
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

On the Equivalence of the LC-KSVD
and the D-KSVD Algorithms

Igor Kviatkovsky, Moshe Gabel,
Ehud Rivlin, Senior Member, IEEE
and Ilan Shimshoni, Member, IEEE

Abstract—Sparse and redundant representations, where signals are
modeled as a combination of a few atoms from an overcomplete dictio-
nary, is increasingly used in many image processing applications, such
as denoising, super resolution, and classification. One common problem
is learning a “good” dictionary for different tasks. In the classification
task the aim is to learn a dictionary that also takes training labels into
account, and indeed there exist several approaches to this problem. One
well-known technique is D-KSVD, which jointly learns a dictionary and a
linear classifier using the K-SVD algorithm. LC-KSVD is a recent varia-
tion intended to further improve on this idea by adding an explicit label
consistency term to the optimization problem, so that different classes
are represented by different dictionary atoms. In this work we prove
that, under identical initialization conditions, LC-KSVD with uniform atom
allocation is in fact a reformulation of D-KSVD: given the regularization
parameters of LC-KSVD, we give a closed-form expression for the
equivalent D-KSVD regularization parameter, assuming the LC-KSVD’s
initialization scheme is used. We confirm this by reproducing several of
the original LC-KSVD experiments.

Index Terms—Discriminative dictionary learning, Label consistent K-
SVD, Discriminative K-SVD, equivalence proof.

✦

1 INTRODUCTION

Sparse and redundant representations have been success-
fully applied to solve various problems in image processing
and computer vision, such as image denoising [4], image
inpainting [5], super resolution [15] and classification [14].
The fundamental idea behind all these works is repre-
senting signals using a sparse combination of atoms from
large (overcomplete) dictionaries. It was shown that using
a dictionary learned from the actual set of data samples
rather than building it using a predefined basis, such as
redundant Haar, results in an improved performance. The
Method of Optimal Directions (MOD) [6] and the K-SVD [1]
algorithms address exactly this issue of efficiently learning
overcomplete dictionaries from data.

Following the success of signal reconstruction tech-
niques based on dictionary learning, a new direction has
emerged in recent years: learning dictionaries which also
facilitate classification. Given a set of training signals and
associated labels, the aim is to learn a dictionary and a classi-
fier that can accurately predict the label of future test signals.
While the classical problem of dictionary learning strives

• I. Kviatkovsky, M. Gabel and E. Rivlin are with the Department of
Computer Science, Technion – Israel Institute of Technology, Technion
City, Haifa 32000, Israel.
E-mail: {kviat, mgabel, ehudr}@cs.technion.ac.il

• I. Shimshoni is with the Department of Information Systems, University
of Haifa, Carmel Mount, Rabin building, Haifa 31905, Israel.
E-mail: ishimshoni@mis.haifa.ac.il.

to minimize the signals’ reconstruction error, learning algo-
rithms for dictionaries used for classification also optimize
for discriminative power. Practically speaking, unlike the
classical setting where only the training samples (signals)
are used, in a supervised learning setting the class labels
corresponding to each signal are also taken into account.

1.1 Background

Supervised dictionary learning methods differ in the way
they exploit class labels. The most straightforward approach
is to learn separate dictionaries using samples correspond-
ing to each class, and then to classify the test signal accord-
ing to its reconstruction error using each one of these per-
class dictionaries. In SRC [14] this strategy is applied for the
problem of face recognition, showing promising results.

Rather than using a pure reconstructive approach, Mairal
et al. [11] propose to learn the per-class dictionaries in a
discriminative approach by adding a classification loss term
to the dictionary learning optimization task. The optimiza-
tion problem is solved by alternately finding sparse repre-
sentation given a dictionary, then updating the dictionary
by minimizing a weighted combination of both reconstruc-
tive and discriminative terms, using the sparse represen-
tations (codes). Although this procedure is reminiscent of
the classical K-SVD algorithm, they are quite different, since
the dictionary update stage includes a discriminative term
while the sparse coding stage does not. The classification
loss was measured using a hard-to-optimize logistic loss
function. Additional drawbacks of this approach are that it
does not scale well with the number of classes, and is highly
sensitive to the choice of weighting parameters, balancing
between the reconstructive and the discriminative terms. On
the contrary, Pham and Venkatesh [13] reported competitive
results learning a single dictionary for all classes and a much
simpler (linear) classifier using a similar iterative procedure.
Zhang and Li [17] revised this approach and proposed the
Discriminative K-SVD (D-KSVD) algorithm. In D-KSVD the
problem of learning a single dictionary for all classes and a
linear classifier is formulated as a joint optimization prob-
lem, solved using plain K-SVD. The authors showed that
D-KSVD outperforms other competing methods including
the SRC method.

In order to further improve the discriminative abilities
of the learned linear classifier, Jiang et al. [10] proposed
incorporating an additional term, called the discriminative
sparse-code error, into the D-KSVD problem formulation.
The resulting algorithm was named Label Consistent K-
SVD (LC-KSVD) and the motivation for adding this term,
given in [10], was to “encourage the signals from the same
class to have similar sparse codes and those from different
classes to have dissimilar sparse codes”. While the idea
seems reasonable, we show in this work that adding the
discriminative sparse-code error term to the formulation of
D-KSVD and solving it using the plain K-SVD algorithm,
results in exactly the same classifier obtained by solving
the original problem formulated in the D-KSVD, using an
appropriate regularization parameter. Moreover, this term
complicates parameter tuning by introducing an additional
unnecessary regularization parameter and needlessly in-
creases the runtime of the training phase due to an increase
in the dimensionality of the K-SVD input.
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1.2 Our Contribution

D-KSVD and LC-KVSD are commonly treated as two dif-
ferent algorithms. Indeed, many recent publications on face
and object recognition (e.g., [2], [12], [16]) evaluate and com-
pare their performance. In this work we correct this common
misconception. We prove that LC-KSVD with a uniform
allocation of labels to dictionary atoms, as proposed in [10]
and commonly used in practice, is in fact exactly equivalent
to D-KSVD with a proper choice of the regularization param-
eter and using the LC-KSVD’s initialization scheme. This
is further confirmed by reproducing the evaluation in [10]
using the same datasets.

An immediate conclusion following from this result is
that, although the authors of LC-KSVD were the first to coin
the term “label consistency”, it is actually an inherent prop-
erty of previously existing supervised dictionary learning
algorithms such as D-KSVD, although not explicitly stated
in those terms.

The rest of the paper is organized as follows. Section 2
summarizes the K-SVD, the D-KSVD and the LC-KSVD
algorithms. Section 3 presents the proof for the equivalence
of D-KSVD and LC-KSVD. Section 4 presents empirical
validation and Section 5 concludes with a short discussion
and directions for future work.

2 LEARNING A LINEAR CLASSIFIER WITH K-SVD

In this section we define the notations and summarize
the D-KSVD [17] and the LC-KSVD [10] algorithms. Since
both algorithms heavily rely on the well-known K-SVD [1]
algorithm, we first present it in a nutshell and describe the
most trivial way to use it for classification.

Let Y ∈ R
n×N denote a set of N n-dimensional training

signals with a corresponding label matrix H ∈ R
m×N ,

where m is the number of classes. Each column hi of the
label matrix H encodes the class label of sample i using the
position of the non-zero value. For example, if the label of
sample yi is 3, then hi = [0, 0, 1, 0, . . . , 0]T .

The original K-SVD algorithm, introduced by Aharon et
al. [1] and summarized in Algorithm 1, solves the following
optimization problem:

〈D∗,X∗〉 =argmin
D,X

‖Y −DX‖2F

s.t. ‖xi‖0 ≤ T0, i = 1, . . . , N,
(1)

where T0 is the sparsity constraint, making sure that each
sparse representation xi contains not more than T0 non-
zero entries. The dictionary D ∈ R

n×K , where K > n

is the number of atoms in the dictionary, and the sparse
codes X ∈ R

K×N , obtained by the K-SVD solution of Eq. 1
minimize the signals’ reconstruction error under the sparsity
constraint T0. Our goal, however, is to use the given label
matrix, H, to learn a linear classifier W ∈ R

m×K taking
in a signal’s sparse representation, xi, and returning the
most probable class this signal belongs to. A straightforward
approach, mentioned in [13], [17], is to solve the following
linear ridge regression problem:

W = argmin
W

‖H−WX∗‖2F + λ ‖W‖2F , (2)

where λ is the regularization parameter. This problem has
the following closed form solution:

W = HX∗T
(

X∗X∗T + λI
)−1

. (3)

The drawback of this solution is that learning the classifier
W is done independently from learning the dictionary D

and the sparse codes X, and is thus suboptimal: the dictio-
nary learning procedure does not take into account the fact
that its output will be used to train a classifier.

Algorithm 1 K-SVD

Input: Y ∈ R
n×N , D(0) ∈ R

n×K , T0.
Output: D(k) ∈ R

n×K , X(k) ∈ R
K×N .

Initialize: Set k = 1 and normalize the columns of D(0).
Main Iteration: Repeat until convergence
1. Sparse Coding Stage: Use any pursuit algorithm (e.g.,

OMP [3]) to compute the representation vectors xi for
each example yi, by approximating the solution of

x
(k)
i = argmin

xi

∥
∥
∥yi −D(k−1)xi

∥
∥
∥

2

2
, s.t. ‖xi‖0 ≤ T0,

for i = 1, 2, . . . , N .
2. K-SVD Dictionary-Update Stage: Update each col-

umn j0 = 1, 2, . . . ,K in D ≡ D(k−1):
2.1. Define the group of example signals that use the

atom d
j0

, Ωj0 =
{

i|1 ≤ i ≤ N,x
(k)
i [j0] 6= 0

}

.

2.2. Compute the overall representation error matrix,
Ej0 :

Ej0 = Y −
∑

j 6=j0

djx
(k)
T

j ,

where x
(k)
T

j are the j’th rows of matrix X(k).
2.3. Restrict Ej0 by choosing only the columns corre-

sponding to Ωj0 , and obtain ER
j0

.

2.4. Apply SVD decomposition ER
j0

= U∆VT . Up-
date the dictionary atom dj0 = u1, and the rep-

resentations by x
(k)
T

Rj0 = ∆[1, 1]v1.
3. D(k) ← D, k ← k + 1.

2.1 Discriminative K-SVD (D-KSVD)

To overcome the sub-optimality of the K-SVD algorithm for
classification discussed above, [17] proposes to incorporate
the classification error term directly into the dictionary
learning formulation in Eq. 1, causing the K-SVD algorithm
to simultaneously learn the dictionary and the classifier.
The authors formulate the joint dictionary-classifier learning
problem as follows:

〈D∗,W∗,X∗〉 =argmin
D,W,X

‖Y −DX‖2F + γ ‖H−WX‖2F
s.t. ∀i, ‖xi‖0 < T0

=argmin
D,W,X

∥
∥
∥
∥

[
Y√
γH

]

−
[

D√
γW

]

X

∥
∥
∥
∥

2

F

s.t. ∀i, ‖xi‖0 < T0,
(PD-KSVD)

where γ is a regularization parameter balancing the contri-
bution of the classification error to the overall objective. The
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authors show experimentally that this indeed increases the
discriminative properties of the resulting classifier. The D-
KSVD algorithm is summarized in Algorithm 2.

Algorithm 2 Discriminative K-SVD

Input: Y ∈ R
n×N , H ∈ R

m×N , γ, T0.
Output: D ∈ R

n×K , W ∈ R
m×K , X ∈ R

K×N .
1. Initialize:

1.1. Compute D(0) using an initialization scheme of
choice, e.g., by concatenating class-specific dictio-
naries found with K-SVD.

1.2. Compute X(0) for Y and D(0) using sparse cod-
ing.

1.3. Compute W(0) using Eq. (3) for λ = 1:

W(0) = Hz(0),

where z(0) = X(0)T (X(0)X(0)T + I)−1.

2. K-SVD: Solve PD-KSVD; use
(

D(0)T ,
√
γW(0)T

)T

to

initialize the dictionary.
3. Normalize:

3.1. D←
{

d1

‖d1‖2

, d2

‖d2‖2

, . . . , dK

‖dK‖2

}

3.2. W←
{

w1

‖d1‖2

, w2

‖d2‖2

, . . . , wK

‖dK‖2

}

2.2 Label Consistent K-SVD (LC-KSVD)

In a follow-up work by Jiang et al. [10] the authors propose
to incorporate a discriminative sparse-code error term enforc-
ing label consistency, encouraging similarity among sparse
representations of signals belonging to the same class, into
the D-KSVD formulation PD-KSVD. The authors claimed that
this additional term improves the accuracy of the linear
classifier obtained by D-KSVD. The optimization problem
posed by LC-KSVD is:

〈D∗,W∗,A∗,X∗〉 = argmin
D,W,A,X

‖Y −DX‖2F + α ‖Q−AX‖2F

+ β ‖H−WX‖2F
s.t. ∀i, ‖xi‖0 < T0

= argmin
D,W,A,X

∥
∥
∥
∥
∥
∥





Y√
αQ√
βH



−





D√
αA√
βW



X

∥
∥
∥
∥
∥
∥

2

F

s.t. ∀i, ‖xi‖0 < T0,
(PLC-KSVD)

where Q ∈ R
K×N is the discriminative sparse codes matrix

promoting label consistency, A ∈ R
K×K is a linear trans-

formation, and α and β are the regularization parameters
balancing the classification and the discriminative sparse-
code errors contribution to the overall objective, respectively.
The LC-KSVD algorithm is summarized in Algorithm 3.

The authors of [10] proposed to allocate dictionary atoms
to classes uniformly – p atoms for each one of the m

classes. Assuming that k training samples for each class are
provided, the label consistency matrix Q has the following

Algorithm 3 Label Consistent K-SVD

Input: Y ∈ R
n×N , Q ∈ R

K×N , H ∈ R
m×N , α, β, T0.

Output: D ∈ R
n×K , A ∈ R

K×K , W ∈ R
m×K ,

X ∈ R
K×N .

1. Initialize:
1.1. Compute D(0) using an initialization scheme of

choice, e.g., by concatenating class-specific dictio-
naries found with K-SVD as reported in [10]

1.2. Compute X(0) for Y and D(0) using sparse cod-
ing.

1.3. Compute A(0) using Eq. (3) for λ = 1:

A(0) = Qz(0),

where z(0) = X(0)T (X(0)X(0)T + I)−1.
1.4. Compute W(0) using Eq. (3) for λ = 1:

W(0) = Hz(0).

2. K-SVD: Solve PLC-KSVD; use
(

D(0)T ,
√
αA(0)T ,

√
βW(0)T

)T

to initialize the

dictionary.
3. Normalize:

3.1. D←
{

d1

‖d1‖2

, d2

‖d2‖2

, . . . , dK

‖dK‖2

}

3.2. A←
{

a1

‖d1‖2

, a2

‖d2‖2

, . . . , aK

‖dK‖2

}

3.3. W←
{

w1

‖d1‖2

, w2

‖d2‖2

, . . . , wK

‖dK‖2

}

block structure:

Q =








1 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1







,

where 1 ≡ 1p×k and 0 ≡ 0p×k. For example, for m = 3,
p = 2, k = 2 (K = mp = 6, N = mk = 6),

Q =











1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1











.

2.3 Dictionary Initialization

Both D-KSVD and LC-KSVD require an initialization step
to set the initial dictionary D(0) (step 1.1 in Algorithms 2
and 3). D-KSVD learns a single dictionary using data from
all m classes while LC-KSVD learns m class-specific dictio-
naries which are later concatenated into a single dictionary.
In both cases the learning is performed using the original
K-SVD where the dictionary is initialized with the actual
data samples and not randomly as in the original K-SVD.
While the initialization steps of these two algorithms is
different, and it is not certain whether or not any of them
is preferable in general, for the sake of our proof we only
assume that both algorithms share the same initialization
step. Besides being identical, no other constraints are im-
posed on the algorithms’ initialization steps (for example,
our proof holds even when random initialization is used).
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In all our experiments, reported in Section 4, we chose to
use the initialization step of LC-KSVD.

3 PROOF OF EQUIVALENCE BETWEEN THE LC-
KSVD AND THE D-KSVD ALGORITHMS

We now show that the problem PLC-KSVD is identical
to PD-KSVD for a proper choice of the regularization pa-
rameter γ. We assume that the initialization steps of both
algorithms (step 1.1) are identical and that LC-KSVD uses
the uniform atom allocation scheme described in [10]1.

Theorem 3.1. Let us assume that both Algorithms 2 and 3
initialize D(0) with an identical dictionary D (step 1.1). Let
〈D∗,W∗,A∗,X∗〉 be the solution of PLC-KSVD (step 2 of Al-
gorithm 3) for Y ∈ R

n×N , Q ∈ R
K×N , H ∈ R

m×N , α, β
and T0, where n is the sample dimension, N is the number of
training samples, m is the number of classes, K = mp is the
dictionary size while p is the number of dictionary atoms allocated
per class, then 〈D∗,W∗,X∗〉 is the solution of PD-KSVD (step 2
of Algorithm 2) for Y, H, γ and T0, where γ = pα+ β.

Proof. First we reformulate PLC-KSVD into a form facilitating
our proof. Let us define a permutation over Q’s row indices,
π : {1, . . . ,mp} → {1, . . . ,mp}, as:

π(i) = ((i− 1) mod m)p+

⌊
i− 1

m

⌋

+ 1.

We now define the “reshuffled” matrix Q as Q̃ ≡ PπQ,
where Pπ is the permutation matrix corresponding to per-
mutation π. The purpose of this permutation is to reshuffle

the rows of Q so that it has the form Q̃ =




HT , . . . ,HT

︸ ︷︷ ︸

×p






T

.

Thus, for the matrix Q given in the example in Section 2.2:

Q̃ =











1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1











=

[
H

H

]

.

Define the matrix P ∈ R
(n+K+m)×K as:

P =





In 0 0

0 Pπ 0

0 0 Im



 ,

1. Though non-uniform allocation schemes are possible in theory,
such extensions are beyond the scope of this work as well as the
original LC-KSVD paper [10]. In practice the vast majority of works use
LC-KSVD with uniform allocation, as described in the original paper.
However, we note that D-KSVD can achieve similar effects as the non-
uniform atom allocation of LC-KSVD by replacing the L2 classification
error regularizer γ by Tikhonov regularization matrix Γ, assigning dif-
ferent weight to classification errors resulting from instances belonging
to different classes. As with non-uniform extensions to LC-KSVD, the
classification performance of such schemes must be evaluated. This is
beyond the scope of this work.

where In and Im are the identity matrices of size n and m,
respectively. Since P is orthonormal, the following holds2:

argmin
D,W,A,X

∥
∥
∥
∥
∥
∥





Y√
αQ√
βH



−





D√
αA√
βW



X

∥
∥
∥
∥
∥
∥

2

F

=

s.t. ∀i, ‖xi‖0 < T0

argmin
D,W,A,X

∥
∥
∥
∥
∥
∥

P





Y√
αQ√
βH



−P





D√
αA√
βW



X

∥
∥
∥
∥
∥
∥

2

F

=

s.t. ∀i, ‖xi‖0 < T0

argmin
D,W,A,X

∥
∥
∥
∥
∥
∥





Y√
αQ̃√
βH



−





D√
αÃ√
βW



X

∥
∥
∥
∥
∥
∥

2

F

s.t. ∀i, ‖xi‖0 < T0,

where Q̃ ≡ PπQ =




HT , . . . ,HT

︸ ︷︷ ︸

×p






T

and Ã ≡ PπA.

We can now reformulate PLC-KSVD as follows:
〈

D̃∗,X∗
〉

=argmin
D̃,X

∥
∥
∥Ỹ − D̃X

∥
∥
∥

2

F

s.t. ∀i, ‖xi‖0 < T0,

(P̃LC-KSVD)

where

Ỹ =




YT ,

√
αHT , . . . ,

√
αHT

︸ ︷︷ ︸

×p

,
√

βHT






T

and

D̃ =
(

DT ,
√
αÃT ,

√

βWT
)T

.

Since the problems PLC-KSVD and P̃LC-KSVD are equiv-
alent, 〈D∗,W∗,A∗,X∗〉 is the solution of PLC-KSVD if

and only if
〈

D̃∗,X∗
〉

is the solution of P̃LC-KSVD, where

D̃∗ =
(

D∗T ,
√
αÃ∗T ,

√
βW∗T

)T

and Ã∗ ≡ PπA
∗. From

Lemma 3.2 (described below) it follows that

D̃∗ =




D∗T ,

√
αW∗T , . . . ,

√
αW∗T

︸ ︷︷ ︸

×p

,
√

βW∗T






T

,

meaning that A is a redundant variable in PLC-KSVD. Thus,
for the given Y, Q, H, α, β and T0:

〈D∗,W∗,X∗〉 =argmin
D,W,X

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥










Y√
αH
...√
αH√
βH










−










D√
αW
...√
αW√
βW










X

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

F

s.t. ∀i, ‖xi‖0 < T0

γ=pα+β
= argmin

D,W,X

∥
∥
∥
∥

[
Y√
γH

]

−
[

D√
γW

]

X

∥
∥
∥
∥

2

F

s.t. ∀i, ‖xi‖0 < T0,

2. Recall that the Frobenius norm is invariant under unitary transfor-
mations: ‖PA‖

F
= ‖A‖

F
.
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which is exactly the definition of the PD-KSVD problem.

Lemma 3.2. If D̃∗ =
(

D∗T ,
√
αÃ∗T ,

√
βW∗T

)T

is

the dictionary obtained by solving P̃LC-KSVD using D̃(0) =
(

D(0)T ,
√
αÃ(0)T ,

√
βW(0)T

)T

as the initial dictionary where

D(0) is set to D using an initialization scheme of choice, and
A(0) and W(0) are obtained using steps 1.2–1.4 of Algorithm 3,
Ã∗ ≡ PπA

∗, Ã(0) ≡ PπA
(0) and Pπ is the permutation ma-

trix defined in Theorem 3.1, then Ã∗ has the following structure:

Ã∗ =




W∗T , . . . ,W∗T

︸ ︷︷ ︸

×p






T

.

Proof. We prove by induction on k, the K-SVD’s
iteration number, that the dictionary obtained by
the K-SVD algorithm (Algorithm 1) is of the form

D̃(k) =
(

D(k)T ,
√
αÃ(k)T ,

√
βW(k)T

)T

, where

Ã(k) =




W(k)T , . . . ,W(k)T

︸ ︷︷ ︸

×p






T

.

Basis. For k = 0,

Ã(0) = PπA
(0) = PπQz0 = Q̃z0 =

=




(Hz0)

T , . . . , (Hz0)
T

︸ ︷︷ ︸

×p






T

=




W(0)T , . . . ,W(0)T

︸ ︷︷ ︸

×p






T

,

due to the initialization step of the LC-KSVD algorithm (see
steps 1.3, 1.4 of Algorithm 3).

Iteration Step. Assuming that:

D̃(k−1) = (D(k−1)T ,
√
αW(k−1)T , . . . ,

√
αW(k−1)T ,

√

βW(k−1)T )T

we show that:

D̃(k) =
(

D(k)T ,
√
αW(k)T , . . . ,

√
αW(k)T ,

√

βW(k)T
)T

,

by considering the k’th iteration step of the K-SVD
algorithm.

Sparse coding step (step 1 in Algorithm 1). Let
X̃(k) denote the sparse codes obtained using any pursuit
algorithm, such as the OMP [3] algorithm:

X̃(k) = argmin
X

∥
∥
∥Ỹ − D̃(k−1)X

∥
∥
∥

2

F
, s.t. ∀i, ‖xi‖0 ≤ T.

K-SVD Dictionary Update Step (step 2 in Algorithm 1).
For j0 = 1, 2, . . . ,K :

Let Ej0 = Ỹ −∑

j 6=j0
d̃
(k−1)
j x̃

(k)
T

j where x̃
(k)
T

j is the j’th

row of matrix X̃(k). Thus,

Ej0 =




EY

T ,
√
αEH

T , . . . ,
√
αEH

T

︸ ︷︷ ︸

×p

,
√

βEH
T






T

,

where
EY = Y −

∑

j 6=j0

d
(k−1)
j x̃

(k)
j

T

and
EH = H−

∑

j 6=j0

w
(k−1)
j x̃

(k)
j

T .

Let ER
j0

denote the restriction (sub-matrix) of Ej0 obtained
by step 2.3 of Algorithm 1. Applying SVD decomposition
ER

j0
= U∆VT and using Lemma 3.3 (described below) we

get that:

d̃
(k)
j0

= u1 =




d

(k)
j0

T
,
√
αw

(k)
j0

T
, . . . ,

√
αw

(k)
j0

T

︸ ︷︷ ︸

×p

,
√

βw
(k)
j0

T






T

.

Eventually, after updating K dictionary atoms,

D̃(k) =
(

D(k)T ,
√
αW(k)T , . . . ,

√
αW(k)T ,

√

βW(k)T
)T

,

concluding our proof by induction.
We proved that at the end of the final iteration of the

K-SVD algorithm, the solution is of the following form:

D̃∗ =
(

D∗T ,
√
αW∗T , . . . ,

√
αW∗T ,

√

βW∗T
)T

and since we assumed that the solution is of the form(

D∗T ,
√
αÃ∗T ,

√
βW∗T

)T

, we conclude that3 :

Ã∗ =




W∗T , . . . ,W∗T

︸ ︷︷ ︸

×p






T

.

Lemma 3.3. Let u1 denote the first left singular vector of matrix

A =
(
DT ,BT , aBT

)T
, where D ∈ R

n×N , B ∈ R
m×N and

a > 0, then u1 =
(
dT ,uT , auT

)T
, where d ∈ R

n and u ∈ R
m.

Proof. The proof is based on the power method [9]. Let v
(0)
1 ∈

R
n and v

(0)
2 ,v

(0)
3 ∈ R

m denote arbitrary vectors and let

v(0) ≡
(

v
(0)
1

T
,v

(0)
2

T
,v

(0)
3

T
)T

. Let us premultiply v(0) by

AAT from the left to obtain v(1) ≡
(

v
(1)
1

T
,v

(1)
2

T
,v

(1)
3

T
)T

:

v(1) = AATv(0) =





DDT DBT aDBT

BDT BBT aBBT

aBDT aBBT a2BBT



v(0)

=





DDTv1 +DBTv2 + aDBTv3

BDTv1 +BBTv2 + aBBTv3

a
(
BDTv1 +BBTv2 + aBBTv3

)



 .

Note that v
(1)
3 = av

(1)
2 . Repeating the process to obtain

v(2) = AATv(1) preserves this property and therefore

v
(k)
3 = av

(k)
2 for all values of k. From the power method we

know that for k → ∞, v(k) is the first eigenvector of AAT

and therefore is also the first left singular vector of A. Thus,

u1 =
(
dT ,uT , auT

)T
, where d = v

(k)
1 and u = v

(k)
2 .

Corollary 3.4. Given D-KSVD that uses the same initialization
scheme for D(0) in step 1.1 as reported in the original paper by

3. Note that the normalization step of the LC-KSVD algorithm (see
step 3 in Algorithm 3) scales each one of the atoms independently
of each other and therefore does not have any impact on the above
analysis.
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Jiang et al. [10], i.e., the concatenation of class-specific dictionaries
(see Section 2.3), and given that LC-KSVD allocates an equal
number of p atoms per class and γ = pα + β, the outputs of
D-KSVD and that of the original LC-KSVD [10] are identical.

4 EMPIRICAL VALIDATION

To verify the derivation presented in Section 3, we repeated
the LC-KSVD and D-KSVD comparison using two of the
datasets (the YaleB face recognition dataset [8] and the
Caltech101 dataset [7]) and parameter values from [10], with
γ = pα + β. Across all experiments D-KSVD obtained the
exact same dictionaries and classifiers as LC-KSVD, up to
numeric precision (10−13).

LC-KSVD adds p × m rows to the input matrix of the
K-SVD step, compared to D-KSVD. To assess the additional
computational burden, caused by this addition of rows, we
measured the training phase runtime for dictionaries of
various sizes (K) using the code provided by the authors
of [10]. Figure 1 presents these results for the Caltech101
dataset. Similarly to [10] we trained dictionaries of sizes
102 × p for p ∈ {5, 10, 15, 20, 25, 30}. The runtime was
measured on a 2.60GHz Intel Core i7 machine. As can be
seen from Figure 1 the advantage of D-KSVD is especially
measurable for high values of p, where one can save as much
as 40− 45% of the runtime in the training phase.

Dictionary Size
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)
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1000

2000

3000

4000

5000
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Fig. 1. The runtime of LC-KSVD compared to D-KSVD for dictionaries
of various size.

Another advantage of D-KSVD is that only a single
regularization parameter, γ, has to be determined by cross-
validation as opposed to α and β for LC-KSVD, reducing
the computational burden from a 2D grid search to a 1D
line search.

5 CONCLUSIONS AND FUTURE WORK

In this work we mathematically proved the equivalence of
the LC-KSVD and the D-KSVD algorithms up to a proper
choice of regularization parameters, for which we give a
closed form expression. Our empirical evaluation validates
this result, and shows that D-KSVD has superior run time.

We conclude that the D-KSVD algorithm is preferable
due to its simplicity and computational efficiency, compared
to the LC-KSVD algorithm. Future work should validate
that “label consistency” indeed facilitates learning linear

classifiers based on sparse representations, and, if so, de-
velop more effective ways to incorporate the “label consis-
tency” terms into the objective.
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