
FreshDiskANN: A Fast and Accurate Graph-Based ANN 
Index for Streaming Similarity Search [arXiv'21]

Authors: Aditi Singh, et al. (Microsoft Research & CMU)

Presented by: Yifang Tian (ECE Ph.D., yifang.tian@mail.utoronto.ca)

Presentation date: 2025-01-29

1

mailto:yifang.tian@mail.utoronto.ca


Background – Introduction to ANNS and Their Challenges

What is Approximate Nearest Neighbor Search (ANNS)? 

[Reference: Professor Gabel’s lecture 2 slides for Vector Database Querying]

Real-world applications:

• Recommendation systems

• Image retrieval

• NLP embeddings

Challenges: 

• Curse of dimensionality

• Scalability for billion-point datasets

Infeasible to put all data into into RAM!

2



Background - DiskANN Overview

DiskANN [Subramanya, NeurIPS'19]: Scalable ANNS on SSDs 

• Vamana algorithm

• Indexing more with fewer RAM

• Better memory efficiency, latency, and 

recall (FAISS and HNSW) 

• Static Indexing

• Real-World Constraints

• Limited Adaptability

3



Current Challenge – Deletion is hard

HNSW, NSG, and Vamana -

• Delete Policy A: 

o Remove all edges

• Delete Policy B: 

o Remove all edges

o Add all in/out pairs

o Prune

The graph becomes sparse!

4



Main contribution – Cost Reduction in Maintaining Freshness with FreshDiskANN

Intuition: 

• Vectors are books!

• New books: temporary bookshelf (in-memory index) 

• Most books: library’s vault (SSD-based index)

• Borrowed books: Gone book list (Delete List)

• Merging books: Library is less busy

• Book-borrowing: on the fly

5



Methodology Overview - FreshDiskANN

• Hybrid Architecture: SSD + in-memory

• Dynamic Updates:

o Real-time insertions and deletions.

o High recall and low latency during updates.

• Querying: From both places then merge result

• Key Innovations: 

o FreshVamana Algorithm

o StreamingMerge Component Temporary (Memory)Long-term (SSD)

6



Methodology - Real-Time Graph Construction with FreshVamana Algorithm

I. Initiation

II. Insertion

III. Deletion

IV. Merge

• Build graph with Vamana 
• Satisfy the α-RNG property 

• GreedySearch for nearest neighbors 
• RobustPrune to update edges

• Remove the point 
• Rewire its neighbors

• Periodically merge the in-memory index with 
the SSD-resident index

In-memory

In-memory

From in-memory 
to SSD

SSD

7



Methodology – Insertion in FreshVamana Algorithm

X1

1. Query Nearest Neighbors: {X1, X2, X3, X4, X5}

2. Generate Candidate Out-Neighbors: {X2, X3, X4}

3. Add Bi-Directional Edges: (Xp <-> X2), (Xp <-> X3), (Xp <-> X4)

4. Prune Over-Degree Nodes: Prune X2

5. Concurrency Control with lock

X2

X4
X3

X5

Xp

X8

X9

X7

8



Methodology – Deletion in FreshVamana Algorithm

X1

X2

X4X3

Xq

X5

Delete List: Xq

1. Lazy Deletion: 

• Stay there with In-neighbours (X1, X2) 

and out-neighbours (X3, X4, X5)

• Add to Delete List

2. Search Adjustments

• Filter result with Delete List

3. Delete Consolidation

• Batch update

• Delete node / add edges

• Prune

9



Methodology – StreamingMerge in FreshDiskANN System 

I. Initiation

II. Deletion

III. Insertion

IV. Patch

• Temporary index is full 

• Small patch with the point and neighbours
• Robust Prune and write back

• Find small patch neighbours
• Store delta in memory
• NOT directly write back! (excessive I/O)

• Patch-by-patch for each delta
• Integrates backward edges 
• Write to SSD

10



Evaluation Setup

• Datasets:

o SIFT1B and other.

o Real-world dynamic workloads.

• Metrics:

o Recall

o Query Latency

• Baseline Comparisons:

o DiskANN and static ANNS systems.

• Infrastructure:

o Single-node SSDs

o 64GB RAM

11



Evaluation – Recall Stability of StreamingMerge

• Dataset: SIFT100M and SIFT1B

• Statically build with 80M points / 800M points

• StreamingMerge

• 8M / 80M insertion

• 8M / 80M deletion

• Run 40 cycles

12



Evaluation – Stage 1: Ramp Up

• Build while querying

• Start with 100M

• Temp memory cap at 30M

• Insert until 800M

• Took 3 days

• Latency: 5 ms when no merging, 15 ms when merging

13



Results – Stage 2: Steady State Query Performance (Recall vs Latency)

• High recall (> 95%) at 5-10 ms query latency

• Stability across updates

• Handles well in dynamic scenarios

14



Results - Much Faster Index Build Time than DiskANN

Patching is great!

15



Results – Query Latency during StreamingMerge

16



FreshDiskANN vs. DiskANN

Category FreshDiskANN DiskANN

Updates Real-time Static

Index Design Memory (temp) + SSD (long-term) only SSD

Query Latency Slightly higher Baseline

Use cases Dynamic, real-time applications Static, pre-built datasets

17



Conclusion

• Contributions:

o Scalable, real-time ANNS system

o Efficient hybrid design: SSD + memory

o High recall, low latency, and dynamic update in real-time

o Suitable for dynamic environments

• My feedback:

o Better explanation needed, NO architecture diagram

o Not enough performance comparison with other ANNS (like HNSW or FAISS)

o Figures are mixed

18



Thank you!

19


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

