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Background — Introduction to ANNS and Their Challenges

What is Approximate Nearest Neighbor Search (ANNS)?

Real-world applications:

®
® ’~ * Recommendation systems
x ¥
;2\ @&\ * Image retrieval
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VAN * NLP embeddings
/{..o \\
® /- 0 Challenges:
/ o
/
o X e Curse of dimensionality
o
®  Scalability for billion-point datasets
[Reference: Professor Gabel’s lecture 2 slides for Vector Database Querying] Infeasible to put all data into into RAM!
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Background - DiskANN Overview

DiskANN [Subramanya, NeurlPS'19]: Scalable ANNS on SSDs

@

 Vamana algorithm
* Indexing more with fewer RAM
* Better memory efficiency, latency, and

recall (FAISS and HNSW)
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e Static Indexing

Real-World Constraints

Limited Adaptability



Current Challenge — Deletion is hard

HNSW. NSG. and Vamana - Delete Policy A Delete Policy B
100 | | | 100 | I
* Delete Policy A: i
® 95 95
o Remove all edges '—5
L
* Delete Policy B: u!: 70 20
R Il ed 85— ' 85 — '
o TEMDVE Al B 0 5 10 15 20 0 5 10 15 20
o Add all in/out pairs Batches (5% size)
o Prune —— HNSW —— Vamana NSG

Figure 1. Search recall over 20 cycles of deleting and re-
inserting 5% of SIFT1M dataset with statically built HNSW,
Vamana, and NSG indices with L = 44, 20, 27, respectively.

The graph becomes sparse!
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Main contribution — Cost Reduction in Maintaining Freshness with FreshDisk ANN

Intuition:

e Vectors are books!

* New books: temporary bookshelf (in-memory index)
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* Most books: library’s vault (SSD-based index)
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* Borrowed books: Gone book list (Delete List)

* Merging books: Library is less busy

* Book-borrowing: on the fly
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Methodology Overview - FreshDiskANN

* Hybrid Architecture: SSD + in-memory
 Dynamic Updates:

o Real-time insertions and deletions.

o High recall and low latency during updates.
* Querying: From both places then merge result
* Key Innovations:

o FreshVamana Algorithm

o StreamingMerge Component
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Methodology - Real-Time Graph Construction with FreshVamana Algorithm

SSD

In-memory

In-memory

From in-memory
to SSD
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|. Initiation

ll. Insertion

1. Deletion

Build graph with Vamana
Satisfy the a-RNG property

GreedySearch for nearest neighbors
RobustPrune to update edges

Remove the point
Rewire its neighbors

Periodically merge the in-memory index with
the SSD-resident index




Methodology — Insertion in FreshVamana Algorithm

1. Query Nearest Neighbors: {X1, X2, X3, X4, X5}

2. Generate Candidate Out-Neighbors: {X2, X3, X4}

3. Add Bi-Directional Edges: (Xp <-> X2), (Xp <-> X3), (Xp <-> X4)
4. Prune Over-Degree Nodes: Prune X2

5. Concurrency Control with lock
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Methodology — Deletion in FreshVamana Algorithm

1. Lazy Deletion:
e Stay there with In-neighbours (X1, X2)
and out-neighbours (X3, X4, X5)
* Add to Delete List
2. Search Adjustments
* Filter result with Delete List
3. Delete Consolidation
e Batch update
e Delete node / add edges

Delete List:
* Prune
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Methodology — StreamingMerge in FreshDiskANN System

oy

)

 Temporary index is full

* Small patch with the point and neighbours
* Robust Prune and write back

* Find small patch neighbours
e Store delta in memory
* NOT directly write back! (excessive 1/0)

U
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e Patch-by-patch for each delta
* Integrates backward edges
* Write to SSD
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Evaluation Setup

* Datasets:

o SIFT1B and other.

o Real-world dynamic workloads.
* Metrics:

o Recall

o Query Latency
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* Baseline Comparisons:

o DiskANN and static ANNS systems.
* Infrastructure:

o Single-node SSDs

o 64GB RAM
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Evaluation — Recall Stability of StreamingMerge

Dataset: SIFT100M and SIFT1B

Statically build with 80M points / 800M points

StreamingMerge

e 8M /80M insertion

e 8M /80M deletion

Run 40 cycles
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Figure 4. Recall evolution over multiple cycles of
StreamingMerge in steady-state over (left) 80M point index
with 10% deletes and inserts and (right) 800M point index
with 30M insertions and deletions.
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Evaluation — Stage 1. Ramp Up

e Build while querying
 Start with 100M

* Temp memory cap at 30M
* Insert until SOOM

* Took 3 days

* Latency:5 ms when no merging, 15 ms when merging
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Figure 5. Search latencies for Ls = 100 (always > 92% 5-

recall@5) over the course of ramping up an index to size
800M. Each point is mean latency over a 10000-query batch.

13



Results — Stage 2. Steady State Query Performance (Recall vs Latency)
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Figure 6. Mean latency*measurements for the week-long steady-state experiment with an 800M FreshDiskANN index
processing concurrent inserts, deletes, and periodic background merge. (left) Search latency with Ls = 100 over the entire
experiment; (middle) Search latency during one StreamingMerge run, zoomed in from the left plot; (right) 10?*, 50 and 90*%
percentile insert latency over the entire experiment.

* High recall (> 95%) at 5-10 ms query latency
e Stability across updates

* Handles well in dynamic scenarios
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Results - Much Faster Index Build Time than Disk ANN
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= A o S FreshDiskANN (40 threads) to update a 800M index with
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Patching is great!

Figure 11. Time taken to merge delete and re-insert of 5%,
10%, and 50% of index size into a FreshVamana index, ex-
pressed relative to index rebuild time for Vamana.
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Results — Query Latency during StreamingMerge
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Figure 16. Query latency for Vamana and build-time nor Figure 17. Query latency for Vamana and build-time nor-
malized FreshVamana 10-recall@10 at 95%, 98%, and 99%. malized FreshVamana 100-recall@100 at 98%, and 99%.
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FreshDIskANN vs. DiskANN

Updates Real-time Static
Index Design Memory (temp) + SSD (long-term) only SSD
Query Latency Slightly higher Baseline
Use cases Dynamic, real-time applications Static, pre-built datasets
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Conclusion

* Contributions:
o Scalable, real-time ANNS system
o Efficient hybrid design: SSD + memory
o High recall, low latency, and dynamic update in real-time
o Suitable for dynamic environments
My feedback:
o Better explanation needed, NO architecture diagram
o Not enough performance comparison with other ANNS (like HNSW or FAISS)

o Figures are mixed
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Thank youl!
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