FreshDiskANN: A Fast and Accurate Graph-Based ANN
Index for Streaming Similarity Search [arXiv'21]}

Authors: Aditi Singh, et al. (Microsoft Research & CMU)
Presented by: Yifang Tian (ECE Ph.D., yifang.tian@mail.utoronto.ca)
Presentation date: 2025-01-29

/\
UNIVERSITY OF D E FY

TORONTO GRAVITY

2D
3,
S9eTLh
AT
*.:}":‘?v?-'»
ol
—

¥

1

mailto:yifang.tian@mail.utoronto.ca

Background — Introduction to ANNS and Their Challenges

What is Approximate Nearest Neighbor Search (ANNS)?

Real-world applications:

®
® ’~ * Recommendation systems
x ¥
;2\ @&\ * Image retrieval
@\
< .
VAN * NLP embeddings
/{..o \\
® /- 0 Challenges:
/ o
/
o X e Curse of dimensionality
o
® Scalability for billion-point datasets
[Reference: Professor Gabel’s lecture 2 slides for Vector Database Querying] Infeasible to put all data into into RAM!

UNIVERSITY OF

oY

Background - DiskANN Overview

DiskANN [Subramanya, NeurlPS'19]: Scalable ANNS on SSDs

@

 Vamana algorithm
* Indexing more with fewer RAM
* Better memory efficiency, latency, and

recall (FAISS and HNSW)

UNIVERSITY OF

oY

e Static Indexing

Real-World Constraints

Limited Adaptability

Current Challenge — Deletion is hard

HNSW. NSG. and Vamana - Delete Policy A Delete Policy B
100 | | | 100 | I
* Delete Policy A: i
® 95 95
o Remove all edges '—5
L
* Delete Policy B: u!: 70 20
R Il ed 85— ' 85 — '
o TEMDVE Al B 0 5 10 15 20 0 5 10 15 20
o Add all in/out pairs Batches (5% size)
o Prune —— HNSW —— Vamana NSG

Figure 1. Search recall over 20 cycles of deleting and re-
inserting 5% of SIFT1M dataset with statically built HNSW,
Vamana, and NSG indices with L = 44, 20, 27, respectively.

The graph becomes sparse!

UNIVERSITY OF

% TORONTO

Main contribution — Cost Reduction in Maintaining Freshness with FreshDisk ANN

Intuition:

e Vectors are books!

* New books: temporary bookshelf (in-memory index)

/-I

“IW i

* Most books: library’s vault (SSD-based index)

o i \ |
B - i - * M'i h\\\\\\\\ I\
* Borrowed books: Gone book list (Delete List)

* Merging books: Library is less busy

* Book-borrowing: on the fly

UNIVERSITY OF

TORONTO

Methodology Overview - FreshDiskANN

* Hybrid Architecture: SSD + in-memory
 Dynamic Updates:

o Real-time insertions and deletions.

o High recall and low latency during updates.
* Querying: From both places then merge result
* Key Innovations:

o FreshVamana Algorithm

o StreamingMerge Component

UNIVERSITY OF

"' TORONTO

e =L P e ety
V-NAND SSD
990

. PCle"4.0 NVMe M2 SSD

WWW.SaMSUNg, com/ss:

d
SAMSUNG E(:.!CTRDNICS €0, LT, 1 T B

® g vt v g e M gag g e, sl s R

w BR o we WA o LLE |

990

V-NAND SSD SAMSUNG }
: PCle"4.0 NvMe™M.2 SSD

WWW.SaMSUNg, com/ss:

\ d
SAMSUNG &ECWDN!CS €0, LT, 1 T B

e g+t S g e M gagg gt .. el ERE R

B e - e e - DL UL L iy s
- - LLE 1 llll:: ! n !_!!..: il 30 "u - owm tunl o
- s — -t e Al e e .
-~ -

V-NAND SSD SAMSUNG H "

. 990

. PCle"4.0 NVMe M.2SSD

www samsung.com/ssd
SAMSUNG ELECTRONICS CO, LTD. 1 T B

® e gy ot e g e M gmg e, saltCs R e

Long-term (SSD)

LLL LSRR L i TR
RRERSE PELES FCE D

Temporary (Memory)

Methodology - Real-Time Graph Construction with FreshVamana Algorithm

SSD

In-memory

In-memory

From in-memory
to SSD

2
S
N
s
%X

UNIVERSITY OF

% TORONTO

|. Initiation

ll. Insertion

1. Deletion

Build graph with Vamana
Satisfy the a-RNG property

GreedySearch for nearest neighbors
RobustPrune to update edges

Remove the point
Rewire its neighbors

Periodically merge the in-memory index with
the SSD-resident index

Methodology — Insertion in FreshVamana Algorithm

1. Query Nearest Neighbors: {X1, X2, X3, X4, X5}

2. Generate Candidate Out-Neighbors: {X2, X3, X4}

3. Add Bi-Directional Edges: (Xp <-> X2), (Xp <-> X3), (Xp <-> X4)
4. Prune Over-Degree Nodes: Prune X2

5. Concurrency Control with lock

UNIVERSITY OF

oY

Methodology — Deletion in FreshVamana Algorithm

1. Lazy Deletion:
e Stay there with In-neighbours (X1, X2)
and out-neighbours (X3, X4, X5)
* Add to Delete List
2. Search Adjustments
* Filter result with Delete List
3. Delete Consolidation
e Batch update
e Delete node / add edges

Delete List:
* Prune

UNIVERSITY OF

3%,
s
ol oY

Methodology — StreamingMerge in FreshDiskANN System

oy

)

 Temporary index is full

* Small patch with the point and neighbours
* Robust Prune and write back

* Find small patch neighbours
e Store delta in memory
* NOT directly write back! (excessive 1/0)

U

UNIVERSITY OF

%9 TORONTO

e Patch-by-patch for each delta
* Integrates backward edges
* Write to SSD

10

Evaluation Setup

* Datasets:

o SIFT1B and other.

o Real-world dynamic workloads.
* Metrics:

o Recall

o Query Latency

UNIVERSITY OF

TORONTO

B8

&

SN
BNy |85
Y A

* Baseline Comparisons:

o DiskANN and static ANNS systems.
* Infrastructure:

o Single-node SSDs

o 64GB RAM

11

Evaluation — Recall Stability of StreamingMerge

Dataset: SIFT100M and SIFT1B

Statically build with 80M points / 800M points

StreamingMerge

e 8M /80M insertion

e 8M /80M deletion

Run 40 cycles

UNIVERSITY OF

Y TORONTO
oY

100 | 96

Tp]

5-recall@

98 e 95

L™
o6 \\\—MA g 94
< 93
V4 292 | -
92 ok 91
90 ' 90
0 10 20 30 40 0 20 40 60
#Batches #Batches
L95 L300

Figure 4. Recall evolution over multiple cycles of
StreamingMerge in steady-state over (left) 80M point index
with 10% deletes and inserts and (right) 800M point index
with 30M insertions and deletions.

12

Evaluation — Stage 1. Ramp Up

e Build while querying
 Start with 100M

* Temp memory cap at 30M
* Insert until SOOM

* Took 3 days

* Latency:5 ms when no merging, 15 ms when merging

UNIVERSITY OF

3%,
s
ol oY

Do m)mn-ra
S g © U O
I I
I I

ek
o

Seﬁrch latency(ms
-

o

o
(-
o

-10°
Time elapsed since beginning of experiment (seconds)
Figure 5. Search latencies for Ls = 100 (always > 92% 5-

recall@5) over the course of ramping up an index to size
800M. Each point is mean latency over a 10000-query batch.

13

Results — Stage 2. Steady State Query Performance (Recall vs Latency)

o
(e

70

1.6
260 | 1 @25 | Patch) _
E E | [a 1.4 |- th
50| N | | g 10
Y 220 | Delete Insert 4 soth
S 40 5 1.2 th
= <= 15 Q 90
< (0] -
— 30 r— < 1 I~ -
< 5 10 L N R Ve ey
S 20 & I
5 S 3 0.8
3 10 A 5 > | R
O | 0 L | 0_6 —"""\/-—TW
0 2.10° 4-10° 6-10° 5,000 10,000 15,000 0 10 20 30 40
Time elapsed since start of experiment (seconds) Time since merge start (sec) #Batches

Figure 6. Mean latency*measurements for the week-long steady-state experiment with an 800M FreshDiskANN index
processing concurrent inserts, deletes, and periodic background merge. (left) Search latency with Ls = 100 over the entire
experiment; (middle) Search latency during one StreamingMerge run, zoomed in from the left plot; (right) 10?*, 50 and 90*%
percentile insert latency over the entire experiment.

* High recall (> 95%) at 5-10 ms query latency
e Stability across updates

* Handles well in dynamic scenarios

UNIVERSITY OF

BNRS
s
Q5

14

Results - Much Faster Index Build Time than Disk ANN

= m Ty
oo 0.5
D . e Table 2. Full build time with DiskANN (96 threads) versus
= A o S FreshDiskANN (40 threads) to update a 800M index with
*E R~ N = S 30M inserts and deletes
E 02 = - e O =
é 0.1 H H - H Dataset | DiskANN(sec) | StreamingMerge (sec)
} SIFT800M 83140 s 15832 s
do do do

de de deo dle de de dla de de
| | | | \ | \ |
R R A RS

SIFT1M DEEPIM GISTIM SIFT100M

Patching is great!

Figure 11. Time taken to merge delete and re-insert of 5%,
10%, and 50% of index size into a FreshVamana index, ex-
pressed relative to index rebuild time for Vamana.

UNIVERSITY OF

3%,
P18
Q5

Results — Query Latency during StreamingMerge

6 | Q | 8%
0 = 2 8 v T
g 5 —) 7 SN
= : > 6 o
'S i \O o Q 6 . Ig)
o 4 S 2N S 00
5 3| s | o g 5 2 SR
= . e DNy — 4 i
PN ! - - || = z“ 3 _
- 2 —
o) w N g 2 SN e N N
& 1] oo | gueags S oY I8 A% | 35
SS oSS | Qs SS oo 1 o= e =2 >
98 99 98 99 98 99 98 99
95 98 99 95 98 99 95 98 99 95 98 99
SIFT1M DEEPIM GIST1M SIFT100M SIFT1M DEEPIM GISTIM SIFT100M
UO0Vamana U0FreshVamana I0Vamana [0FreshVamana

Figure 16. Query latency for Vamana and build-time nor Figure 17. Query latency for Vamana and build-time nor-
malized FreshVamana 10-recall@10 at 95%, 98%, and 99%. malized FreshVamana 100-recall@100 at 98%, and 99%.

UNIVERSITY OF

s,
B
s
Q5

FreshDIskANN vs. DiskANN

Updates Real-time Static
Index Design Memory (temp) + SSD (long-term) only SSD
Query Latency Slightly higher Baseline
Use cases Dynamic, real-time applications Static, pre-built datasets
TORONTO

Conclusion

* Contributions:
o Scalable, real-time ANNS system
o Efficient hybrid design: SSD + memory
o High recall, low latency, and dynamic update in real-time
o Suitable for dynamic environments
My feedback:
o Better explanation needed, NO architecture diagram
o Not enough performance comparison with other ANNS (like HNSW or FAISS)

o Figures are mixed

UNIVERSITY OF

S

18

Thank youl!

UNIVERSITY OF

TORONTO

B8

&3

YRS
ES) B8
Y A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

