
IV. ADVANCED INDEXING
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PREVIOUSLY, ON
            TOPICS IN VECTOR DATABASES
• Queries:

• kNN
• Filtered queries.

• Prefilter / postfilter / single-stage

• Multi-vector queries (and challenges)
• Reranking
• The need to index

• Index:
• Tradeoffs and recall.
• Flat index  (for <100K vectors)
• LSH (elegant but suboptimal)
• IVF (cluster-based index)
• HNSW (graph-based index)
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AND NOW…

• Dealing with large datasets.

• Performance numbers!

• How to make updates and influence rebuilds.
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TOPICS IN VECTOR DATABASES!
All this, today in…



TWO COMMON PROBLEMS

Some indexes suffer from:

1. Large memory footprint:

    → 1. Sharding

    → 2. Quantization 

    → 3. Composite index

    → 4. Disk-resident index

2. Need to rebuild periodically:

    → 5. Liveness layer

    → 6. Segmenting

    → 7. Updatable index
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Did he just 
call me “fat”?



1. SHARDING

1. Split data to k disjoint sets

• N/k points per shard

2. Build index per shard

3. Distribute shards across machines

4. Query in parallel, merge results

• Benefits:

• N/k fits in machine RAM.

• Search (and insert) in parallel.

• Downsides:

• Need k machines, k can be large.

• How to deal with edges?

• Still lots of RAM.

• Only delays the issue.
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Sharding is used by most systems.
But not really a solution for memory.



2. QUANTIZATION

• Represent vector with fewer bits 

• Still has D dimensions!

• Loses accuracy

• Several main approaches:
• Scalar Quantization – quantize each element

• Vector Quantization – represent entire vector as “code word”

• Product Quantization – combine VQ on parts of vector [Jegou, TPAMI’10]
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SQn: SCALAR QUANTIZATION

Pinecone

SBQ

• Reduce each component to n bits

• Uniform quantization:

binsizei =
max 𝑥𝑖 − min xi

2𝑛
 q 𝑥𝑖 ≅

𝑥𝑖 − min 𝑥𝑖

binsizei

• Example: 32 → 8 (“  8”)
• x4 less memory

• x2 faster comparison [Qdrant, 2024]

• ~1% recall loss  [Qdrant, 2024]

• Commonly used with other indices (Pinecone)

• n < 8 not common, inaccurate
• SBQ @ Timescale uses 2 bits
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32 
bits

8

𝑥3

𝑄(𝑥3)

https://www.pinecone.io/blog/hnsw-not-enough/#The-Pinecone-Graph-Algorithm
https://www.timescale.com/blog/how-we-made-postgresql-as-fast-as-pinecone-for-vector-data/


VQ: VECTOR QUANTIZATION

1. Cluster vectors.

• Codebook = set of centroids.

2. Assign code word to each cluster.

3. 𝑞 𝑥  maps 𝑥 to nearest cluster:

• Encode 𝑥 as cluster code word

• Use centroid in distance computation

• 𝑂 𝐷𝑁𝑘  time per 𝑘-means iteration

• 𝑂(𝑘𝐷) space for codebook

• 𝑂 𝑁 log 𝑘  space for vectors
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VQ: VECTOR QUANTIZATION

1. Cluster vectors.

• Codebook = set of centroids.

2. Assign code word to each cluster.

3. 𝑞 𝑥  maps 𝑥 to nearest cluster:

• Encode 𝑥 as cluster code word

• Use centroid in distance computation

• 𝑂 𝐷𝑁𝑘  time per 𝑘-means iteration

• 𝑂(𝑘𝐷) space for codebook

• 𝑂 𝑁 log 𝑘  space for vectors

• Problem: 𝑘 must be large

• 𝐷-dimensional space → 𝑘 regions

• Resolution grows exponentially in 𝐷

• …so 𝑘 must also grow exponentially!

• Small 𝑘 → large error

• How large? Very large

• 𝑘 = 1K to 1M for SIFT1B D=128  [Jegou, TPAMI’10]

→ Too slow!

→ Too big!
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PQ: PRODUCT QUANTIZATION

• Split space to m chunks (subspaces)

• Cluster each subspace to 𝑘∗ clusters

• Assign id 1 … 𝑘∗ to each subspace centroid
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N = 5
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PQ: PRODUCT QUANTIZATION

• Split space to m chunks (subspaces)

• Cluster each subspace to 𝑘∗ clusters

• Assign id 1 … 𝑘∗ to each subspace centroid

• To quantize vector v:

• Split

• Replace each chunk with id of nearest centroid

• Concatenate
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PQ: PRODUCT QUANTIZATION

• Split space to m chunks (subspaces)

• Cluster each subspace to 𝑘∗ clusters

• Assign id 1 … 𝑘∗ to each subspace centroid

• To quantize vector v:

• Split

• Replace each chunk with id of nearest centroid

• Concatenate

• To approximate v from Q(v):
• Concatenate centroids indicated by ids
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m = 4
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𝑘∗ = 2
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BENEFITS OVER VQ

• Assign nbits to each subspace

• Choose 𝑘∗ = 2𝑛
𝑏𝑖𝑡𝑠

• Strong representational power:

• Represent 𝑘 = 𝑘∗ 𝑚 centroids in ℝ𝐷

• m subspaces of D/m dimensions 

• {1.. 𝑘∗} x {1.. 𝑘∗}   …   {1.. 𝑘∗}

• Faster k-means clustering:

• With VQ: 𝑂 𝐷𝑁𝒌  per iteration

• With PQ: 𝑂(𝑚)𝑂
𝐷

𝑚
𝑁𝒌𝟏/𝒎  per iteration
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Example:
 D = 128, FP32, m = 8, nbits=8 (𝑘∗=256, k=264)
 Without PQ: 32x128 = 4096 bits per vector 
 With PQ: 8x8 =                64 bits per vector

• Lower storage:

• Without PQ: 32𝐷𝑁 bits (D floats per vector)

• With VQ: log2 𝑘 bits per vector 
              +  32𝑘𝑫 bits for codebook (𝑘 centroids)

• With PQ: 𝑚log2 𝑘1/𝑚 = 𝑚 ⋅ 𝑛𝑏𝑖𝑡𝑠 bits per vector

                 + 32𝑘
𝑫

𝒎
 bits for codebook

Run k-means 𝑚 times



Run k-means 𝑚 times

BENEFITS OVER VQ

• Assign nbits to each subspace

• Choose 𝑘∗ = 2𝑛
𝑏𝑖𝑡𝑠

• Strong representational power:

• Represent 𝑘 = 𝑘∗ 𝑚 centroids in ℝ𝐷

• m subspaces of D/m dimensions 

• {1.. 𝑘∗} x {1.. 𝑘∗}   …   {1.. 𝑘∗}

• Faster k-means clustering:

• With VQ: 𝑂 𝐷𝑁𝒌  per iteration

• With PQ: 𝑂(𝑚)𝑂
𝐷

𝑚
𝑁𝒌𝟏/𝒎  per iteration
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Example:
 D = 128, FP32, m = 8, nbits=8 (𝑘∗=256, k=264)
 Without PQ: 32x128 = 4096 bits per vector 
 With PQ: 8x8 =                256 bits per vector

• Lower storage:

• Without PQ: 32𝐷𝑁 bits (D floats per vector)

• With VQ: log2 𝑘 bits per vector 
              +  32𝑘𝑫 bits for codebook (𝑘 centroids)

• With PQ: 𝑚log2 𝑘1/𝑚 = 𝑚 ⋅ 𝑛𝑏𝑖𝑡𝑠 bits per vector

                 + 32𝑘
𝑫

𝒎
 bits for codebook

Compared to VQ with 𝑘 clusters

• Faster clustering:  𝑂(⋯ 𝑘)  →  𝑂 ⋯ 𝑘1/𝑚

• Smaller storage:  𝑂 ⋯ 𝐷   → 𝑂 ⋯
𝐷

𝑚

• Similar representational power (approximately)
• 𝑘 centroids in ℝ𝐷

Compared to raw vectors: 
• Fast comparison: precalc 𝑘∗ subcentroid distances 𝑚 times



USING PQ

• Is PQ + brute force good enough?

• SIFT 1M dataset: D=128, N=1000000

• As before, D = 128, FP32, m = 8, nbits= 8 (𝑘∗=256, k=264)

• PQ: excellent memory usage, poor accuracy
• Get to ~75% recall with larger nbits, m 
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Flat Index PQ

Memory 512 MB 4 MB

Query latency 8.26 ms 1.49 ms

Recall 100% 50%

[Briggs, 2024] 

Much 
smaller

Less accurate 
(sometimes sufficient!)

Bit faster, but 
not enough



3. COMPOSITE INDEX

• Combine index and quantizer for double benefit

• Or index + index! (e.g. IVF + HNSW)

• Even index + index + quantizer!

• Example: IVF + PQ 

• Variations:

• Transform vectors before quantization (OPQ)

• Re-rank after query using true values

• Residual: quantize v - centroid, not v (IVFADC)

• Asymmetric: do not quantize q when searching (IVFADC)
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Top-of-the line, 
production indexes today 
are usually composite 
and/or graph-based



IVFPQ = IVF + PQ

• During build:

• Partition to cells with IVF

• Learn PQ codebook

• Insert:
• Select cell with IVF

• Store code

• Query:
• Select cell with IVF

• Search quantized vectors in cell

• (Optional: reorder vectors using original data)

IVF256 PQ32x8

40MB

0.73 ms

74%
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Flat Index PQ

Memory 512 MB 4MB

Query latency 8.26 ms 1.49 ms

Recall 100% 50%

IVFPQ

9MB

0.09 ms

52%

Still small ☺

Same accuracy

Composite indexing: 
• Speed up PQ
• Maintain low memory
• Hard to completely overcome PQ error

(use SQ8 for higher accuracy)

Very fast!

m = 32
nbits = 8



IVF+HNSW

• Build:
• Create many small cells with IVF

• E.g., 4096

• Store centroids in HNSW

• Insert v:
• Use HNSW to find cell

• (cell selection now approximate!)

• Insert v to cell

• Query q:
• Use HNSW to find cell 

• Compare q to vectors in cell
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Flat IVF256
PQ32x8

Memory 512 MB 40MB

Query latency 8.26 ms 0.73 ms

Recall 100% 74%

IVF4096
 HNSW32

523MB

0.55 ms

90%

IVF4096
 HNSW32

PQ32

43MB

0.55 ms

69%

IVF+HNSW
• Fast! 
• Excellent recall
• Memory heavy
Add PQ:
• Still fast, less memory, decent recall



THE QUANTIZATION/COMPOSITE INDEX 
CINEMATIC UNIVERSE

• Lots of research
• Relevant research – techniques used in practice! (we shall see a few)

• OPQ: rotate vectors for optimal PQ [Ge et al., TPAMI 2013]

• IVFADC-R: Three-level quantization + re-ranking [Jégou     l.   CA  P’  ]

• IVFOADC+G+P: Near SotA composite index, very fast [Baranchuk  ECC ’ 8] 

•         D    l           [A d é     l.  PA  ’ 9] [G       l.   C L’  ]

• Additive quantizers [Babenko & Lempitsky  C PR’  ].

• R   d  l        q     z    [L       l    X  ’ 5]

• Find more in FAISS docs  [         TA’ 8]    d [P     LDBJ ’  ]
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https://github.com/facebookresearch/faiss/wiki


IVFOADC+G+P [BARANCHUK, ECCV’18] 

• Near SotA composite index

• Combines existing techniques:
• IVF, HNSW, OPQ, residual encoding 

(IVFADC), asymmetric distance

• Novel grouping, pruning procedure:
• Subdivide clusters 

(without extra memory!)

• Skip subdivisions far from query.
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IVFOADC+G+P [BARANCHUK, ECCV’18] 

• Near SotA composite index

• Combines existing techniques:
• IVF, HNSW, OPQ, residual encoding 

(IVFADC), asymmetric distance

• Novel grouping, pruning procedure:
• Subdivide clusters 

(without extra memory!)

• Skip subdivisions far from query.

• Results:
• Very fast (can go <1ms)

• Low recall (very low for low memory)
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4. DISK RESIDENT INDEXES

• What if N > 1B ?
• Indexes are memory-intense
• Quantization reduces recall

• Offload index to SSD
• New index structures with careful IO optimizations 

• Updates, rebuilds now more expensive

• For static data:
• ANNOY – tree-based [Bernhardsson ’  ]. 

• DiskANN – graph-based [Subramanya, NeurIPS ‘ 9] 
• SPANN – l     d      [C          P ’  ]

• For dynamic data:
• FreshDiskANN – graph based [Singh, arXiv ‘  ] 

• Neos –  l     d   [    g   CDE’  ]
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Active research area
We shall see several papers



ANNOY [BERNHARDSSON ’20]

• Variation of Random Projection Tree (RPTree)

• Recursively split dataset randomly

1. Choose random direction 𝑢

2. Project data on 𝑢

3. Split points, half on each side

• Find median projection 𝑡 

• Based on 𝑥𝑇𝑢 ≥ 𝑡 

4. Recurse until < 𝑘 items per leaf

• Build random forest for accuracy
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ANNOY [BERNHARDSSON ’20]

• To query, search binary tree

• At each split, check if 𝑞𝑇𝑢 ≥ 𝑡
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ANNOY [BERNHARDSSON ’20]

• To query, search binary tree

• At each split, check if 𝑞𝑇𝑢 ≥ 𝑡

• 𝑞 near split? 
→ go down both paths!

• Priority queue:
• “          ”

• Fast search across all trees.

• Parallel searchers.

M. Gabel, CSC2233 Topics in Vector Databases 27



ANNOY [BERNHARDSSON ’20]

• Encoded as static file.
• Just mmap and query
• Fast loads, unloads.
• Page cache handles memory.
• Easy to share across processes

• Can build to disk directly

• Quite fast.

• No updates, needs rebuilding.

• High memory:
• 𝑂(𝑁𝐷) for split planes plus
• 𝑂(𝑁/𝑘) for nodes

• Used by Spotify, ClickHouse.
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DISKANN 

• Why not drop index on SSD?

• SSD performance: 
• Throughput limited by random reads

• Latency limited by num requests (round-trips)

• Standard graph-based index:

• Complex structure

→ Lots of random reads

→ Hundreds of I/O roundtrips

→ Redesign index: few reads, few IO requests

M. Gabel, CSC2233 Topics in Vector Databases 29

[Subramanya, NeurIPS ‘19]

Why graph based?
SotA for high recall, 

fast results



DISKANN LAYOUT 

• In RAM: 

• PQ-compressed vectors

• On disk:

• Full precision vector

• Index for neighbours
(up to 𝑅, zero padded)

• Easy to compute offset 
for vector i
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Index: i-1 i+1 i+1 i+2

… PQ code …

…

i-1

i vector (full precision) neighour indices 0-pad

i+1

i+2

…

𝐷 𝑅



DISKANN GRAPH CREATION

• Graph hop = disk access

• Want to reduce hops!

• Make graph where:

• Distance to 𝑞 decreases exponentially

 → logarithmic steps in greedy search

 → less I/O

• Bounded out-degree by 𝑅

 → sparse graph → less bandwidth
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PRUNING IN HNSW, NSG

• Build 𝑥’     -edges:
• 𝑉 = points near path from entry to 𝑥

• Find 𝑝 = closet to 𝑥 in 𝑉

• Add edge 𝑥 → 𝑝

• Discard nodes in 𝑉 near 𝑝:

• If 𝑢 closer to 𝑝 than to 𝑥:
𝑑 𝑝, 𝑢 < 𝑑 𝑢, x

• Remove u from candidates V

• Repeat
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PRUNING IN HNSW, NSG

• Build 𝑥’     -edges:
• 𝑉 = points near path from entry to 𝑥

• Find 𝑝 = closet to 𝑥 in 𝑉

• Add edge 𝑥 → 𝑝

• Discard nodes in 𝑉 near 𝑝:

• If 𝑢 closer to 𝑝 than to 𝑥:
𝑑 𝑝, 𝑢 < 𝑑 𝑢, x

• Remove u from candidates V

• Repeat

M. Gabel, CSC2233 Topics in Vector Databases 33

𝑥

𝑝



PRUNING IN HNSW, NSG

• Build 𝑥’     -edges:
• 𝑉 = points near path from entry to 𝑥

• Find 𝑝 = closet to 𝑥 in 𝑉

• Add edge 𝑥 → 𝑝

• Discard nodes in 𝑉 near 𝑝:

• If 𝑢 closer to 𝑝 than to 𝑥:
𝑑 𝑝, 𝑢 < 𝑑 𝑢, x

• Remove u from candidates V

• Repeat
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PRUNING IN HNSW, NSG

• Build 𝑥’     -edges:
• 𝑉 = points near path from entry to 𝑥

• Find 𝑝 = closet to 𝑥 in 𝑉

• Add edge 𝑥 → 𝑝

• Discard nodes in 𝑉 near 𝑝:

• If 𝑢 closer to 𝑝 than to 𝑥:
𝑑 𝑝, 𝑢 < 𝑑 𝑢, x

• Remove u from candidates V

• Repeat
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PRUNING IN HNSW, NSG

• Build 𝑥’     -edges:
• 𝑉 = points near path from entry to 𝑥

• Find 𝑝 = closet to 𝑥 in 𝑉

• Add edge 𝑥 → 𝑝

• Discard nodes in 𝑉 near 𝑝:

• If 𝑢 closer to 𝑝 than to 𝑥:
𝑑 𝑝, 𝑢 < 𝑑 𝑢, x

• Remove u from candidates V

• Repeat
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𝑥



ROBUST PRUNING IN VAMANA

• Build 𝑥’     -edges:
• 𝑉 = points near path from entry to 𝑥

• Find 𝑝 = closet to 𝑥 in 𝑉

• Add edge 𝑥 → 𝑝

• Discard nodes in 𝑉 near 𝑝:

• If 𝑢 closer to 𝑝 than to 𝑥:
𝜶 ⋅ 𝑑 𝑝, 𝑢 < 𝑑 𝑢, x

• Remove u from candidates V

• Repeat

• Distance increases by 𝜶 > 𝟏 each hop
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ROBUST PRUNING IN VAMANA

• Build 𝑥’     -edges:
• 𝑉 = points near path from entry to 𝑥

• Find 𝑝 = closet to 𝑥 in 𝑉

• Add edge 𝑥 → 𝑝

• Discard nodes in 𝑉 near 𝑝:

• If 𝑢 closer to 𝑝 than to 𝑥:
𝜶 ⋅ 𝑑 𝑝, 𝑢 < 𝑑 𝑢, x

• Remove u from candidates V

• Repeat

• Distance increases by 𝜶 > 𝟏 each hop
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DISKANN VAMANA ALGORITHM 

• Vamana algorithm:

• Initialize with 𝑅 random edges
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DISKANN VAMANA ALGORITHM 

• Vamana algorithm:

• Initialize with 𝑅 random edges

• Short-range pass → refine edges with 𝛼 = 1
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DISKANN VAMANA ALGORITHM 

• Vamana algorithm:

• Initialize with 𝑅 random edges

• Short-range pass → refine edges with 𝛼 = 1

M. Gabel, CSC2233 Topics in Vector Databases 41



DISKANN VAMANA ALGORITHM 

• Vamana algorithm:

• Initialize with 𝑅 random edges

• Short-range pass → refine edges with 𝛼 = 1
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DISKANN VAMANA ALGORITHM 

• Vamana algorithm:

• Initialize with 𝑅 random edges

• Short-range pass → refine edges with 𝛼 = 1

• Long-range pass → refine edges with 𝛼 > 1
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DISKANN VAMANA ALGORITHM 

• Vamana algorithm:

• Initialize with 𝑅 random edges

• Short-range pass → refine edges with 𝛼 = 1

• Long-range pass → refine edges with 𝛼 > 1
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DISKANN VAMANA ALGORITHM 

• Vamana algorithm:

• Initialize with 𝑅 random edges

• Short-range pass → refine edges with 𝛼 = 1

• Long-range pass → refine edges with 𝛼 > 1
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DISKANN VAMANA ALGORITHM 

• Vamana algorithm:

• Initialize with 𝑅 random edges

• Short-range pass → refine edges with 𝛼 = 1

• Long-range pass → refine edges with 𝛼 > 1
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DISKANN IMPLEMENTATION
DiskANN code

In practice, DiskANN code differs from paper:

• Start with empty graph (not random!)
• Possibly from FreshDiskANN

• Single pass over nodes (not two!)
• When adding 𝑣, iterate over neighbour candidates twice (𝛼 = 1 and 𝛼 = 1.2)

→Not sure two passes even do anything

→My implementations work well with single pass

• Allow more than R out-edges during indexing
• Trim if  1.3 ⋅ 𝑅, or after indexing.

• Likely to thread synchronization.
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https://github.com/microsoft/DiskANN


DISKANN FOR LARGE GRAPHS

1. Cluster to 𝑘

2. Shard using cluster

• List vector in ℓ > 1 shards

3. Create graph per shard

4. Merge graphs (union of edge lists)

• Preserve < 𝑅

5. Quantize with PQ

• Stored in RAM

• Used for querying
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Otherwise too big to hold in RAM
𝑘 = 40

Preserves connectivity 
(no need to probe many shards)

ℓ = 2

Typically 256 bits



DISKANN QUERYING

• Recall greedy search:

1.  𝑝  best unvisited candidate

2. Add 𝑝’  neighbours to candidate list

3. Prune candidates to best 𝐿

4. Mark 𝑝 as visited

5. Repeat

• Used by most graph indexes

• DiskANN adds several optimizations!
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Otherwise finding next 𝑝 is slow

Stop when all candidates visited

Best = nearest to 𝑞



DISKANN OPTIMIZATIONS

• Use PQ during querying 

• Avoids reading vectors for all neighbours

• RAM-resident
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DISKANN OPTIMIZATIONS

• Use PQ during querying 

• Avoids reading vectors for all neighbours

• Beam search:

• Expand candidate list by 𝑊 > 1.
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1.  𝑝  best unvisited candidate
2. Add 𝑝’  neighbours to candidate list
3. Prune candidates to best 𝐿
4. Mark 𝑝 as visited
5. Repeat



DISKANN OPTIMIZATIONS

• Use PQ during querying 

• Avoids reading vectors for all neighbours

• Beam search:

• Expand candidate list by 𝑊 > 1.

•   D     “d   ”  /O q     (  +)

• Can read W random pages in parallel

• 𝑊 =  1 → regular greedy search

• Large 𝑊 → wasting bandwidth + compute 
→ increased latency

• Sweet spot: 𝑊 ∈ [2,4,8]
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1.  𝒑𝟏 … 𝒑𝒘  𝑾 best unvisited candidates
2. Add 𝒑𝟏 … 𝒑𝒘’  neighbours to candidate list
3. Prune candidates to best 𝐿
4. Mark 𝑝 as visited
5. Repeat



DISKANN OPTIMIZATIONS

• Use PQ during querying 

• Avoids reading vectors for all neighbours

• Beam search:

• Expand candidate list by 𝑊 > 1.

• Cache vectors near entry point

• Keep in RAM entry point neighbourhood

• Vectors up to 𝐶 hops from entry point

• Cost 𝑅 + 𝑅2 + ⋯ + 𝑅𝐶 = 𝑂 𝑅𝐶+1  vectors  

• Generally 𝐶 = 3 or 𝐶 = 4
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DISKANN OPTIMIZATIONS

• Use PQ during querying 

• Avoids reading vectors for all neighbours

• Beam search:

• Expand candidate list by 𝑊 > 1.

• Cache vectors near entry point

• Keep in RAM entry point neighbourhood

• Rerank using full precision

• Load vector with its neighbourhood

• No extra reads: 512B ≅ 4KB

• Rerank when selecting best candidates
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vector (full precision) neighours pad

𝑅=128 x 4 byte index = 512B

𝐷=896 x FP32 = 3.5KB



DISKANN QUERYING

• Greedy search with candidate list:

1. Set 𝑝  nearest unvisited candidate to 𝑞

2. Add 𝑝’  neighbours to candidate list

3. Add 𝑝 to visited set

4. Repeat

• … w          l       z      !

• PQ for distances (no need to load all vectors!)

• Beam search: expand 𝑊 candidates

• Cache vectors near entry point (3-4 hops)

• Load vectors with neighbourhoods, re-reank
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Prune to 𝐿 candidates nearest 𝑞



DISKANN PERFORMANCE

(on SIFT1B)

✓L       <     @ 95%     ll… from SSD
• 2 x Samsung 960 EVO in RAID-0

✓Much better recall than composite index
• HNSW+IVF+OPQ

• But not always as fast

• Build time:
• single: 2 days on dual Xeon E7-8890v3s (32-vCPUs) with 1792GB 

• merged: 5 days on Dual Xeon E5-2620v4s (16 cores) 64GB

• (Latency on merged index 4-5ms @ 95% recall)
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400 QPS @ 95% 
from disk



DISKANN IN-MEMORY PERF

(on SIFT1M, GIST1M, DEEP1M<)

✓ Fewer hops than HNSW, NSG

✓ Faster indexing, less memory
• Vamana: 149 sec , HNSW: 219 sec, NSG: 480 sec

• Dual Xeon E5-2620v4s (16 cores) w 64GB RAM

✓ Faster querying or fast as HNSW, NSG
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DISKANN DOWNSIDES

× No delete, insert, update

× Frequent rebuilds

× Attributes and predicated queries?

• Work continues:

• FreshDiskANN [Singh, arXiv ‘  ]  dd    d     

• Filtered-DiskANN [Gollapudi      ‘  ]  dd    l     g              
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INTERIM SUMMARY

• Dealing with very large 𝑁
• Sharding

• Quantization (SQ8, PQ)

• Composite index (IVF + PQ, IVF + HNSW + PQ)

• Disk-resident index (ANNOY, DiskANN)

• Next, index rebuilds and freshness
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UPDATES DEGRADE INDEX

C LU S T E R - BA S E D G R A P H - BA S E D

M. Gabel, CSC2233 Topics in Vector Databases 61



UPDATES DEGRADE INDEX

C LU S T E R - BA S E D G R A P H - BA S E D
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UPDATES DEGRADE INDEX

C LU S T E R - BA S E D

• Updates cause unbalanced partitions

• Large partitions → high latency

• Static centroids → low accuracy

G R A P H - BA S E D
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UPDATES DEGRADE INDEX

C LU S T E R - BA S E D

• Updates cause unbalanced partitions

• Large partitions → high latency

• Static centroids → low accuracy

G R A P H - BA S E D

• Update links during insert/delete?

• No → degrade recall, latency, memory

• Yes → very slow, resource intensive
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WHAT TO DO?

P R O B L E M S

• Cannot update at all

• E.g., DiskANN

• Degraded performance

• E.g., IVF, HNSW

• Updates too slow

• E.g., HNSW x100 slower than query

• Data-dependent index

• E.g., clustering in IVF, PQ

S O LU T I O N

• Out-of-place updates!

• Rebuild index periodically.
• Use old index during build.

• Switch to new when ready.

• Called blue-green indexing.

• Common in VDBMS

• …            !
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REBUILDS ARE A PROBLEM 

• In-memory index:

• N=1B, assume insert at 10K inserts/sec
→ 100K seconds = 1.1 days to rebuild

• HNSWlib: N=100M, 48-core machine
→ 2 hours

• On-disk index with N=1B:
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[X    O P’  ]

• Rebuilds are long and expensive

• Takes days.

• Use extra resources (CPU, RAM, disk).

•            w  l …

• Degraded performance.

• Stale query results.

• Paying extra.

• Reduce staleness → freshness layer

• Avoid rebuilds → segmenting
   updatable index



5. FRESHNESS LAYER

• Buffer incoming updates in memory

• On-disk log for durability

• Update/delete → mark tombstone

• Maintain fast-to-update index (flat, IVF)

• When querying:
• Query main index and buffer

• Merge results

• Retire items:

• Incrementally (if supported)

• During periodic rebuild
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(also called Secondary Index)

liveness

indexquery

inserts

log

merge

answer



IMPLEMENTING FRESHNESS LAYERS

• Specific implementations vary

• General considerations:
• Large memory cost

• Maintaining consistency

• Dealing with bursts

• Extra IO

• Pinecone:
• WAL + liveness layer

• Secondary index

• Neos [    g   CDE’  ]:

• Stored on SSD

• Flat index on GPU

• Direct GPU-SSD access

• LSM to access by ID

• Manu [G     LDB’  ]:

• Piggy-back on distributed queue/WAL
(Kafka/Pulsar)

• IVF secondary index 
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NEOS [HUANG, ICDE’24]

• Disk-resident freshness layer!

• Real-time updates without index

• Problems with RAM-resident freshness:

• Need secondary index for search

• Index writes x100 – x1000 slower →    ’  k      

• Secondary index grows big → lots of RAM

• Obstacles to addressing:
• Search on CPU too slow

• Traditional GPU I/O too slow

• Complex storage structure constraints P2P I/O
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NEOS IDEAS

1. Replace index with GPUs
• Brute force search on multi-GPUs

• Fed from SSD

2. Bypass storage stack entirely:
• Simple on-SSD structure

• Direct NVMe → GPU copy

• Pinned GPU memory + SPDK

3. Task scheduler
• Isolate search vs write I/O

• Load balancing

• Predict task time to 
avoid sync overhead
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NEOS PERFORMANCE

• Setup

• 4x NVIDIA V100 GPUs

• Intel Optane DC P5800X 
(extremely fast SSD, 2K$)
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Intel P5800X:
• Limited capacity
• 1.5M IOPS
• 7.2 GBPS
• 5 us P99 latency

(random 4K read)
• 3D XPoint discontinued

Intel

Not coming to a DC near you!



NEOS RAW PERFORMANCE

• Setup

• 4x NVIDIA V100 GPUs

• Intel Optane DC P5800X 
(extremely fast SSD, 2K$)

✓Strong raw performance
• 50-80 micro-sec latency

• Excellent scaling

• These are not queries!
(get by key, not kNN)
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NEOS QUERY PERFORMANCE

✓Competitive kNN performance:
• Recall tuned to > 95%

• N < 10K: faster than IVF

• N = 100K: slightly slower

• IVF → fast inserts, common

• Unlike IVF: no rebuilds, degradation

✓Fast with mixed workload:
• Insert N = 1M vectors

• 1:2 inserts-to-queries

• Insert latency stable 100us-400us

• Query latency grows  < 4ms for
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6. SEGMENTING

• Split collection to segments

• Example 1M vector/seg

• Insert: append to growing segment
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6. SEGMENTING

• Split collection to segments

• Example 1M vector/seg

• Insert: append to growing segment
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6. SEGMENTING

• Split collection to segments

• Example 1M vector/seg

• Insert: append to growing segment

• Index segment when full
• Open new growing segment
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6. SEGMENTING

• Split collection to segments

• Example 1M vector/seg

• Insert: append to growing segment

• Index segment when full
• Open new growing segment

• Query all segments, combine
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6. SEGMENTING

• Split collection to segments

• Example 1M vector/seg

• Insert: append to growing segment

• Index segment when full
• Open new growing segment

• Query all segments, combine

• Mark deleted vectors (tombstones)
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6. SEGMENTING

• Split collection to segments

• Example 1M vector/seg

• Insert: append to growing segment

• Index segment when full
• Open new growing segment

• Query all segments, combine

• Mark deleted vectors (tombstones)

• Merge mostly-empty segments
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6. SEGMENTING

• Split collection to segments

• Example 1M vector/seg

• Insert: append to growing segment

• Index segment when full
• Open new growing segment

• Query all segments, combine

• Mark deleted vectors (tombstones)

• Merge mostly-empty segments
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machine 2

machine 3

machine 1

6. SEGMENTING

• Split collection to segments

• Example 1M vector/seg

• Insert: append to growing segment

• Index segment when full
• Open new growing segment

• Query all segments, combine

• Mark deleted vectors (tombstones)

• Merge mostly-empty segments

• Distribute segments to parallelize index, querying
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machine 2

machine 3

machine 1

6. SEGMENTING BENEFITS

✓No more rebuilds
• Segments are static

• Build on full segment, on merge

✓Each index is small

✓Growing segment = freshness layer

✓Easy to distribute work
• Example: allocate segments to shards

• Downsides: 
• Must query all segments

• Write amplification if update-heavy
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Used in many VecDBs! 
(e.g., Milvus, Qdrant)



6. SEGMENTING THOUGHTS

•   g      g ≠     d  g
• Sharding: distribute data across machines 

• Segmenting: avoid reindexing, accommodate growth

• Work well together
• Shard by key and segment each shard 

• Qdrant, Milvus

• Other perspectives:
• Sharding – insert/write performance

Segmenting – query performance

• When adding data → 
num shards fixed, shards grow
num segments grows, segments do not

M. Gabel, CSC2233 Topics in Vector Databases 84

Shard 0 Shard 1 Shard 2

good even if 
not indexing

good even on 
single machine



7. UPDATABLE INDEXES

• Avoid rebuilding!

• Different approaches
• Re-balancing

• In-place updates

• Data-independent index

• Especially for disk-resident
• SPFresh – cluster-based, on-d  k   d   w            ld  g [X    O P’  ]

• FreshDiskANN – graph-based on disk-index [Singh, arXiv ‘  ]

• Active research area (we shall see several)
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FRESHDISKANN 

G OA L

• Support:
• 1B vectors

• > 1K delete/updates/inserts per second

• > 1K searches per second

• 95% 5-recall@5

• Realtime freshness

• …      gl         :
• 48-cores

• 2TB SSD

• 128GB RAM

H OW

• “L  g-    ”   D   d   (DiskANN-like)

• In-memory index (freshness layer)
• Insert list and delete list

• Periodically merged to disk (every 30M updates)

• Write-optimized merge algorithm
• Merges in-memory into disk:

    1. Delete block-by-block: reconnect nodes, prune

    2. Insert: add edges to in-memory patch buffer

    3. Patch block-by-block: apply patch, prune

    → Cost: 𝑂(#updates)
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[Singh, arXiv ‘21]



FRESHDISKANN RESULTS

• Fast inserts/deletes
• 1.8K/s inserts + 1.8K/s deletes (sustained)
• 40K/s burst
• < 1ms during merge

• Decent search performance:
• 1K/s queries
• 95% recall@5
• 20ms avg latency

• Recall stable long-term

• < 10% cost of rebuild

• Higher mean latency during merge
→ tail latency likely explodes
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SPFRESH

• Composite: cluster-based index + graph-based index for centroids

• Idea: small updates + well-balanced index = local changes.

• LIRE protocol:
• Maintains uniform size (by splitting, merging clusters)

• Small, local adjustments (by reassigning few vectors)

• Fast updates (delay split/reassign for later)

• Avoid global rebuilds

• SPFresh system:
• SSD backend reuses SPANN and SPTAG [C          P ’  ]

• Prioritize reads, fast appends

• Delay rebuilds.
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[Xu, SOSP’23] 



SPFRESH: SOME POINTS

• Updates are tricky:

• Split + merge → centroids move → must reassign vectors.

• Reassign → unbalanced partitions → split and merge

• Cascade: Reassign → split & merge → reassign → split & merge

• Algorithmic details:
1. Identifying small set of vectors to reassign

2. Reassign beyond split or merged partition

3. Proof that cascade converges (but given bound is trivial: #splits < N)

• Key tricks/optimizations are systems!
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SPFRESH: ARCHITECTURE
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SPFRESH: ARCHITECTURE

• Fast updater:
• Append vector at end.

• Version tag identifies stale data.
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SPFRESH: ARCHITECTURE

• Fast updater:
• Append vector at end.

• Version tag identifies stale data.

• Multithreaded rebuilder:
• Run split/merge/reassign.

• Scheduled by inserts, delete, queries.

• Garbage collects during split.

• Careful concurrency control.

M. Gabel, CSC2233 Topics in Vector Databases 92



SPFRESH: SYSTEMS TRICKS

• Fast updater:
• Append vector at end.

• Version tag identifies stale data.

• Multithreaded rebuilder:
• Run split/merge/reassign.

• Scheduled by inserts, delete, queries.

• Garbage collects during split.

• Careful concurrency control.

• Block (storage) controller:
• Controls SSD storage.

• SPDK to bypass storage stack.

• Append-only disk layout.
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SPFRESH: SYSTEMS TRICKS

• Fast updater:
• Append vector at end.

• Version tag identifies stale data.

• Multithreaded rebuilder:
• Run split/merge/reassign.

• Scheduled by inserts, delete, queries.

• Garbage collects during split.

• Careful concurrency control.

• Block (storage) controller:
• Controls SSD storage.

• SPDK to bypass storage stack.

• Append-only disk layout.
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Graph-based index 
for cluster centroids

Lock-free search



SPFRESH: STABLE PERFORMANCE
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N = 100M
D = 100



SPFRESH: ODDNESS
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??

???

N = 100M
D = 100

?



SPFRESH: STABLE PERFORMANCE
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• Perf metrics are stable (and good)
• Decent accuracy: 75 - 85%
• x4 - x5 less memory
• x2.54 lower P99.9 latency

N = 100M
D = 100



SPFRESH: SIFT1B DATASET

• Setup:

• 16-core machine

• 1% daily inserts

• Almost 2K insert/sec

• Over 3K queries/sec

• Accuracy > 0.86

• 5ms latency (P99.9)

• Peak memory: 74GB

• Stable, saturates SSD.
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(FreshDiskANN)

48 cores

5% ins + 5% del

    1.8K + 1.8K

    1K

    >95%

    20ms (avg)

    <128 GB

The new 
benchmark?



SPFRESH: PROBLEMS

• “L    ”    d                 g     
• Not very selective

• NPA not maintained!
• Ignored violations during merge

• On split: only check few clusters

• B   d         d  g   l      …
1. Impractical: upper-bounded by N

2. Wrong: assumes no NPA violations, but 
there are.

• Writes not aligned with SSD erase block
• Causes more write-amplification?

• Skewed data → imbalanced clusters
• C  ’     ll          !

• May cause constant swaps, bad recall

• Experimental issues:
• Odd empirical results.

• Runs maybe too short?

• No ablation?

• Potentially hard to distribute
• Unlike SPANN
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SUMMARY

• Indexes govern VDBMS capabilities:

• Cluster-based: Flat, IVF

• Graph-based: HNSW

• Others: LSH, tree-based 

• Considerations:
• Performance: recall/latency/memory

• Very large collections

• Rebuilds and updates

• Techniques

• Quantization: SQ, PQ

• Composite

• Liveness layer

• Sharding

• Most modern SotA indexes are graph-based

• HNSW (custom variants, implementations)

• Composite (graph + IVF + quantization)

• Sometimes disk-resident
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RESEARCHING INDEXES

• High-quality implementations:

• FAISS –most indexes, composite, GPU

• ANNOY

• HNSWlib

• DiskANN (incl. Fresh-…    l    d-…         )

• …

• Common datasets:

• SIFT1M, SIFT1B

• GIST1M

• DEEP1B

• GloVe

• …
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• Comparisons:
• https://ann-benchmarks.com/
• https://github.com/erikbern/ann-benchmarks

• R   l               P ’   C  ll  g     B ll   -Scale Approximate Nearest Neighbor Search

• Recent Approaches and Trends in Approximate Nearest Neighbor Search
• Above comparisons also contain links to implementations, datasets

https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
https://github.com/spotify/annoy
https://github.com/nmslib/hnswlib
https://github.com/Microsoft/DiskANN
https://ann-benchmarks.com/
https://github.com/erikbern/ann-benchmarks
https://arxiv.org/abs/2205.03763
https://pure.itu.dk/en/publications/recent-approaches-and-trends-in-approximate-nearest-neighbor-sear


OPEN PROBLEMS

•      P ’      ll  g  [Simhadri  P LR’  ]:

• Better support for predicated & multi-vector queries.

• Stable, robust updates (insert, delete, update)

• Out-of-distribution queries

• Compression with higher recall

• R             [P     LDBJ ’  ]:

• Score design, selection

• Index design: disk, updates, concurrency

• Incremental kNN (retrieve next neighbours)

• Security, privacy, federated search
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NEXT

• Indexes are not everything!

• Liveness

• Storage

• Multitenancy

• Garbage (tombstone) collection

• Retrieval (query optimization, planning)

• Access layer

• Fault tolerance

• Access control

• … but cannot cover everything.

• Next session: VDBMS architectures

• Classic: Vearch [L     ddl w   ’ 8] 

•   d   :      [G     LDB’  ] 

M. Gabel, CSC2233 Topics in Vector Databases 103


	Slide 1: IV. Advanced IndexING
	Slide 2: PREVIOUSLY, ON             Topics in Vector databases
	Slide 3: And now…
	Slide 4: Two COMMON Problems
	Slide 5: 1. Sharding
	Slide 6: 2. Quantization
	Slide 7: SQn: Scalar Quantization
	Slide 8: VQ: Vector Quantization
	Slide 9: VQ: Vector Quantization
	Slide 10: PQ: Product Quantization
	Slide 11: PQ: Product Quantization
	Slide 12: PQ: Product Quantization
	Slide 13: Benefits over VQ
	Slide 14: Benefits over VQ
	Slide 15: USING PQ
	Slide 18: 3. Composite Index
	Slide 19: IVFPQ = IVF + PQ
	Slide 20: IVF+HNSW
	Slide 21: THE Quantization/composite Index CINEMATIC UNIVERSE
	Slide 22: IVFOADC+G+P [Baranchuk, ECCV’18] 
	Slide 23: IVFOADC+G+P [Baranchuk, ECCV’18] 
	Slide 24: 4. Disk RESIDENT Indexes
	Slide 25: ANNOY [Bernhardsson ’20]
	Slide 26: ANNOY [Bernhardsson ’20]
	Slide 27: ANNOY [Bernhardsson ’20]
	Slide 28: ANNOY [Bernhardsson ’20]
	Slide 29: DiskANN 
	Slide 30: DiskANN Layout 
	Slide 31: DiskANN Graph Creation
	Slide 32: Pruning in HNSW, NSG
	Slide 33: Pruning in HNSW, NSG
	Slide 34: Pruning in HNSW, NSG
	Slide 35: Pruning in HNSW, NSG
	Slide 36: Pruning in HNSW, NSG
	Slide 37: Robust Pruning in Vamana
	Slide 38: Robust Pruning in Vamana
	Slide 39: DiskANN Vamana Algorithm 
	Slide 40: DiskANN Vamana Algorithm 
	Slide 41: DiskANN Vamana Algorithm 
	Slide 42: DiskANN Vamana Algorithm 
	Slide 43: DiskANN Vamana Algorithm 
	Slide 44: DiskANN Vamana Algorithm 
	Slide 45: DiskANN Vamana Algorithm 
	Slide 46: DiskANN Vamana Algorithm 
	Slide 47
	Slide 48: DiskANN Implementation
	Slide 49: DiskANN For Large Graphs
	Slide 50: DiskANN Querying
	Slide 51: DiskANN OPtimizations
	Slide 52: DiskANN OPtimizations
	Slide 53: DiskANN OPtimizations
	Slide 54: DiskANN OPtimizations
	Slide 55: DiskANN OPtimizations
	Slide 56: DiskANN Querying
	Slide 57: DiskANN Performance
	Slide 58: DiskANN In-memory Perf
	Slide 59: DiskANN Downsides
	Slide 60: Interim Summary
	Slide 61: Updates Degrade Index
	Slide 62: Updates Degrade Index
	Slide 63: Updates Degrade Index
	Slide 64: Updates Degrade Index
	Slide 65: What to Do?
	Slide 66: Rebuilds Are a Problem 
	Slide 68: 5. Freshness Layer
	Slide 69: Implementing Freshness Layers
	Slide 70: Neos [Huang, ICDE’24]
	Slide 71: Neos Ideas
	Slide 72: NeoS Performance
	Slide 73: NeoS RAW Performance
	Slide 74: NeoS Query Performance
	Slide 75: 6. Segmenting
	Slide 76: 6. Segmenting
	Slide 77: 6. Segmenting
	Slide 78: 6. Segmenting
	Slide 79: 6. Segmenting
	Slide 80: 6. Segmenting
	Slide 81: 6. Segmenting
	Slide 82: 6. Segmenting
	Slide 83: 6. Segmenting Benefits
	Slide 84: 6. Segmenting Thoughts
	Slide 85: 7. Updatable Indexes
	Slide 86: FreshDiskANN 
	Slide 87: FreshDiskANN Results
	Slide 88: SPFresh
	Slide 89: SPFresh: Some Points
	Slide 90: SPFresh: Architecture
	Slide 91: SPFresh: Architecture
	Slide 92: SPFresh: Architecture
	Slide 93: SPFresh: SYSTEMS TRICKS
	Slide 94: SPFresh: SYSTEMS TRICKS
	Slide 95: SPFresh: Stable Performance
	Slide 96: SPFresh: Oddness
	Slide 97: SPFresh: Stable Performance
	Slide 98: SPFResh: SIFT1B Dataset
	Slide 99: SPFresh: ProbLems
	Slide 100: Summary
	Slide 101: Researching Indexes
	Slide 102: Open Problems
	Slide 103: Next

