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Abstract—Unexpected machine failures, with their resulting
service outages and data loss, pose challenges to datacenter man-
agement. Existing failure detection techniques rely on domain
knowledge, precious (often unavailable) training data, textual
console logs, or intrusive service modifications.

We hypothesize that many machine failures are not a result of
abrupt changes but rather a result of a long period of degraded
performance. This is confirmed in our experiments, in which over
20% of machine failures were preceded by such latent faults.

We propose a proactive approach for failure prevention. We
present a novel framework for statistical latent fault detection
using only ordinary machine counters collected as standard
practice. We demonstrate three detection methods within this
framework. Derived tests are domain-independent and unsuper-
vised, require neither background information nor tuning, and
scale to very large services. We prove strong guarantees on the
false positive rates of our tests.

Index Terms—fault detection; web services; statistical analysis;
distributed computing; statistical learning

I. INTRODUCTION

For large scale services comprising thousands of computers,
it is unreasonable to assume that so many machines are
working properly and are well configured [1], [2]. Unnoticed
faults might accumulate to the point where redundancy and
fail-over mechanisms break. Therefore, early detection and
handling of latent faults is essential for preventing failures
and increasing the reliability of these services.

A latent fault is machine behavior that is indicative of a
fault, or could eventually result in a fault. This work provides
evidence that latent faults are common. We show that these
faults can be detected using domain independent techniques,
and with high precision. This enables a proactive approach [3]:
machine failures can be predicted and handled effectively and
automatically without service outages or data loss.

Machines are usually monitored by collecting and analyzing
performance counters [4], [5], [6], [7]. Hundreds of counters
per machine are reported by the various service layers, from
service-specific information (such as the number of queries for
a database) to general information (such as CPU usage). The
large number of machines and counters in datacenters makes
manual monitoring impractical.

Existing automated techniques for detecting failures are
mostly rule-based. A set of watchdogs [6], [3] is defined.
In most cases, a watchdog monitors a single counter on a
single machine or service: the temperature of the CPU or
free disk space, for example. Whenever a predefined threshold

is crossed, an action is triggered. These actions range from
notifying the system operator to automatic recovery attempts.

Rule-based failure detection suffers from several key prob-
lems. Thresholds must be made low enough that faults will
not go unnoticed. At the same time they should be set
high enough to avoid spurious detections. However, since the
workload changes over time, no fixed threshold is adequate.
Moreover, different services, or even different versions of the
same service, may have different operating points. Therefore,
maintaining the rules requires constant, manual adjustments,
often done only after a “postmortem” examination.

Others have noticed the shortcomings of these rule-based
approaches. [8], [9] proposed training a detector on historic
annotated data. However, such approaches fall short due to
the difficulty in obtaining this data, as well as the sensitivity
of these approaches to deviations in workloads and changes
in the service itself. Others proposed injecting code into the
monitored service to periodically examine it [1]. This approach
is intrusive and hence prohibitive in many cases.

More flexible, unsupervised approaches to failure detection
have been proposed for high performance computing (HPC).
[10], [11], [12] analyze textual console logs to detect system or
machine failures by examining occurrence of log messages. In
this work, we focus on large scale online services. This setting
differs from HPC in several key aspects. Console logs are
impractical in high-volume services for bandwidth and perfor-
mance reasons: transactions are very short, time-sensitive, and
rapid. Thus, in many environments, nodes periodically report
aggregates in numerical counters. Console log analysis fails
in this setting: console logs are non-existent (or very limited),
and periodically-reported aggregates exhibit no difference in
rate for faulty, slow or misconfigured machines. Rather, it
is their values that matter. Moreover, console logs originate
at application code and hence expose software bugs. We are
interested in counters collected from all layers to reveal both
software and hardware problems.

The challenge in designing a latent fault detection mecha-
nism is to make it agile enough to handle the variations in a
service and the differences between services. It should also be
non-intrusive yet correctly detect as many faults as possible
with only a few false alarms. As far as we know, we are
the first to propose a framework and methods that address
all these issues simultaneously using aggregated numerical
counters normally collected by datacenters.



Contribution

We focus on machine behavior that is indicative of a fault,
or could eventually result in a fault. We call this behavior
a latent fault. Not all machine failures are the outcome of
latent faults. Power outages and malicious attacks, for instance,
can occur instantaneously, with no visible machine-related
warning. However, even our most conservative estimates show
that at least 20% of machine failures have a long incubation
period during which the machine is already deviating in its
behavior but is not yet failing (Sec. IV-E).

We develop a domain independent framework for identi-
fying latent faults (Sec. II). Our framework is unsupervised
and non-intrusive, and requires no background information.
Typically, a scalable service will use (a small number of) large
collections of machines of similar hardware, configuration,
and load. Consequently, the main idea in this work is to
use standard numerical counter readings in order to compare
similar machines performing similar tasks in the same time
frames, similar to [13], [10]. A machine whose performance
deviates from the others is flagged as suspicious.

To compare machines’ behavior, the framework uses tests
that take the counter readings as input. Any reasonable test can
be plugged in, including non-statistical tests. We demonstrate
three tests within the framework and provide strong theoret-
ical guarantees on their false detection rates (Sec. III). We
use those tests to demonstrate the merits of the framework
on several production services of various sizes and natures,
including large scale services, as well as a service that uses
virtual machines (Sec .IV).

Our technique is agile: we demonstrate its ability to work
efficiently on different services with no need for tuning, yet
still guaranteeing false positive rate. Moreover, changes in the
workload or even changes to the service itself do not affect
its performance: in our experiments, suspicious machines that
switched services and workloads remained suspicious.

The rest of the paper is organized as follows: We first
describe the problem and out general framework in Sec. II.
In Sec. III we use the framework to develop three specific
tests. In Sec. IV we discuss our empirical evaluation on several
production services. We survey related work in Sec. V, and
finally summarize our results and their implication in Sec. VI.

II. FRAMEWORK

Large-scale services are often made reliable and scalable
by means of replication. That is, the service is replicated on
multiple machines with a load balancing process that splits
the workload. Therefore, similar to [13], [10], we expect all
machines that perform the same role, using similar hardware
and configuration, to exhibit similar behavior. Whenever we
see a machine that consistently differs from the rest, we flag it
as suspicious for a latent fault. As we show in our experiments,
this procedure flags latent faults weeks before the actual failure
occurs.

A. Framework Overview

To compare machine operation, we use performance coun-
ters. Machines in datacenters often periodically report and
log a wide range of performance counters. These counters
are collected from the hardware (e.g., temperature), the op-
erating system (e.g., number of threads), the runtime system
(e.g., garbage collected), and from application layers (e.g.,
transactions completed). Hundreds of counters are collected
at each machine. More counters can be specified by the
system administrator, or the application developer, at will. Our
framework is intentionally agnostic: it assumes no domain
knowledge, and treats all counters equally. Figure 5 shows
several examples of such counters from several machines
across a single day.

We model the problem as follows: there are M machines
each reporting C performance counters at every time unit. We
denote the vector of counter values for machine m at time
t as x(m, t). The hypothesis is that the inspected machine
is working properly and hence the statistical process that
generated this vector for machine m is the same statistical
process that generated the vector for any other machine m′.
However, if we see that the vector x(m, t) for machine m is
notably different from the vectors of other machines, we reject
the hypothesis and flag the machine m as suspicious for a
latent fault. (Below we simply say the machine is suspicious.)

After some common preprocessing (see Section II-D), the
framework incorporates pluggable tests (aka outlier detection
methods) to compare machine operation. At any point t, the
input x(t) to the test S consists of the vectors x(m, t) for
all machines m. The test S(m,x(t)) analyzes the data and
assigns a score (either a scalar or a vector) to machine m at
time t. x and x′ denote sets of inputs x(m, t) and x′(m, t),
respectively, for all m and t.

The framework generates a wrapper around the test, which
guarantees its statistical performance. Essentially, the scores
for machine m are aggregated over time, so that eventually
the norm of the aggregated scores converges, and is used to
compute a p-value for m. The longer the allowed time period
for aggregating the scores is, the more sensitive the test will
be. At the same time, aggregating over long periods of time
creates latencies in the detection process. Therefore, in our
experiments, we have aggregated data over 24 hour intervals,
as a compromise between sensitivity and latency.

The p-value for a machine m is a bound on the probability
that a random healthy machine would exhibit such aberrant
counter values. If the p-value falls below a predefined signifi-
cance level α, the null hypothesis is rejected, and the machine
is flagged as suspicious. In Section II-E we present the general
analysis used to compute the p-value from aggregated test
scores.

Given a test S, and a significance level α > 0, we can
present the framework as follows:

1) Preprocess the data as described in Section II-D (can be
done once, after collecting some data; see below);

2) Compute for every machine m the vector vm =



1
T

∑
t S(m,x(t)) (integration phase);

3) Using the vectors vm, compute p-values p(m);
4) Report every machine with p(m) < α as suspicious.
To demonstrate the power of the framework, we describe

three test implementations in Sec. III.

B. Notation

The cardinality of a set G is denoted by |G|, while for
a scalar s, we use |s| as the absolute value of s. The L2

norm of a vector y is ‖y‖, and y · y′ is the inner product
of y and y′. M denotes the set of all machines in a test,
m,m′,m∗ denote specific machines, and M = |M| denotes
the number of machines. C is the set of all counters selected by
the preprocessing algorithm, c denotes a specific counter, and
C = |C|. T are the time points where counters are sampled
during preprocessing (for instance, every 5 minutes for 24
hours in our experiments), t, t′ denote specific time points,
and T = |T |.

C. Framework Assumptions

In modeling the problem we make several reasonable as-
sumptions (see, e.g., [13], [10]) that we will now make explicit.
While these assumptions might not hold in every environment,
they do hold in many cases, including the setups considered
in Section IV.
• The majority of machines are working properly at any

given point in time.
• Machines are homogeneous, meaning they perform a

similar task and use similar hardware and software. (If
this is not the case, then we can often split the collection
of machines to a few large homogeneous clusters.)

• On average, workload is balanced across all machines.
• Counters are ordinal and are reported at the same rate.
• Counter values are memoryless in the sense that they de-

pend only on the current time period (and are independent
of the identity of the machine).

Formally, we assume that x(m, t) is a realization of a
random variable X(t) whenever machine m is working prop-
erly. Since all machines perform the same task, and since
the load balancer attempts to split the load evenly between
the machines, the homogeneous assumption implies that we
should expect x(m, t) to show similar behavior. We do expect
to see changes over time, due to changes in the workload, for
example. However, we expect these changes to be similarly
reflected in all machines.

D. Preprocessing

Clearly, our model is simplified, and in practice not all of
its assumptions about counters hold. Thus the importance of
the preprocessing algorithm: it eliminates artifacts, normalizes
the data, and automatically discards counters that violate
assumptions and hinder comparison. Since we do not assume
any domain knowledge, preprocessing treats all counters sim-
ilarly, regardless of type. Furthermore, preprocessing is fully
automatic and is not tuned to the specific nature of the service
analyzed.

Not all counters are reported at a fixed rate, and even
periodic counters might have different periods. Non-periodic
and infrequent counters hinder comparison because at any
given time their values are usually unknown for most ma-
chines. They may also bias statistical tests. Such counters are
typically event-driven, and have a different number of reports
on different machines; hence they are automatically detected
by looking at the variability of the reporting rate and are
removed by the preprocessing.

Additionally, some counters violate the assumption of being
memoryless. For example, a counter that reports the time since
the last machine reboot cannot be considered memoryless.
Such counters usually provide no insight into the correct or
normal behavior because they exhibit different behavior on
different machines. Consequently, preprocessing drops those
counters. Automatic detection of such counters is performed
similarly to the detection of event-driven counters, by looking
at the variability of counter means across different machines.

The process of dropping counters is particularly important
when monitoring virtual machines. It eliminates counters
reflecting cross-talk between machines running in the same
physical host. In our experiments, after the above filtering
operations, we were typically left with more than one hundred
useful counters (over two hundred in some systems); see Table
IV.

Preprocessing also samples counters at equal time intervals
(5 minutes in our implementation), so that machines can
be compared at those time points. Finally, the counters are
normalized to have a zero mean and a unit variance in order
to eliminate artifacts of scaling and numerical instabilities.

There are many possible ways to measure variability. Our
implementation is based on normalized median absolute de-
viation. The particulars are not critical to the framework, and
were omitted for lack of space.

E. Framework Analysis

In this section we show how the p-values (step 3 in the
framework) are computed. We use two methods to compute
these values. The first method assumes the expected value
of the scoring function is known when all machines work
properly. In this case, we compare vm to its expected value
and flag machines that have significant deviations (recall that
vm = 1

T

∑
t∈T S(m,x(t)); see framework Step 2). The

second method for computing the p-value is used when the
expected value of the scoring function is not known. In this
case, we use the empirical mean of ‖vm‖ and compare the
values obtained for each of the machines to this value. Both
methods take the number of machines M into account. The
resulting p-values are the probability of one false positive or
more across T , regardless of the number of machines.

In order to prove the convergence of vm, we use the L1, L2-
bounded property of the test S, as follows:

Definition 1: A test S is L1, L2-bounded if the following
two properties hold for any two input vector sets x and x′,
and for any m and t:

1) ‖S (m,x(t))− S (m,x′(t))‖ ≤ L1.



2) Let x̄ be x where x(m, t) is replaced with x′(m′, t).
Then for any m′ 6= m, ‖S (m,x(t))− S (m, x̄(t))‖ ≤
L2.

The above definition requires that the test is bounded in two
aspects. First, even if we change all the inputs, a machine score
cannot change by more than L1. Moreover, if we change the
counter values for a single machine, the score for any other
machine cannot change by more than L2.

The following lemmas define the two methods. Proofs are
omitted due to lack of space.

Lemma 1: Consider a test S which is L1, L2- bounded.
Assume that ∀m, t, x (m, t) ∼ X (t). Then for every γ > 0,

Pr [∃m s.t. ‖vm‖ ≥ E [‖vm‖] + γ] ≤M exp

(
−2Tγ2

L2
1

)
.

The lemma follows by applying the bounded differences
inequality [14] and the union bound.

The next lemma applies to the case where the expected
value of vm is not known. In this case, we use the empirical
mean as a proxy for the true expected value.

Lemma 2: Consider a test S that is L1, L2- bounded.
Assume that ∀m, t x (m, t) ∼ X (t), and that ∀m,m′,
E [‖vm‖] = E [‖vm′‖]. Denote by v̂ = 1/M

∑
m ‖vm‖. Then

for every γ > 0,

Pr [∃m s.t. ‖vm‖ ≥ v̂ + γ]

≤ (M + 1) exp

(
− 2TMγ2

(L1(1+
√
M)+L2(M−1))

2

)
.

In the proof we show that the random variable v̂ is a Lip-
schitz function and apply the bounded differences inequality
[14] to v̂. Finally, we obtain the stated result by combining
with Lemma 1.

III. METHODS

Using the general framework described in Sec. II, we
describe three test implementations: the sign test (Sec. III-A),
the Tukey test (Sec. III-B), and the LOF test (Sec. III-C).
Their analyses provide examples of the use of the machinery
developed in Section II-E. Other tests can be easily incorpo-
rated into our framework. Such tests could make use of more
information, or be even more sensitive to the signals generated
by latent faults. For many well-known statistical tests, the
advantages of the framework will still hold: no tuning, no
domain knowledge, no training, and no need for tagged data.

A. The Sign Test

The sign test [15] is a classic statistical test. It verifies the
hypothesis that two samples share a common median. It has
been extended to the multivariate case [16]. We extend it to
allow the simultaneous comparison of multiple machines.

Let m and m′ be two machines and let x(m, t) and x(m′, t)
be the vectors of their reported counters at time t. We use the
test

S (m,x(t)) =
1

M − 1

∑
m′ 6=m

x(m, t)− x (m′, t)

‖x(m, t)− x (m′, t)‖

as a multivariate version of the sign function. If all the
machines are working properly, we expect this value to be
zero. Therefore, the sum of several samples over time is also
expected not to grow far from zero.

Algorithm 1: The sign test. Output a list of suspicious
machines with p-value below significance level α.

foreach machine m ∈M do

S (m,x(t))← 1
M−1

∑
m′ 6=m

x(m,t)−x(m′,t)
‖x(m,t)−x(m′,t)‖ ;

vm ← 1
T

∑
t S (m,x(t));

end
v̂ ← 1

M

∑
m ‖vm‖;

foreach machine m ∈M do
γ ← max (0, ‖vm‖ − v̂);

p(m)← (M + 1) exp

(
− TMγ2

2(
√
M+2)

2

)
;

if p(m) ≤ α then
Report machine m as suspicious;

end
end

The following theorem shows that if all machines are
working properly, the norm of vm should not be much larger
than its empirical mean.

Theorem 1: Assume that ∀m ∈ M and ∀t ∈ T , x(m, t)
is sampled independently from X(t). Let vm and v̂ be as in
Algorithm 1. Then for every γ > 0,

Pr [∃m ∈M s.t. ‖vm‖ ≥ v̂ + γ]

≤ (M + 1) exp

(
−TMγ2

2(
√
M+2)

2

)
.

Proof: The sign test is 2, 2
M−1 -bounded. Applying

Lemma 2, we obtain the stated result.
Theorem 1 proves the correctness of the p-values computed

by the sign test. For an appropriate significance level α,
Theorem 1 guarantees a small number of false detections.

A beneficial property of the sign test is that it also provides
a fingerprint for the failure in suspicious machines. The vector
vm scores every counter. The test assigns high positive scores
to counters on which the machine m has higher values than
the rest of the population and negative scores to counters on
which m’s values are lower. This fingerprint can be used to
identify recurring types of failures [4]. It can also be used as
a starting point for root cause analysis, which is a subject for
future research.

B. The Tukey Test

The Tukey test is based on a different statistical tool, the
Tukey depth function [17]. Given a sample of points Z,
the Tukey depth function gives high scores to points near
the center of the sample and low scores to points near the
perimeter. For a point z, it examines all possible half-spaces
that contain the point z and counts the number of points of
Z inside the half-space. The depth is defined as the minimum



number of points over all possible half-spaces. Formally, let
Z be a set of points in the vector space Rd and z ∈ Rd; then
the Tukey depth of z in Z is:

Depth(z|Z) = inf
w∈Rd

(|{z′ ∈ Z s.t. z · w ≤ z′ · w}|) .

Algorithm 2: The Tukey test. Output a list of suspicious
machines with p-value below significance level α.

Let I = 5;
for i← 1, . . . , I do

πi ← random projection RC → R2;
foreach time t ∈ T do

foreach machine m ∈M do
d(i,m, t)← Depth (πi(x(m, t))|x(t));

end
end

end
foreach machine m ∈M do

S(m,x(t))← 2
I(M−1)

∑
i d (i,m, t);

vm ← 1
T

∑
t S (m,x(t));

end
v̂ ← 1

M

∑
m vm;

foreach machine m ∈M do
γ ← max(0, v̂ − ‖vm‖);

p(m)← (M + 1) exp

(
− 2TMγ2

(
√
M+3)

2

)
;

if p(m) ≤ α then
Report machine m as suspicious

end
end

In our setting, we say that if the vectors x(m, t) for a
fixed machine m consistently have low depths at different time
points t, then m is likely to be behaving differently than the
rest of the machines.

However, there are two main obstacles in using the Tukey
test. First, for each point in time, the size of the sample is
exactly the number of machines M and the dimension is the
number of available counters C. The dimension C can be
larger than the number of points M and it is thus likely that
all the points will be in a general position and have a depth
of 1. Moreover, computing the Tukey depth in high dimension
is computationally prohibitive [18]. Therefore, similarly to
[19], we select a few random projections of the data to low
dimension (R2) and compute depths in the lower dimension.

We randomly select a projection from RC to R2 by creating
a matrix C×2 such that each entry in the matrix is selected at
random from a normal distribution. For each time t, we project
x(m, t) for all the machines m ∈ M to R2 several times,
using the selected projections, and compute depths in R2

with a complexity of only O (M log(M)), to obtain the depth
d(i,m, t) for machine m at time t with the i’th projection.
The score used in the Tukey test is the sum of the depths

computed on the random projections:

S(m,x(t)) =
2

I (M − 1)

∑
i

d (i,m, t) .

If all machines behave correctly, vm should be concentrated
around its mean. However, if a machine m has a much lower
score than the empirical mean, this machine is flagged as
suspicious. The following theorem shows how to compute p-
values for the Tukey test.

Theorem 2: Assume that ∀m ∈ M and ∀t ∈ T , x(m, t)
is sampled independently from X(t). Let vm and v̂ be as in
Algorithm 2. Then for every γ > 0,

Pr [∃m ∈M s.t. vm ≤ v̂ − γ]

≤ (M + 1) exp

 −2TMγ2(√
M + 3

)2
 .

Proof: The Tukey test is 1, 2
M−1 -bounded since 0 ≤

d (i,m, t) ≤ M − 1. Applying Lemma 2 with −vm and −v̂,
we obtain the stated result.

C. The LOF Test

The LOF test is based on the Local Outlier Factor (LOF)
algorithm [20], which is a popular outlier detection algorithm.
The LOF test attempts to find outliers by looking at the density
in local neighborhoods. Since the density of the sample may
differ in different areas, isolated points in less populated areas
are not necessarily outliers. The greater the LOF score is,
the more suspicious the point is, but the precise value of
the score has no particular meaning. Therefore, in the LOF
test the scores are converted to ranks. The rank r(m,x(t))
is such that the machine with the lowest LOF score will
have rank 0, the second lowest will have rank 1, and so
on. If all machines are working properly, the rank r(m,x(t))
is distributed uniformly on 0, 1, . . . ,M − 1. Therefore, for
healthy machines, the scoring function

S(m,x(t)) =
2r(m,x(t))

M − 1
(1)

has an expected value of 1. If the score is much higher,
the machine is flagged as suspicious. The correctness of this
approach is proven in the next theorem.

Theorem 3: Assume that ∀m ∈ M and ∀t ∈ T , x(m, t) is
sampled independently from X(t). Let vm be as defined in
Algorithm 3. Then for every γ > 0,

Pr [∃m ∈M s.t. vm ≥ 1 + γ] ≤M exp

(
−Tγ

2

2

)
.

Proof: The LOF test is 2, 2
M−1 -bounded since 0 ≤

r (m,x(t)) ≤ M − 1. Moreover, under the assumption of
this theorem, the expected value of the score is 1. Applying
Lemma 1, we obtain the stated result.



Algorithm 3: The LOF test. Output a list of suspicious
machines with p-value below significance level α.

foreach time t ∈ T do
l(m, t)← LOF of x(m, t) in x(t);
foreach machine m ∈M do

r(m,x(t))← rank of l(m, t) in {l(m′, t)}m′∈M ;
S(m,x(t))← 2r(m,x(t))

M−1 ;
end

end
foreach machine m ∈M do

vm ← 1
T

∑
t S (m,x(t));

γ ← max(0, vm − 1);

p(m)←M exp
(
−Tγ

2

2

)
;

if p(m) ≤ α then
Report machine m as suspicious

end
end

TABLE I
SUMMARY OF TERMS.

Term Description
Suspicious machine flagged as having a latent fault
Failing machine failed according to health signal
Healthy machine healthy according to health signal
Precision fraction of failing machines out of all suspicious =

Pr(failing | suspicious)
Recall (TPR) fraction of suspicious out of all failing machines =

Pr(suspicious | failing)
False Positive
Rate (FPR)

fraction of healthy machines out of all suspicious
= Pr(suspicious | healthy)

IV. EMPIRICAL EVALUATION

We conducted experiments on live, real-world, distributed
services with different characteristics. The LG (“large”) ser-
vice consists of a large cluster (∼ 4500 machines) that is a
part of the index service of a large search engine (Bing). The
PR (“primary”) service runs on a mid-sized cluster (∼ 300
machines) and provides information about previous user inter-
actions for Bing. It holds a large key-value table and supports
reading and writing to this table. The SE (“secondary”) service
is a hot backup for the PR service and is of similar size. It
stores the same table as the PR service but supports only write
requests. Its main goal is to provide hot swap for machines
in the PR service in cases of failures. The VM (“virtual
machine”) service provides a mechanism to collect data about
users’ interactions with advertisements in a large portal. It
stores this information for billing purposes. This service uses
15 virtual machines which share the same physical machine
with other virtual machines. We tracked the LG, PR and SE
services for 60 days and the VM service for 30 days. We chose
periods in which these services did not experience any outage.

These services run on top of a data center management in-
frastructure for deployment of services, monitoring, automatic
repair, and the like [6]. We use the automatic repair log to

deduce information concerning the machines’ health signals.
This infrastructure also collects different performance counters
from both the hardware and the running software, and handles
storage, a common practice in such datacenters. Therefore our
analysis incurs no overheard nor any changes to the monitored
service.

Collected counters fall into a wide range of types: common
OS counters such as the number of threads, memory and CPU
usage, and paging; hardware counters such as disk write rate
and network interface errors; and unique service application
counters such as transaction latency, database merges, and
query rate.

A. Protocol Used in the Experiments

We applied our methods to each service independently
and in a daily cycle. That is, we collected counter values
every 5 minutes during a 24-hour period and used them to
flag suspicious machines using each of the tests. To avoid
overfitting, parameters were tuned using the historical data of
the SE service. In order to reduce the false alarm rate to a
minimum, the significance level α was fixed at 0.01.

To evaluate test performance, we compared detected latent
faults to machine health signals as reported by the infrastruc-
ture at a later date. Health alerts are raised according to rules
for detecting software and hardware failures. Our hypothesis
is that some latent faults will evolve over time into hard
faults, which will be detected by this rule-based mechanism.
Therefore, we checked the health signal of each machine in
a follow-up period (horizon) of up to 14 days immediately
following the day in which the machine was tested for a latent
fault. We used existing health systems to verify the results of
our latent fault detection framework. In some cases we used
manual inspection of counters and audit logs.

Unfortunately, because of limited sensitivity and missing
logs, health information is incomplete. Failing or malfunc-
tioning machines that the current watchdog based implemen-
tation did not detect are considered by default to be healthy.
Similarly, machines with unreported repair actions or without
health logs are considered by default to be healthy. When
flagged as suspicious by our tests, such machines would be
considered false positives. Finally, not all machine failures
have preceding latent faults, but to avoid any bias we include
all logged health alerts in our evaluation, severely impacting
recall, defined below (Section IV-E estimates the amount
of latent faults). Therefore, the numbers we provide in our
experiments are underestimations, or lower bounds on the true
prevalence of latent faults.

In our evaluation, we refer to machines that were reported
healthy during the follow-up horizon as healthy; other ma-
chines are referred to as failing. Machines that were flagged
by a test are referred to as suspicious. Borrowing from
the information retrieval literature [21], we use precision to
measure the fraction of failing machines out of all suspicious
machines and recall (also called true positive rate, or TPR)
to measure the fraction of suspicious machines out of all
failing machines. We also use the false positive rate (FPR) to
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Fig. 1. Cumulative failures on LG service. Most of the faults detected by
the sign test and the Tukey test become failures several days after detection.

denote the fraction of healthy machines out of all suspicious
machines. Table I summarizes the terms used.

We applied the same techniques to all services, using the
same choice of parameters. Yet, due to their different nature,
we discuss the results for each service separately.

B. The LG Service

Table II shows a summary of the results (failure predic-
tion) for the LG service. The low false positive rate (FPR)
reflects our design choice to minimize false positives. Track-
ing the precision results proves that latent faults abound in
the services. For example, the Tukey method has precision
of 0.135, 0.497 and 0.653 when failures are considered in
horizons of 1, 7 and 14 days ahead, respectively. Therefore,
most of the machines flagged as suspicious by this method
will indeed fail during the next two weeks. Moreover, most of
these failures happen on the second day or later.

The recall numbers in Table II indicate that approximately
20% of the failures in the service were already manifested in
the environment for about a week before they were detected.

The cumulative failure graph (Figure 1) depicts the fraction
across all days of suspicious machines which failed up to n
days after the detection of the latent fault. In other words, it
shows the precision vs. prediction horizon. The “total” line
is the fraction of all machines that failed, demonstrating the
normal state of affairs in the LG service. This column is
equivalent to a guessing “test” that randomly selects suspicious
machines on the basis of the failure probability in the LG
service. Once again, these graphs demonstrate the existence
and prevalence of latent faults.

To explore the tradeoffs between recall, false positive rate,
and precision, and to compare the different methods, we
present receiver operating characteristic (ROC) curves and
precision-recall (P-R) curves. The curves, shown in Figure 2,
were generated by varying the significance level: for each
value of α we plot the resulting false positive rate and true
positive rate (recall) as a point on the ROC curve. The closer
to the top-left corner (no false positives with perfect recall),
the better the performance. A random guess would yield a

TABLE II
PREDICTION ON LG WITH SIGNIFICANCE LEVEL OF 0.01.

Period Test Recall FPR Precision

1 day
Tukey 0.240 0.023 0.135
sign 0.306 0.037 0.109
LOF 0.248 0.095 0.038

7 days
Tukey 0.151 0.014 0.497
sign 0.196 0.026 0.411
LOF 0.203 0.087 0.180

14 days
Tukey 0.093 0.011 0.653
sign 0.126 0.022 0.563
LOF 0.162 0.082 0.306

diagonal line from (0, 0) to (1, 1). The P-R curve is similarly
generated from recall and precision.

Both the Tukey and sign tests successfully predict failures
up to 14 days in advance with a high degree of precision,
with sign having a slight advantage. Both perform significantly
better than the LOF test, which is still somewhat successful.
The results reflect our design tradeoff: at significance level
of 0.01, false positive rates are very low (around 2− 3% for
Tukey and sign), and precision is relatively high (especially
for longer horizons).

The dips in the beginning of the P-R curves reflect machines
that consistently get low p-values, but do not fail. Our manual
investigation of some of these machines shows that they can
be divided into (1) undocumented failures (incomplete or
unavailable logs), and (2) machines that are misconfigured or
underperforming, but not failing outright since the services do
not monitor for these conditions. Such machines are consid-
ered false positives, even though they are actually correctly
flagged by our framework as suspicious. This is additional
evidence that the numbers reported in our experiments are
underestimates, and that latent faults go unnoticed in the
environment. This is also why false positive rates are slightly
higher than the significance level of 0.01.

Finally, we investigate the sensitivity of the different meth-
ods to temporal changes in the workload. Since this service is
user facing, the workload changes significantly between week-
days and weekends. We plot Tukey prediction performance
with a 14-day horizon for each calendar day (Figure 3). Note
that the weekly cycle does not affect the test. The visible dips
at around days 22, 35, and towards the end of the period,
are due to service upgrades during these times. Since the
machines are not upgraded simultaneously, the test detects any
performance divergence of the different versions and reports
these as failures. However, once the upgrade was completed,
no tuning was necessary for the test to regain its performance.

C. PR and SE Services

The SE service mirrors data written to PR, but serves no
read requests. Its machines are thus less loaded than PR
machines, which serve both read and write requests. Hence,
traditional rule-based monitoring systems are less likely to
detect failures on these machines. The existence of latent
faults on these machines is likely to be detected by the health
mechanisms only when there is a failure in a primary machine,
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Fig. 2. ROC and P-R curves on LG service. Highlighted points are for significance level α = 0.01.
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is an artifact of gaps in counter logs and updates on later days.

followed by the faulty SE machine being converted to the
primary (PR) role.

Unfortunately, the health monitors for the PR and SE
services are not as comprehensive as the ones for the LG
service. Since we use the health monitors as the objective
signal against which we measure the performance of our tests,
these measurements are less reliable. To compensate for that,
we manually investigated some of the flagged machines. We
are able to provide objective measurements for the SE service,
as there are enough real failures which can be successfully
predicted, despite at least 30% spurious failures in health logs
(verified manually).

Performance on SE service for a significance level of 0.01 is
summarized in Table III. ROC and P-R curves are in Figure 4.
Our methods were able to detect and predict machine failures;

TABLE III
PREDICTION ON SE, 14-DAY HORIZON, SIGNIFICANCE LEVEL 0.01.

Test Recall FPR Precision
Tukey 0.010 0.007 0.075
sign 0.023 0.029 0.044
LOF 0.089 0.087 0.054

therefore, latent faults do exist in this service as well, albeit
to a lesser extent. As explained above, since this is a backup
service, some of the failures go unreported to the service
platform. Therefore, the true performance is likely to be better
than shown.

The case of the PR service is similar to the SE service but
even more acute. The number of reported failures is so low
(0.26% machine failures per day) that it would be impossible
to verify positive prediction. Nevertheless, all tests show very
low FPR (about 1% for sign and Tukey, 7% for LOF), and in
over 99% of healthy cases there were no latent faults according
to all tests.

D. VM Service

The VM service presents a greater challenge, due to the
use of virtual machines and the small machine population. In
principle, a test may flag machines as suspicious because of
some artifacts related to other virtual machines sharing the
same host. Due to the small size of this cluster, we resort
to manually examining warning logs, and examining the two
machines with latent faults found by the sign test. One of the
machines had high CPU usage, thread count, disk queue length
and other counters that indicate a large workload, causing our
test to flag it as suspicious. Indeed, two days after detection
there was a watchdog warning indicating that the machine is
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Fig. 4. ROC and P-R curves on the SE service. Highlighted points are for significance level α = 0.01.
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Fig. 5. Aberrant counters for suspicious VM machine (black) compared to
the counters of 14 other machines (gray).

overloaded. The relevant counters for this machine are plotted
in Figure 5. The second machine for which a latent fault was
detected appears to have had no relevant warning, but our tests
did indicate that it had low memory usage, compared to other
machines performing the same role.

E. Estimating the Number of Latent Faults

Some failures do not have a period in which they live unde-
tected in the system. Examples include failures due to software
upgrades and failures due to network service interruption. We
conducted an experiment on the LG environment with the goal
of estimating the percentage of failures which do have a latent
period.

We selected 80 failure events at random and checked
whether our methods detect them 24 hours before they are
first reported by the existing failure detection mechanism. As
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Fig. 6. Detection performance on LG service. At least 20-25% of failures
have preceding latent faults. Highlighted points are for α = 0.01.

a control, we also selected a random set of 73 machines known
to be healthy. For both sets we require that events come from
different machines, and from a range of times and dates.

For this experiment we define a failing machine to be a
machine that is reported to be failing but did not have any
failure report in the preceding 48 hours. We define a machine
to be healthy if it did not have any failure during the 60
day period of our investigation. Figure 6 shows the ROC
curves for this experiment. Failing machines where latent
faults are detected are true positives. Healthy machines flagged
as suspicious are counted as false positives. Both sign and
Tukey manage to detect 20% − 25% of the failing machines
with very few false positives. Therefore, we conclude that at
least 20% − 25% of the failures are latent for a long period.
Assuming our estimation is accurate, the recall achieved in
Section IV-B is close to the maximum possible.



TABLE IV
AVERAGE NUMBER OF COUNTERS REMOVED. MANY COUNTERS REMAIN

AFTER AUTOMATED FILTERING.

Counters LG VM PR SE
Event-driven 85 39 100 112
Slow 68 12 19 24
Constant 87 29 52 40
Varied means 103 30 57 79
Remaining 211 106 313 89
Total 554 216 541 344

F. Comparison of Tests

The three tests proposed in this work are based on different
principles. Nevertheless, they tend to flag the same machines.
For instance, more than 80% of the machines that were flagged
by Tukey are also flagged by the sign test. All tests achieve
a low false positive rate on all services, with the Tukey and
sign tests matching the very low user-specified rate parameter.

To better characterize the sensitivities of the different tests,
we evaluated them on artificially generated data to which
we injected three types of “faults”: counter location (offset),
counter scale, or both. The strength of the difference varies
across the failing machines, and we compare the sensitivity of
each test to different kinds of faults. The resulting curves are
shown in Figure 7. This experiment shows that the sign test is
very sensitive to changes in offsets. LOF has some sensitivity
to offset changes while the Tukey test has little sensitivity, if
any, to this kind of change. When scale is changed, LOF is
more sensitive in the range of low false positive rates but does
not do well later on. Tukey is more sensitive than sign to scale
changes.

G. Filtering Counters in Preprocessing

As described in Section II-D, the preprocessing stage re-
moves some counters. Table IV reports the average number of
counters removed in each service.

When removing counters violating the memoryless as-
sumption, we measure the mean variability of each counter
across all machines, leaving only counters with low variability.
Our choice of a low fixed threshold value stems from our
conservative design choice to avoid false positives, even at
the price of removing potentially informative counters. Fig-
ure 8 justifies this choice: the majority of counters that were
not filtered have relatively low variability on most services,
whereas the higher variability range (2–10) typically contains
few counters. Beyond 10 counters are not usable: most of them
are effectively a unique constant value for this counter for each
machine. Thus, tuning is not needed in preprocessing.

To further explore the effect of different thresholds, we
measured the performance of the tests on a single day of the
LG service with different mean variability thresholds. With
strict significance level, higher thresholds result in slightly
better recall but slightly lower precision, confirming our ex-
pectations.
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Fig. 8. Histogram of counter mean variability for all services. The majority
of counters have variability below 2.

V. RELATED WORK

The problem of automatic machine failure detection was
studied by several researchers in recent years, and proposed
techniques have so far been mostly supervised, or reliant on
textual console logs.

Chen et al. [5] analyze the correlation between sets of
measurements and track them over time. This approach re-
quires domain knowledge for choosing counters, and training
to model baseline correlations. Chen et al. [8] presented a
supervised approach based on learning decision trees. The
system requires labeled examples of failures and domain
knowledge. Moreover, supervised approaches are less adaptive
to workload variations and to platform changes. Pelleg et
al. [22] explore failure detection in virtual machines using
decision trees. Though the basis is domain independent, the
system is supervised, requiring training on labeled examples
and manually selected counters. Bronevetsky et al. [23] mon-
itor state transitions in MPI applications, and observe timing
and probabilities of state transitions to build a statistical model.
Their method requires no domain knowledge, but is limited
to MPI-based applications and requires potentially intrusive
monitoring. It also requires training on sample runs of the
monitored application to achieve high accuracy. Sahoo et
al. [7] compare three approaches to failure event prediction:
rule-based, Bayesian network, and time series analysis. They
successfully apply their methods to a 350-node cluster for
a period of one year. Their methods are supervised and
furthermore rely on substantial knowledge of the monitored
system. Bodı́k et al. [4] produce fingerprints from aggregate
counters that describe the state of the entire datacenter, and
use these fingerprints to identify system crises. As with other
supervised techniques, the approach requires labeled examples.
The authors present quick detection of system failures that
have already occured, whereas we focus on detection of latent
faults ahead of machine failures. Cohen et al. [9] induce
a tree-augmented Bayesian network classifier. Although this
approach does not require domain knowledge other than a
labeled training set, the classifier is sensitive to changing
workloads. Ensembles of models are used in [24] to reduce
the sensitivity of the former approach to workload changes,
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Fig. 7. Performance on types of synthetic latent faults

at the cost of decreased accuracy when there are too many
failure types ([25]).

Palatin et al. [1] propose sending benchmarks to servers
in order to find execution outliers. Like our method, their
approach is based on outlier detection, is unsupervised, and
requires no domain knowledge. However, through our interac-
tion with system architects we have learned that they consider
this approach intrusive, because it requires sending jobs to
be run on the monitored hosts, thus essentially modifying the
running service. Kasick et al. [13] analyze selected counters
using unsupervised histogram and threshold-based techniques.
Their assumptions of homogenous platforms and workloads
are also similar to ours. However they consider distributed file
systems exclusively, relying on expert insight and carefully
selected counters. Our technique requires no knowledge and
works for all domains.

There are several unsupervised textual console log analysis
methods. Oliner et al. [10] present Nodeinfo: an unsuper-
vised method that detects anomalies in system messages by
assuming, as we do, that similar machines produce similar
logs. Xu et al. [12] analyze source code to parse console log
messages and use principal component analysis to identify
unusual message patterns. Lou et al. [11] represent code flow
by identifying linear relationships in counts of console log
messages. Unlike [10], [11], our method has strong statistical
basis that can guarantee performance, and it requires no tuning.
All three techniques focus on the unusual occurrences of tex-
tual messages, while our method focuses on numerical values
of periodic events. Furthermore, we focus on early detection
of latent faults in either hardware or software. Finally, console
logs analysis is infeasible in large-scale services with high
transaction volume.

VI. CONCLUSIONS

While current approaches focus on the identification of
failures that have already occurred, latent faults manifest
themselves as aberrations in some of the machines’ counters,
aberrations that will eventually lead to actual failure. Although
our experiments show that latent faults are common even in
well-managed datacenters, we are, as far as we know, the first
to address this issue.

We introduce a novel framework for detecting latent faults
that is agile enough to be used across different systems and to
withstand changes over time. We proved guarantees on the
false detection rates and evaluated our methods on several
types of production services. Our methods were able to detect
many latent faults days and even weeks ahead of rule-based
watchdogs. We have shown that our approach is versatile; the
same tests were able to detect faults in different environments
without having to retrain or retune them. Our tests handle
workload variations and service updates naturally and without
intervention. Even services built on virtual machines are
monitored successfully without any modification. The scalable
nature of our methods allows infrastructure administrators to
add as many counters of service-sensitive events as they wish
to. Everything else in the monitoring process will be taken
care of automatically with no need for further tuning.

In a larger context, the open question addressed in this paper
is whether large infrastructures should be prepared to recover
from “unavoidable failures,” as is commonly suggested. Even
when advanced recovery mechanisms exist, they are often not
tested due to the risk involved in testing live environments.
Indeed, advanced recovery (beyond basic failover) testing
of large-scale systems is extremely complicated and failure
prone, and rarely covers all faulty scenarios. Consequently,



some outages of Amazon EC2 1, Google’s search engine, and
Facebook, and even the Northeast power blackout of 2003,
were attributed to the cascading recovery processes, which
were interfering with each other during the handling of a local
event. It is conceivable that there exist large systems whose
recovery processes have never been tested properly.

Like [3], we propose an alternative: proactively treating
latent faults could substantially reduce the need for recovery
processes. We therefore view this work as a step towards more
sensitive monitoring machinery, which will lead to reliable
large-scale services.

ACKNOWLEDGMENTS

This work was conducted while Moshe Gabel and Assaf
Schuster were visiting Microsoft Research. The authors wish
to thank the EU LIFT project, supported by the EU FP7
program.

REFERENCES

[1] N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff, “Mining for
misconfigured machines in grid systems,” in Proc. SIGKDD, 2006.

[2] E. B. Nightingale, J. R. Douceur, and V. Orgovan, “Cycles, cells
and platters: An empirical analysis of hardware failures on a million
consumer pcs,” in Proc. EuroSys, 2011.

[3] A. B. Nagarajan and F. Mueller, “Proactive fault tolerance for HPC with
xen virtualization,” in Proc. ICS, 2007.

[4] P. Bodı́k, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen,
“Fingerprinting the datacenter: Automated classification of performance
crises,” in Proc. EuroSys, 2010.

[5] H. Chen, G. Jiang, and K. Yoshihira, “Failure detection in large-scale
internet services by principal subspace mapping,” IEEE Trans. Knowl.
Data Eng., 2007.

[6] M. Isard, “Autopilot: automatic data center management,” SIGOPS Oper.
Syst. Rev., 2007.

[7] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R. Vi-
lalta, and A. Sivasubramaniam, “Critical event prediction for proactive
management in large-scale computer clusters,” in Proc. SIGKDD, 2003.

[8] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer, “Failure
diagnosis using decision trees,” in Proc. ICAC, 2004.

[9] I. Cohen, M. Goldszmidt, T. Kelly, and J. Symons, “Correlating in-
strumentation data to system states: A building block for automated
diagnosis and control,” in Proc. OSDI, 2004.

[10] A. J. Oliner, A. Aiken, and J. Stearley, “Alert detection in system logs,”
in Proc. ICDM, 2008.

[11] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants from
console logs for system problem detection,” in Proc. USENIXATC, 2010.

[12] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proc. SOSP,
2009.

[13] M. P. Kasick, J. Tan, R. Gandhi, and P. Narasimhan, “Black-box problem
diagnosis in parallel file systems,” in Proc. FAST, 2010.

[14] C. McDiarmid, “On the method of bounded differences,” Surveys in
Combinatorics, 1989.

[15] W. J. Dixon and A. M. Mood, “The statistical sign test,” Journal of the
American Statistical Association, 1946.

[16] R. H. Randles, “A distribution-free multivariate sign test based on
interdirections,” Journal of the American Statistical Association, 1989.

[17] J. Tukey, “Mathematics and picturing data,” in Proc. ICM, 1975.
[18] T. M. Chan, “An optimal randomized algorithm for maximum Tukey

depth,” in Proc. SODA, 2004.
[19] J. A. Cuesta-Albertos and A. Nieto-Reyes, “The random Tukey depth,”

Journal of Computational Statistics & Data Analysis, 2008.
[20] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying

density-based local outliers,” SIGMOD Rec., 2000.
[21] C. D. Manning, P. Raghavan, and H. Schüze, An Introduction to
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