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Designing data systems

e Focus so far on the internal mechanisms of
how to make vector databases work
e Zoom out and take a look at the system
design for deploying a vector database
e Our options:
a. Manage our own virtual machines
b. Have someone else manage the
infrastructure
m This is where cloud functions come
in!
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Cloud functions

Azure
FaaS (Functions as a Service) < > Functions
Submit code as a payload function
All operational concerns hidden
Charged only for function uptime + fixed
function invocation overhead cost
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Virtual machines vs. Cloud functions

Functionality
Managed?

Dedicated Server?
Stateful?
Computational Limits?
Start-up time
Payment model

Price-per-unit (of compute)

Virtual Machine

Yes

Yes

Yes

Soft (based on machine)
Minutes

Rental

Lower

Cloud function
No (serverless)
No

No(-ish)

Hard

Seconds
Pay-as-you-go

Higher
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ANN search
o Find top-k results within k results
returned by algorithm
Cloud functions are more expensive
than VMs
o Unsuitable for dense and
continuous workloads with long
uptime
Real-world applications of vector
databases are sparse and bursty



RQ: Can we use cloud functions to build
high-performance and cost-efficient vector
databases?



Vexless: 3 Challenges and 3 Contributions

Challenge 1: Hard resource limits in cloud functions, more than one needed
Contribution: Even workload distribution via bespoke sharding algorithm
Challenge 2: Communication (latency) overheads

Contribution: Communication hub mechanism
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Main System Idea

e Use a distributed
vector search, treating
each cloud function as
a computational unit

o Sharding phase
(partitioning)

o Search Phase
(Identify —
Activate —
Aggregate)
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Naive Sharding Approaches

e Azure has a memory limit of 1.5 GB per
cloud function
e Azure functions OOM at 3 million
vectors
e How can we split up the database?
o Uniform sharding
o Cluster-based (k-means) sharding
o Balanced k-means sharding
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Improved Sharding-based Index & Search Strategy

Balanced K-means problem: Worse search efficiency
Reason: Forcing boundary points to achieve balance
Searching in incorrect clusters as a result

Solution: radius-threshold-based clustering

Stage 2: Index Building

5: Initialization: For cluster c;, initialize an empty index partition J;. Set distance threshold T
for redundancy indexing.

6: for each base vector v in D do

7 Compute v’s distances d(v, C;) to centroids Cy, Cy, . . ., Ck.

8:  Rank d(o, C)).

9 Include v in the index I; corresponding to its centroid Cp,.

10:  for each centroid C; where i # h do

11: if d(o,C;) < T then
12: Add v to ;.
13: end if

14: end for
15: end for
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Improved Sharding-based Index & Search Strategy
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Fig. 3. Comparison of Vector Data Clustering Results using Different Unsupervised Clustering Algorithms
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Naive Communication Mechanism

e \ector search requires low
latency to function
e Need to communicate
aggregate results between
cloud functions
e Two choices:
o Global (blob) storage
o HTTP-based

(a) HTTP-Based
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(b) Blob Storage

12



Optimized Communication Mechanism

Solution: Use Azure Durable functions as stateful orchestrators
Can preserve states across multiple function invocations

e Avoid HTTP, exploit other communication channels (e.g. message passing via
Azure Queue Storage
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Main System Idea

Use a distributed
vector search, treating
each cloud function as
a computational unit
o Sharding
o Communication
hub
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Experiment

Datasets: SIFT10M (d=728), DEEP10M (d=96), GIST1M (d=960)

Workloads: Sparse, burst, continuous, real-world
Evaluation: Latency, accuracy (recall@10 default)
Hardware: Azure VM F4 (8 GB RAM, 4 vCPUs)

Table 1. Datasets

SIFT10M | DEEP10M | GISTIM
# of Base Vectors 10,000,000 | 10,000,000 | 1,000,000
# of Query Vectors | 10,000 10,000 1,000
Dimensionality 128 96 960
Data type int32 float32 int32
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Results (cost)

e \exless can provide cost savings up to 5.3x for VM-based solutions and
nearly 6.5x for naive cloud implementations
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Results (latency)

Recall (%)
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Results (recall)

e Authors state Vexless offers best search performance across three different

datasets
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Critical lens

After seeing all this, are you convinced Vexless is actually a good solution for
deploying a vector database?

Are there other ways of achieving cost savings?

Is Vexless actually adhering to serverless principles?

What are the maintenance/operational concerns?

What about billion-point datasets necessitating multiple orchestrators?
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