“virtual machine”) service provides a mechanism to collect data about
users’ interactions with advertisements in a large portal. It stores this information for
billing purposes. This service uses 15 virtual machines which share the same physical
machine with other virtual machines. We tracked the LG, PR and SE services for 60
days and the VM service for 30 days. We chose periods in which these services did not
experience any outage.

These services run on top of a data center management infrastructure for deployment

of services, monitoring, automatic repair, and the like [Isa07]. We use the automatic

Table 4.1: Summary of terms used in evaluation.

Term Description

Suspicious machine flagged as having a latent fault

Failing machine failed according to health signal

Healthy machine healthy according to health signal

Precision fraction of failing machines out of all suspicious
= Pr [failing | suspicious]

Recall (TPR) fraction of suspicious out of all failing machines
= Pr [suspicious | failing]

False Positive Rate (FPR) | fraction of healthy machines out of all suspicious
= Pr [suspicious | healthy]

31

repair log to deduce information concerning the machines’ health signals. This in-
frastructure also collects different performance counters from both the hardware and
the running software, and handles storage, a common practice in such datacenters.
Therefore our analysis incurs no overheard nor any changes to the monitored service.
Collected counters fall into a wide range of types: common OS counters such as the
number of threads, memory and CPU usage, and paging; hardware counters such as
disk write rate and network interface errors; and unique service application counters

such as transaction latency, database merges, and query rate.

4.1 Protocol Used in the Experiments

We applied our methods to each service independently and in a daily cycle. That is, we
collected counter values every 5 minutes during a 24-hour period and used them to flag
suspicious machines using each of the tests. To avoid overfitting, parameters were tuned
using historical data of the SE service, then used for all services. In order to reduce the
false alarm rate to a minimum, the significance level a was fixed at 0.01.

To evaluate test performance, we compared detected latent faults to machine health
signals as reported by the infrastructure at a later date. Health alerts are raised
according to rules for detecting software and hardware failures. Our hypothesis is that
some latent faults will evolve over time into hard faults, which will be detected by this
rule-based mechanism. Therefore, we checked the health signal of each machine in a
follow-up period (horizon) of up to 14 days immediately following the day in which the
machine was tested for a latent fault. We used existing health systems to verify the
results of our latent fault detection framework. In some cases we used manual inspection
of counters and audit logs.

Unfortunately, because of limited sensitivity and missing logs, health information
is incomplete. Failing or malfunctioning machines that the current watchdog based
implementation did not detect are considered by default to be healthy. Similarly,
machines with unreported repair actions or without health logs are considered by
default to be healthy. When flagged as suspicious by our tests, such machines would be
considered false positives. Finally, not all machine failures have preceding latent faults,
but to avoid any bias we include all logged health alerts in our evaluation, severely
impacting recall, defined below (Section 4.5 estimates the amount of latent faults).
Therefore, the numbers we provide in our experiments are underestimations, or lower
bounds on the true prevalence of latent faults.

In our evaluation, we refer to machines that were reported healthy during the
follow-up horizon as healthy; other machines are referred to as failing. Machines that
were flagged by a test are referred to as suspicious. Borrowing from the information
retrieval literature [MRSO08]|, we use precision to measure the fraction of failing machines
out of all suspicious machines and recall (also called true positive rate, or TPR) to

measure the fraction of suspicious machines out of all failing machines. We also use the

32

false positive rate (FPR) to denote the fraction of healthy machines out of all suspicious
machines. There is an inherent tradeoff between recall, precision and false positive rate.
For example, if we flag all machines, recall is perfect (since all failing machines are
flagged), but precision is very low (since only a fraction of flagged machines actually
failed). Similarly, false positive rate can made 0 simply by never flagging any machine,
but then recall is also 0. Table 4.1 summarizes the terms used.

We applied the same techniques to all services, using the same choice of parameters.

Yet, due to their different nature, we discuss the results for each service separately.

4.2 The LG Service

Table 4.2 shows a summary of the results (failure prediction) for the LG service. The low
false positive rate (FPR) reflects our design choice to minimize false positives. Tracking
the precision results proves that latent faults abound in the services. For example, the
Tukey method has precision of 0.135,0.497 and 0.653 when failures are considered in
horizons of 1,7 and 14 days ahead, respectively. Therefore, most of the machines flagged
as suspicious by this method will indeed fail during the next two weeks. Moreover, most
of these failures happen on the second day or later.

The recall numbers in Table 4.2 indicate that approximately 20% of the failures in
the service were already manifested in the environment for about a week before they
were detected.

The cumulative failure graph (Figure 4.1) depicts the fraction across all days of
suspicious machines which failed up to n days after the detection of the latent fault.
In other words, it shows the precision vs. prediction horizon. The “total” line is the
fraction of all machines that failed, demonstrating the normal state of affairs in the LG
service. This column is equivalent to a guessing “test” that randomly selects suspicious
machines on the basis of the failure probability in the LG service. Once again, these
graphs demonstrate the existence and prevalence of latent faults.

To explore the tradeoffs between recall, false positive rate, and precision, and to
compare the different methods, we present receiver operating characteristic (ROC) curves
and precision-recall (P-R) curves. The curves, shown in Figure 4.2, were generated by
varying the significance level: for each value of o we plot the resulting false positive
rate and true positive rate (recall) as a point on the ROC curve. The closer to the
top-left corner (no false positives with perfect recall), the better the performance. A
random guess would yield a diagonal line from (0, 0) to (1,1). The P-R curve is similarly
generated from recall and precision.

Both the Tukey and sign tests successfully predict failures up to 14 days in advance
with a high degree of precision, with sign having a slight advantage. Both perform
significantly better than the LOF test, which is still somewhat successful. The results
reflect our design tradeoff: at significance level of 0.01, false positive rates are very low

(around 2 — 3% for Tukey and sign), and precision is relatively high (especially for longer

33

0.9

o R—— Tkey e
g o7 e e
s S s :
ERRANY i i LOF e
S /] e ol o
- g.f / /s e Tukey 90% IQR [/

0 T T T T T T T T T T T T T T T

—_ - - - - -

Days after test

Figure 4.1: Cumulative failures on LG service, with the 5%-95% inter-quantile range
of single day results for the best performing test, the Tukey test. Most of the faults
detected by the sign test and the Tukey test become failures several days after detection.

Table 4.2: Prediction performance on LG with significance level of 0.01. Numbers in
parenthesis show the 5%-95% inter-quantile range of single day results.

Period | Test Recall FPR Precision

Tukey | 0.240 (0.041-0.660) | 0.023 (0.012-0.055) | 0.135 (0.021-0.408)
1day |sign | 0.306 (0.100-0.717) | 0.037 (0.025-0.065) | 0.109 (0.015-0.508)
LOF | 0.248 (0.132-0.500) | 0.095 (0.065-0.127) | 0.038 (0.015-0.079)
Tukey | 0.151 (0.025-0.293) | 0.014 (0.008-0.027) | 0.497 (0.160-0.725)
7 days | sign | 0.196 (0.065-0.522) | 0.026 (0.014-0.055) | 0.411 (0.188-0.660)
LOF | 0.203 (0.130-0.5356) | 0.087 (0.060-0.122) | 0.180 (0.119-0.507)
Tukey | 0.093 (0.022-0.192) | 0.011 (0.006-0.020) | 0.653 (0.385-0.800)
14 days | sign | 0.126 (0.053-0.241) | 0.022 (0.011-0.049) | 0.563 (0.389-0.741)
LOF | 0.162 (0.091-0.273) | 0.082 (0.055-0.118) | 0.306 (0.218-0.605)

horizons).

The dips in the beginning of the P-R curves reflect machines that consistently get
low p-values, but do not fail. Our manual investigation of some of these machines shows
that they can be divided into (1) undocumented failures (incomplete or unavailable logs),
and (2) machines that are misconfigured or underperforming, but not failing outright
since the services do not monitor for these conditions. Such machines are considered
false positives, even though they are actually correctly flagged by our framework as
suspicious. This is additional evidence that the numbers reported in our experiments
are underestimates, and that latent faults go unnoticed in the environment. This is also
why false positive rates are slightly higher than the significance level of 0.01.

Finally, we investigate the sensitivity of the different methods to temporal changes
in the workload. Since this service is user facing, the workload changes significantly
between weekdays and weekends. We plot Tukey prediction performance with a 14-day
horizon for each calendar day (Figure 4.3). Note that the weekly cycle does not affect

34

0.8 / - 0.8 / ' 0.8 /A‘
= Tl = ’,"::" = S
g 06 g S 06 g S 06 <
£ / et £ /, - £
T 04 ' rand. guess T 04 7 7" rand. guess T 04 rand. guess
L (J 1day — L D 1day — L 1day —
7 days --- 2 . 7 days --- . 7 days ---
02 14 days --- 02 14 days --- 02 a 14 days ---
at cutoff 0.01 © at cutoff 0.01 © at cutoff 0.01 ©
0 T I 1 0 - T 1 1 O T 1 1
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
FPR FPR FPR
1 1 1
0.8 0.8 0.8
o}
S 0.6 7% S 06 - % S 06
(7] L 7} | 7}
3 8 S v "\} 5
& 04 -k £ 04 & 04 s
‘\"“... . N s B
02 _e\ """"" R 02 S 02 e s S —
_______________ s T Tl
0 0 B 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Recall Recall Recall
(a) Tukey test (b) Sign test (c) LOF test

Figure 4.2: ROC and P-R curves on LG service. Highlighted points are for significance
level @ = 0.01.

the test. The visible dips at around days 22, 35, and towards the end of the period,
are due to service upgrades during these times. Since the machines are not upgraded
simultaneously, the test detects any performance divergence of the different versions
and reports these as failures. However, once the upgrade was completed, no tuning was

necessary for the test to regain its performance.

4.3 PR and SE Services

The SE service mirrors data written to PR, but serves no read requests. Its machines
are thus less loaded than PR machines, which serve both read and write requests. Hence,
traditional rule-based monitoring systems are less likely to detect failures on these
machines. The existence of latent faults on these machines is likely to be detected by
the health mechanisms only when there is a failure in a primary machine, followed by
the faulty SE machine being converted to the primary (PR) role.

Unfortunately, the health monitors for the PR and SE services are not as compre-
hensive as the ones for the LG service. Since we use the health monitors as the objective
signal against which we measure the performance of our tests, these measurements are
less reliable. To compensate for that, we manually investigated some of the flagged
machines. We are able to provide objective measurements for the SE service, as there are
enough real failures which can be successfully predicted, despite at least 30% spurious
failures in health logs (verified manually).

Performance on SE service for a significance level of 0.01 is summarized in Table 4.3.

35

0.8 : N . b
. TN TN T TR o A FPR ----------
7 \ - h I -
NN N \ [IR NA Nt
AN \ ! \ 1N/ AR AN S
\ i v ’ NN A < 5 A J
S \ ! [AN HA] \ A N
06 ——— \ i [A Y \] AU
7 / .
. N K Y o o
1 vl
\ ! \ /
N L N ~ /
Y ! o = 1 LY ’
\, ! 1 - \ ’
N V1 [EFEEEEES \ /
0 4 A D [L) v
v v . -
. < service \ \/ \
\
1 \

update —> ¥ v \/

Calendar day

Figure 4.3: Tukey performance on LG across 60 days, with 14-day horizon. It shows
the test is not affected by changes in the workload, quickly recovering from service
updates on days 22 and 35. Lower performance on days 45-55 is an artifact of gaps in
counter logs and updates on later days.

1 1 1 -
0.8 0.8 [',;r—" 0.8
3 3 A 3
g 06 g 06 o g o6
T 04 T 04 rand. guess T 04 rand. guess
= = 1day — = 1day —
7 days --- % 7 days ---
02 ys - 02 - 14 days - 02 = #f 14 days -
at cutoff 0.01 © at cutoff 0.01 © 23] at cutoff 0.01 ©
0 T I 1 0 T I 1 0 T I 1
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
FPR FPR FPR
1 1 1
0.8 0.8 0.8
S o6 S 06 § o6
8 8 8
a 04 & 04 & 04
0.2 0.2 0.2
.................................. i S POV SRR D N
o = 0 & o 4
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Recall Recall Recall
(a) Tukey (b) sign (¢) LOF

Figure 4.4: ROC and P-R curves on the SE service. Highlighted points are for
significance level o = 0.01.

36

Table 4.3: Prediction performance on SE, 14-day horizon, significance level 0.01.

Test Recall | FPR | Precision
Tukey | 0.010 | 0.007 0.075
sign 0.023 | 0.029 0.044
LOF 0.089 | 0.087 0.054

ROC and P-R curves are in Figure 4.4. Our methods were able to detect and predict
machine failures; therefore, latent faults do exist in this service as well, albeit to a
lesser extent. As explained above, since this is a backup service, some of the failures
go unreported to the service platform. Therefore, the true performance is likely to be
better than shown.

The case of the PR service is similar to the SE service but even more acute. The
number of reported failures is so low (0.26% machine failures per day) that it would be
impossible to verify positive prediction. Nevertheless, and despite the lack of dynamic
load balancing, all tests show very low FPR (about 1% for sign and Tukey, 7% for LOF),

and in over 99% of healthy cases there were no latent faults according to all tests.

4.4 VM Service

The VM service presents a greater challenge, due to the use of virtual machines and the
small machine population. In principle, a test may flag machines as suspicious because
of some artifacts related to other virtual machines sharing the same host. Due to the
small size of this cluster, we resort to manually examining warning logs, and examining
the two machines with latent faults found by the sign test. One of the machines had
high CPU usage, thread count, disk queue length and other counters that indicate a
large workload, causing our test to flag it as suspicious. Indeed, two days after detection
there was a watchdog warning indicating that the machine is overloaded. The relevant
counters for this machine are plotted in Figure 4.5. The second machine for which a
latent fault was detected appears to have had no relevant warning, but our tests did
indicate that it had low memory usage, compared to other machines performing the

same role.

4.5 Estimating the Number of Latent Faults

Some failures do not have a period in which they live undetected in the system. Examples
include failures due to software upgrades and failures due to network service interruption.
We conducted an experiment on the LG environment with the goal of estimating the
percentage of failures which do have a latent period.

We selected 80 failure events at random and checked whether our methods detect
them 24 hours before they are first reported by the existing failure detection mechanism.

As a control, we also selected a random set of 73 machines known to be healthy. For

37

Counter value
Counter value

Counter value
Counter value

Time Time Time Time
(a) Detection day (b) Warning day

Figure 4.5: Aberrant counters for suspicious VM machine (black) compared to the
counters of 14 other machines (gray).

0.8 - Random guess

T 06 A"J e Tukey
(0] .
= L sign --------
o 0.4
o LOF -woveeens
0.2 at cutoff 0.01 O
0

0 02 04 06 08 1
FPR

Figure 4.6: Detection performance on known failures in LG service. At least 20-25%
of failures have preceding latent faults. Highlighted points are for o = 0.01.

both sets we require that events come from different machines, and from a range of

times and dates.

For this experiment we define a failing machine to be a machine that is reported to be
failing but did not have any failure report in the preceding 48 hours. We define a machine
to be healthy if it did not have any failure during the 60 day period of our investigation.
Figure 4.6 shows the ROC curves for this experiment. Failing machines where latent
faults are detected are true positives. Healthy machines flagged as suspicious are counted
as false positives. Both sign and Tukey manage to detect 20% — 25% of the failing
machines with no false positives. Therefore, we conclude that at least 20% — 25% of the
failures are latent for a long period. Assuming our estimation is accurate, the recall

achieved in Section 4.2 is close to the maximum possible.

38

Counter value

Time Time Time

Figure 4.7: Three synthetic “counters” for 8 “machines”. The highlighted machine
(black) has a synthetic latent fault (aberrant counter behavior).

4.6 Comparison of Tests

The three tests proposed in this work are based on different principles. Nevertheless,
they tend to flag the same machines. For instance, more than 80% of the machines
that were flagged by Tukey are also flagged by the sign test. All tests achieve a low
false positive rate on all services, with the Tukey and sign tests matching the very low
user-specified rate parameter.

To better characterize the sensitivities of the different tests, we evaluated them on
artificially generated data to which we injected three types of “faults”: counter location
(offset), counter scale, or both. We generated synthetic data equivalent to 500 machines,
each reporting 150 counters every five minutes for a full day. We begin by generating
varying workload with random noise at different scales. we define three types of “faults”:
location (offset), scale, or both (location+scale). 25 machines were selected as failing
machines, and 10% of their counters are “faulty” with either different offset, scale or
both. Figure 4.7 shows three such synthetic counters for several machines. The strength
of the difference varies across the failing machines, and we compare the sensitivity of
each test to different kinds of faults.

The resulting curves are shown in Figure 4.8. This experiment shows that the sign
test is very sensitive to changes in offsets. LOF has some sensitivity to offset changes
while the Tukey test has little sensitivity, if any, to this kind of change. When scale is
changed, LOF is more sensitive in the range of low false positive rates but does not do

well later on. Tukey is more sensitive than sign to scale changes.

4.7 Filtering Counters in Preprocessing

As described in Section 2.2, the preprocessing stage removes some counters. Table 4.4
reports the average number of counters removed in each service.

When removing counters violating the memoryless assumption, we measure the
mean variability of each counter across all machines, leaving only counters with low
variability. Our choice of a low fixed threshold value stems from our conservative design

choice to avoid false positives, even at the price of removing potentially informative

39

1 1 e 1
0.8 0.8 AT 0.8 —
R R e,] vors NS OO T AR R e
E 0.6 E 0.6 |l' i K] 0.6 J'I'_
. i . | 8 0. o
g -------------- » _|J e g P g ,l
T g4 | € 04 € 04
= Jr rand. guess = i rand. guess = rand. guess
0.2 Tukey — 0.2 4t Tukey — 0.2 Tukey —
-'_|I sign --- 3 sign --- sign ---
LOF --- LOF --- LOF ---
0 T I 1 0 T I 1 0 T I 1
0 02 04 06 038 1 0 02 04 06 038 1 0 02 04 06 08 1
FPR FPR FPR
1 . : 1 - 1
0.8 0.8 : 0.8 L“]
5 06 5 06 7] 5 06 L
g 3 4 I/ g
& 04 £ 04 b & 04
H I L‘: :-'.
0.2 : 0.2 | : 0.2 ;
e e SO R i = T
0 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Recall Recall Recall
(a) Location (b) Scale (¢) Location+scale

Figure 4.8: Performance on types of synthetic latent faults

Table 4.4: Average number of counters removed. Many counters remain after auto-
mated filtering.

Counters LG | VM | PR | SE
Event-driven 85 39 100 | 112
Slow 68 12 19 24
Constant 87 29 52 40

Varied means | 103 30 57 79
Remaining | 211 | 106 | 313 | 89
Total 554 | 216 | 541 | 344

40

l LG =
(0]
O 1 | e | 1 o | 1 1
s
7]
e VM &
o
8 1 [1 1 1 T e N
£
2]
b5 PR mm
% 1 1 1 | eesw 1 I
@]
(@)
SE m=
1 TR s B 1 1 TR s B 1

0-2 2-3 3-4 4-5 5-6 6-10 10 -inf
Variability range

Figure 4.9: Histogram of counter mean variability for all services. The majority of
counters have variability below 2.

08 0.8
— c .
T 04 // § 04 h b
T o2 [0.2 _\'%..."\
0 0
0 02 04 06 08 1 0 02 04 06 08 1
FPR Recall
Max variability 2 —— Max variability 10 -+
Max variability 5 -------- Random guess

Figure 4.10: Sign test performance on one day of the LG service at difference mean
variability thresholds.

counters. Figure 4.9 justifies this choice: the majority of counters that were not filtered
have relatively low variability on most services, whereas the higher variability range
(2-10) typically contains few counters. Beyond 10 counters are not usable: most of them
are effectively a unique constant value for this counter for each machine. Thus, tuning
is not needed in preprocessing.

To further explore the effect of different thresholds, we measured the performance
of the tests on a single day of the LG service with different mean variability thresholds.
The results are shown in Figure 4.10. Performance is not very sensitive to the choice of
threshold. With strict significance level, higher thresholds result in slightly better recall

but slightly lower precision, confirming our expectations.

41

42

Chapter 5

Conclusion and Future Work

While current approaches focus on the identification of failures that have already
occurred, latent faults manifest themselves as aberrations in some of the machines’
counters, aberrations that will eventually lead to actual failure. Our experiments show
that latent faults are common even in well-managed datacenters, and that they can be
detected well before they manifest as machine or service failure.

We introduce a novel framework for detecting latent faults that is agile enough to be
used across different systems and to withstand changes over time. We proved guarantees
on the false detection rates and evaluated our methods on several types of production
services. Our methods were able to detect many latent faults days and even weeks
ahead of rule-based watchdogs. We have shown that our approach is versatile; the same
tests were able to detect faults in different environments without having to retrain or
retune them. Our tests handle workload variations and service updates naturally and
without intervention. Even services built on virtual machines are monitored successfully
without any modification. The scalable nature of our methods allows infrastructure
administrators to add as many counters of service-sensitive events as they wish to.
Everything else in the monitoring process will be taken care of automatically with no
need for further tuning.

There are several potential avenues for future work. First, the probability bounds
offered by the framework could potentially be tightened using the empirical Bernstein
bounds [AMS07, MSAO08|, since we often only know the empirical mean rather than the
true mean. Also, variance can be bounded since input data is pre-scaled to variance
of 1.0 during pre-processing. Second, the time window necessary for the tests is large,
limiting their use in latency-sensitive scenarios. More sensitive tests and improved
statistical framework can help overcome this issue. Additionally, one could extend
the applicability of latent fault detection for services without dynamic load balancing.
Rather than consider machine counter values, tests can monitor invariants unique to
the work performed by the service. Finally, our framework assumes that machines
are homogenous in hardware and software. While quite common in large scale online

services, this is not always the case. Addressing this issue can make latent fault detection

43

applicable in many more scenarios.

In a larger context, the open question that remains is whether large infrastructures
should be prepared to recover from “unavoidable” failures, as is commonly suggested.
Even when advanced recovery mechanisms exist, they are often not tested due to the risk
involved in testing live environments. Indeed, advanced recovery (beyond basic failover)
testing of large-scale systems is extremely complicated and failure prone, and rarely
covers all faulty scenarios. Consequently, some outages of Amazon EC2 !, Google’s
search engine, and Facebook, and even the Northeast power blackout of 2003, were
attributed to the cascading recovery processes, which were interfering with each other
during the handling of a local event. It is conceivable that there exist large systems
whose recovery processes have never been tested properly.

Like [NMO7], we propose an alternative: proactively treating latent faults could
substantially reduce the need for recovery processes. We therefore view this work as
a step towards more sensitive monitoring machinery, which will lead to more reliable

large-scale services.

"http://aws.amazon.com/message/65648 /

44

Bibliography

[AMS07]

[BGF+10]

[BKNS00]

[BLB+10]

[CANROS]

[CGKS04]

[Cha04]

[CIYO7]

[CZL*04]

[DM46]

[Ham07]

J.-Y. Audibert, R. Munos, and C. Szepesvari. Tuning bandit algo-

rithms in stochastic environments. In Proc. ALT, 2007.

P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen.
Fingerprinting the datacenter: Automated classification of perfor-

mance crises. In Proc. EuroSys, 2010.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF:
Identifying density-based local outliers. SIGMOD Rec., 2000.

G. Bronevetsky, I. Laguna, S. Bagchi, B. R. de Supinski, D. H. Ahn,
and M. Schulz. Statistical fault detection for parallel applications
with AutomaDeD. In Proc. SELSE, 2010.

J. A. Cuesta-Albertos and A. Nieto-Reyes. The random Tukey depth.
Journal of Computational Statistics & Data Analysis, 2008.

I. Cohen, M. Goldszmidt, T. Kelly, and J. Symons. Correlating in-
strumentation data to system states: A building block for automated
diagnosis and control. In Proc. OSDI, 2004.

T. M. Chan. An optimal randomized algorithm for maximum Tukey
depth. In Proc. SODA, 2004.

H. Chen, G. Jiang, and K. Yoshihira. Failure detection in large-scale
internet services by principal subspace mapping. Trans. Knowl. Data
Eng., 2007.

M. Chen, A. X. Zheng, J. Lloyd, M. 1. Jordan, and E. Brewer. Failure
diagnosis using decision trees. In Proc. ICAC, 2004.

W. J. Dixon and A. M. Mood. The statistical sign test. Journal of

the American Statistical Association, 1946.

J. R. Hamilton. Architecture for modular data centers. In Proc.
CIDR, 2007.

45

[HCSAO7]

[Isa07]

[KDJ*12]

[KGNOS]

[KTGN10]

[LEY*10]

[McD89)

[MRS08]

[MSAOS]

INDO11]

[NMO7]

[OASOS]

[PBYH™08]

[PLSWO6]

C. Huang, I. Cohen, J. Symons, and T. Abdelzaher. Achieving
scalable automated diagnosis of distributed systems performance
problems. Technical report, HP Labs, 2007.

M. Isard. Autopilot: automatic data center management. SIGOPS
Oper. Syst. Rev., 2007.

S. Kavulya, S. Daniels, K. Joshi, M. Hiltunen, R. Gandhi, and
P. Narasimhan. Draco: Statistical diagnosis of chronic problems in
large distributed systems. In Proc. DSN, 2012.

S. Kavulya, R. Gandhi, and P. Narasimhan. Gumshoe: Diagnosing
performance problems in replicated file-systems. In Proc. SRDS,
2008.

M. P. Kasick, J. Tan, R. Gandhi, and P. Narasimhan. Black-box
problem diagnosis in parallel file systems. In Proc. FAST, 2010.

J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. Mining invariants from
console logs for system problem detection. In Proc. USENIXATC,
2010.

C. McDiarmid. On the method of bounded differences. Surveys in
Combinatorics, 1989.

C. D. Manning, P. Raghavan, and H. Schiize. An Introduction to
Information Retrieval. Cambridge University Press, 2008.

V. Mnih, C. Szepesvéri, and J.-Y. Audibert. Empirical bernstein
stopping. In Proc. ICML, 2008.

E. B. Nightingale, J. R. Douceur, and V. Orgovan. Cycles, cells
and platters: An empirical analysis of hardware failures on a million

consumer pcs. In Proc. EuroSys, 2011.

A. B. Nagarajan and F. Mueller. Proactive fault tolerance for HPC
with xen virtualization. In Proc. ICS, 2007.

A. J. Oliner, A. Aiken, and J. Stearley. Alert detection in system
logs. In Proc. ICDM, 2008.

D. Pelleg, M. Ben-Yehuda, R. Harper, L. Spainhower, and
T. Adeshiyan. Vigilant: out-of-band detection of failures in virtual
machines. SIGOPS Oper. Syst. Rev., 2008.

N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff. Mining for
misconfigured machines in grid systems. In Proc. SIGKDD, 2006.

46

[Ran89]

[SMO09]

[SOR*03]

[Tuk75]

[XHF*09]

[ZCG05]

R. H. Randles. A distribution-free multivariate sign test based on

interdirections. Journal of the American Statistical Association, 1989.

R. Serfling and S. Mazumder. Exponential probability inequality
and convergence results for the median absolute deviation and its
modifications. Statistics €& Probability Letters, 2009.

R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma,
R. Vilalta, and A. Sivasubramaniam. Critical event prediction for

proactive management in large-scale computer clusters. In Proc.
SIGKDD, 2003.

J. Tukey. Mathematics and picturing data. In Proc. ICM, 1975.

W. Xu, L. Huang, A. Fox, D. Patterson, and M. 1. Jordan. Detecting
large-scale system problems by mining console logs. In Proc. SOSP,
2009.

S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox. Ensembles
of models for automated diagnosis of system performance problems.
In Proc. DSN, 2005.

47

NP MOIN NN T DY NPIINN

=014~/

NTIAY NN MYVIRDM 1P I20¥ MYPN MR NTDIND 1IVNN 3D NVNY NNNIN NYIN
DNV 299 29 YT DMK MMD 110 ,D2¥19) DN 012N DOYOY DXNIND DN :NDVITOVIN NYSN 1
VNN NopnY 0oMN

,OIYN OND PN VYYD) YN NINNND DN DOYI NNRD PVPIS NN DIWNN DN
YN D37 O MOPN MMD NONN XN 0T TIND DMPYH Doy ,DaAVNN 299N TN
9901 Yy MDA NOINY ,RNYA MIXIND 2P DY YODVVD ODN PIDN NNINN .M PYTD
PRI ,DI0NT9 PNV IN PN PPN TN PR WIDIWD NOPY NYNI NOY NYHIN .MDIYN XND

JPMOON MMV HPN NN TN

DAVNNNN YNNI INY XIN DN TY INDND IWUR ,DPIN PN DaPN 2vnn Yow 7o DNt 9O
WY DOHPNN NNV DY DOV DY 90100 MNPNNN NPT NPIPNS NAY ,NOIAD.DINND
NN PN INPN ININ NORYND DY DY TWUR DPVDVVD NN OPIDN DN ,PNIYND MDD
TN N0 R MIANDN OXR - 27D YD »IN X DA PPN AVNNY MIANDNN DN ,AVNn OV

LTIVND 2WNnn Sy oIon

MOONDN 1910 2IANN JINNN NN NNV NPT NPEPNG VIDY DM DOV DX 1 NTIAYa
YNINNN PO IN NPT AIYNIN 2T 27 ANINI MTIPID DAVNNN DV DNNIN »TTH DY
SV ¥ DRV MY ,DPNIPN P DNPIN PPN VNN .D22AVNNN INY DY NOND 2WNnN >TT0n
NPYTAN TPYPNY .DINND TPON DM N D) TN P> AVNNN DY O TTHNN PON IR NN
129 NN NTIPI NN TY NPT 2OM ,MTIPI DV PY PYn DINY DNNIN TTRY NN NIV
NN VYN TPWOUN NP>TAN TPEPNS YD YIND 555 7172 NYNN DY NPONHN)IYN Tina
270 P> DPIN DAVNN DY DTN .0V DAVNN MIRNNN MTNIPIN OV 1PMIPNN M9

2NN 2AVNND DMT N 192 OOPN KO DIAVNNN 11 1OV 20T 17PON IMNI

0102

DAY NPIPPYN NOIYNRN LNPIPHIR MOIYN 1901 DY OMIANN DOWIN Mt NINN MW NN 1NN2
.0avnNn 450070n N3N N ,ANTI VIV RNOIN D1T) VIN YN PON N NYNNYN
MADIN WYX VY MNPPN NPNYNI DYNNYA PN OTPHNR 2IWNND 19103 1N THY INND 9002

(DN 5y NDDIAN TYUN) NXMPN NVIN NOIYNRN MIPN YV DI MNIN 1D DWNINA »TTN0

,OMaN DOVO NMY NPT NYIN 0P 902 - 0 60 TYNI NYITHIN NOIYNN MNNID NN NIPY
NN IYUND L3910 INNRD D> T90N TYNI NNDPPN 0N NIIYN MMIYIID MNNIND DX PNV IN)
DN 15 75012 NOpnn 51200 Nt avnnY 70%75 YV N0 v INYYS 2wNn1a Nan Hvd omm
(false positive NnWN MNINN A% INWY RIPR 2WNNA N0 20% NmYD NN ,D2PN
IMYWNY AR NI DOWIN Nt P a0 .(1%) »pnn yond 1ap ,2%> o0 rate)
10230 MIN ,NITYN DPD INRD NV JITA DN NDI MNITY NI2Y NIVNNN NIIYNN IWND

LD290N99 MY N INRNND TNY KOY DNV OWNINAY T 1NN

MY 1D NN NOIYNI MNT MOPN 290 TAN DY NPNVDN MMV NDPID 90N NU)H2
20%52 ©Man YYD IN¥D) XMWY MIXIND 1% Sv 0w q0ns May .1opn KOS Davnn
.DPNN DAYNNI XNV NIXRINN DWW XYY ,DaAVNNNN

NN TDPPN N AYN INY NNVP MOIYN SNV DY Or 60 TYNa DWNXAN NN 1N D Nd
oavnn 30075 noya (key-value store) 027y NPNY NIIYN :DOMY PON 2230 MOV MNIND
MNIYIY MINT ,NIOY MNINN NN MNPPN XY 1Y MDY (o2avnn 300 0)) NYY MN2)0 NIV
PN NNYD MININN 2P - NPPNN 1OV NPVDVLVDN MNVINN ,0YPON PN 1D PIY MOPNN

) 7PN DRRD MYPN Mira prTn 09N 2% D

DONIVIM DaVNN 15 Sy NIV MLVP NOWYN DY OMANN DOWIN NPT NN NN DN ,NDID
19PN 19N INR DD’ I901N NN 0NN THNY ,TA52 DMaN DOYD 2 K1t Nt yara .o» 30 Twvna

iv

NNV MIIYNY MOV

MYNI MO MHNMP ,MINAN D8P MIIYN OV DIDMDN DPND XONTO ,NPNID MIIYN NAY
NN IO)OO NOIWNN 22X0 MPINY NMIINT MYNNYN NON MOY .I2YN0N T KDY IUN
1I2NY ,MDIYN DY DMDN NDO MNRMN N PN DOD) ,DIIRNN DIVNIS ,DWINI > TTNI

DY DMINNN MOIYN DY D27 DD DY TIAyNY NOY NINNY NN 1t NTAY NION

NPYNINY MYPN YW DTPM NPT I DAY

2N YYD .OIN DOV IN DN NPYD DY DTN NI MDINND NOIN FPYaY NYTN NY)
DOV’ NN DN, PAT ANND NOPND RLANNY NDID? N ,NIPN DY NYIANNY AYNN DY NNINND NIN
NNANI RO WD NOPNY)PP IN,P2ADN NOUDIA KD NAW NP NV MIIYN YV “IRTID NNNn
MNINNY NXIN DN OHYD N7Y 293) PN IOND VNND . NVIN NIIYN MNINN ST DY UNRIN
MM TIX NI .Y MIIYN P2 NOIYNI OMIPY DY TTINNND NN DY PT vwnd nvnd PIs

NNV MININD DR WD TN DOWD INPY INd

NOWN .0MAN YWD D (unsupervised) MPa KOY 177 MDOVD NVXYW NINNN W NTIAY
N .NOIYNA OPITIN DMPY NYNT RO, NI0DNN NOIWNN DY YT NYNT KO NININDN
STV 19N DDITHY 2NN 1D AYNN YO DXADNI TUN DHININAN YTTNA PN TR NYNNYN
oy FPIPHN NN MOPNIN 20% MNabS 27 0t TP 0MAN DOYIY DRIN 1OV OMDIN
11’ 02N OOYI N NNYIAY IPRIN QD1 . XNIY MININN XD 1Mt IWN) ,0avnn 4500 Syn

70% Ty Yv (precision) PrT NNI2 YRIN DYV TY DIAVNNI MOPN NNRND

NPINNNR NNISN 2T JY DYYI NI :HVWN

’2>20P0 J9INA 0PN)N YD DY 20 Oy Oy TTINNND O 0T OMPHR NV SMIY
Sy IN) DN DAVNN NN DY Y9N MPYN — 99OV NN MXINN ©I77T0 NNN .(scalable)
N P9 N (load balancing) ©Domy POXR SY PRI 0P L(NPXNPNP DY JOP 190N

.D2aVNNN Pa nTayn

0PN ©AVNNN 217,927 IMNX V1Y DIAVNND 9D DAY 1N NOIYNIY NN NPD0aN MINN
YT DNMNN I19PY’ DXIAVNNND DY DINININ YTTNY DANN NNIN O DNV NP)0t 20
990102 DIAVNND DY DNINIAN XTTN NN INYND RN NOWA D900 1PYIN 19 DY .y imna

DY DINT T90N TIND MXNYAN MNXNN NN YNNI N 0 MTIP)

TN YY DMN DONIIN DN PTTH NN DIIDN ,TPYUNRT DAY YIIND DA NOYN
IV 25V WURIND IMNX MYYD 110 POIDND YOMOIN M PONN .10 DPRY DX TTHN 109100
PNPNS NNVWID NPT TPSPNS NAYA MY Y ©AVNNN YD TTH NN DNYN I NTP) Do2
ARNN YN PN VNN DD NPIYNT ,OMNX INYN 00N 1Dt ©aAYNND 92 7 TT0 NN Noapn n
TIND 2UNN DD DY PN NN DYSHNN 1010 INNRY O IO NTIPIA OINNIND INY NI NND TY

iii

DAV MNN NOIYNI

021N ©UI1IIN NV

DPINN 217 .0V DPIN DY VD NITHIN DY DDA MNX»P MIIYNI NVDN T PYYN 19N
N TAYND NNVIMO RONTO 91D MPYN IN TAR AVNN DY T DN T DYy DTN
MWD DO YNIAN NVIN NN LYNIN TNV G0 AN TTHN IYUND .pD>T2 MI9N DIPpNnn

TN DINDN ST DY MOMVIN MYVIRND IN ,NIIYNRN DY NYTIN

NN DY Pravn DPITN DD APY ¥ TAN T8N .M2D NNIN MN»Ya XN PN T Yy N0
PP OOIN .NNY MININD YIND 2T > TN OPITH DD WNIAPD MON Y T8N .NOPN INND
MIIYNY Q0N .PPADN IR AP 0 DIV WUNIN INRND YR 1IN 90 MNwn NTayn vmyvy
D8 OPIND TD 2PY .MV NTIAY MTIPI ¥ NIYN DMK OY NDY NMINRDD 19N, MNY
IN NN ROY NOPN DY PPNNN IXRXIND PTH ANINGD TPYYI 2190 AUN NTRNN DT ApRnn

P NW NNINN

Yaynn 1Y

DY DTN DAY DD PNV YT NRYD NOIWNN DO NN MOTHN 9N MNTPNN MY
DINNNN DIPN G0N D TTHN SV NPNVON MM N2 .(supervised learning) mp»s
mMopN NN OTTNN NN 0P WX DTN TindD 1N 19T IMIND NIIYNI NOPN PR IN ¥ DN
ANND .NTVNN NOIYNI NTIAYN DNIYA DDMONN OMPYI LINDND NYP NYND MDY . .MyTn
YN TNNN NN NADN YA .DOMDT DPN 92D VY DTN NVDINN NOND DMV

P 92MON NPNY DYV TONN ,0MPY INRD YTNN IMIN PN TN 0NN Y NODN

WRIVOPY VY NN

.(high performance computing) D¥¥2 PNy 2IWNN HY DINNA MNP INY MYNI MOV
MoPN MMY MN DY NIDINN DY HONIVDPLN VIS MNY DY MYMNN MNNIN NPDIPY MOV
NNAYN SPNY DMPN DMPY NAY NPYYN PN NON MOV .DPPNID DAVNNI N NOIYNI
,NANP MO TIND 1290 DYNAN DT DMPHN DMV .09 2MTN DI DY MIoN
It 0PN (NP DA IN) DPP R OHYNIVDPY VY M NIPPA .NAT MPIN M) A8Pa
D) DNYSINA DAXPA DR NONR DMPT OTNND J9IND DXNNTO DN STTN DNV DAVNNIN
MPTA YV NYSINN NI ,D¥IVNN DN DNSY DNNTHN DIIYN 09PN IN DPON DavNN Ay
027Y1) X .IIDIN MOPN GPY> 2179 1991 1NN NIDNT INPN MORIVDPY VIS 3D N .OMPdY

DN NPYA 0N NN NPYA 03 MMD 1IN DY NOIYHNN MDY YON DN > TTN2

ii

851

PYA WM DI DY MDY .AYTY YN NONNY 2N MDD IYAITH MNINKD D)Iva
MOIYNI .DXAYNN 295NN D71 217D IR DT 2IWNN 1D Sy ©51Non (cloud computing)
JINTD DTN DPN DXAVNNN YOV NNIND VAN N MDY 1D

20809 MOPY JPON 2D MY NOY MOPNY PP, 1WNN 71D 2PN NIN 1DON DXAVNNN N2
AT MV LDV NOY DVITOND I NOIYNN DY MV MDY DAY NTMIPID TY TN
DXAYNNA 23T MV DIPRA .D2AVYNNN DY NTHIN 190NN APY 1IWNN 1IN SWYN RO NIN
ANTH AUNN D3 .OMIPN DN STTH HY D1T) 990N NOIR T DY SONIVIN JI9IND DIV
901 D) MY MPYN DY DTTHN SNN ,NIYNN MAOY Y521 DNPHRY DI STTHD MIND

(Taynn 9183 1ND) 07955 DTN T (NN MNDIRYN

MTYN YR DN APIONN — 02N DOV NPT 91020 2733 N NINRNND NININD ® NTIAY
ND O 00N YN TIN R O PN .TNYA NOPND DI1ND M’ IN ,AVYNNI NN»P NOPN DY
NOIYNA NTIAYN OMY2 DMPY DY TTINNNT YN PINA .NI0NNN NIIYNN DY 189D YT’

.(false positive rate) XNWN MNXINN 2P Yy DPVDXVLD DIDN PADN 191 ,NIVINN

DYMNNN 2NN NI IPON MND) NMIAN MOPNY TOD NMTY DPADN NYNIY DMDIN
NOYNN DY NN TN RO NND LMY PPITA WRIND 27 P OMNX MM JmIvy ,NT1opa
DPNADN NOIYND PNININD NINNND N ,IAYNN NTN5 ,NI0INN

MPN NN DAVNN VN PP

N2V AN XYM MNYTN N0 YyaN ©NT (online) ©MPN MW XMPY NV VAN
AN 9 MINWM MNaX 1 NYA NN - NTIAYN DNIY NN YR NRND DY 1D [, TPYUNT DN O
PDIDVN NOXDAN NNNINNN NN DIVN (NIMNN R DXNPYD) MIDIND HY DINON DINITY ,NNIY
2TN OV L, NOIYNN NNMNN DY NINIAN PMODN PYND PN YR TPYOY Noynn SY
SY NPMOVDNN MMVYIN DY 23T 19N NIAYY NIIWNN N2 DY PNy YT 1Oy NN YNT
AUN NN YOTIND MIAIYN N 1OV MIP? NPAD MNDY XNY NMININD NI 03N 07 TT10N
MXINTN MNOYNN DY NYIIND 01D MDY MIAT NIV MININD 9012 .INRINND 20D OO

NNV MNIND 1210 D 10N 0DYNND PNNN MININN DOVNN DTRN NID TYUND NNV ,INN

D9ONN OMPYI MOINDN KD N — MYN) 10N DY NPYaAN 12172 MO0 MN»PN NOVIN MOY

9927 TY9) Y NMVDITY AYNND PV TND NODIPOL TVDIY QON NN DY DNPNINA YNNI IPNNN
T 3 J J 9 i
LMD NIaANNn

920NN NRY DI INNRND 2NN OV APNNN NJHPN TINNI MDND Nt NN MNINN I PON
NN ANV NNIOTYN IND IWR ,IPNNY Pamv

M. Gabel, A. Schuster, R.-G. Bachrach, and N. Bjorner. Latent fault detection in large
scale services. In Dependable Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP
International Conference on, pages 1-12, 2012.

nmn

7N3NN DY ,7I1227TY0) 10 MOPITI TVDIV QDN MUMI OV DIXYPD MTIND NN DN, TPYNI
TRONN TITYM ONOY NININN 22 NN DNYRD - NOY 1M ,000 MAT NTHY N2 MIDAom
O NTIAY OV NNYP NN IIYVARY NONX ON OOHYN TIRD

NMIND VIN S MINAIN PIYNN DY ;072 ONDP NIOY GMVN 92NN5 MTIND D) ¥ N
.DXNND OV PV

ONNX NN - INY DI OI2T GN) ,MINYIN NI2YNA OPDY YIRNND D NNV 932N 93O
DN M DYTY

JDOTNRNN DNNN XD DPYON PO I MNP NY 2NNIYND NTHYN 17N ,0PDD

STNONYNA N2TIN FPADIN NNNN DY PIDVY NTIN MIN

NP9 RIT NPINNIN NN
DYJY1) Y19 1O9NA

PPN DYy NN

ANINN NOAPOS MWATN OV YPON "D DYWH
AYNNN PYTNI DYTNY TODDN

93y YN

INIWY MONOV NIN — PIDVN VIDY YN
2013) nan Y'ywnn 1o

M9 RIY NPININN NN
DY) Y19 DN

93y Nwvn

	List of Figures
	List of Tables
	Abstract
	Abbreviations and Notations
	1 Introduction
	1.1 Background: Monitoring and Fault Detection
	1.2 This Work: Early Detection of Faults
	1.3 Related Work

	2 Framework
	2.1 Overview
	2.2 Preprocessing
	2.3 Framework Analysis

	3 Derived Tests
	3.1 The Sign Test
	3.2 The Tukey Test
	3.3 The LOF Test

	4 Empirical Evaluation
	4.1 Protocol Used in the Experiments
	4.2 The LG Service
	4.3 PR and SE Services
	4.4 VM Service
	4.5 Estimating the Number of Latent Faults
	4.6 Comparison of Tests
	4.7 Filtering Counters in Preprocessing

	5 Conclusion and Future Work
	Bibliography

