Vexless: A Serverless Vector Data
Management System Using Cloud Functions
(SIGMOD 2024)

Yongye Su, Yingi Sun, Minjia Zhang, Jianguo Wang
Presented by Patrick Lee for CSC 2233
February 5, 2024

Designing data systems

e Focus so far on the internal mechanisms of
how to make vector databases work
e Zoom out and take a look at the system
design for deploying a vector database
e Our options:
a. Manage our own virtual machines
b. Have someone else manage the
infrastructure
m This is where cloud functions come
in!

24

Azure
unctions

Cloud functions

Azure
FaaS (Functions as a Service) < > Functions
Submit code as a payload function
All operational concerns hidden
Charged only for function uptime + fixed
function invocation overhead cost

{(---) Google

Cloud Functions

Virtual machines vs. Cloud functions

Functionality
Managed?

Dedicated Server?
Stateful?
Computational Limits?
Start-up time
Payment model

Price-per-unit (of compute)

Virtual Machine

Yes

Yes

Yes

Soft (based on machine)
Minutes

Rental

Lower

Cloud function
No (serverless)
No

No(-ish)

Hard

Seconds
Pay-as-you-go

Higher

Number of Queries Issued

Problem

(d) Analyticl

Number of Queries Issued

200000 400000 00000

Time (s)

(e) Twitter Workload [75]

EOO000

ANN search
o Find top-k results within k results
returned by algorithm
Cloud functions are more expensive
than VMs
o Unsuitable for dense and
continuous workloads with long
uptime
Real-world applications of vector
databases are sparse and bursty

RQ: Can we use cloud functions to build
high-performance and cost-efficient vector
databases?

Vexless: 3 Challenges and 3 Contributions

Challenge 1: Hard resource limits in cloud functions, more than one needed
Contribution: Even workload distribution via bespoke sharding algorithm
Challenge 2: Communication (latency) overheads

Contribution: Communication hub mechanism

GChaltenge-3-Celd-starts

S ontribution—Adant heduh T

Main System Idea

e Use a distributed
vector search, treating
each cloud function as
a computational unit

o Sharding phase
(partitioning)

o Search Phase
(Identify —
Activate —
Aggregate)

IDE / Web UI

' Serverless
Cloud Functions

Deployment
Orchestrator Function

--- . Search result
Reranked res Res

Qucryvcctorf G)

Qv — " Query i __SCEEE
; DlsPatcher " Result :
Shavding e lltd: _________ \Aggregator) '; Optimized
arding-based “---- ~-~---------7-“--‘-‘-~‘ e ’ ptimize
Search Strategy “ Communication
Qv, Ennty_IDs Res(t) “IRes(i*1). _~
New Approach for

_~ Reducing Cold Start

Purpose-Built
Sharding-based
. . . Index Strategy

Durable %o (gEm %% 1 7 o
Entities * * * @Ct di :EC-trd 1+1 AR i

* Centroid i-1' 1S58 Centroidi i+ %3¢ Centroid i+1
Partitioned —

Data ®e»*

Naive Sharding Approaches

e Azure has a memory limit of 1.5 GB per
cloud function
e Azure functions OOM at 3 million
vectors
e How can we split up the database?
o Uniform sharding
o Cluster-based (k-means) sharding
o Balanced k-means sharding

From Moshe Gabel CSC2233 Week 1
Week 1 Slides

Improved Sharding-based Index & Search Strategy

Balanced K-means problem: Worse search efficiency
Reason: Forcing boundary points to achieve balance
Searching in incorrect clusters as a result

Solution: radius-threshold-based clustering

Stage 2: Index Building

5: Initialization: For cluster c;, initialize an empty index partition J;. Set distance threshold T
for redundancy indexing.

6: for each base vector v in D do

7 Compute v’s distances d(v, C;) to centroids Cy, Cy, . . ., Ck.

8: Rank d(o, C)).

9 Include v in the index I; corresponding to its centroid Cp,.

10: for each centroid C; where i # h do

11: if d(o,C;) < T then
12: Add v to ;.
13: end if

14: end for
15: end for

10

Improved Sharding-based Index & Search Strategy

SIFT10M DEEP10M GISTIM

s Unbalanced
&== Constrained
mmm Redundant Constrained

Memory Footprint (GB)
o o o — —
™ o =) =) S

S
o

o
o

1 2 3 4 5 1 2 3 4 1 2 3

Partition #

Fig. 3. Comparison of Vector Data Clustering Results using Different Unsupervised Clustering Algorithms

1

Naive Communication Mechanism

e \ector search requires low
latency to function
e Need to communicate
aggregate results between
cloud functions
e Two choices:
o Global (blob) storage
o HTTP-based

(a) HTTP-Based

T ———— — — — — —

(b) Blob Storage

12

Optimized Communication Mechanism

Solution: Use Azure Durable functions as stateful orchestrators
Can preserve states across multiple function invocations

e Avoid HTTP, exploit other communication channels (e.g. message passing via
Azure Queue Storage

60

Latency (msec)

| ™= Azure Durable Functions

I Azure Functions
B Azure Blob Storage

b

2 4 8 167 32 64 128256
Size (KB)

0.1 1

(a) Communication Overhead

Fig. 4. Cloud Communication Overhead Comparison

B Http-based

B Blob Storage
B Durable Function
CX. Vector Search

! RELEEZ
(a) (b) (c)

(b) Overhead with Vector Search

10

Latency (ms)

0

13

Main System Idea

Use a distributed
vector search, treating
each cloud function as
a computational unit
o Sharding
o Communication
hub

IDE / Web UI T
<) Serverless Implementation @
Cloud Functions Deployment
Orchestrator Function
Quiery vector [imaes s S s [fSearch result gy
oV Y :.{ Query - ranked s res es
'\ Dispatcher),r Result !
Purpose-Built ™= | Aggregator | i
Sharding-based | = At e g moneane ar s aas P l Optimized
Search Strategy l Communication
QV, Entity_IDs Rés(i) " Res(i+1) W
| 2) New Approach for
wd A /% —— Reducing Cold Start
Durable , 7y
Entities * * * | Rl o% —...\ -
' S Centroid i+1 Purpose-Built
o \ Sharding-based
Partitioned
Do o . . . Index Strategy

14

Experiment

Datasets: SIFT10M (d=728), DEEP10M (d=96), GIST1M (d=960)

Workloads: Sparse, burst, continuous, real-world
Evaluation: Latency, accuracy (recall@10 default)
Hardware: Azure VM F4 (8 GB RAM, 4 vCPUs)

Table 1. Datasets

SIFT10M | DEEP10M | GISTIM
of Base Vectors 10,000,000 | 10,000,000 | 1,000,000
of Query Vectors | 10,000 10,000 1,000
Dimensionality 128 96 960
Data type int32 float32 int32

15

Results (cost)

e \exless can provide cost savings up to 5.3x for VM-based solutions and
nearly 6.5x for naive cloud implementations

250 et 1540 1

200 1 1541 1 125 4

3 8 5 1001

::g‘ 1540 4 % 100 o % 75 4
D100 O 8

50 0

L Vexluss VM Naiive CF M Vexless ™ Naive CF % Vexluss VM Naive CF
(a) SIFT10M: Monthly Cost, (d) DEEP10M: Monthly Cost, (g) GIST1M: Monthly Cost, Sparse

Sparse Queries Sparse Queries Queries

Results (latency)

Recall (%)

100.0
97.51
95:07
92.51
90.0 1
87.57
85.0 -
82:51

- -

——
——
—a—
—
S

Vexless 50th
VM 50th
Vexless 95th
VM 95th
Vexless 99th
VM 99th

80.0
0.00

025 0.50 0.75 1.00 1.25 1.50
50th/95th/99th Latency (msec)

17

Results (recall)

e Authors state Vexless offers best search performance across three different

datasets

100

Latency (msec)

100

Latency (msec)

100

95
o = 90 o 90
® 901 ~¥~ Vexless ® © ~¥- Vexless
& 85 1 o)A g 80 2 g0 = ;M -
= Naive CF = =¥~ Vexless = aive CE
S go- g — VM 3
£ = 701 { Naive CF 70 4

75 1 /

70 " . : ! : 60) . - . . 0.2 : s

0.0 0.1 0.2 0.3 04 0.5 0.6 0.0 0.1 0.2 0.3 04 0.5 0.6

Latency (msec)

(i) GIST1M: Search Recall@10 Per-
formance

(c) SIFT10M: Search Recall@10 Per-
formance

(f) DEEP10M: Search Recall@10
Performance

Critical lens

After seeing all this, are you convinced Vexless is actually a good solution for
deploying a vector database?

Are there other ways of achieving cost savings?

Is Vexless actually adhering to serverless principles?

What are the maintenance/operational concerns?

What about billion-point datasets necessitating multiple orchestrators?

19

Vexless: A Serverless Vector Data
Management System Using Cloud Functions

Yongye Su, Yingi Sun, Minjia Zhang, Jianguo Wang
Presented by Patrick Lee for CSC 2233
February 5, 2024

20

