

IV. ADVANCED INDEXING

M. Gabel, CSC2233 Topics in Vector Databases

PREVIOUSLY, ON TOPICS IN VECTOR DATABASES

exhaustive

HNSW =20. ef=32

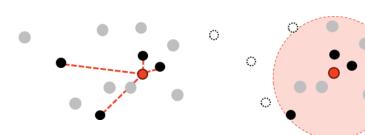
SQ bits=

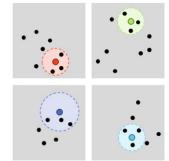
performance

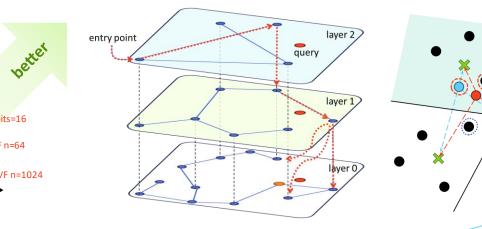
SO bits=16

IVF n=64

- Queries:
 - kNN
 - Filtered queries.
 - Prefilter / postfilter / single-stage
 - Multi-vector queries (and challenges)
 - Reranking
 - The need to index
- Index:
 - Tradeoffs and recall.
 - Flat index (for <100K vectors) accuracy
 - LSH (elegant but suboptimal)
 - IVF (cluster-based index)
 - HNSW (graph-based index)







AND NOW...

- Dealing with large datasets.
- Performance numbers!
- How to make updates and influence rebuilds.

All this, today in... TOPICS IN VECTOR PATABASES

TWO COMMON PROBLEMS

Some indexes suffer from:

- 1. Large memory footprint:
- \rightarrow 1. Sharding
- \rightarrow 2. Quantization
- \rightarrow 3. Composite index
- \rightarrow 4. Disk-resident index
- 2. Need to rebuild periodically:
 - \rightarrow 5. Liveness layer
 - \rightarrow 6. Segmenting
 - \rightarrow 7. Updatable index

Did he just

call me "fat"?

 \circ ()

1. SHARDING

- 1. Split data to *k* disjoint sets
 - *N/k* points per shard
- 2. Build index per shard
- 3. Distribute shards across machines
- 4. Query in parallel, merge results

- Benefits:
 - *N/k* fits in machine RAM.
 - Search (and insert) in parallel.
- Downsides:
 - Need *k* machines, *k* can be large.
 - How to deal with edges?
 - Still lots of RAM.
 - Only delays the issue.

Sharding *is* used by most systems. But not really a solution for memory.

2. QUANTIZATION

- Represent vector with fewer bits
 - Still has D dimensions!
- Loses accuracy
- Several main approaches:
 - Scalar Quantization quantize each element
 - Vector Quantization represent entire vector as "code word"
 - Product Quantization combine VQ on parts of vector [Jegou, TPAMI'10]

SQn: SCALAR QUANTIZATION

- Reduce each component to *n* bits
- Uniform quantization:

binsize_i =
$$\frac{\max(x_i) - \min(x_i)}{2^n}$$
 $q(x_i) \cong \frac{x_i - \min(x_i)}{\text{binsize}_i}$

 χ_3

32

bits

 $Q(x_3)$

- x4 less memory
- x2 faster comparison [Qdrant, 2024]
- ~1% recall loss [Qdrant, 2024]
- Commonly used with other indices (Pinecone)
- *n* < 8 not common, inaccurate
 - <u>SBQ</u> @ Timescale uses 2 bits

VQ: VECTOR QUANTIZATION

1. Cluster vectors.

- Codebook = set of centroids.
- 2. Assign code word to each cluster.
- 3. q(x) maps x to nearest cluster:
 - Encode *x* as cluster code word
 - Use centroid in distance computation
- O(DNk) time per k-means iteration
- O(kD) space for codebook
- $O(N \log k)$ space for vectors

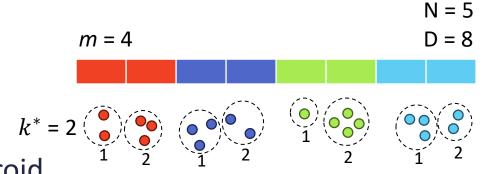
VQ: VECTOR QUANTIZATION

- 1. Cluster vectors.
 - Codebook = set of centroids.
- 2. Assign code word to each cluster.
- 3. q(x) maps x to nearest cluster:
 - Encode *x* as cluster code word
 - Use centroid in distance computation
- O(DNk) time per k-means iteration
- O(kD) space for codebook
- $O(N \log k)$ space for vectors

- Problem: k must be large
 - *D*-dimensional space $\rightarrow k$ regions
 - Resolution grows exponentially in ${\cal D}$
 - ...so k must also grow exponentially!
 - Small $k \rightarrow$ large error
- How large? Very large
 - *k* = **1K to 1M** for SIFT1B D=128 [Jegou, TPAMI'10]
- \rightarrow Too slow!
- \rightarrow Too big!

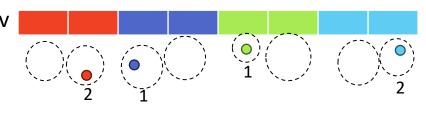
PQ: PRODUCT QUANTIZATION

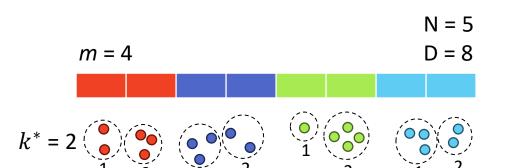
- Split space to *m* chunks (subspaces)
- Cluster each subspace to k^* clusters
- Assign id $1 \dots k^*$ to each subspace centroid



PQ: PRODUCT QUANTIZATION

- Split space to *m* chunks (subspaces)
- Cluster each subspace to k^* clusters
- Assign id $1 \dots k^*$ to each subspace centroid
- To quantize vector v:
 - Split
 - Replace each chunk with id of nearest centroid
 - Concatenate

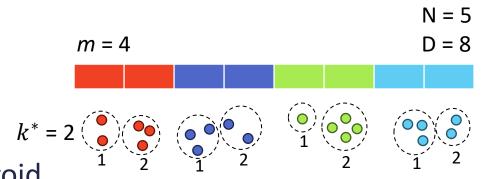


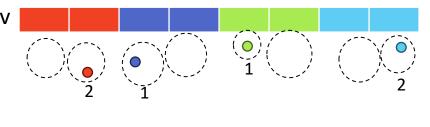


M. Gabel, CSC2233 Topics in Vector Databases

PQ: PRODUCT QUANTIZATION

- Split space to *m* chunks (subspaces)
- Cluster each subspace to k^* clusters
- Assign id $1 \dots k^*$ to each subspace centroid
- To quantize vector v:
 - Split
 - Replace each chunk with id of nearest centroid
 - Concatenate
- To approximate v from Q(v):
 - Concatenate centroids indicated by ids





BENEFITS OVER VQ

- Assign *n_{bits}* to each subspace
 - Choose $k^* = 2^{n_{bits}}$
- Strong representational power:
 - Represent $k = (k^*)^m$ centroids in \mathbb{R}^D
 - *m* subspaces of D/*m* dimensions
 - $\{1.. k^*\} \times \{1.. k^*\} \times ... \times \{1.. k^*\}$
- Faster k-means clustering:
 - With VQ: O(DNk) per iteration
 - With PQ: $O(m)O\left(\frac{D}{m}Nk^{1/m}\right)$ per iteration

Run k-means *m* times ____

M. Gabel, CSC2233 Topics in Vector Databases

Example:

D = 128, FP32, m = 8, $n_{bits} = 8$ ($k^* = 256$, $k = 2^{64}$) Without PQ: 32x128 = **4096** bits per vector With PQ: 8x8 = **64** bits per vector

• Lower storage:

- Without PQ: 32DN bits (D floats per vector)
- With VQ: log₂ k bits per vector
 + 32kD bits for codebook (k centroids)
- With PQ: $m \log_2 k^{1/m} = m \cdot n_{bits}$ bits per vector + $32k \frac{D}{m}$ bits for codebook

BENEFITS OVER VQ

Compared to VQ with k clusters

- Faster clustering: $O(\cdots k) \rightarrow O(\cdots k^{1/m})$
 - Smaller storage: $O(\cdots D) \rightarrow O\left(\cdots \frac{D}{m}\right)$
 - Similar representational power (approximately)
 - k centroids in \mathbb{R}^D
 - Compared to raw vectors:
 - Fast comparison: precalc k^* subcentroid distances m times

Run k-means *m* times —

Assi

USING PQ

- Is PQ + brute force good enough?
- SIFT 1M dataset: *D*=128, *N*=100000
- As before, D = 128, FP32, m = 8, $n_{bits} = 8$ ($k^* = 256$, $k = 2^{64}$)

	Flat Index	PQ	
Memory	512 MB	4 MB	Bit faster, but
Query latency	8.26 ms	1.49 ms	not enough
Recall	100%	50%	
			less accurate

[Briggs, 2024]

- PQ: excellent memory usage, poor accuracy
 - Get to ~75% recall with larger n_{bits}, m

Much

smaller

(sometimes sufficient!)

3. COMPOSITE INDEX

- Combine index and quantizer for double benefit
 - Or index + index! (e.g. IVF + HNSW)
 - Even index + index + quantizer!
- Example: IVF + PQ
- Variations:
 - Transform vectors before quantization (OPQ)
 - Re-rank after query using true values
 - Residual: quantize v centroid, not v (IVFADC)
 - Asymmetric: do not quantize q when searching (IVFADC)

Top-of-the line, production indexes today are usually **composite** and/or **graph-based**

Query latency 8.26 ms 1.49 ms 0.09 ms 100% 50%

Flat Index

512 MB

Still small 🙂

PQ

4MB

Very fast!

IVF256 PQ32x8

40MB

0.73 ms

74%

m = 32

 $n_{bits} = 8$

Memory

Recall

Partition to cells with IVF

IVFPQ = IVF + PQ

- Learn PQ codebook
- Insert:
 - Select cell with IVF
 - Store code

• During build:

- Query:
 - Select cell with IVF
 - Search quantized vectors in cell
 - (Optional: reorder vectors using original data)

Composite indexing:

- Speed up PQ
- Maintain low memory
- Hard to completely overcome PQ error ightarrow(use SQ8 for higher accuracy)

IVFPQ

9MB

52%

Same accuracy

IVF+HNSW

- Build:
 - Create many small cells with IVF
 - E.g., 4096
 - Store centroids in HNSW
- Insert *v*:
 - Use HNSW to find cell
 - (cell selection now approximate!)
 - Insert v to cell
- Query q:
 - Use HNSW to find cell
 - Compare q to vectors in cell

	Flat	IVF256 PQ32x8	IVF4096 HNSW32	IVF4096 HNSW32 PQ32
Memory	512 MB	40MB	523MB	43MB
Query latency	8.26 ms	0.73 ms	0.55 ms	0.55 ms
Recall	100%	74%	90%	69%

IVF+HNSW

- Fast!
- Excellent recall
- Memory heavy

Add PQ:

• Still fast, less memory, decent recall

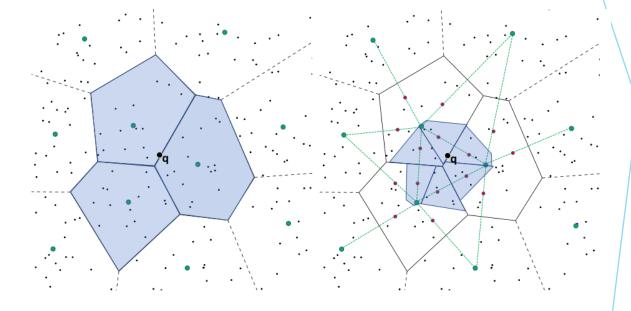
M. Gabel, CSC2233 Topics in Vector Databases

THE QUANTIZATION/COMPOSITE INDEX CINEMATIC UNIVERSE

- Lots of research
 - Relevant research techniques used in practice! (we shall see a few)
- OPQ: rotate vectors for optimal PQ [Ge et al., TPAMI 2013]
- IVFADC-R: Three-level quantization + re-ranking [Jégou et al., ICASSP'11]
- IVFOADC+G+P: Near SotA composite index, very fast [Baranchuk, ECCV'18]
- Fast SIMD implementation [André et al., PAMI'19] [Guo et al., ICML'20]
- Additive quantizers [Babenko & Lempitsky, CVPR'14].
- Residual vector quantizers [Liu et al, arXiv'15]
- Find more in FAISS docs, [Matsui, MTA'18], and [Pan, VLDBJ '24]

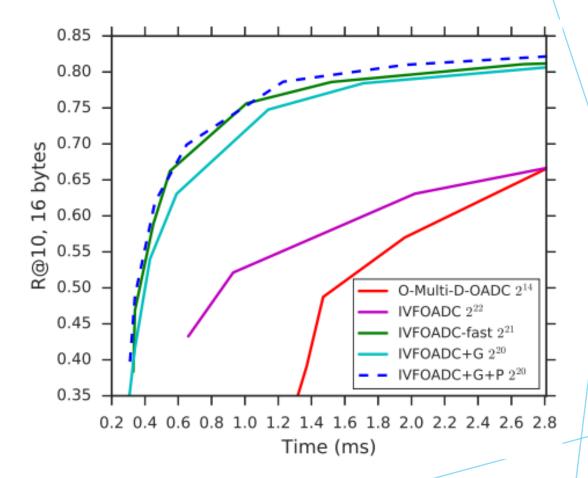
IVFOADC+G+P [BARANCHUK, ECCV'18]

- Near SotA composite index
- Combines existing techniques:
 - IVF, HNSW, OPQ, residual encoding (IVFADC), asymmetric distance
- Novel grouping, pruning procedure:
 - Subdivide clusters (without extra memory!)
 - Skip subdivisions far from query.



IVFOADC+G+P [BARANCHUK, ECCV'18]

- Near SotA composite index
- Combines existing techniques:
 - IVF, HNSW, OPQ, residual encoding (IVFADC), asymmetric distance
- Novel grouping, pruning procedure:
 - Subdivide clusters (without extra memory!)
 - Skip subdivisions far from query.
- Results:
 - Very fast (can go <1ms)
 - Low recall (very low for low memory)



4. DISK RESIDENT INDEXES

• What if N > 1B ?

- Indexes are memory-intense
- Quantization reduces recall
- Offload index to SSD
 - New index structures with careful IO optimizations
 - Updates, rebuilds now more expensive
- For static data:
 - ANNOY tree-based [Bernhardsson '20].
 - DiskANN graph-based [Subramanya, NeurIPS '19]
 - SPANN learned hash [Chen, NeurIPS'21]
- For dynamic data:
 - FreshDiskANN graph based [Singh, arXiv '21]
 - Neos flat index [Huang, ICDE'24]

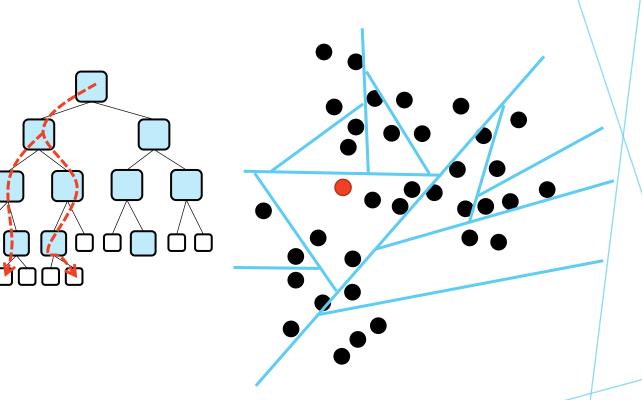
Active research area We shall see several papers

M. Gabel, CSC2233 Topics in Vector Databases

- Variation of Random Projection Tree (RPTree)
- Recursively split dataset randomly
- 1. Choose random direction u
 - 2. Project data on *u*
 - 3. Split points, half on each side
 - Find median projection t
 - Based on $x^T u \ge t$
 - 4. Recurse until < k items per leaf
 - Build random forest for accuracy

- To query, search binary tree
 - At each split, check if $q^T u \ge t$

- To query, search binary tree
 - At each split, check if $q^T u \ge t$
- *q* near split?
 → go down both paths!
- Priority queue:
 - "both paths"
 - Fast search across all trees.
 - Parallel searchers.



- Encoded as static file.
 - Just mmap and query
 - Fast loads, unloads.
 - Page cache handles memory.
 - Easy to share across processes
- Can build to disk directly
- Quite fast.
- No updates, needs rebuilding.
- High memory:
 - O(ND) for split planes plus
 - O(N/k) for nodes
- Used by Spotify, ClickHouse.

DISKANN [Subramanya, NeurIPS '19]

- Why not drop index on SSD?
- SSD performance:
 - Throughput limited by random reads
 - Latency limited by num requests (round-trips)
- Standard graph-based index:
 - Complex structure
 - \rightarrow Lots of random reads
 - \rightarrow Hundreds of I/O roundtrips
- → Redesign index: few reads, few IO requests

Why graph based? SotA for high recall, fast results

DISKANN LAYOUT

- In RAM:
 - PQ-compressed vectors
- On disk:
 - Full precision vector
 - Index for neighbours (up to *R*, zero padded)
- Easy to compute offset for vector *i*

	Index:	i-1	i+1	i+1	i+2	
	•••		PQ code			
	←	D		><	<i>R</i>	\longrightarrow
			••	•		
i-1						
i	vec	tor (full pr	ecision)	ne	eighour indice	es 0-pad
i+1						
i+2						

...

DISKANN GRAPH CREATION

- Graph hop = disk access
- Want to reduce hops!
- Make graph where:
 - Distance to q decreases exponentially
 - ightarrow logarithmic steps in greedy search
 - \rightarrow less I/O
 - Bounded out-degree by *R*
 - \rightarrow sparse graph \rightarrow less bandwidth

- Build *x*'s out-edges:
 - *V* = points near path from entry to *x*
 - Find p = closet to x in V
 - Add edge $x \to p$
 - Discard nodes in *V* near *p*:
 - If u closer to p than to x: d(p, u) < d(u, x)
 - Remove u from candidates V
 - Repeat

 \bigcirc

X

 \bigcirc

 \bigcirc

- Build *x*'s out-edges:
 - *V* = points near path from entry to *x*
 - Find p = closet to x in V
 - Add edge $x \to p$
 - Discard nodes in *V* near *p*:
 - If u closer to p than to x: d(p, u) < d(u, x)
 - Remove u from candidates V
 - Repeat

M. Gabel, CSC2233 Topics in Vector Databases

 \bigcirc

х

- Build *x*'s out-edges:
 - *V* = points near path from entry to *x*
 - Find p = closet to x in V
 - Add edge $x \to p$
 - Discard nodes in *V* near *p*:
 - If u closer to p than to x: d(p, u) < d(u, x)
 - Remove u from candidates V
 - Repeat

M. Gabel, CSC2233 Topics in Vector Databases

 \bigcirc

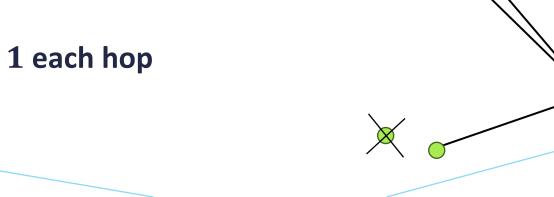
- Build *x*'s out-edges:
 - *V* = points near path from entry to *x*
 - Find p = closet to x in V
 - Add edge $x \to p$
 - Discard nodes in *V* near *p*:
 - If u closer to p than to x: d(p, u) < d(u, x)
 - Remove u from candidates V
 - Repeat

- Build *x*'s out-edges:
 - *V* = points near path from entry to *x*
 - Find p = closet to x in V
 - Add edge $x \to p$
 - Discard nodes in *V* near *p*:
 - If u closer to p than to x: d(p, u) < d(u, x)
 - Remove u from candidates V
 - Repeat

M. Gabel, CSC2233 Topics in Vector Databases

ROBUST PRUNING IN VAMANA

- Build *x*'s out-edges:
 - *V* = points near path from entry to *x*
 - Find p = closet to x in V
 - Add edge $x \to p$
 - Discard nodes in *V* near *p*:
 - If *u* closer to *p* than to *x*:
 - $\boldsymbol{\alpha} \cdot \boldsymbol{d}(\boldsymbol{p},\boldsymbol{u}) < \boldsymbol{d}(\boldsymbol{u},\boldsymbol{x})$
 - Remove u from candidates V
 - Repeat
- Distance increases by $\alpha > 1$ each hop

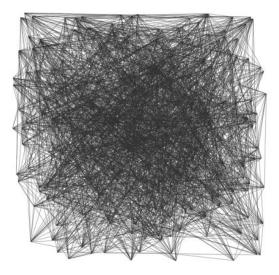


ROBUST PRUNING IN VAMANA

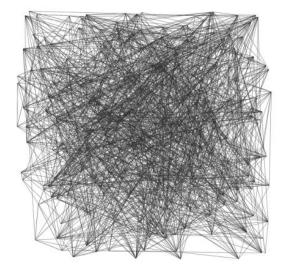
- Build *x*'s out-edges:
 - *V* = points near path from entry to *x*
 - Find p = closet to x in V
 - Add edge $x \to p$
 - Discard nodes in *V* near *p*:
 - If *u* closer to *p* than to *x*:
 - $\boldsymbol{\alpha} \cdot \boldsymbol{d}(\boldsymbol{p},\boldsymbol{u}) < \boldsymbol{d}(\boldsymbol{u},\boldsymbol{x})$
 - Remove u from candidates V
 - Repeat
- Distance increases by $\alpha > 1$ each hop

M. Gabel, CSC2233 Topics in Vector Databases

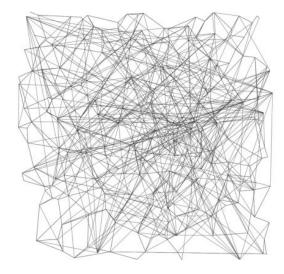
- Vamana algorithm:
 - Initialize with *R* random edges



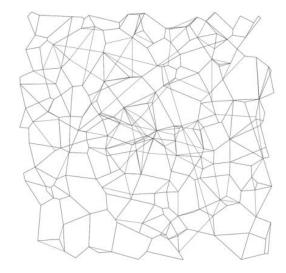
- Vamana algorithm:
 - Initialize with *R* random edges
 - Short-range pass \rightarrow refine edges with $\alpha = 1$



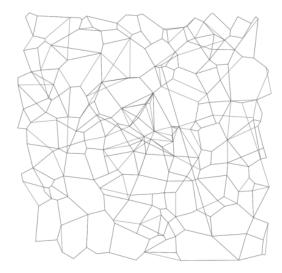
- Vamana algorithm:
 - Initialize with *R* random edges
 - Short-range pass \rightarrow refine edges with $\alpha = 1$



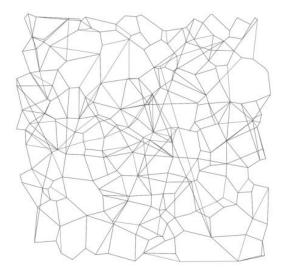
- Vamana algorithm:
 - Initialize with *R* random edges
 - Short-range pass \rightarrow refine edges with $\alpha = 1$



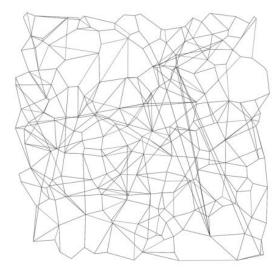
- Vamana algorithm:
 - Initialize with *R* random edges
 - Short-range pass \rightarrow refine edges with $\alpha = 1$
 - Long-range pass \rightarrow refine edges with $\alpha > 1$



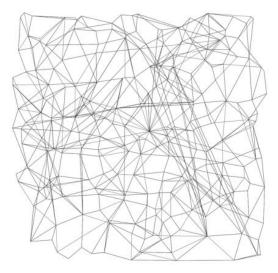
- Vamana algorithm:
 - Initialize with *R* random edges
 - Short-range pass \rightarrow refine edges with $\alpha = 1$
 - Long-range pass \rightarrow refine edges with $\alpha > 1$

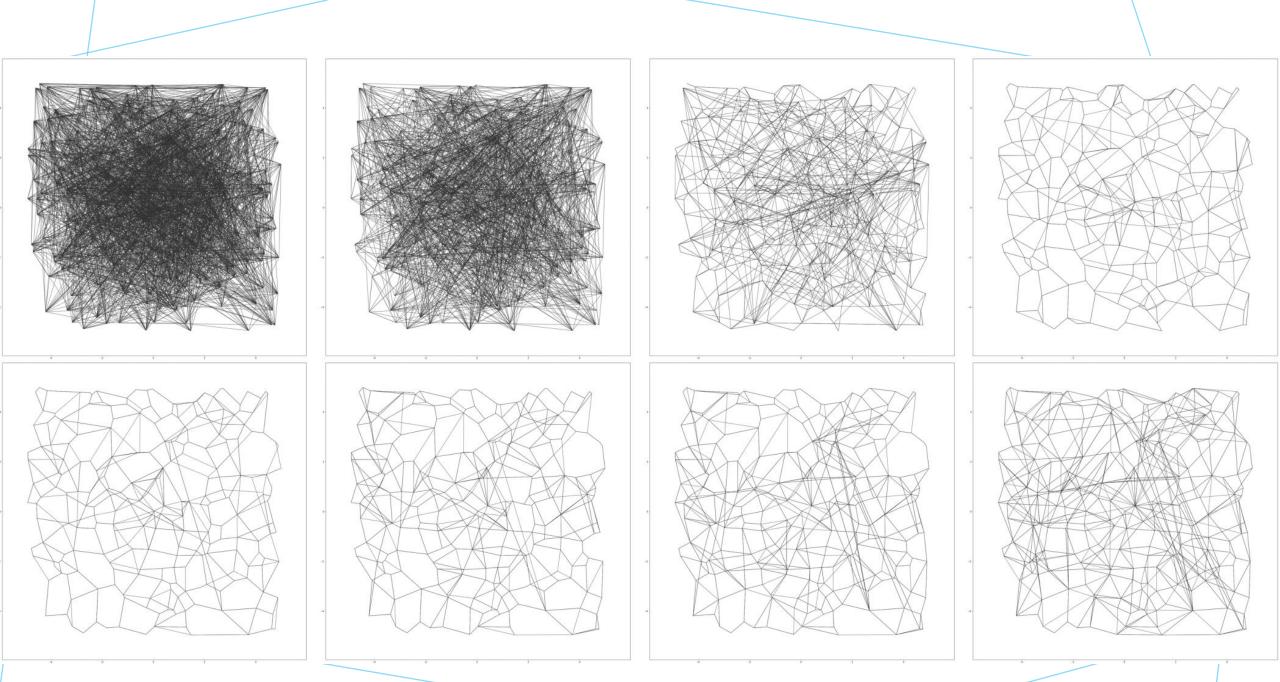


- Vamana algorithm:
 - Initialize with *R* random edges
 - Short-range pass \rightarrow refine edges with $\alpha = 1$
 - Long-range pass \rightarrow refine edges with $\alpha > 1$



- Vamana algorithm:
 - Initialize with *R* random edges
 - Short-range pass \rightarrow refine edges with $\alpha = 1$
 - Long-range pass \rightarrow refine edges with $\alpha > 1$





DISKANN IMPLEMENTATION

In practice, <u>DiskANN code</u> differs from paper:

- Start with empty graph (not random!)
 - Possibly from FreshDiskANN
- Single pass over nodes (not two!)
 - When adding v, iterate over neighbour candidates twice ($\alpha = 1$ and $\alpha = 1.2$)
 - \rightarrow Not sure two passes even do anything
 - \rightarrow My implementations work well with single pass
- Allow more than R out-edges during indexing
 - Trim if $1.3 \cdot R$, or after indexing.
 - Likely to thread synchronization.

DISKANN FOR LARGE GRAPHS

- 1. Cluster to *k*
- 2. Shard using cluster
 - List vector in $\ell > 1$ shards
- 3. Create graph per shard
- 4. Merge graphs (union of edge lists)
 - Preserve < R
- 5. Quantize with PQ
 - Stored in RAM
 - Used for querying

Otherwise too big to hold in RAM k = 40

Preserves connectivity (no need to probe many shards) $\ell = 2$

Typically 256 bits

DISKANN QUERYING

• Recall greedy search:

- 1. $p \leftarrow \text{best unvisited candidate}$
- 2. Add p's neighbours to candidate list
- 3. Prune candidates to best *L*
- 4. Mark p as visited
- 5. Repeat
- Used by most graph indexes
- DiskANN adds several optimizations!

Best = nearest to q

Otherwise finding next p is slow

Stop when all candidates visited

- Use PQ during querying
 - Avoids reading vectors for all neighbours
 - RAM-resident

- Use PQ during querying
 - Avoids reading vectors for all neighbours
- Beam search:
 - Expand candidate list by W > 1.

1. $p \leftarrow best unvisited candidate$

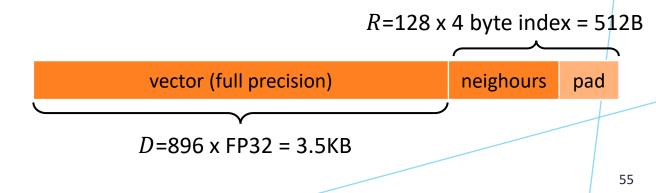
- 2. Add p's neighbours to candidate list
- 3. Prune candidates to best *L*
- 4. Mark *p* as visited
- 5. Repeat

- Use PQ during querying
 - Avoids reading vectors for all neighbours
- Beam search:
 - Expand candidate list by W > 1.
 - SSD has "deep" I/O queue (32+)
 - Can read W random pages in parallel
 - $W = 1 \rightarrow$ regular greedy search
 - Large W → wasting bandwidth + compute
 → increased latency
 - Sweet spot: $W \in [2,4,8]$

- 1. $p_1 \dots p_w \leftarrow W$ best unvisited candidates
- 2. Add $p_1 \dots p_w$'s neighbours to candidate list
- 3. Prune candidates to best *L*
- 4. Mark *p* as visited
- 5. Repeat

- Use PQ during querying
 - Avoids reading vectors for all neighbours
- Beam search:
 - Expand candidate list by W > 1.
- Cache vectors near entry point
 - Keep in RAM entry point neighbourhood
 - Vectors up to C hops from entry point
 - Cost $R + R^2 + \dots + R^C = O(R^{C+1})$ vectors
 - Generally C = 3 or C = 4

- Use PQ during querying
 - Avoids reading vectors for all neighbours
- Beam search:
 - Expand candidate list by W > 1.
- Cache vectors near entry point
 - Keep in RAM entry point neighbourhood
- Rerank using full precision
 - Load vector with its neighbourhood
 - No extra reads: $512B \cong 4KB$
 - Rerank when selecting best candidates



DISKANN QUERYING

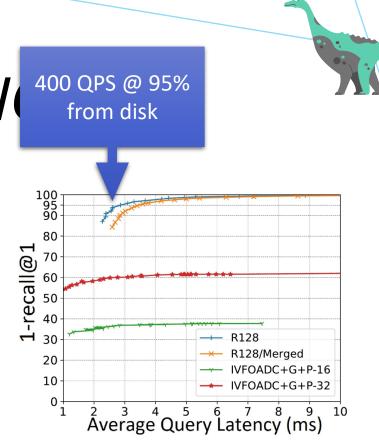
- Greedy search with candidate list:
 - 1. Set $p \leftarrow$ nearest unvisited candidate to q
 - 2. Add p's neighbours to candidate list
 - 3. Add p to visited set
 - 4. Repeat
- ... with several optimizations!
 - PQ for distances (no need to load all vectors!)
 - Beam search: expand W candidates
 - Cache vectors near entry point (3-4 hops)
 - Load vectors with neighbourhoods, re-reank

Prune to *L* candidates nearest *q*

DISKANN PERFORMAN

(on SIFT1B)

- ✓ Latency < 3ms @ 95% recall... from SSD
 - 2 x Samsung 960 EVO in RAID-0
- ✓ Much better recall than composite index
 - HNSW+IVF+OPQ
 - But not always as fast
- Build time:
 - single: 2 days on dual Xeon E7-8890v3s (32-vCPUs) with 1792GB
 - merged: 5 days on Dual Xeon E5-2620v4s (16 cores) 64GB
 - (Latency on merged index 4-5ms @ 95% recall)

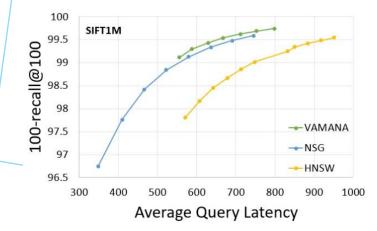


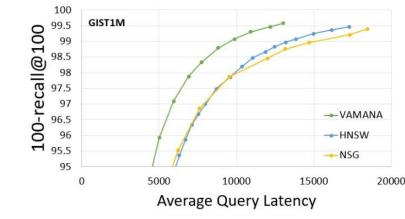
DISKANN IN-MEMORY PERF

(on SIFT1M, GIST1M, DEEP1M<)

- ✓ Fewer hops than HNSW, NSG
- ✓ Faster indexing, less memory
 - Vamana: 149 sec , HNSW: 219 sec, NSG: 480 sec
 - Dual Xeon E5-2620v4s (16 cores) w 64GB RAM

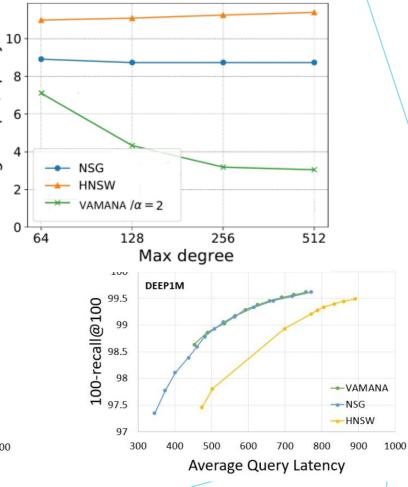
✓ Faster querying or fast as HNSW, NSG





hops / query

Average

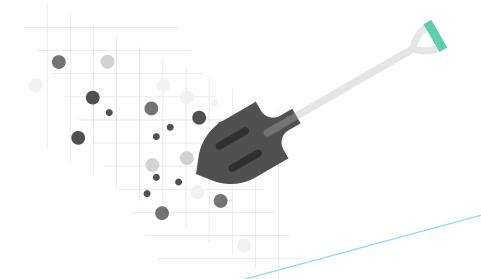


DISKANN DOWNSIDES

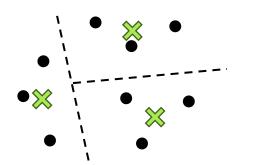
- × No delete, insert, update
- × Frequent rebuilds
- × Attributes and predicated queries?
- Work continues:
 - FreshDiskANN [Singh, arXiv '21] adds updates
 - Filtered-DiskANN [Gollapudi, WWW '23] adds filtering on attributes

INTERIM SUMMARY

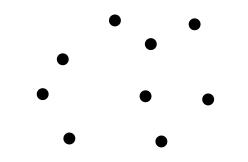
- Dealing with very large N
 - Sharding
 - Quantization (SQ8, PQ)
 - Composite index (IVF + PQ, IVF + HNSW + PQ)
 - Disk-resident index (ANNOY, DiskANN)
- Next, index rebuilds and freshness



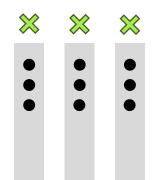
CLUSTER-BASED

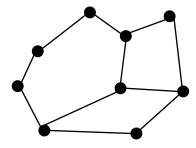


GRAPH-BASED



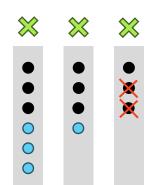
CLUSTER-BASED

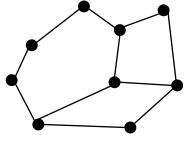




CLUSTER-BASED

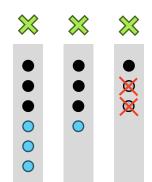
GRAPH-BASED



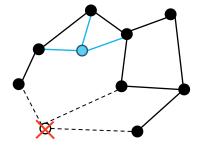


- Updates cause unbalanced partitions
- Large partitions \rightarrow high latency
- Static centroids \rightarrow low accuracy

CLUSTER-BASED



- Updates cause unbalanced partitions
- Large partitions \rightarrow high latency
- Static centroids \rightarrow low accuracy



- Update links during insert/delete?
- No \rightarrow degrade recall, latency, memory
- Yes \rightarrow very slow, resource intensive

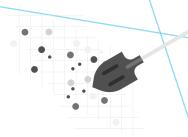
WHAT TO DO?

PROBLEMS

- Cannot update at all
 - E.g., DiskANN
- Degraded performance
 - E.g., IVF, HNSW
- Updates too slow
 - E.g., HNSW **x100** slower than query
- Data-dependent index
 - E.g., clustering in IVF, PQ

SOLUTION

- Out-of-place updates!
- Rebuild index periodically.
 - Use old index during build.
 - Switch to new when ready.
- Called blue-green indexing.
- Common in VDBMS
- ... not perfect!



REBUILDS ARE A PROBLEM

- Rebuilds are long and expensive
 - Takes days.
 - Use extra resources (CPU, RAM, disk).
- In the meanwhile...
 - Degraded performance.
 - Stale query results.
 - Paying extra.
- Reduce staleness → freshness layer
- Avoid rebuilds ightarrow
- segmenting updatable index

• In-memory index:

- N=1B, assume insert at 10K inserts/sec
 → 100K seconds = 1.1 days to rebuild
- HNSWlib: N=100M, 48-core machine → 2 hours
- On-disk index with N=1B:

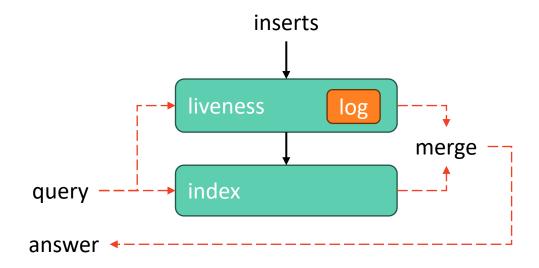
	Memory	CPU	Time
DiskANN	1100 GB	32 cores	2 days
	64GB	16 cores	5 days
SPANN	260 GB	45 cores	4 days

[Xu, SOSP'23]

5. FRESHNESS LAYER

(also called Secondary Index)

- Buffer incoming updates in memory
 - On-disk log for durability
 - Update/delete \rightarrow mark tombstone
 - Maintain fast-to-update index (flat, IVF)
- When querying:
 - Query main index and buffer
 - Merge results
- Retire items:
 - Incrementally (if supported)
 - During periodic rebuild



IMPLEMENTING FRESHNESS LAYERS

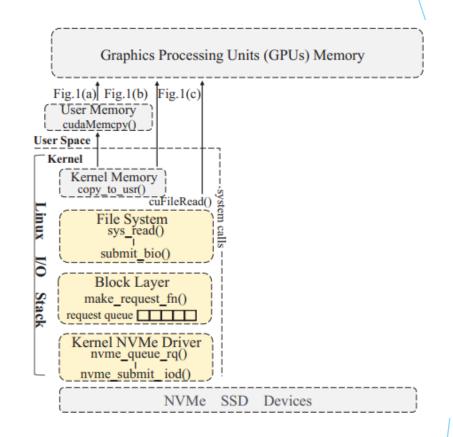
- Specific implementations vary
- General considerations:
 - Large memory cost
 - Maintaining consistency
 - Dealing with bursts
 - Extra IO
- Pinecone:
 - WAL + liveness layer
 - Secondary index

- Neos [Huang, ICDE'24]:
 - Stored on SSD
 - Flat index on GPU
 - Direct GPU-SSD access
 - LSM to access by ID
- Manu [Guo, VLDB'22]:
 - Piggy-back on distributed queue/WAL (Kafka/Pulsar)
 - IVF secondary index

M. Gabel, CSC2233 Topics in Vector Databases

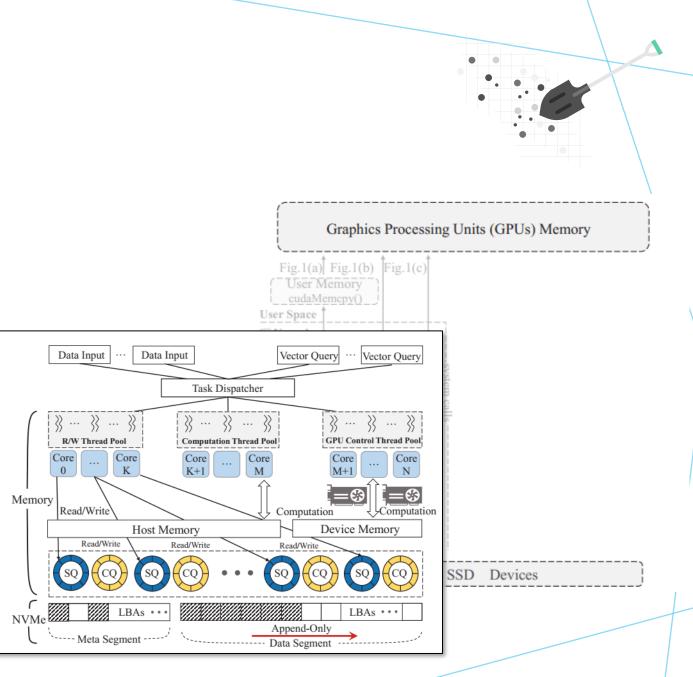
NEOS [HUANG, ICDE'24]

- Disk-resident freshness layer!
 - Real-time updates without index
- Problems with RAM-resident freshness:
 - Need secondary index for search
 - Index writes x100 x1000 slower \rightarrow can't keep up
 - Secondary index grows big \rightarrow lots of RAM
- Obstacles to addressing:
 - Search on CPU too slow
 - Traditional GPU I/O too slow
 - Complex storage structure constraints P2P I/O



NEOS IDEAS

- 1. Replace index with GPUs
 - Brute force search on multi-GPUs
 - Fed from SSD
- 2. Bypass storage stack entirely:
 - Simple on-SSD structure
 - Direct NVMe \rightarrow GPU copy
 - Pinned GPU memory + SPDK
- 3. Task scheduler
 - Isolate search vs write I/O
 - Load balancing
 - Predict task time to avoid sync overhead



NEOS PERFORMANCE

• Setup

- 4x NVIDIA V100 GPUs
- Intel Optane DC P5800X (extremely fast SSD, 2K\$)

Intel P5800X:

- Limited capacity
- 1.5M IOPS
- 7.2 GBPS
- 5 us P99 latency (random 4K read)
- 3D XPoint discontinued

Not coming to a DC near you!

Intel

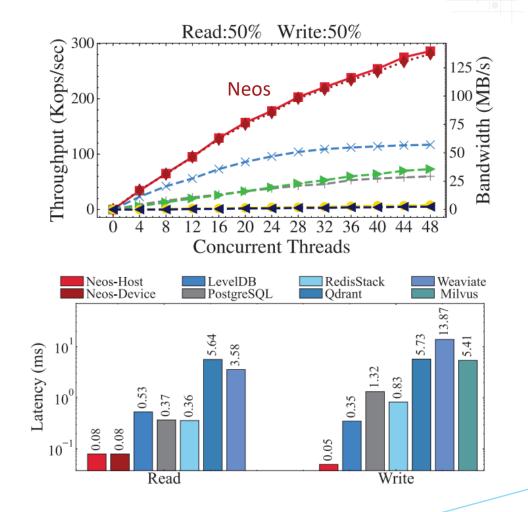
NEOS RAW PERFORMANCE

• Setup

- 4x NVIDIA V100 GPUs
- Intel Optane DC P5800X (extremely fast SSD, 2K\$)

✓ Strong raw performance

- 50-80 micro-sec latency
- Excellent scaling
- These are not queries! (get by key, not kNN)



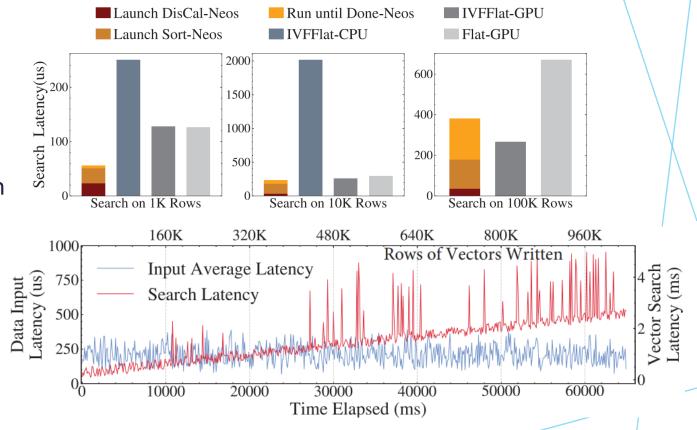
NEOS QUERY PERFORMANCE

Competitive kNN performance:

- Recall tuned to > 95%
- *N* < 10K: faster than IVF
- *N* = 100K: slightly slower
- IVF \rightarrow fast inserts, common
- Unlike IVF: no rebuilds, degradation

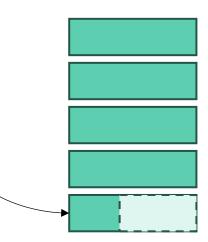
Fast with mixed workload:

- Insert *N* = 1M vectors
- 1:2 inserts-to-queries
- Insert latency stable 100us-400us
- Query latency grows < 4ms for

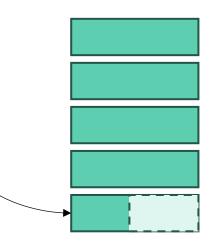


6. SEGMENTING

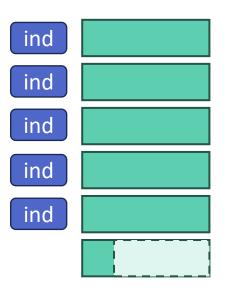
- Split collection to segments
 - Example 1M vector/seg
- Insert: append to growing segment



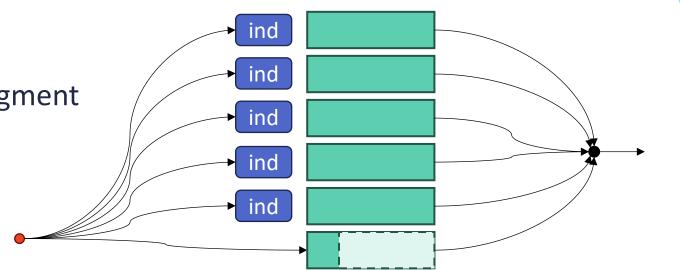
- Split collection to segments
 - Example 1M vector/seg
- Insert: append to growing segment



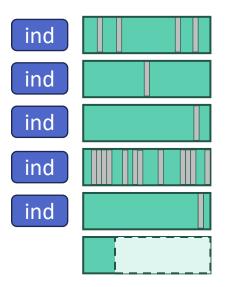
- Split collection to segments
 - Example 1M vector/seg
- Insert: append to growing segment
- Index segment when full
 - Open new growing segment



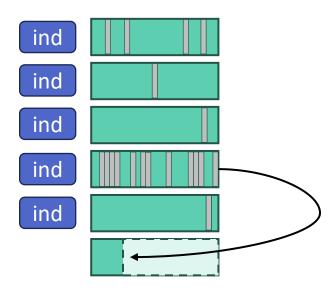
- Split collection to segments
 - Example 1M vector/seg
- Insert: append to growing segment
- Index segment when full
 - Open new growing segment
- Query all segments, combine



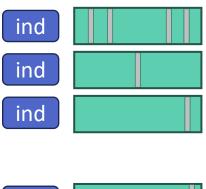
- Split collection to segments
 - Example 1M vector/seg
- Insert: append to growing segment
- Index segment when full
 - Open new growing segment
- Query all segments, combine
- Mark deleted vectors (tombstones)



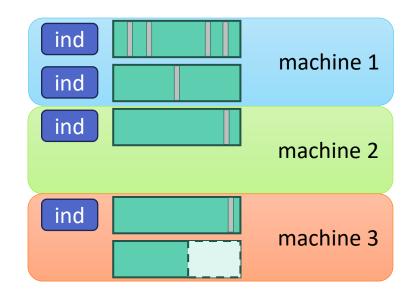
- Split collection to segments
 - Example 1M vector/seg
- Insert: append to growing segment
- Index segment when full
 - Open new growing segment
- Query all segments, combine
- Mark deleted vectors (tombstones)
 - Merge mostly-empty segments



- Split collection to segments
 - Example 1M vector/seg
- Insert: append to growing segment
- Index segment when full
 - Open new growing segment
- Query all segments, combine
- Mark deleted vectors (tombstones)
 - Merge mostly-empty segments



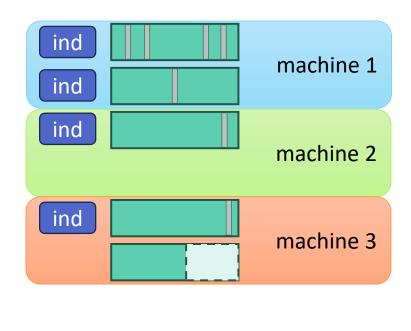
- Split collection to segments
 - Example 1M vector/seg
- Insert: append to growing segment
- Index segment when full
 - Open new growing segment
- Query all segments, combine
- Mark deleted vectors (tombstones)
 - Merge mostly-empty segments
- Distribute segments to parallelize index, querying



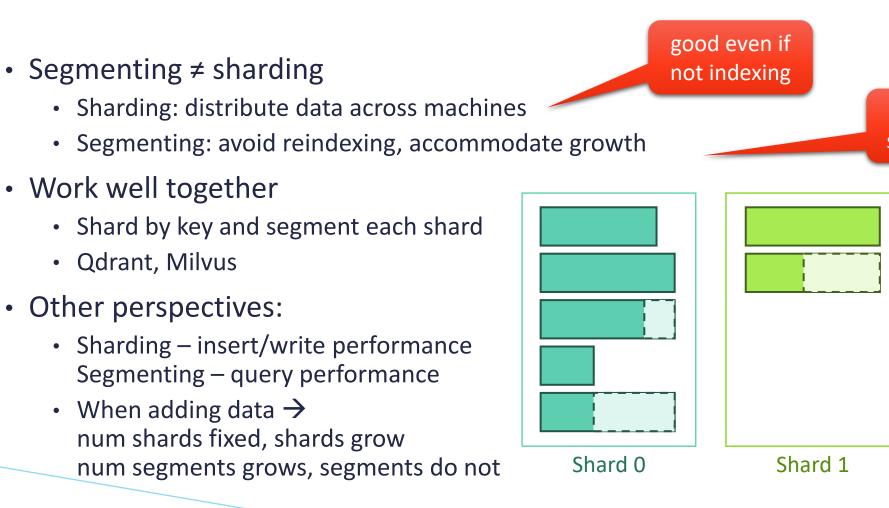
6. SEGMENTING BENEFITS

✓ No more rebuilds

- Segments are static
- Build on full segment, on merge
- ✓ Each index is small
- ✓ Growing segment = freshness layer
- ✓ Easy to distribute work
 - Example: allocate segments to shards
- Downsides:
 - Must query all segments
 - Write amplification if update-heavy



Used in many VecDBs! (e.g., Milvus, Qdrant)



6. SEGMENTING THOUGHTS

good even on single machine

Shard 2

7. UPDATABLE INDEXES

- Avoid rebuilding!
- Different approaches
 - Re-balancing
 - In-place updates
 - Data-independent index
- Especially for disk-resident
 - SPFresh cluster-based, on-disk index without rebuilding [Xu, SOSP'23]
 - FreshDiskANN graph-based on disk-index [Singh, arXiv '21]
- Active research area (we shall see several)

FRESHDISKANN [Singh, arXiv '21]

GOAL

- Support:
 - 1B vectors
 - > 1K delete/updates/inserts per second
 - > 1K searches per second
 - 95% 5-recall@5
 - Realtime freshness
- ...on single machine:
 - 48-cores
 - 2TB SSD
 - 128GB RAM

HOW

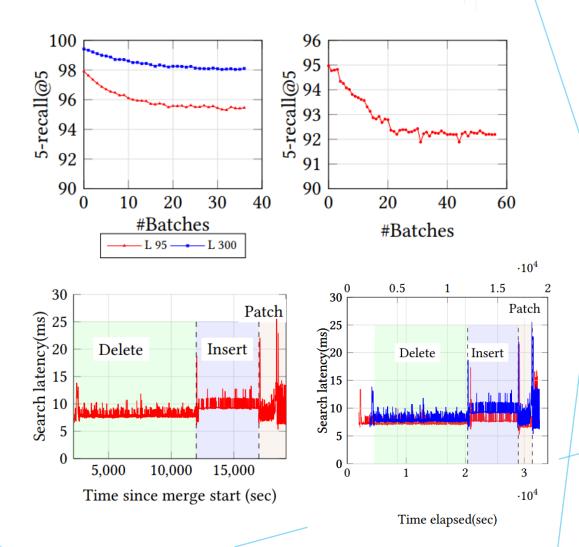
- "Long-term" SSD index (DiskANN-like)
- In-memory index (freshness layer)
 - Insert list and delete list
 - Periodically merged to disk (every 30M updates)
- Write-optimized merge algorithm
 - Merges in-memory into disk:
 - 1. Delete block-by-block: reconnect nodes, prune
 - 2. Insert: add edges to in-memory patch buffer
 - 3. Patch block-by-block: apply patch, prune
 - \rightarrow Cost: O(#updates)

FRESHDISKANN RESULTS

• Fast inserts/deletes

- 1.8K/s inserts + 1.8K/s deletes (sustained)
- 40K/s burst
- < 1ms during merge
- Decent search performance:
 - 1K/s queries
 - 95% recall@5
 - 20ms avg latency 🔙
- Recall stable long-term
- < 10% cost of rebuild</p>
- Higher mean latency during merge

 tail latency likely explodes

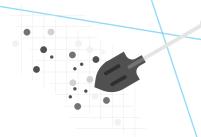


SPFRESH [Xu, SOSP'23]

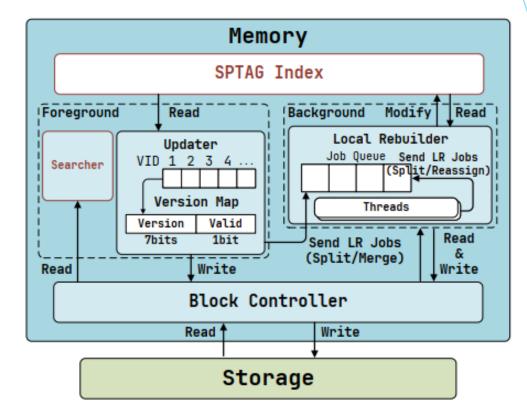
- Composite: cluster-based index + graph-based index for centroids
- Idea: small updates + well-balanced index = local changes.
- LIRE protocol:
 - Maintains uniform size (by splitting, merging clusters)
 - Small, local adjustments (by reassigning few vectors)
 - Fast updates (delay split/reassign for later)
 - Avoid global rebuilds
- SPFresh system:
 - SSD backend reuses SPANN and SPTAG [Chen, NeurIPS'21]
 - Prioritize reads, fast appends
 - Delay rebuilds.

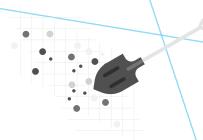
SPFRESH: SOME POINTS

- Updates are tricky:
 - Split + merge \rightarrow centroids move \rightarrow must reassign vectors.
 - Reassign \rightarrow unbalanced partitions \rightarrow split and merge
 - Cascade: Reassign \rightarrow split & merge \rightarrow reassign \rightarrow split & merge
- Algorithmic details:
 - 1. Identifying small set of vectors to reassign
 - 2. Reassign beyond split or merged partition
 - 3. Proof that cascade converges (but given bound is *trivial:* **#splits < N**)
- Key tricks/optimizations are systems!



SPFRESH: ARCHITECTURE

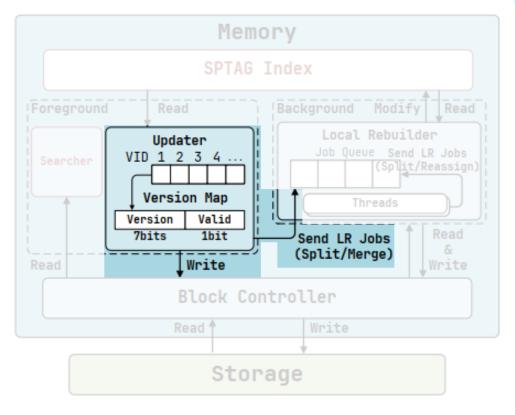


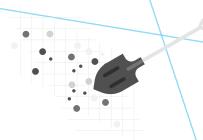


SPFRESH: ARCHITECTURE

• Fast *updater*:

- Append vector at end.
- Version tag identifies stale data.

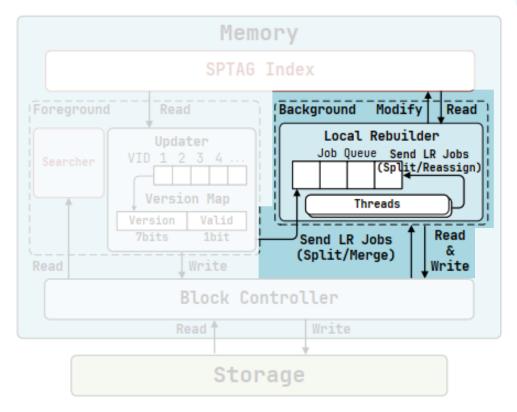




SPFRESH: ARCHITECTURE

• Fast *updater*:

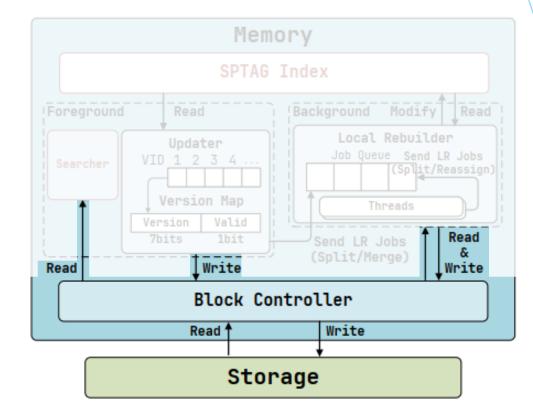
- Append vector at end.
- Version tag identifies stale data.
- Multithreaded *rebuilder*:
 - Run split/merge/reassign.
 - Scheduled by inserts, delete, queries.
 - Garbage collects during split.
 - Careful concurrency control.



SPFRESH: SYSTEMS TRICKS

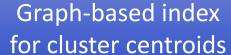
• Fast *updater*:

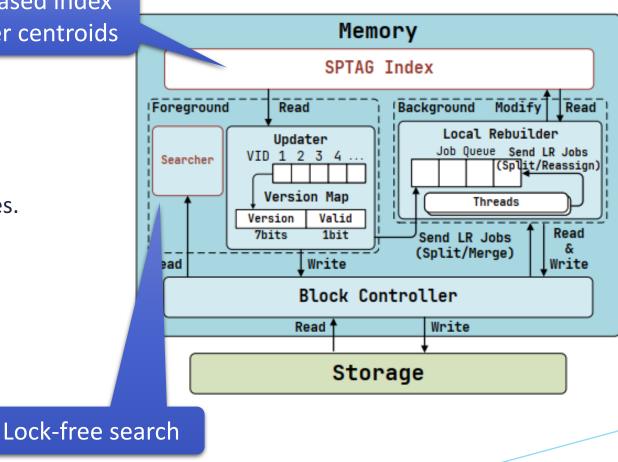
- Append vector at end.
- Version tag identifies stale data.
- Multithreaded *rebuilder*:
 - Run split/merge/reassign.
 - Scheduled by inserts, delete, queries.
 - Garbage collects during split.
 - Careful concurrency control.
- Block (storage) *controller*:
 - Controls SSD storage.
 - SPDK to bypass storage stack.
 - Append-only disk layout.



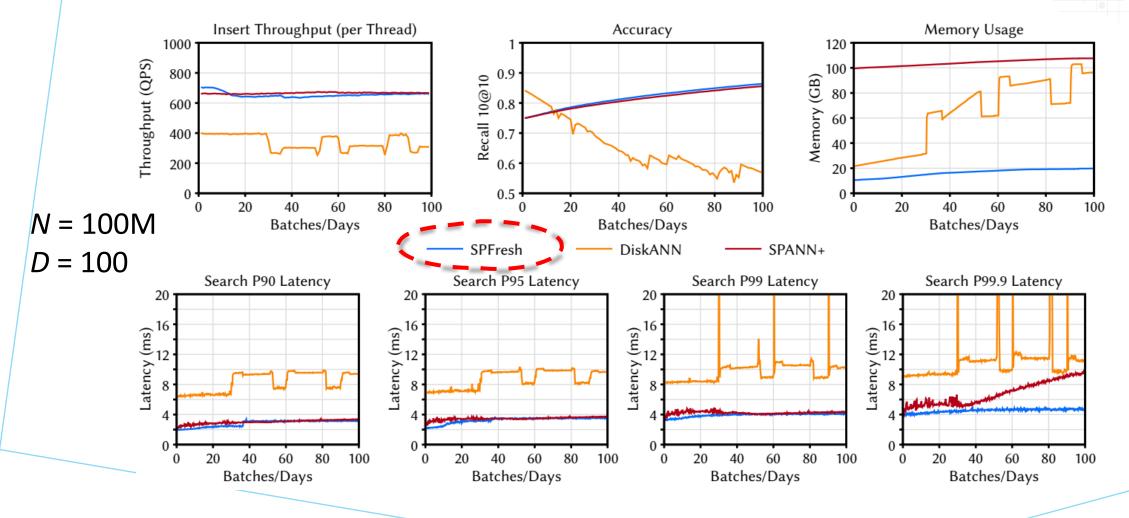
SPFRESH: SYSTEMS TRICKS

- Fast updater:
 - Append vector at end.
 - Version tag identifies stale data.
- Multithreaded *rebuilder*:
 - Run split/merge/reassign.
 - Scheduled by inserts, delete, queries.
 - Garbage collects during split.
 - Careful concurrency control.
- Block (storage) *controller*:
 - Controls SSD storage.
 - SPDK to bypass storage stack.
 - Append-only disk layout.

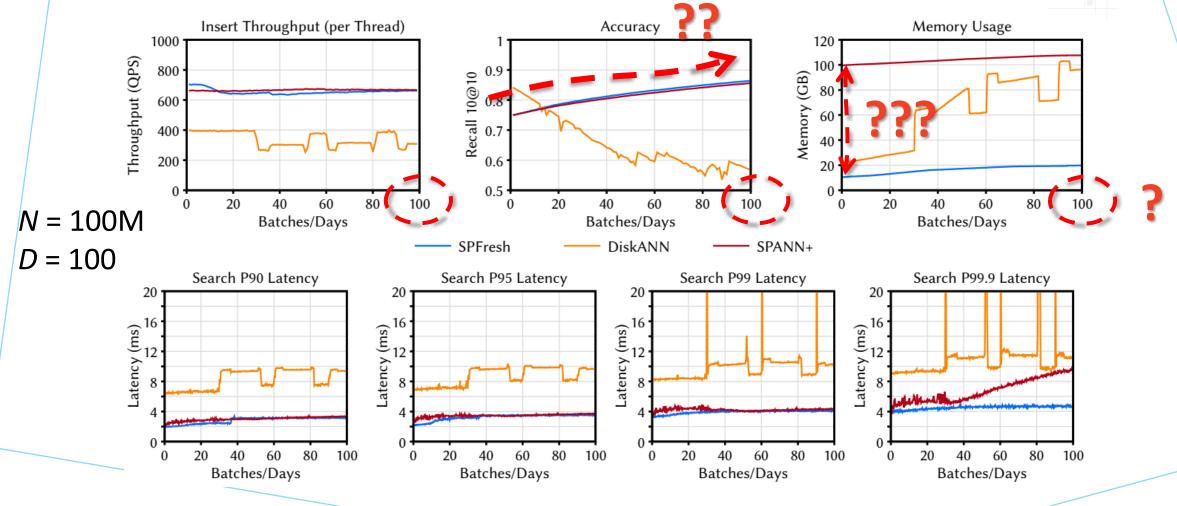




SPFRESH: STABLE PERFORMANCE

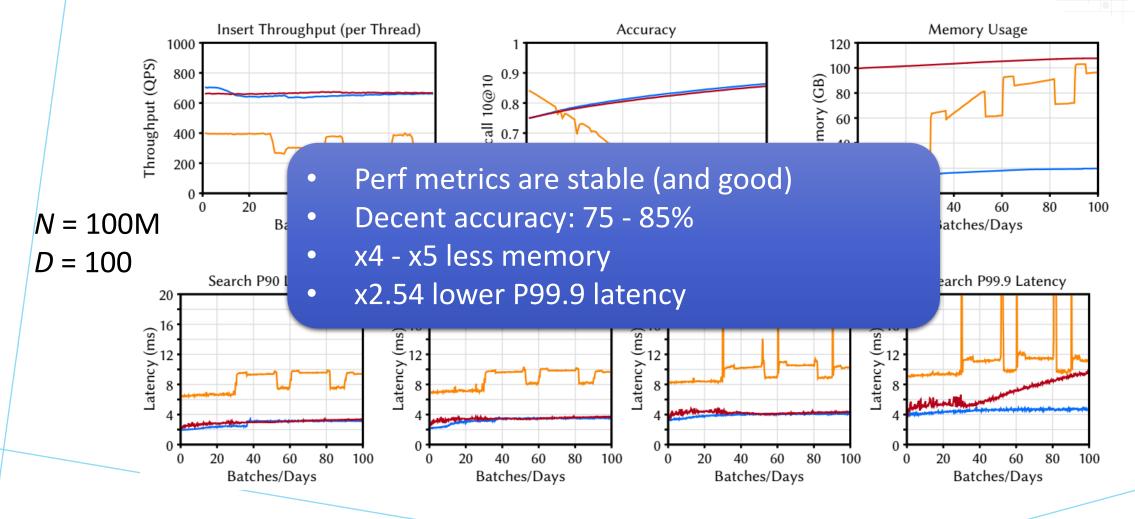


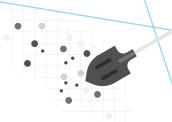
M. Gabel, CSC2233 Topics in Vector Databases



M. Gabel, CSC2233 Topics in Vector Databases

SPFRESH: STABLE PERFORMANCE

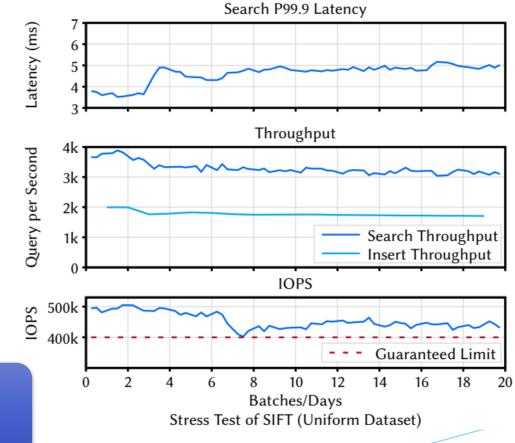




SPFRESH: SIFT1B DATASET

- Setup:
 - 16-core machine
 - 1% daily inserts
- Almost 2K insert/sec
- Over 3K queries/sec
- Accuracy > 0.86
- 5ms latency (P99.9)
- Peak memory: 74GB
- Stable, saturates SSD.

(FreshDiskANN) 48 cores 5% ins + 5% del 1.8K + 1.8K**1K** >95% **20ms (avg)** <128 GB The new benchmark?



SPFRESH: PROBLEMS

- "Loose" conditions for reassignment
 - Not very selective
- NPA not maintained!
 - Ignored violations during merge
 - On split: only check few clusters
- Bound on cascading splits is...
 - **1. Impractical**: upper-bounded by *N*
 - 2. Wrong: assumes no NPA violations, but there are.
- Writes not aligned with SSD erase block
 - Causes more write-amplification?

- Skewed data \rightarrow imbalanced clusters
 - Can't really fix this!
 - May cause constant swaps, bad recall
- Experimental issues:
 - Odd empirical results.
 - Runs maybe too short?
 - No ablation?
- t Potentially hard to distribute
 - Unlike SPANN

SUMMARY

- Indexes govern VDBMS capabilities:
 - Cluster-based: Flat, IVF
 - Graph-based: HNSW
 - Others: LSH, tree-based
- Considerations:
 - Performance: recall/latency/memory
 - Very large collections
 - Rebuilds and updates

- Techniques
 - Quantization: SQ, PQ
 - Composite
 - Liveness layer
 - Sharding
- Most modern SotA indexes are graph-based
 - HNSW (custom variants, implementations)
 - Composite (graph + IVF + quantization)
 - Sometimes disk-resident

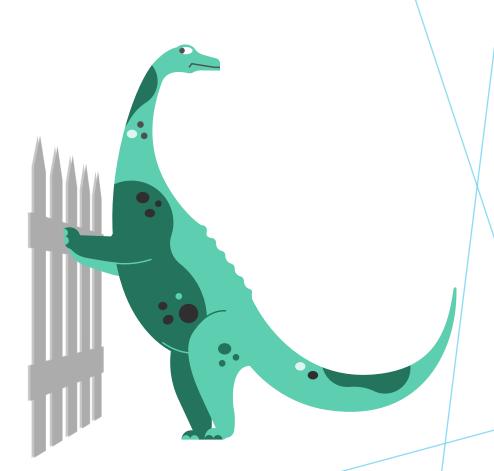
RESEARCHING INDEXES

- High-quality implementations:
 - FAISS -- most indexes, composite, GPU
 - <u>ANNOY</u>
 - HNSWlib
 - <u>DiskANN</u> (incl. Fresh-..., Filtered-... variants)
 - ...
 - Comparisons:
 - <u>https://ann-benchmarks.com/</u>
 - <u>https://github.com/erikbern/ann-benchmarks</u>
 - <u>Results of the NeurIPS'21 Challenge on Billion-Scale Approximate Nearest Neighbor Search</u>
 - <u>Recent Approaches and Trends in Approximate Nearest Neighbor Search</u>
 - Above comparisons also contain links to implementations, datasets

- Common datasets:
 - SIFT1M, SIFT1B
 - GIST1M
 - DEEP1B
 - GloVe
 - ...

OPEN PROBLEMS

- NeurIPS'21 challenge [Simhadri, PMLR'22]:
 - Better support for predicated & multi-vector queries.
 - Stable, robust updates (insert, delete, update)
 - Out-of-distribution queries
 - Compression with higher recall
- Recent survey [Pan, VLDBJ '24]:
 - Score design, selection
 - Index design: disk, updates, concurrency
 - Incremental kNN (retrieve next neighbours)
 - Security, privacy, federated search



NEXT

- Indexes are **not** everything!
 - Liveness
 - Storage
 - Multitenancy
 - Garbage (tombstone) collection
 - Retrieval (query optimization, planning)
 - Access layer
 - Fault tolerance
 - Access control
- ... but cannot cover everything.

Next session: VDBMS architectures

- Classic: Vearch [Li, Middleware'18]
- Modern: Manu [Guo, VLDB'22]