It's Not What Machines Can Learn, It's What We Cannot Teach

Supplemental Material

Gal Yehuda Moshe Gabel Assaf Schuster

Proof of Lemma 5.

Lemma 5. There exists an NP-hard language L_1 and a function $\delta(n) \rightarrow 0$ as $n \rightarrow \infty$, such that for any sufficiently long w generated by any randomized polynomial process,

$$\Pr[w \in L_1] \le \delta(n)$$

The proof is similar to the proof of Theorem 1 in (Itsykson et al., 2016). The main difference is that we construct a decidable language, in contrast to the language generated in (Itsykson et al., 2016).

Proof. For every n, the output of a randomized algorithm P is a random variable P_n : for $w \in \{0, 1\}^n$, $\Pr[P_n = w]$ is the probability that given the length n, P outputs w. Let $K \subseteq \{0, 1\}^n$ be a set of words of length n; $\Pr[P_n \in K]$ is the probability that a random word w drawn by P_n is in K.

Given two random variables X, Y such that X, Y take values in $\{0, 1\}^n$, the *statistical distance* between X and Y is defined as (Itsykson et al., 2016):

$$\Delta(X,Y) = \max_{K \subseteq \{0,1\}^n} |P[X \in K] - P[Y \in K]| .$$

Using Theorem 9 in (Itsykson et al., 2016) when $a = \frac{1}{2}$ and b = 1 we obtain the following corollary.

Corollary 6. For every randomized algorithm P that runs in time $O(n^{\log^{0.5} n})$ there exist infinitely many words that P can only generate with probability less than $\epsilon(n)$, where $\epsilon(n) \to 0$ as $n \to \infty$.

We construct the randomized algorithm P as follows. Let \mathcal{M} be an enumeration of all probabilistic Turing machines $\mathcal{M} = M_1, M_2, M_3, ...$, under a standard enumeration of Turing machines, and let g(n) be a function that satisfies $g(n)\epsilon(n) \to 0$ and $g(n) \to \infty$ (where $\epsilon(n)$ is the function from Corollary 6). Example of such function is $g(n) = \frac{1}{\log(\epsilon(n))}$. We define $\delta(n) = g(n)\epsilon(n)$, by the definition of $g(n), \delta(n) \to 0$.

On input *n*, the algorithm *P* uniformly chooses M_i for $1 \le i \le g(n)$ and runs M_i on the input *n* (with the random

bits M_i needs) for $O(n^{\log^{0.5} n})$ steps. If M_i returned a word w < n, P pads it with n - |w| zeros and returns the result. If M_i returned a word w > n, P trims |w| - n characters from w and returns it. Finally, if M_i did not halt, P returns $w = 1^n$.

P satisfies the following properties:

1. For every randomized polynomial algorithm P' and for every $w \in \{0, 1\}^n$ when n is large enough,

$$\Pr[P_n = w] \ge \frac{1}{g(n)} \Pr[P'_n = w]$$

2. P runs in time $O(n^{\log^{0.5} n})$.

We show that the first property holds as follows. Let P' be a randomized polynomial algorithm that runs in time $O(n^c)$, and let n_0 be the first index that P' appears in the enumeration \mathcal{M} . For w, $|w| = n \ge g(n_0)$ and $n^{\log^{0.5} n} \ge n^c$, the probability of P to generate w is at least the probability to choose the machine P', $\frac{1}{g(n)}$, multiplied by the probability that the machine P' generates w: $\Pr[P'_n = w]$. Note we give P' enough time to complete the computation by choosing n such that $n^{\log^{0.5} n} \ge n^c$.

The second property holds by the definition of P.

By Corollary 6 there exists a randomized algorithm P^* such that for infinitely many *n*'s $n_1, n_2, n_3, ...,$ it holds that $\Delta(P_n^*, P_n) \ge 1 - \epsilon(n)$. It means that for each such *n*, there exists a set of strings K_n such that $\Pr[P_n \in K_n] \le \epsilon(n)$.

Define L_1 as the union of all K_n .

Let $w \in L_1$ of length n for sufficiently large n, and let P' be a randomized polynomial algorithm.

$$\Pr[w = P'_n] \le g(n) \Pr[w = P_n] \tag{1}$$

$$\leq g(n)\epsilon(n)$$
 (2)

$$=\delta(n)\to 0. \tag{3}$$

Where (1) follows from the first property of P, (2) follows from the definition of L, and (3) is the definition of $\delta(n)$.

Additional Details on CQC

For reproducibility, we include full details of our case study on Conjunctive Query Containment (CQC).

Encoding Query Tokens Table 1 shows the mapping between query tokens and their representation as one-hot vectors.

Table 1. Token representation. Each token with index j is mapped to a vector with 1 in position j and all other elements are zero. The dictionary size and the length of the vectors is d = 42.

Туре	Tokens	Index range
Variables	x0 x32	6-11, 14-40
Relations	Q R0 R1	12, 5, 4
Operators	\wedge :	1, 13
Parentheses	()	2,3
Constants	0 1	41, 42

Sampling Balanced Query Pairs from μ We exploit the the phase transition phenomenon to define a parametric family of query pairs $\mu(m_1, m_2)$ such that sampling (p, q) from $\mu(m_1, m_2)$ with $m_1 \ge m_2$ guarantees the following:

- p has m_1 conjunctions and q has m_2 conjunctions.
- The probability that $p \subset q$ is approximately 0.5.
- The process for generating positive and negative examples is the same.

Intuitively, for a conjunctive query p with a fixed number of conjunctions, the fewer variables is uses, the more "constrained" it is. For example, let $p(x_1) = R_1(x_1, x_2, x_3)$ and $q(x_1) = R_1(x_1, x_1, x_2)$. While every tuple in R_1 will satisfy p, only tuples whose first and second element are the same will satisfy q.

Given a fixed set of relations R, we define the distribution G(X, m) over conjunctive queries with m conjunctions, where X is a set of variables as follows: first, choose m relations from R uniformly and with repetitions; then, conjunction variables for each conjunction uniformly and with repetitions from X. The *constraintness* of G(X, m) is defined as $\alpha = \frac{m}{n}$.

Let $p \sim G(X_1, m_1)$ and $q \sim G(X_2, m_2)$ be a query pair, and let α_1 and α_2 be the respective constraintness. We observe that the probability of $p \subseteq q$ depends on the ratio of α_2 and α_1 . When $\frac{\alpha_2}{\alpha_1} \gg c$ for a constant c, with high probability $p \subseteq q$, when $\frac{\alpha_2}{\alpha_1} \ll c$ with high probability $p \not\subseteq q$, and when $\frac{\alpha_2}{\alpha_1} \approx c$, the probability of $p \subseteq q$ is approximately 0.5. We empirically determined that for $m_1 \ge m_2$, $c \approx \frac{2}{15}$.

Finally, we define the distribution $\mu(m_1, m_2)$ over pairs of conjunctive queries (p, q) as sampling $p \sim G(X_1, m_1)$ and $q \sim G(X_2, m_2)$ with X_1 and X_2 such that $\frac{\alpha_2}{\alpha_1} \approx c$. Since positive and negative samples are generated with the same

structure and the same constraintness, syntactic features alone are unlikely to help classification.

Data Augmentation for Conjunctive Query Pairs Given a query q, we define the following rewrites:

- MergeVar (q): Pick two variables x, y ∈ vars(q), replace every occurrence of y by x.
- SplitVar(q): Pick a new variable $w \notin vars(q)$, and a variable $x \in vars(q)$. Each occurrence of x is unchanged with probability 0.5 or replaced with w.
- AddConj(q): Pick a conjunction R(l₁, l₂, l₃) and add it to q.
- DelConj(q): Pick a conjunction in p and remove it.
- Shuffle (q): Shuffle the order of conjunctions in p.

For (p,q) where $p \subseteq q$, we use the following set of class-preserving rewrites: (MergeVar(p), q), (p, SplitVar(q)), (AddConj(p), q), (p, DelConj(q)), (Shuffle(p), q), and (p, Shuffle(q)). For (p,q) where $p \not\subseteq q$, we use the following class-preserving rewrites: (p, MergeVar(q)), (SplitVar(p), q), (p, AddConj(q)), (Shuffle(p), q), and (p, Shuffle(q)).