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Abstract—Modern scale-out services are comprised of thou-
sands of individual machines, which must be continuously
monitored for unexpected failures. One recent approach to
monitoring is latent fault detection, an adaptive statistical
framework for scale-out, load-balanced systems. By periodi-
cally measuring hundreds of performance metrics and looking
for outlier machines, it attempts to detect subtle problems
such as misconfigurations, bugs, and malfunctioning hardware,
before they manifest as machine failures. Previous work on a
large, real-world Web service has shown that many failures
are indeed preceded by such latent faults.

Latent fault detection is an offline framework with large
bandwidth and processing requirements. Each machine must
send all its measurements to a centralized location, which is
prohibitive in some settings and requires data-parallel process-
ing infrastructure. In this work we adapt the latent fault de-
tector to provide an online, communication- and computation-
reduced version. We utilize stream processing techniques to
trade accuracy for communication and computation.

We first describe a novel communication-efficient online
distributed variance monitoring algorithm that provides a
continuous estimate of the global variance within guaranteed
approximation bounds. Using the variance monitor, we provide
an online distributed outlier detection framework for non-
stationary multivariate time series common in scale-out sys-
tems. The adapted framework reduces data size and central
processing cost by processing the data in situ, making it usable
in wider settings. Like the original framework, our adaptation
admits different comparison functions, supports non-stationary
data, and provides statistical guarantees on the rate of false
positives. Simulations on logs from a production system show
that we are able to reduce bandwidth by an order of magnitude,
with below 1% error compared to the original algorithm.
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I. INTRODUCTION

For large systems comprised of hundreds of machines
or more, it is unreasonable to assume that all machines
are working properly and are well configured. Monitoring
is essential, since unnoticed faults might accumulate and
eventually cause outages. Yet, the large number of machines
makes manual monitoring impractical. Instead, machines are
usually monitored by collecting and analyzing hundreds of
performance counters [1], [2] reported by various system

layers, from application-specific metrics (such as database
statistics) to general metrics (such as CPU utilization).

Many existing failure detectors are inflexible [3], and
most require centralizing the data in some form. Rule-
based failure detectors define a set of watchdogs [2] that
trigger an alert whenever specified counters cross prede-
fined thresholds. More advanced, supervised methods learn
system behavior models from historical logs [1], [4], but
are sensitive to workload changes and system updates [5].
Textual console log analysis in high performance computing
[6], [7] is more flexible, but maintaining such logs may be
impractical in high-volume systems where transactions are
very short, time-sensitive, and rapid; textual logs would be
immense – difficult to output, store and retrieve. Finally,
some unsupervised approaches [8], [9] rely on domain
insights and system knowledge, and therefore have limited
applicability.

Recent approaches to the monitoring problem [3], [9],
[10] focus on early detection and handling of performance
problems, or latent faults. These are outliers – machine
behaviors that could indicate a fault yet fly under the radar
of monitoring systems because they are not acute enough, or
were not anticipated by maintenance engineers. In previous
work [3] we provided evidence that latent faults are com-
mon, and presented a novel unsupervised outlier detection
framework for latent fault detection. In experiments on a
real-world production system comprised of 4500 machines,
we showed that over 20% of machine and software failures
were preceded by latent faults. Furthermore, we were able
to detect latent faults up to 14 days in advance of actual
failures with up to 70% precision and 2% false positive rate
– comparable to state of the art supervised techniques in
controlled settings [4]. The latent fault detector is adaptable,
requires no domain knowledge, no historical logs, and no
parameter tuning in the face of workload changes and
software updates. It provides guarantees on false positive
rates, it is non-intrusive, and it handles very large systems.

One drawback of the outlier detector is the high commu-
nication and processing costs, prohibitive in some settings.
Modern data centers are large, and so too are the resultant



counter logs – too large to centralize and process in one
location. Parallel processing may not always be feasible,
however. Furthermore, some large systems are not confined
to a single datacenter but are geographically distributed.
In this work we adapt the latent fault detection framework
using sketching [11], [12] and safe zones [13]–[15] to reduce
communication and processing requirements by an order of
magnitude, while preserving the framework’s advantages.

We make the following contributions:
1) An online, distributed statistical outlier detector frame-

work for non-stationary, identically distributed, mul-
tivariate time series – the sort common in scale-out
systems. The incremental update rule and greatly re-
duced data size allow processing on a single node.
The framework holistically compares entire time series,
rather than single values. Though originally designed
for scale-out systems, it is useful for any outlier de-
tection task where multi-dimensional time series are
compared across a time window. The only restriction on
the data is that at any single point in time, non-outlier
time series are expected to behave similarly.

2) An online, communication-efficient distributed variance
monitoring algorithm. It continuously provides an es-
timate of the global variance of a sliding window to
all participating nodes, but avoids unnecessary trans-
missions. The estimation is within guaranteed (non-
probabilistic) user-specified approximation bounds, be-
cause it is based on the entire global data set rather
than on a sample. As far as we are aware, this is the
first such distributed variance estimation scheme.

Each algorithm has a single parameter that directly controls
the communication-accuracy trade-off.

We have evaluated the adapted latent fault detector using
log data of 110 nodes from a live, real-world system in
production. Our simulations show that the adapted outlier
detector is able to reduce bandwidth to 13% of the original’s
with no additional false positives, or to 11% with a false
positive rate below 1%.

II. LATENT FAULT DETECTION

In previous work [3] we presented a statistical latent
fault detection framework. Full discussion of the problem,
our assumptions and the solution can be found there. This
section is a summary of that work, focusing on the sign test.

A. Problem Description

There are M machines, preforming identical tasks, each
periodically1 reporting C aggregated performance counters
in a time window of length T . We denote by x(m, t) the
vector of counter values for machine m at time t, and by
x(t) =

⋃
m x(m, t) their union. We aim to find machines

that behave differently.

1We use a sampling period of 5 minutes, a good compromise between
responsiveness and transmission delay.

We begin with a reasonable assumption: in a large system,
most machines perform well most of the time. Further-
more, in a scale-out system with load balancing, we expect
similar machines with similar hardware and software2 to
exhibit roughly similar behavior as measured by aggregated
performance counters (assuming the aggregation interval is
sufficiently longer than typical transaction times). The null
hypothesis is that the inspected machine is working properly
and hence the statistical process that generated x(m, t) is
the same statistical process that generated the vector for
any other machine m′. Thus each counter is identically dis-
tributed across machines. Formally, we assume that x(m, t)
is a realization of a random variable Xt whenever machine
m is working properly. However, if the time series for
machine m is notably different from those of other machines,
we reject the hypothesis and flag m as suspicious, meaning
we suspect it manifests a latent fault. Note that we do
expect to see changes over time, due to changes in the
workload, for example. Thus we do not commit ourselves
to the assumption that the process is stationary; Xt and
Xt′ need not be related in any way, maintaining generality.
However, we expect these changes to be similarly reflected
in all machines.

We can now formally describe the outlier detection
problem. Given the last T data points of M multivariate
time series x(m, t) of dimension C, and assuming that
∀t : x(m, t) ∼ Xt, flag each time series (as a whole) as
either normal or outlier, with confidence level 0 < α < 1.

B. Centralized Latent Fault Detection Framework
Let S (m,x(t)) be a test, a ranking function that assigns

an outlier score (either a scalar or a vector) to machine m at
time t. Given a test S, and a significance level 0 < α < 1,
we can present the framework as follows:

1) Preprocess: select counters and scale to unit variance.
2) Compute for every machine m the vector:

vm = 1
T

∑
t S(m,x(t)) (integration phase).

3) Compute the p-values (defined below) p(m) from vm.
4) Report every machine with p(m) < α as suspicious.
Essentially, the scores for machine m are aggregated over

time, so that eventually the norm of the aggregated scores
converges and is used to compute a p-value for m. The p-
value for a machine m is a bound on the probability that a
random healthy machine would exhibit such aberrant counter
values. If the p-value falls below a predefined significance
level α, the null hypothesis is rejected, and the machine is
flagged as suspicious.

In [3] we derived and evaluated 3 different tests within
the framework. What follows is a summary of the sign test.

C. The Sign Test
The sign test extends the classic statistical sign test to

allow the simultaneous multivariate comparison of multiple

2Common in many systems and datacenters [6], [8], [9].



foreach machine m do

S (m,x(t))← 1
M−1

∑
m′ 6=m

x(m,t)−x(m′,t)
‖x(m,t)−x(m′,t)‖

vm ← 1
T

∑
t S (m,x(t))

v̂ ← 1
M

∑
m ‖vm‖

foreach machine m do
γ ← max (0, ‖vm‖ − v̂)

p(m)← (M + 1) exp

(
− TMγ2

2(
√
M+2)2

)
if p(m) ≤ α then report machine m as suspicious

Algorithm 1: The sign test.

machines. The “sign” of a machine m at time t is the average
direction of its vector x(m, t) to all other machines’ vectors,
and its score vector vm is the sum of all these directions,
divided by T . The intuition is that healthy machines are
similar on average, and any differences are random. Average
directions are therefore random and tend to cancel each other
out when added together, meaning vm will be a relatively
short vector for healthy machines. Conversely, if m has a
latent fault, then some of its metrics are consistently dif-
ferent from healthy machines, and so the average directions
are similar in some dimensions. When summing up these
average directions, these similarities reinforce each other and
therefore vm tends to be a longer vector.

Formally, the sign test scoring function is

S (m,x(t)) =
1

M − 1

∑
m′ 6=m

x(m, t)− x (m′, t)

‖x(m, t)− x (m′, t)‖
. (1)

If most machines are working properly, we expect this value
to be small, since directions tend to be random. Moreover,
the sum of several samples over time is also expected to stay
close to zero. Therefore the norm of vm = 1

T

∑
t S(m,x(t))

should not be much larger than its empirical mean. The p-
value p(m) controls this statistic by guaranteeing a small
number of false detections, depending on the significance
level α. Algorithm 1 shows the sign test integrated into the
framework. Derivation of p(m) is described in [3].

III. DISTRIBUTED ONLINE VARIANCE MONITORING

The framework in Section II-B requires that counter
values across the time window be normalized during prepro-
cessing: each counter should be transformed to zero mean
and unit variance3. In some settings mean and variance are
relatively constant or predictable. However, we prefer to
avoid that assumption, and handle unpredictable counters.

We use the safe zones approach [13]–[16] to monitor both
the global mean and the global variance of each counter. In
this approach, each monitored machine (node) receives a
local constraint on its data x(m, t) from a coordinator node,
such that if all local constraints are satisfied, the value for
some function f of the global average of x(m, t) is within

3We select counters in advance, using the method described in [3].

Intialization: Run syncronization once.

Node i at time point t:
Predict reference point V ′(t) and update safe zone G.
if V (0) + di(t) /∈ G then

Violation: send local vector Vi(t) to coordinator.
Wait for new global reference point V (0).
Update prediction variables V (−∆t), ∆t, V ′(t).

Estimate global variance from V ′(t) = (µ′, σ′): σ′ − µ′2.

Coordinator at time point t:
if violation for counter c then

Poll all nodes for their Vi(t) = (µi, σi).
Update slacks βi and send to participating nodes.
Distribute new global reference point V = (µ, σ).

Algorithm 2: Online Variance Monitoring.

a pre-defined threshold. In our case, it means that global
mean and variance are known to be “close enough” to their
last known values. These last known values are then used to
normalize the counter values at each node. We can trade-off
accuracy and communication by adjusting the thresholds.
Violations are less likely if global mean and variance are
allowed to drift further from their last known values –
reducing communication but compromising accuracy.

The variance of each counter X is monitored indepen-
dently. Each node maintains a local statistics vector Vi of
its last T samples of X , and a record of the last known
global statistics vector V (0). The current estimate of global
variance (and mean) is calculated from V (0). Nodes define
lower and upper variance thresholds, e.g. 0.5 and 2 times the
current estimate, and derive constraints on Vi. Violations are
reported to the coordinator, which then polls each node for
its current Vi and distributes a new global V (0) to all nodes.
Nodes recalculate constraints and monitoring resumes. The
scheme is described in detail below and in Algorithm 2.

Unlike sampling approaches, our scheme guarantees that
variance is within the approximation bounds. Moreover, our
solution is able to avoid communication entirely in most
rounds. Indeed, if the variance is relatively fixed, our scheme
virtually stops communicating after a few initial rounds.

A. Notation

The set of values of counter X over the last T times and
across all M nodes is denoted by X(t), and Xi(t) denotes
the last T values of X at node i. The local mean µi =
E[Xi(t)] is the mean of the last T values of X at node i,
while the global mean µ = E[X(t)] is the mean of the last T
values across all nodes. Similarly, denote λi = E

[
Xi(t)

2
]
,

the local mean of the squares, and λ = E
[
X(t)2

]
the global

mean of the squares. Let V (t) = (µ, λ) and Vi(t) = (µi, λi)
be the global and local statistics vectors, respectively.
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Figure 1. Global, local, reference, and drift vectors with two nodes. Note
that V (t) =

V1(t)+V2(t)
2

=
W1(t)+W2(t)
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B. Defining Safe Zones

We wish to estimate the global variance Var(X) at each
time t. Recall that:

Var(X) = E
[
X2
]
− (E [X])

2
= λ− µ2 .

We therefore monitor the constraints L ≤ λ − µ2 ≤ H ,
for some lower and upper variance thresholds L and H .
The admissible region, the region where constraints hold, is
therefore the area between two parabolas. Following [13],
we aim to find a convex safe zone G which is contained
within the admissible region. Convexity plays a crucial role
in the monitoring process. Since convex sets are closed under
averaging, when all local vectors are inside the safe zone,
the global mean is guaranteed to be inside as well.

Let t = 0 be the last global synchronization time, and let
V (0) = (µ(0), λ(0)) be the reference point, the last known
global mean and mean-of-squares, computed that time. For
each node i we define the local drift vector di(t) as the
change in the current vector from the node’s vector during
the last synchronization: di(t) = Vi(t)− Vi(0).

Since we wish to monitor that the global V (t) is within
some convex set G, we define equivalent local constraints
on the drift vectors. The current local vectors can be written
in terms of drift vector di: Vi(t) = Vi(0) + di(t). Note that
the global vector is the mean of the local vectors, and can
thus be written as the mean of drifts and the reference point:

V (t) =
1

M

∑
i

Vi(t) = V (0) +
1

M

∑
i

di(t) . (2)

Let Wi(t) = V (0) + di(t) be the local drift from the last
reference point. Note that V (t) = 1

M

∑
iWi, recall G is

convex, and from (2) we arrive at the local constraints:
if ∀i,Wi ∈ G then V (t) ∈ G. Figure 1 illustrates these
concepts for two nodes.

We derive two separate safe zones: one for variance above
L and another for variance below H . As long as Wi is inside
both safe zones in all nodes, we are guaranteed that the
variance is within the allowed range.
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Figure 2. Safe zones for L = 0.5, H = 1.5 where V (0) = (0.5, 1).

Variance Above Lower Threshold: We wish to define
a convex safe zone GL such that as long as V (t) ∈ GL
then Var(X) ≥ L. This corresponds to monitoring that λ−
µ2 ≥ L, which is already a convex set – the area above a
parabola – and can be directly used as safe zone. Therefore
the local constraint for each node i is simply Wi(t) ∈ GL.
Let Wi(t) = (a, b) and monitor that b− a2 ≥ L.

Variance Below Upper Threshold: We wish to define
a convex safe zone GH so that as long as V (t) ∈ GH then
Var(X) ≤ H . The area below a parabola is not a convex
set. However, we can find a tangent half-plane I below this
parabola. I is a convex set, and since I ⊂ GH , then as long
as V (t) ∈ I , V (t) ∈ GH and therefore Var(X) ≤ H .

We use the reference point V (0) to find the optimal
hyperplane. The thresholds H and L are reset during syn-
chronization, so obviously V (0) ∈ GH . We can choose any
half-space I such that V (0) ∈ I , but to avoid unnecessary
future synchronization we choose I such that V (0) is far
from the boundary of GH . Doing so ensures that drift has
to be large to cause a violation. Consequently, we choose I
as the tangent at point P , where P is the closest point to
V (0) on the parabola λ− µ2 = H , and the local constraint
is Wi ∈ I . We can find P by solving a cubic equation
minimizing the distance from the parabola to V (0). For
example, if V (0) = (0.5, 1) and H = 1.5, then the closest
point on the parabola is µ ≈ 0.237. This yields the point
P = (0.237, 1.556), and the induced safe zone I: the half-
plane λ − 0.474µ < 1.443 . Figure 2(a) shows V (0), P
and the resulting safe zone, and Figure 2(b) shows the
intersection with the safe zone for the lower limit L = 0.5.

C. Bounding Variance Approximation Error

During each synchronization we recompute the new safe
zone around the reference point. Large safe zones mean
less communication, but they also allow the true variance
to deviate further from the global estimate, increasing error.
Proper threshold selection helps us bound the approximation
error. We provide a multiplicative approximation bound that
controls relative error, as it is more suitable for normaliza-
tion. Additive bounds for absolute error are also possible.



Let σ2
0 be the last known global variance, given the current

reference point V (0): σ2
0 = Var(X(0)) = λ(0)−µ(0)2, and

denote the current global variance σ2 = Var(X) = λ− µ2.
We normalize counter data using the last known standard
deviation σ0 rather than σ. We set the the lower threshold to
L =

σ2
0

f2 and the upper threshold to H = f2σ2
0 , where f > 1

is a constant that determines the allowed deviation. These
thresholds ensure that σ2

0

f2 < σ2 < f2σ2
0 as long as there is

no safe zone violation, and therefore the standard deviation
used to scale the counter is bounded by σ0

f < σ < fσ0.

D. Safe Zone Violations

If one of the local constraints Wj ∈ G is violated, it
may be because Var(X) is no longer in the range, or due
to a false alarm. The simplest way to deal with a violation
is to perform a global synchronization: each node sends its
current Vi(t) (the two values µ and λ) to the coordinator.
The coordinator resets the time to t = 0, computes the new
global reference point V (0), and sends it to the nodes. These
synchronizations also improve estimation accuracy, since the
nodes have fresh global mean and variance.

However not all violations are the same. We describe
three types of possible violations: true violations, global
violations and local violations. A true violation is when
the global aggregate V (t) is outside the admissible region
(variance larger than H or smaller than L), and therefore
synchronization must be performed. A global violation hap-
pens when the global aggregate is outside the safe zone, but
still inside the admissible region (recall that the safe zone
is a convex subset of the admissible region). In this case,
synchronization is unavoidable but is not strictly necessary,
suggesting that the shape of the convex safe zone is sub-
optimal. A local violation is when the global aggregate is
inside the safe zone, but the local vectors of one or more
nodes are outside their local safe zone. Ideally, we would
like to avoid these violations since they trigger unnecessary
additional synchronizations that increase communication.
We explore two approaches to reduce the number of spurious
safe zone violations

E. Multiplicative Slack Distribution

The safe zones described in Section III-B are uniform –
all nodes share the same safe zones. One well-known way
to reduce violations would be to allocate different “slack”
to each node to exploit its local statistics [17], [18], in our
case by giving each node a different safe zone. Naturally,
we must still preserve the guarantee that if all local node
vectors are in their respective safe zones, then the global
aggregate is inside the admissible region.

The local safe zones Gi assigned to each node i are simply
scaled versions of the original uniform safe zone G, centered
as before around V (0). Each node has a local slack factor βi.
When testing for local violation, node i first scales its drift
vector by 1

βi
: Wi(t) = V (0) + 1

βi
di(t), effectively scaling

the safe zone by βi. The global drift is now a weighted
mean of local drift vectors, rather than a simple arithmetic
mean. We preserve our global guarantee by making sure
local slacks factors always sum to M . Here we again exploit
the convexity of G. Since G is convex and

∑
βi = M , then

F =
{

1
M

∑
zi|zi ∈ Gi

}
⊆ G (known as the Minkowski

mean). Thus the convex hull of local drifts is still inside F ,
and therefore the global aggregate is inside the safe zone G.

Each node begins with a slack of βi = 1.0. At each round,
let K be the set of nodes that reported a local violation to
the coordinator this round. If |K| ≥ M

4 , we assume that
current slacks are inadequate, and reset all slacks to 1.0.
Otherwise, let L be a set of balancing nodes (defined below).
We take slack from the set of balancing nodes and distribute
it to violating nodes. Inspired by LRU cache policies, we
choose the nodes with the least number of slack operations
(fewest local violations and slack balancing contributions),
since they are the most likely to have available slack. Thus
we define L as the set of 3 |K| nodes with the least number
of slack operations, excluding nodes in K. Balancing nodes
have their slack decreased by a constant factor w > 1.0:
∀i ∈ L : β′i ←

βi

w . This extra slack is distributed
to violating nodes: ∀i ∈ K : β′i ← βi + γ

|K| , where
γ =

(
1− 1

w

)∑
i∈L βi is the slack gained from balancing

nodes. Finally, the coordinator sends the new slacks β′i to
the nodes in K and L.

Our slack allocation scheme is motivated by several
observations. First, we observe that in our setting, counters
of healthy nodes are assumed to be identically distributed,
and therefore their direction to the reference point is random.
Simply translating the safe zone does not reduce local
violations. This phenomenon was also observed in practice
during preliminary experiments. Second, we do assume a
small number outlier nodes, whose counters might cause
frequent local violations. Over time, our balancing scheme
distributes more slack (meaning larger safe zones) to such
outlier nodes, balanced across the greater number of healthy
nodes. Finally, this scheme entails sending just one extra
value per participating node, meaning it has the smallest
impact on communication.

F. Reference Point Prediction

Section III describes a static scheme: nodes always use
the last known global reference point V (0) to monitor and
estimate variance. If nodes are able to correctly predict how
the reference point changes over time, they can adjust the
safe zone accordingly, thus reducing safe zone violations
and communication costs. The prediction model must ensure
that all nodes make the same prediction, as it is used for
monitoring and estimation. Prediction models have been
shown to be effective in reducing communication [19], [20].
Prediction is most effective when the data does not change
too quickly. However, even if data behavior constantly



changes, the safe zone technique guarantees correctness;
prediction will simply be less effective.

We incorporate a simple linear prediction model assuming
constant “velocity”. Given current reference point V (0), let
∆t be the time difference between the last global synchro-
nization (t = 0) and the previous synchronization, and let
V (−∆t) be the reference point at that time. The predicted
reference point at current time t is simply:

V ′(t) = V (0) + t
V (0)− V (−∆t)

∆t
.

The prediction V ′(t) is then used to compute the current
variance estimate and derived safe zone as described above.

Observe that each node can store ∆t, V (0) and V (−∆t)
during normal operation, and so this model requires no
extra communication. Moreover, the model only depends on
global data made available during synchronization, and so
it yields the same prediction on all nodes.

Since we allow the predicted reference point and the
resulting safe zone to move outside the original safe zone,
we are no longer guaranteed that σ0

f < σ < fσ0. Instead,
our safe zones guarantee that σ

′

f < σ < fσ′, where σ′ is the
standard deviation from the predicted reference point V ′(t).

IV. DISTRIBUTED OUTLIER DETECTION

Given the normalized counter, we now describe an online,
communication-efficient version of the latent fault detector
summarized in Section II. The original algorithm requires
that nodes send all measurements to a central location: T
samples of C counters for each of the M machines. Beyond
bandwidth and storage costs, processing so much data in a
timely manner is difficult on a single machine, due to its
size and high dimensionality.

We address these issues using sketching [11], [12], a
common technique for processing large data streams without
having to send, store and process all the data. Sketching
reduces the size of the data, while still enabling queries.
For our purposes, a sketch is a summary function that
takes a vector and transforms it to a much smaller vector
while approximately preserving some desired property, such
as Euclidean distances [21] or frequency moments [22].
Beyond reducing the communication load, sketching has
the added benefit of reducing the computational load, since
the dimensionality of the data is greatly reduced. Finally,
we provide an incremental update rule yielding an online
adaptation of the framework with reduced memory and
processing requirements. The pseudocode is shown in Al-
gorithm 3 and explained in detail below.

A. Sketches

We use sketches to greatly reduce the amount of data sent
from each machine and processed by the coordinator. Instead
of sending all counters, each node calculates a sketch of the
said counters and sends only that. For example, 200 counters

Initialization:
Start variance monitoring on each counter.

Node i at time point t:
foreach counter c do

Sample Xc(t), the value of counter c at time t.
Update variance monitor for counter c with Xc(t).
Scale Xc(t) using estimated global mean and variance.

Let x be the vector of normalized counter values.
Compute sketch of x and send to coordinator.

Coordinator at time point t:
Handle violations in all variance monitors.
Receive sketches from all nodes.
Compute test function S on received sketches.
foreach machine m do

Add most recent test function results to vm.
Subtract least recent test function results from vm.
Update vm sliding window.
Calculate p-value p(m) and flag if p(m) ≤ α

Algorithm 3: Adapted Latent Fault Detector.

could be reduced to 10 dimensions, achieving an immediate
95% reduction in size. The coordinator (or monitoring node)
then performs outlier detection using the sketches, rather
than the original data.

Formally, rather than apply the test ranking function S to
the set of all local counter vectors x(m, t), each machine m
will first apply a sketching function g to its vectors, and send
only the sketch x̂ = g(x(m, t)) for processing. The adapted
test Ŝ will be applied to the sketches rather than the original
vector: vm = 1

T

∑
t Ŝ(m, x̂(t)). Depending on S, we might

also need to adapt the matching p-value calculation.
One well-suited sketching technique is random subspace

embedding, which involves a random linear projection to
k < C dimensions. In our setting, each machine projects its
counter vectors to k dimensions using a suitably constructed
projection matrix: x̂(m, t) = g(x(m, t)) = Rx(m, t) where
R is a random k×C matrix constructed as described in [21],
[23]. The Johnson-Lindenstrauss Lemma [21], [23], [24]
shows that such random embeddings preserve inter-point
distances with bounded distortion in high probability. This
also makes the sketch general enough that the same sketch
can be used as input to different tests. We show below that
the sign test can be applied directly to the sketched vectors.

B. Sign Test on Linear Sketches

We first offer an intuitive, geometric explanation. The
sign test function (1) from Section II-C depends only on
the normalized direction from x(m, t) to the other vectors.
Put differently, the result depends only on the distribution of
directions on the unit sphere centered on x(m, t) – the angles
between directions. Given the assumptions in Section II-B,
for healthy (normal) machines the normalized directions to
other machines tend to be distributed spherically symmetric
the sphere. In other words, there is 180-degree symmetry



around the center – in each dimension (counter) high values
from some machines are balanced by low values from others.
The adapted sign test is the sum of normalized directions
from x(m, t) after the transformation R, which preserves
these angles with little distortion. In a sense, R “rotates” unit
vectors around x(m, t) without changing angles. Finally, the
sign test p-value does not depend on the dimensionality of
the vectors. Therefore we can apply the sign test directly to
the sketched vectors x̂(m, t).

Bounded Distortion: We begin by showing we can apply
the sign test function S to the sketched vectors because
R does not overly distort the original vectors. Note S
depends only on the normalized direction from x(m, t) to the
other vectors. Since the vectors are normalized, the length
of the sum ‖ 1

T

∑
t S (m,x(t)) ‖ is entirely determined by

the angles between the vectors, i.e. their inner products:
‖u+ v‖2 = ‖u‖2 + ‖v‖2 + 2〈u, v〉 = 2 + 2〈u, v〉. Similarly,
the adapted sign test normalizes the directions from x(m, t)
after the transformation R: ‖ 1

T

∑
t S (m,Rx(t)) ‖, so it too

is determined by the inner products of unit vectors.
Consider a simple random unitary matrix – a rotation.

Clearly rotating unit vectors before addition does not affect
the length of the result. More generally, if the sketching
matrix R preserves inner product of unit vectors, the length
of the sum of normalized sketched vectors is equal to the
original length. Therefore it is sufficient to show that R pre-
serves inner products of unit vectors with high probability.

Lemma 1: Given ε ∈ (0, 12 ) and δ ∈ (0, 1), let k =
O(log δ/ε2) a large integer and R ∈ Rk×C a suitable random
projection (as in [21], [23]). Then with probability 1−δ, for
any two unit vectors u, v ∈ RC ,

|〈Ru,Rv〉 − 〈u, v〉| ≤ 2ε .

Proof: From a variant of the Johnson-Lindenstrauss
lemma [24, Theorem 3.1], with probability 1 − δ, for any
single arbitrary vector x ∈ RC ,

(1− ε)‖x‖2 ≤ ‖Rx‖2 ≤ (1 + ε)‖x‖2 . (3)

Recall that ‖u−v‖2 = ‖u‖2 +‖v‖2−2〈u, v〉 = 2−2〈u, v〉,
and similarly ‖Ru−Rv‖2 = ‖Ru‖2 + ‖Rv‖2− 2〈Ru,Rv〉.
From (3) we know ‖Ru‖2 ≤ (1 + ε)‖u‖2 = (1 + ε) and
‖Rv‖2 ≤ (1 + ε). Thus,

‖Ru−Rv‖2 ≤ 2(1 + ε)− 2〈Ru,Rv〉 . (4)

Applying (3) to x = u− v:

‖Ru−Rv‖2 ≥ (1−ε)‖u−v‖2 = (1−ε) (2− 2〈u, v〉) . (5)

Combining (4) and (5) and rearranging, we get

〈Ru,Rv〉 − (1− ε)〈u, v〉 ≤ 2ε

and because ε < 1
2 ,

〈Ru,Rv〉 − 〈u, v〉 ≤ 〈Ru,Rv〉 − (1− ε)〈u, v〉 ≤ 2ε .

The other direction is analogous.
Given M machines, there are O(M2) pairs of u, v.

Choosing k = O(log(M)/ε2) and applying the union bound
for all such pairs will guarantee low distortion (≤ 2ε) with
high probability (1− δ, where δ = O (1/M2)).

Note that the distortion introduced by the sketch (ε)
grows very slowly with number of machines: for fixed
communication k, the distortion is ε = O

(√
logM/k

)
.

Computing p-values: Using machinery from [3], we now
prove that the p-values for the adapted test Ŝ can be
computed the same way as the regular test.

Proof: The sign test ranking function S from Sec-
tion II-C is 2, 2

M−1 -bounded4: if we change all counter
values, a machine score cannot change by more than 2; if
we change the counter values for a single machine, the score
for any other machine cannot change by more than 2

M−1 .
Since Ŝ = S(m, x̂(t)), and x̂(m, t) = Rx(m, t) in-

dependently for each m, then it follows that Ŝ is also
2, 2

M−1 -bounded. We can therefore apply Lemma 2 from [3],
yielding the same p-value in Algorithm 1.

C. Online Integration Using a Sliding Window

The integration phase in stage 2 of the framework in
Section II-B computes vm = 1

T

∑
t S (m,x(t)). Computing

S (m,x(t)) only requires the data from time t. Thus we
can adapt any test into an online test by maintaining a
sliding window per machine of test function (S) outputs
for the last T sketches. When new data arrives at time t,
the coordinator updates the current vm of each machine
by computing and adding 1

T S (m, x̂(t)), and subtracting the
least recent stored test result, 1

T S (m, x̂(t− T − 1)). The p-
value can then be computed from vm in the usual manner.
Since S is now computed only for the most recent time,
and since the sketches are of low dimension k, processing
and memory costs are low. For the sign test, the runtime
for incremental update is O(kM2) and the sliding window
requires O(kMT ) memory. The reduced size allows the
computation to be done on a single coordinator machine
on time, before the next round starts. For example, for the
large system evaluated in [3] M = 4500, T = 288, and
with k = 10, the update rule is easy to compute on a single
machine within the sampling period of 5 minutes.

V. EVALUATION

Since the efficacy of the latent fault detector has already
been established in previous work [3], we evaluate the
communication-efficient online adaptation by comparing it
directly to the centralized offline detector. Using a random
subset of the real world dataset from [3] (counter logs from
the index service of a large search engine), we performed a
series of simulations to explore the behavior of the adapted
algorithm. During simulation we run through the counter

4Definition from [3]



logs, simulate the operation of nodes and the coordinator,
and keep track of communication. The dataset consists of
counter logs for M = 110 randomly selected machines,
each reporting C = 216 counters that were automatically
selected during the pre-processing phase as described in [3].
The window length was set to T = 144. Unless otherwise
noted, our simulation includes the slack and reference point
prediction mechanisms described in Section III. The con-
stant slack factor w was set to 1.75 (1.1 when not using
prediction) by tuning on a subset of the data.

We evaluate performance with three metrics. We do not
include the first T − 1 initialization rounds in these metrics;
evaluation starts from the first full window of T samples.

1) Communication fraction: number of floating point val-
ues sent by the system, divided by C·M ·T , the cen-
tralized cost of sending C counters from each machine
at each round. Note that we count the total number of
discrete values, rather than number of messages sent.
We include all sent values: those sent by the nodes, the
coordinator, and the sketched values sent for the test.

2) Error: mean absolute difference between the order
of magnitude of machine p-values in the centralized
sign test and its communication-efficient adaptation.
Formally, let p(m) and p′(m) be the mean p-values
assigned to machine m across all time windows in
the centralized and adapted algorithm, respectively; the
error measure is: 1

M

∑
m∈M log10 p(m)− log10 p

′(m).
We take the log of the p-values because significance
thresholds are usually set based on magnitude, for
example 0.01 or 0.0001.

3) Detection error: percentage of classification differences
across all machines and time windows. This measures
the ability of the adapted test to give identical classifi-
cations (outlier or normal) as the centralized test. We
set the significance level to α = 0.01.

A. Performance

To illustrate the trade-off between communication and
accuracy, we performed a parameter sweep over several
values of sketch size k and safe zone size (threshold factor)
f . The results are shown in Figure 3.

Figure 3(a) shows the fraction of communication per-
formed for each k, f combination. Sketch size k has the
largest effect on communication. Minimal communication
(11%) is achieved when k = 5, f = 10 with an error
(as defined above) of 0.122, while minimal error (0.033)
is achieved at non-realistic k = 216 (no sketching), f =

√
2

with communication cost of 160%. Turning off sketching
(k = C = 216) serves as a lower (if impractical) bound
on the error. Communication fraction is greater than 1.0,
since in addition to variance monitoring overhead, each node
sends 216 counters at each round. With sketching applied,
communication drops to 10–70%, depending on the exact
values of k and f . Very tight safe zones (f ∈ {

√
2, 2}) also

result in an increase in communication. When the safe zone
scaling factor is more permissive (f ≥ 3) monitoring cost is
relatively constant, and communication due to larger sketch
sizes dominates communication cost. Figure 3(b) shows
the resulting error (mean difference between magnitude of
average machine p-value). Smaller sketches induce greater
errors, while larger safe zones increase error but have smaller
effect.

One interesting observation is that more permissive safe
zones (f ≥ 3) do not result in substantially lower communi-
cation. We attribute this phenomenon to the effectiveness of
the reference point prediction. We repeated the experiments
with the reference point prediction mechanism disabled
(figures omitted for lack of space). Communication costs
were more predictable: both sketch size k and safe zone
size f affect communication. Increased safe zone size always
means less communication, with the minimum achieved as
expected for the largest safe zone factor f = 12 and the
smallest sketch size k = 5. Error behavior was also clearer: it
is most affected by sketch size, and the anomalous error peak
around f = 4, k = 20 disappeared. We further investigate
the effects of prediction in Section V-B.

Figure 3(c) depicts the practical effect of different k, f
combinations on the latent fault detector. Recall that detec-
tion error is defined as the percentage of machine classifi-
cations (normal, outlier) that differ between the centralized
approach and the adapted, communication-efficient online
approach. We’ve seen that k dominates p-value errors; this
is confirmed by Figure 3(c), which shows detection error
for each k, f configuration. For k ≥ 10 there are few to no
detection errors. We conclude that the adapted latent fault
detector is robust. It matches the centralized approach very
well despite an order of magnitude reduction in communi-
cation. Moreover, the adapted detector is resilient to non-
uniform scaling, performing well even with permissive f .

B. Slack and Reference Point Prediction

Section III describes slack and reference point prediction,
two techniques to reduce communication, though with a
possible increase in error. Figure 4 explores how they affect
performance, using different variations of the algorithm.

Basic Without slack and reference point prediction.
Slack Use slack with w = 1.1, without prediction.
Prediction Use reference point prediction but no slack.
Both Use both slack (w = 1.75) and prediction.
Figure 4(a) compares the four variants across different f

values, with their median marked in a red line to represent
typical behavior across the range of values. We focus on
the impact of variance monitoring, so sketching is turned
off (k = C = 216) and the relevant communication is
not counted. Slack has only modest contribution, because
savings from avoided local violations are offset by slack
factor distribution. Indeed the best improvement is produced
by reference point prediction, which requires no additional
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Figure 3. Sign test performance at different k, f combinations, compared to centralized test.
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Figure 4. Comparison of different variants of the monitoring algorithm.

communication. Reference point prediction reduces the over-
head from 30% to just over 10%. This reduction, how-
ever, comes at a price. Reference point prediction increases
the error (figure omitted for space). This is both because
there are fewer synchronizations, and because we allow
the predicted reference point to move outside the original
safe zone. Bad reference point predictions can introduce
additional error (though still within approximation bounds).
Conversely, slack has very small impact on accuracy.

Note that when very tight safe zones (f < 3) are used
with prediction, there is a slight increase in communication.
This is because there is simply not enough slack available
to offset the extra cost of slack distribution when violations
occur. This illustrates the difference between measuring the
number of transmitted messages, common in some settings,
and the total size of transmitted messages.

Recall the three types of safe zone violations possible
in the monitoring algorithm: true violation, global violation
and local violations. To assess the effectiveness of the
two violation prevention mechanisms, we plot the average
number and composition of different types of violations
in Figure 4(b) with f = 10. Global violations are not
plotted, because they are so rare as to be invisible. Slack
distribution and reference point prediction are designed to
reduce synchronization by reducing the number of local
violations. By itself, slack reduces the average number of
violations to 83% of the basic variant, while reference

point prediction reduces it to 39%. Combined, violations
are reduced to 27%. Furthermore, with the basic variant over
99% of all violations are local. The slack and reference point
prediction mechanisms reduce local violations percentage
down to 92.5% of all violations (of which there are fewer),
indicating that slack and prediction mechanisms indeed
manage to prevent many local violations.

We find that global violations are almost nonexistent
in practice – below 0.04 per round for all variants. Our
experiments show that on average over all k, f combinations,
when not using prediction and slack, only 0.2% of violations
are global, increasing up to 1.5% when using prediction and
slack. Furthermore, the average ratio of global violations to
true violations is always below 0.001. This suggests that our
choice of convex safe zone is indeed close to optimal, since
practically every time the global aggregate crosses the safe
zone, it also crosses the admissible region.

VI. RELATED WORK

Distributed Stream Monitoring: Early work on distributed
stream monitoring focused on tailoring protocols for basic
primitives by exploiting their specific properties. Babcock
and Olston [18] monitor top-k items by tracking the dif-
ferences from the current top-k and distributing slack. Bar-
Or et al. [25] build a hierarchical decision tree by deriving
bounds on the attribute selection functions, keeping track
of promising attributes that are clearly better than others.
Keralapura et al. [26] take advantage of the additive property
of counts to alert if the global count crosses a specified
threshold.

More recently, generic approaches approaches to mon-
itoring distributed streams have received much attention.
A recent survey by Cormode [17] formalizes the model
and presents several results in this setting. The safe zone
(SZ) approach we apply [13], [15] is a generalization of
the geometric monitoring (GM) approach [16]. As with the
SZ approach, GM defines local constraints that nodes can
check rather to avoid communication. Sketching [11], [12]
is a complementary general approach to stream processing.
It focuses on reducing data size (e.g. using hash functions



or random projections) without losing the ability to answer
queries (e.g. number of distinct elements or inner product).

Distributed Outlier Detection: Our work differs from
existing techniques in several aspects. First, our approach
holistically compares entire multivariate time series, rather
than isolated observations (or univariate time series). Sec-
ond, static similarity thresholds and top-n outliers ap-
proaches common in distributed settings do not adapt to
changes, and may incur too many false positives. Our
framework adapts to the data and its statistical guarantees
limit the false positive rate. Lastly, we allow non-stationary
processes, automatically adapting to concept drifts.

Many distributed outlier detection schemes have been
proposed in the context of wireless sensor networks (WSN).
Branch et al. [27] describe a peer-to-peer top-n outlier
detector for general anti-monotonic ranking functions. While
saving power overall, it transmits many more data points
than the centralized version, showing that minimizing power
can come at the cost of increased bandwidth. Subrama-
niam et al. [28] use kernel density estimation models to
approximate the underlying global data distribution in a
hierarchy of nodes. Nodes probabilistically send a fraction
of their local kernel models up the sensor hierarchy, where
they are continuously combined to a maintain single model.
TACO [29] by Giatrakos et al. uses a similarity-preserving
sketch for univariate time series, with a similarity threshold
to define outliers. Sensors send sketched versions of their
data to cluster heads, which produce candidate lists of
outliers verified using a transparent spanning tree approach.
Our setting is somewhat different from the WSN setting.
WSN schemes aim to save power, and so minimize the
number of messages regardless of their size. We focus on
bandwidth, minimizing the number of transmitted values.
WSN work is also frequently concerned with the network
topology and reliability, often limiting communication to
direct peers. We are free to assume a reliable network where
nodes can directly with the coordinator (or any other node).

Two approaches in particular aim to avoid communi-
cation. For univariate time series, Huang et al. [30] ap-
ply stochastic matrix perturbation theory to derive local
constraints for monitoring principal component analysis of
distributed data. The estimated matrix is used to find outliers.
Local updates are not sent if they cannot substantially affect
the current estimation. Burdakis et al. [31] use a geometric
monitoring approach to outlier detection, by expressing
common similarity measures as functions of the aggregate
of global statistics. A static threshold on similarity induces
local constraints, and violations are resolved between pairs.
One drawback is that the number of monitored values
increases quadratically with the number of nodes.

Variance Monitoring: For non-distributed streams, there
are several approaches to maintaining an estimate of variance
over a sliding window, such as the technique by Babcock et
al. [32]. However, there are few variance monitoring algo-

rithms for distributed streams. If the variance of a sample
is acceptable, one can efficiently sample from distributed
streams [33] and compute the variance over the sample. The
most similar work is by Sharfman et al. [34], which uses
geometric monitoring in a WSN setting to alert if the global
variance rises above a static threshold, i.e. threshold moni-
toring. Our safe zone technique provides value monitoring
– we estimate the current global variance within guaranteed
approximation bounds. Moreover, it is designed to reduce
total bandwidth, rather than the number of sent messages.
Certain parts of this work have been previously published
in a workshop [35].

VII. CONCLUSIONS

This work uses streaming techniques to adapt the latent
fault detector in [3] to a distributed setting: safe zones
are used to monitor the data and scale it to approximately
uniform variance, and sketching reduces the amount of data
that must be sent. Nodes utilize already available information
to avoid communication by predicting future data behavior.
The coordinator distributes available slack: some nodes are
allowed more deviation, depending on local data behavior
at every node. While designed for scale-out, load-balanced
systems, the resulting outlier detector can be applied in
many cases where distributed multivariate time series are
expected to have common normal behavior. We also de-
scribed a communication-efficient distributed variance esti-
mation scheme with guaranteed approximation bounds. This,
in particular, may have many applications beyond outlier
detection. Additionally, the online adaptation incrementally
computes current outliers. The reduced dimensionality of
the sketch means that less communication, memory and
computation are required to update the p-values.

Our experiments on data from a real-world system show
that adapted detector reduces communication by an order
of magnitude (11–13% bandwidth reduction with below 1%
new false positives or negatives). It is also resilient to scaling
errors and sketching. In practice, performance seldom drops
even when the variance approximation bounds are large.
Similarly, even at small sketch sizes (216 counters reduced
to 5 dimensions), the adapted latent fault detector performs
close to the centralized version.

There are several avenues for improvement. Even with
slack and prediction, 92.5% of violations remain local viola-
tions; there is room to explore different slack schemes, with
more complex policies. Additionally, nodes could resolve
violation locally by exchanging slack directly, avoiding
synchronization [14]. Finally, we can exploit the robustness
to scaling errors by avoiding frequent synchronizations.
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