

credit: Yusuke Matsui and FAISS

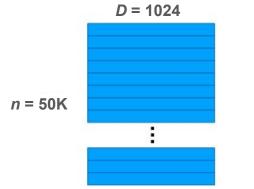
GyF

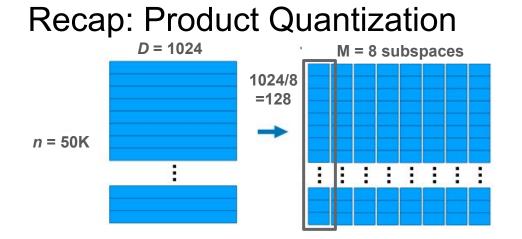
This CVPR2013 paper is the Open Access version, provided by the Computer Vision Foundation. The authoritative version of this paper is available in IEEE Xplore.

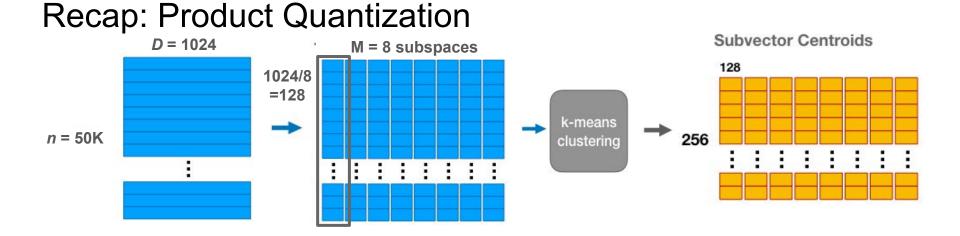
Optimized Product Quantization for Approximate Nearest Neighbor Search

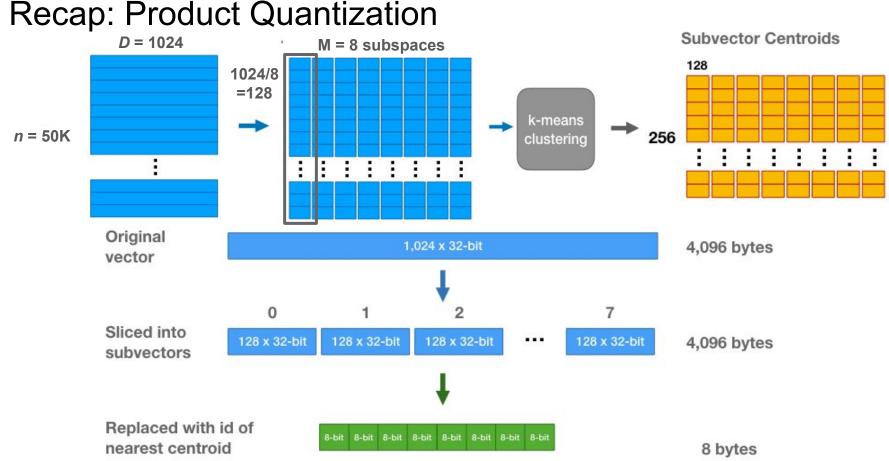
Tiezheng Ge1*Kaiming He2Qifa Ke3Jian Sun2¹University of Science and Technology of China²Microsoft Research Asia³Microsoft Research Silicon Valley

Recap: Product Quantization







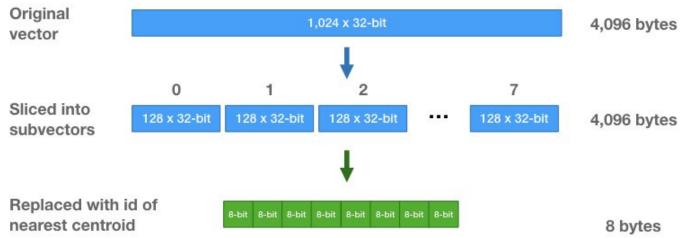


Recap: Product Quantization

• Formally:

• Quantizer:
$$\mathbf{x} \to \mathbf{c}(i(\mathbf{x}))$$

 M subvectors: $\mathbf{x} = [\mathbf{x}^1, ... \mathbf{x}^m, ... \mathbf{x}^M]$
 M sub-codewords: $\mathbf{c} = [\mathbf{c}^1, ... \mathbf{c}^m, ... \mathbf{c}^M]$

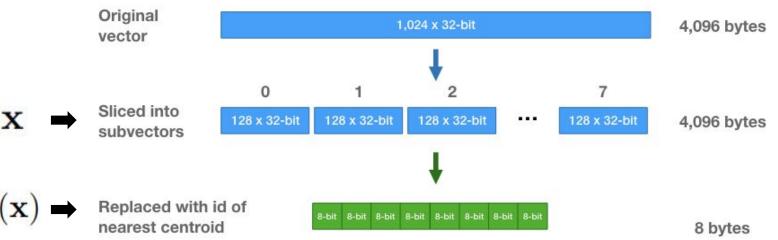


Recap: Product Quantization

• Formally:

• Quantizer:
$$\mathbf{x} \to \mathbf{c}(i(\mathbf{x}))$$

 M subvectors: $\mathbf{x} = [\mathbf{x}^1, ... \mathbf{x}^m, ... \mathbf{x}^M]$
 M sub-codewords: $\mathbf{c} = [\mathbf{c}^1, ... \mathbf{c}^m, ... \mathbf{c}^M]$



Quantization Distortion

• Formally:

• Quantizer:
$$\mathbf{x} \to \mathbf{c}(i(\mathbf{x}))$$

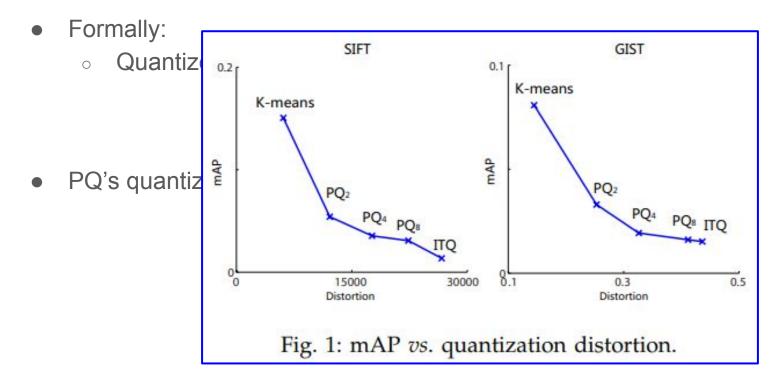
 M subvectors: $\mathbf{x} = [\mathbf{x}^1, ... \mathbf{x}^m, ... \mathbf{x}^M]$
 M sub-codewords: $\mathbf{c} = [\mathbf{c}^1, ... \mathbf{c}^m, ... \mathbf{c}^M]$

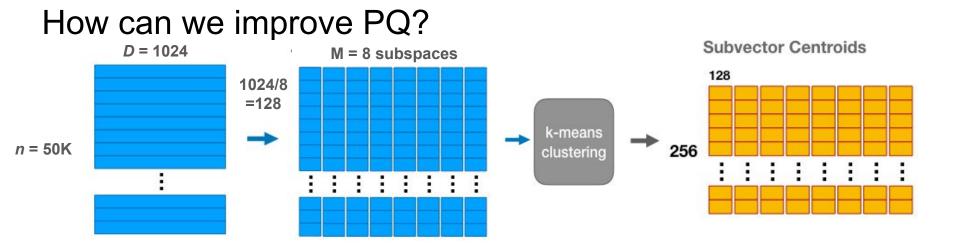
• PQ's quantization distortion (i.e. loss function)

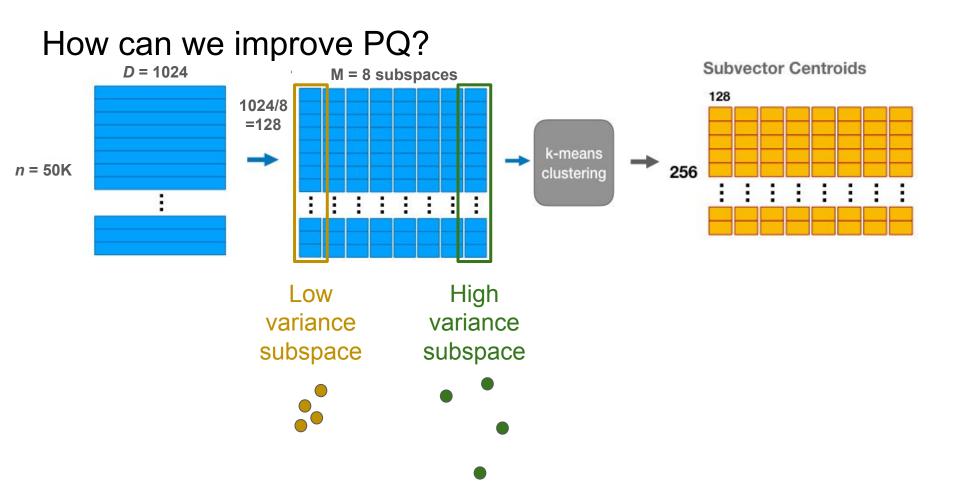
$$\min_{\mathcal{C}^1,\ldots,\mathcal{C}^M} \sum_{\mathbf{x}} \|\mathbf{x} - \mathbf{c}(i(\mathbf{x}))\|^2,$$

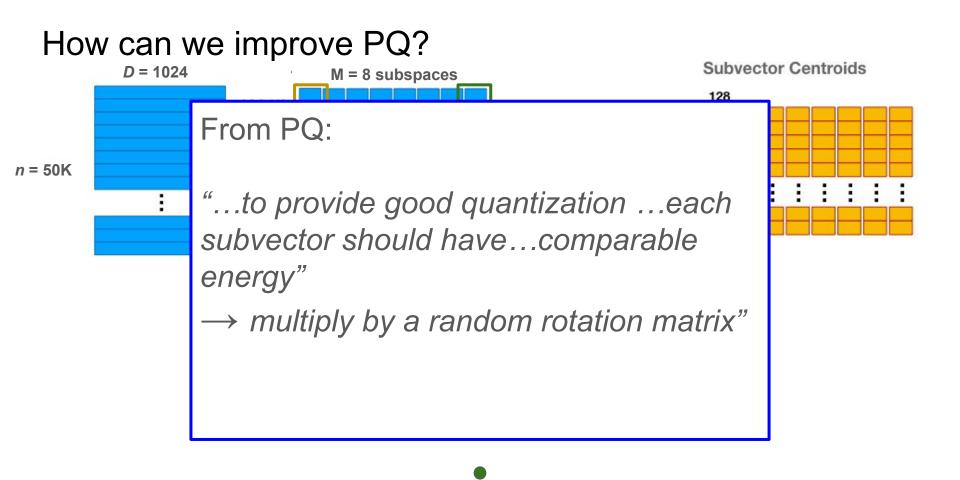
s.t. $\mathbf{c} \in \mathcal{C} = \mathcal{C}^1 \times \ldots \times \mathcal{C}^M.$

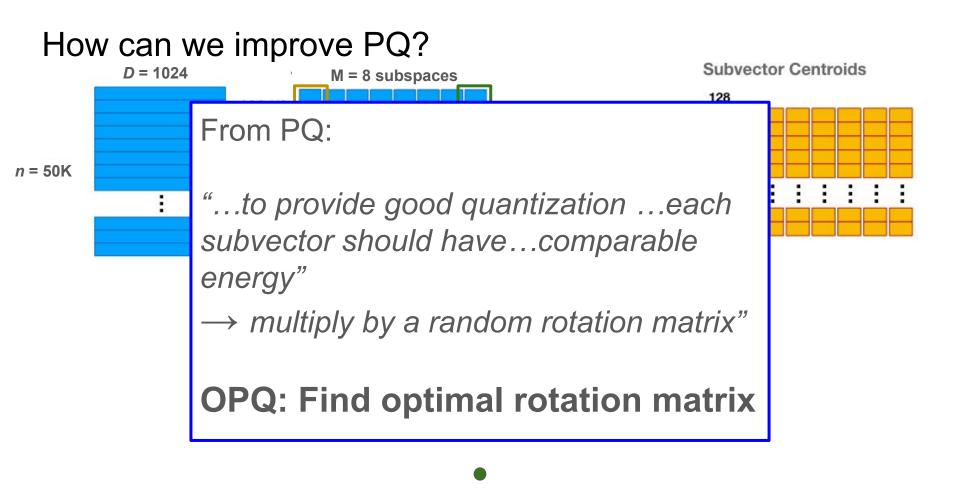
Quantization Distortion



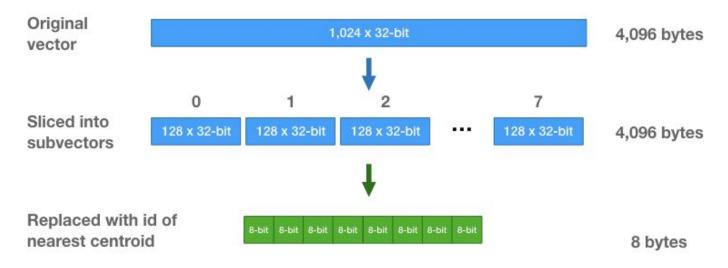




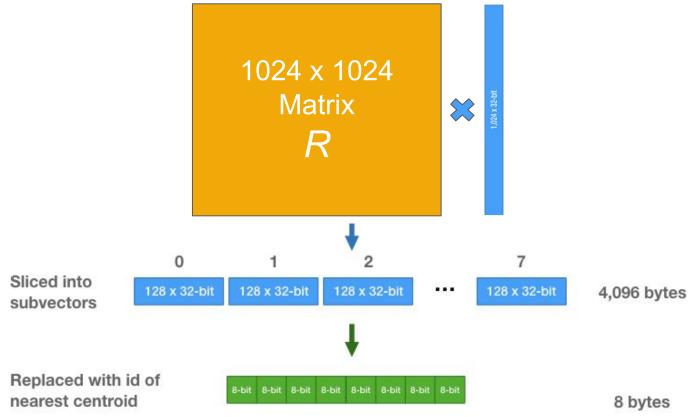




Optimized Product Quantization



Optimized Product Quantization



Optimized Quantization Distortion

• PQ's quantization distortion (i.e. loss function)

$$\min_{\mathcal{C}^{1},...,\mathcal{C}^{M}} \sum_{\mathbf{x}} \|\mathbf{x} - \mathbf{c}(i(\mathbf{x}))\|^{2},$$

s.t. $\mathbf{c} \in \mathcal{C} = \mathcal{C}^{1} \times ... \times \mathcal{C}^{M}.$

• Optimized PQ proposes to minimize:

$$\min_{R, \mathcal{C}^{1}, \dots, \mathcal{C}^{M}} \sum_{\mathbf{x}} \|\mathbf{x} - \mathbf{c}(i(\mathbf{x}))\|^{2},$$

s.t. $\mathbf{c} \in \mathcal{C} = \{\mathbf{c} \mid R\mathbf{c} \in \mathcal{C}^{1} \times \dots \times \mathcal{C}^{M}, R^{T}R = I\}$

How do we find matrix R?

- 1. Non-parametric
 - Optimize two easier subproblems
- 2. Parametric
 - Gaussian assumption
 - Still works on non-Gaussian data

$$\min_{R, \mathcal{C}^{1}, \dots, \mathcal{C}^{M}} \sum_{\mathbf{x}} \|\mathbf{x} - \mathbf{c}(i(\mathbf{x}))\|^{2},$$

s.t. $\mathbf{c} \in \mathcal{C} = \{\mathbf{c} \mid R\mathbf{c} \in \mathcal{C}^{1} \times \dots \times \mathcal{C}^{M}, R^{T}R = I\}$

$$\min_{R, \mathcal{C}^{1}, \dots, \mathcal{C}^{M}} \sum_{\mathbf{x}} \|\mathbf{x} - \mathbf{c}(i(\mathbf{x}))\|^{2},$$

s.t. $\mathbf{c} \in \mathcal{C} = \{\mathbf{c} \mid R\mathbf{c} \in \mathcal{C}^{1} \times \dots \times \mathcal{C}^{M}, R^{\mathsf{T}}R = I\}$

1. Fix *R*, optimize codebooks

$$\min_{\substack{\mathcal{C}^1,\ldots,\mathcal{C}^m \\ \mathbf{\hat{x}}}} \sum_{\mathbf{\hat{x}}} \|\mathbf{\hat{x}} - \mathbf{\hat{c}}(i(\mathbf{\hat{x}}))\|^2,$$

s.t. $\mathbf{\hat{c}} \in \mathcal{C}^1 \times \ldots \times \mathcal{C}^M.$

$$\min_{R, \mathcal{C}^{1}, \dots, \mathcal{C}^{M}} \sum_{\mathbf{x}} \|\mathbf{x} - \mathbf{c}(i(\mathbf{x}))\|^{2},$$

s.t. $\mathbf{c} \in \mathcal{C} = \{\mathbf{c} \mid R\mathbf{c} \in \mathcal{C}^{1} \times \dots \times \mathcal{C}^{M}, R^{\mathsf{T}}R = I\}$

1. Fix *R*, optimize codebooks 2. Fix codebooks, optimize *R*

$$\min_{\mathcal{C}^1,\ldots,\mathcal{C}^m} \sum_{\hat{\mathbf{x}}} \|\hat{\mathbf{x}} - \hat{\mathbf{c}}(i(\hat{\mathbf{x}}))\|^2,$$

s.t. $\hat{\mathbf{c}} \in \mathcal{C}^1 \times \ldots \times \mathcal{C}^M.$

$$\min_{R} \sum_{\mathbf{x}} \|R\mathbf{x} - \hat{\mathbf{c}}(i(\hat{\mathbf{x}}))\|^2,$$

s.t. $R^{\mathrm{T}}R = I.$

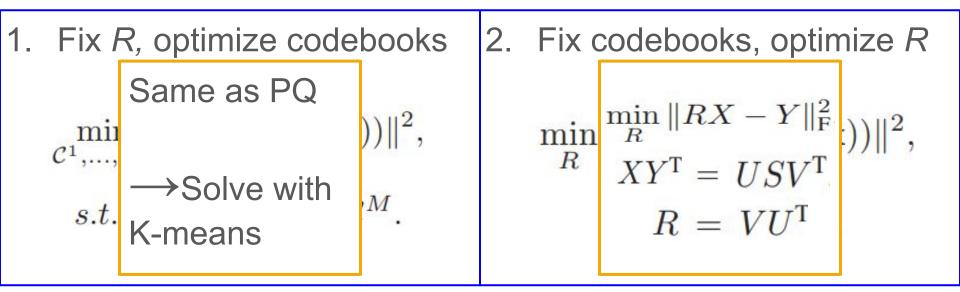
$$\min_{R, \mathcal{C}^{1}, \dots, \mathcal{C}^{M}} \sum_{\mathbf{x}} \|\mathbf{x} - \mathbf{c}(i(\mathbf{x}))\|^{2},$$

s.t. $\mathbf{c} \in \mathcal{C} = \{\mathbf{c} \mid R\mathbf{c} \in \mathcal{C}^{1} \times \dots \times \mathcal{C}^{M}, R^{\mathsf{T}}R = I\}$

1. Fix *R*, optimize codebooks Same as PQ $\sum_{\substack{c^1,\dots,\\s.t.}}^{\min}$ Solve with K-means Same as PQ M. Same as PQ M. Site codebooks, optimize *R* $\min_{\substack{R\\ x}} \sum_{\substack{x\\ x}} ||R\mathbf{x} - \hat{\mathbf{c}}(i(\hat{\mathbf{x}}))||^2,$ $s.t. R^T R = I.$

$$\min_{R, \mathcal{C}^{1}, \dots, \mathcal{C}^{M}} \sum_{\mathbf{x}} \|\mathbf{x} - \mathbf{c}(i(\mathbf{x}))\|^{2},$$

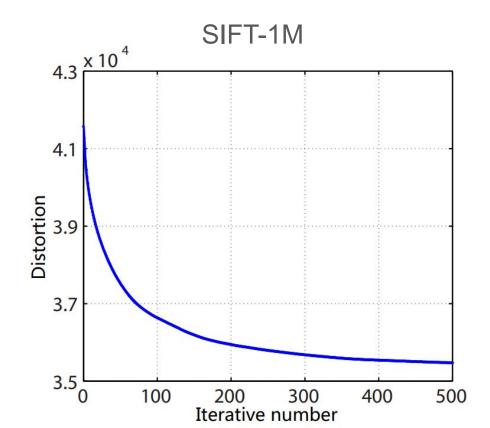
s.t. $\mathbf{c} \in \mathcal{C} = \{\mathbf{c} \mid R\mathbf{c} \in \mathcal{C}^{1} \times \dots \times \mathcal{C}^{M}, R^{\mathsf{T}}R = I\}$



$$\min_{\substack{R,C^{1},...,C^{M}}} \sum_{\mathbf{x}} \|\mathbf{x} - \mathbf{c}(i(\mathbf{x}))\|^{2},$$

s.t. $\mathbf{c} \in C = \{\mathbf{c} \mid R\mathbf{c} \in C^{1} \times ... \times C^{M}, R^{T}R = I\}$
1. Fix *R*, optimize codebooks

$$\sup_{\substack{C^{1},...,\\ s.t.}} \sum_{\substack{n \in \mathbb{C}\\ min \\ K-means}} \sum_{\substack{N \\ M}} \sum_{\substack{M \\ min \\ N}} \sum_{\substack{R \\ min \\ R \\ min \\ min \\ R \\ min \\ R \\ min \\ min \\ min \\ min \\ min \\ R \\ min \\$$



Parametric Solution

• If data is Gaussian, distortion *E* of PQ is:

$$E_{\mathrm{PQ}} = k^{-\frac{2M}{D}} \frac{D}{M} \sum_{m=1}^{M} |\Sigma_{mm}|^{\frac{M}{D}}, \quad \Sigma = \begin{pmatrix} \Sigma_{11} & \cdots & \Sigma_{1M} \\ \vdots & \ddots & \vdots \\ \Sigma_{M1} & \cdots & \Sigma_{MM} \end{pmatrix}.$$

• Lower bound of distortion:

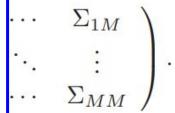
$$\sum_{m=1}^{M} |\hat{\Sigma}_{mm}|^{\frac{M}{D}} \ge M |\Sigma|^{\frac{1}{D}}.$$

Parametric Solution

If data is Gaussian, distortion *E* of PQ is:

Minimal distortion with:

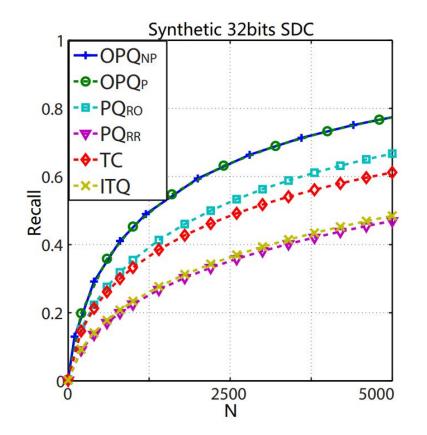
- $E_{\rm PQ} = k^{-\frac{2M}{D}}$ 1. Vector dimension Lower bound of d independence
 - Balanced subspaces



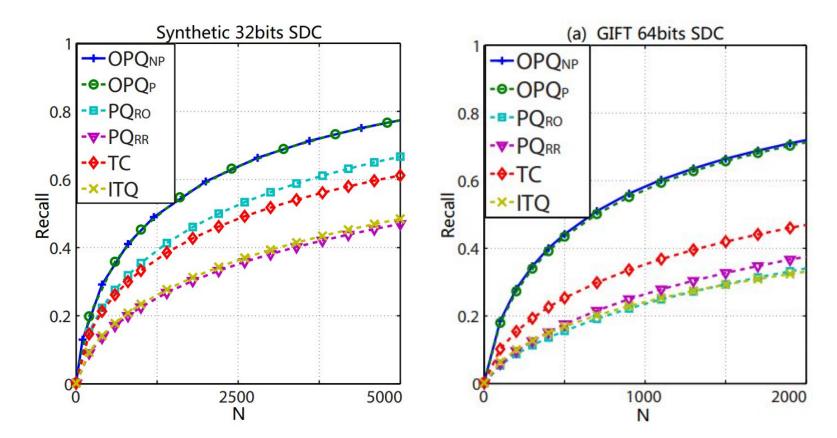
m=1

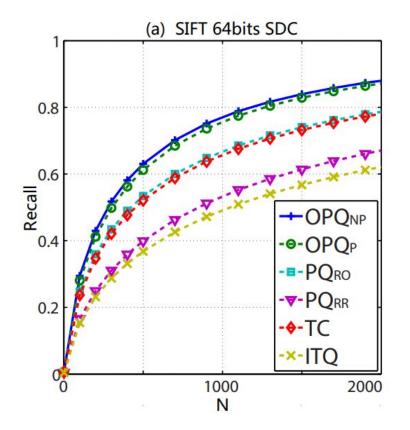
variance

- Datasets: Synthetic Gaussian dataset, GIST1M, SIFT1M, MNIST,
- Compare OPQ_P and OPQ_NP with:
 - PQ_RO: randomly ordered dimensions
 - PQ_RR: PCA alignment then random rotation
 - TC: scalar quantizer
 - ITQ: vector quantizer

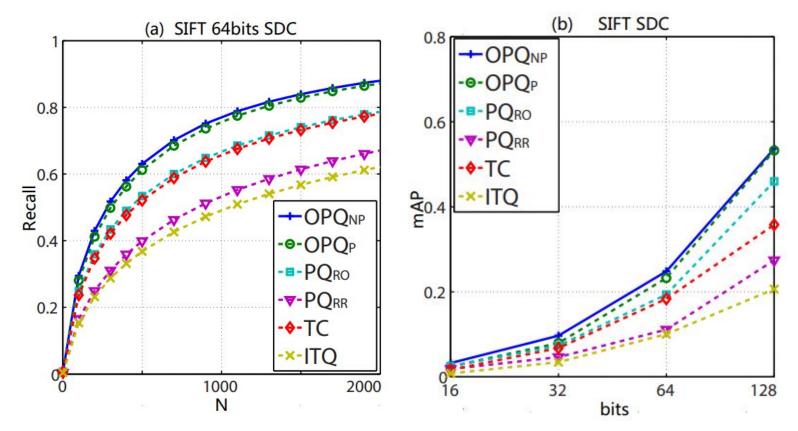


- Synthetic Gaussian data
 128D
 - 120D
 1M data points
 - PQ_RO better than
 PQ_RR
 - Vector dimension independence





- SIFT1M: two distinct clusters
- OPQ_NP begins to outperform OPQ_P





- MNIST: ten distinct clusters
- Greater difference between OPQ_NP and OPQ_P
- More complicated data?

Takeaways

- PQ is sensitive to data distribution!
- Optimizing transformation matrix can improve PQ accuracy
- Gaussian solution:
 - Independent vectors dimensions
 - Balanced subspace variance
- Limitations:
 - No non-parametric convergence guarantee
 - No evaluation of overhead
 - Gaussian assumption

Extras: Overhead

Table 4. The Indexing Time for the GIST Dataset				
	RaBitQ	PQ	OPQ	LSQ
Time	117s	105s	291s	time-out (>24 hours)

RaBitQ: Quantizing High-Dimensional Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor Search, JIANYANG GAO, CHENG LONG