III. INDEXING

WHY INDEX?

- Flat (brute force) kNN search
 - Exact results
 - But N comparisons \rightarrow Too slow!
- If we partition dataset
 - Fewer comparisons \rightarrow faster search
 - Can introduce errors
- ANNS index is key to VDBMS performance!
- But has costs!
 - Can increase errors, memory, update cost

PERFORMANCE TRADEOFFS

- ANNS indexes trade between:
 - Search speed
 - Accuracy
 - Memory
 - Build/update cost
- Crucial: search speed-accuracy tradeoff
 - Index type + configuration determine specific point -----
- How to choose index and configuration?
 - Tune manually on your data
 - Automatically using VDBMS optimizer (if exists)

METRICS

Recall-K@K (aka "recall@K" aka "recall")

- Fraction of true k nearest neighbours returned by query
 - Alternative: out of k vectors returned, how many are truly kNN?
 - Alternative: overlap between true kNN and vectors returned by query.

• Example:

query \boldsymbol{q} with k = 5 returns $x_1 \dots x_5$ x_1, x_3, x_4, x_5 are true nearest neighbours but x_2 is not (\boldsymbol{u} is closer to \boldsymbol{q} but is missed) \rightarrow recall5@5 = 4/k = 4/5 = 0.8 or 80%

- Latency: milliseconds per query
- Throughput: queries per second

ANNS INDEXES

- Vectors ≠ attributes ANNS index ≠ RDBMS index
- Can't use B-trees.
- Need new tricks:
 - Learned (data-based) partitioning.
 - Lossy compression (quantization).
 - Randomization.
- New problems:
 - Slow index updates (due to complex structure)
 - Frequent rebuilds (since updates degrade index performance)

	Attribute	Vector
Granularity	attribute	whole vector
Accuracy	exact	approximate
Natural structure	ordinal or	no natural
	sortable	structure
Fast updates, delete	sortable yes	structure sometimes
Fast updates, delete Self-balancing	sortable yes yes	structure sometimes sometimes

INDEX TYPES

- **Cluster-based**: partition space to buckets of similar vectors
 - IVF, PQ
- **Graph-based**: connect similar vectors to make traversal graph
 - HNSW
 - DiskANN
- LSH: locality-sensitive hashing
 - Many variants
- Tree: partition space hierarchically
 - RP tree
 - ANNOY

ANNS index characteristics:

- Memory or disk resident:
 - Most are memory-resident
- Periodic rebuilding:
 - Some indexes require occasional rebuilds
 - E.g., classic HNSW, IVF
- Support incremental updates:
 - Yes, no, or partially supported
 - Real delete or tombstone?
- Error bounds:
 - Only LSH, RPTree

IT'S TIME!

- Let's look at a real index.
- Flat Index

IT'S TIME!

- Let's look at a real index.
- Flat Index ... actually just brute force search.

FLAT INDEX

- Store vectors in table.
- To query: scan table, compute distances, return top-k
 - With priority queue or just sorting
- Really?

FLAT INDEX

- Store vectors in table.
- To query: scan table, compute distances, return top-k
 - With priority queue or just sorting
- Really? Really!
 - Exact search (fully accurate)
 - Very fast updates, no rebuilds
 - Filtered search is easy
 - Fast GPU implementations
 - No extra memory

FLAT INDEX

- Store vectors in table.
- To query: scan table, compute distances, return top-k
 - With priority queue or just sorting
- Really? Really!
 - Exact search (fully accurate)
 - Very fast updates, no rebuilds
 - Filtered search is easy
 - Fast GPU implementations
 - No extra memory
- Good for small collections (< 100K vectors)
 - Or more! Neos [Huang, ICDE'24]: 1M vectors @ 1500 QPS with 4 GPUs off SSD

SINGLE CORE PERFORMANCE @ 1M

- AMD EPYC 7302 at 3GHz, AVX 2
- FAISS using inner-prod trick

ANN-BENCHMARKS

- AWS r6i.16xlarge (3rd gen Xeon)
- SIFT 1M
- Benchmark by
 <u>ann-benchmarks.com</u>
- Exact search with BLAS: 16 QPS
- IVF (clustering):
 → x50 time faster
- Graph index:
 → ×100 ×500 times faster

Plots for sift-128-euclidean (k = 10)

Recall/Queries per second (1/s)

Recall-Queries per second (1/s) tradeoff - up and to the right is better

NORMAL HASH

- Different items \rightarrow different hash
 - Similar but not identical? Different hash
- Minimize collisions.

- Hash depends on location
- Near items \rightarrow same hash
- Maximize collisions

NORMAL HASH

- Different items \rightarrow different hash
 - Similar but not identical? Different hash
- Minimize collisions.

- Hash depends on location
- Near items \rightarrow same hash
- Maximize collisions

NORMAL HASH

- Different items \rightarrow different hash
 - Similar but not identical? Different hash
- Minimize collisions.

- Hash depends on location
- Near items \rightarrow same hash

NORMAL HASH

- Different items \rightarrow different hash
 - Similar but not identical? Different hash
- Minimize collisions.

- Hash depends on location
- Near items \rightarrow same hash
- Maximize collisions

ANNS WITH LSH

Suppose we have $h(\cdot)$ where

- $u \operatorname{near} v \rightarrow h(u) = h(v)$
- *u* far from $v \rightarrow h(u) \neq h(v)$

To insert *x*:

• Add x to bucket h(x)

To query for *q*:

- Compare q to vectors in h(q) bucket
 - Ideally: nearby vectors \rightarrow same hash bucket

with high

probability

• Return k nearest (rerank or use prio-queue)

NEAREST NEIGHBOUR WITH LSH

- One h(x) not enough
- Repeat to reduce error probability
 - *L* hash tables, each with different random h(x)
 - Insert vector into *L* tables
 - Query in *L* tables
 - Rerank
- Downside: larger query time
- Set *L* to achieve desired error bounds
 - Or based on memory, and estimate bounds
 - Both depend on N, h(x)

Vast literature:

- Finding good $h(\cdot)$ for different d, data
- Accuracy, memory guarantees
- Searching buckets

LSH PROPERTIES

• Many variants:

- E²LSH classic random projection LSH, works for Euclidean distances
- IndexLSH project to binary, search with Hamming distance [FAISS, 2023]
- FALCONN cosine similarity, needs rebuilds [Andoni, NeurIPS'15]
- SPANN learn h(x), disk resident, needs rebuilds [Chen, NeurIPS'21]
- LSH is theoretically elegant...
 - ✓ Fast incremental updates
 - Bounded error, memory (one of very few)
 - ✓ No rebuilds (data-independent)
- ... but seldom actually used in VDBMS
 - Inferior performance in all aspects [Briggs, 2024]
 - Too slow when D > 128

Research continues...

IVF: INVERTED FILE INDEX

(also called clustering)

- Choose number of buckets (clusters) k
- Cluster vectors (e.g., k-means)
- To index $v \circ$
 - Find nearest centroid
 - Add v to cell (cluster)
- To query $q \bullet$
 - Find nearest centroid
 - Compare q to vectors inside cell

Problem: missed neighbour in other cluster

NEIGHBOUR IN OTHER CLUSTER?

 \rightarrow List vectors near edges in two cells

 \rightarrow Increase search scope: probe m > 1 nearest cells

IVF OVER TIME

- Add some points.
 - Cluster selected by nearest centroid
- Add more points...
- Even more!

IVF OVER TIME

- Add some points.
 - Cluster selected by nearest centroid
- Add more points...
- Even more!
- IVF cluster do not match data
 - More error near edges -
 - Unbalanced cluster lists

IVF OVER TIME

- Add some points.
 - Cluster selected by nearest centroid
- Add more points...
- Even more!
- IVF cluster do not match data
 - More error near edges
 - Unbalanced cluster lists
- Solution: rebuild clusters periodically
 - Or update clusters incrementally [Xu, SOSP'23]

IVF PROPERTIES

PARAMETERS

- *k* number of cells
 - Higher $k \rightarrow$ sparser cell \rightarrow faster search
- *m* number of probes
 - High $m \rightarrow$ more accuracy, slower search

PROPERTIES

- \checkmark Low memory overhead
- ✓ Fast updates
 - New vectors immediately visible
- ✓ Easy to scale (higher k)
- Reasonable performance
- × Needs rebuilding
 - Adding vectors degrades accuracy
 - Recompute clusters periodically

HNSW [MALKOV, TPAMI'20]

- Hierarchically Navigable Small Worlds
- Crown jewel of ANN indexes
 - Near SotA speed-accuracy tradeoff
 - Available quality implementations
 - Used in Qdrant, Weaviate (custom variants)
 - ... not quite SotA in academia
- Combines two ideas:
 - Navigable Small World: graph for traversal with greedy search
 - 2. Hierarchical skips: higher layers allow fast skips

NAVIGABLE SMALL WORLD (NSW)

- Class of graphs:
 - Add long- and short-range edges
 - Characteristic path length $O(\log N)$
- Greedy search (DFS):
 - Start at entry point
 - Add its neighbours to candidate list
 - Go to candidate nearest to query
 - Repeat until no such candidate
- Search path is $O(\log N)$
- **Problem**: average out-degree $O(\log N)$
 - → Polylogarithmic $O(\log^{C} N)$ search time (C > 1)

SKIP LIST

SEARCH

- Start at top layer
- Search in current layer.
- • When cannot continue, move to lower layer.

INSERT

- Insert to bottom list
- Flip coin, if heads stop.
- Otherwise, move to higher layer and insert

- Hierarchical graphs
 - Replicate some points across layers
 - Make long edges at higher layers
 - Make short edges at lower layers
- Out-degree bounded by construction
 - Parameter *M_{max}*

• To query:

- To query:
 - Enter at top layer
 - Greedy search
 - Move to nearest connected neighbour
 - Done? Move to lower layer •

- To query:
 - Enter at top layer
 - Greedy search
 - Move to nearest connected neighbour
 - Done? Move to lower layer
- Result: $O(\log N)$ search
 - Because out-degree bounded

- To query:
 - Enter at top layer
 - Greedy search
 - Move to nearest connected neighbour
 - Done? Move to lower layer
- Result: $O(\log N)$ search
 - Because out-degree bounded
- Improve recall (incurs overhead):
 - At layer 0, expand search to *efSearch* > 1 neigbours

INSERTION (OVERVIEW)

To insert vector *x*:

- 1. Choose highest layer for *x* (randomly)
- 2. Add *x* to each layer, one at a time:
 - Do greedy search in the layer
 - Create node and connect to neighbours in layer (based on greedy search)

Some details:

- Search output used as entry point of next layer (same with query)
- Expand: multiple entry points \rightarrow better recall (same with query)
- Trim trim edge lists \rightarrow avoid inflating out-degree

INSERTION (MORE DETAILS)

To insert *x*:

- Select highest layer L for x
 - Sample L \sim LogUniform
- Find candidate entry point p
 - Greedy search for x stops, stop at layer L+1
- Find *W* = *efConstruction* closest neigbours of *p* to *x*
- Phase 2:
 - Insert *x* at this layer
 - Connect *x* to *M* best neighbours in *W*
 - Trim edges of W to M_{max}
 - Move to lower layer, W as set of candidate points

More candidates \rightarrow better accuracy

M parameter

prevent out-degree from growing due to multiple inserts

PROPERTIES OF HNSW

YAY! 🙂

- ✓ Excellent accuracy
- ✓ Very fast
- ✓ Near SotA for speed + accuracy
- ✓ Good for relatively static data
- ✓ Less memory than LSH
 - Reasonable for many datasets
- ✓ Incremental updates possible...
 - In theory

OH NOES! 🛞

- × Higher memory than IVF, PQ
 - Addressed
- × Insert slower than query
- × Delete could disconnect graph
 - Uses tombstones
- \rightarrow Updates ballon memory or degrade accuracy

HNSW CONFIGURATION

		Affects			
Parameter	Description	query time	insert time	memory	recall
M M _{max}	nearest neighbours added per vertex max out-degree (often set M _{max} = M)	\checkmark	\checkmark	\checkmark	\checkmark
efSearch	how many searches in query last phase	\checkmark			\checkmark
efConstruction	how many entry points when building index	(if <i>M</i> high)	\checkmark		(if <i>M</i> low)

- Complex tradeoffs!
 - Many parameters
 - Interplay between them
- How to select?
 - Tune manually
 - Optimizer (if available)
 - Rules of thumb and guides

efConstruction does not affect recall beyond reasonable value ... except if *M* is very low, then *efConstruction* can compensate

Index	Good	Bad
Flat	Exact Low memory Fast updates No rebuilds	Not feasible for large datasets (> 10K)

Index	Good	Bad
Flat	Exact Low memory Fast updates No rebuilds	Not feasible for large datasets (> 10K)
IVF	Decent speed Good accuracy One parameter	Not fastest Needs rebuilds

Index	Good	Bad
Flat	Exact Low memory Fast updates No rebuilds	Not feasible for large datasets (> 10K)
IVF	Decent speed Good accuracy One parameter	Not fastest Needs rebuilds
HNSW	Excellent speed Excellent accuracy	Needs rebuilds Memory ballooning More parameters

Index	Good	Bad
Flat	Exact Low memory Fast updates No rebuilds	Not feasible for large datasets (> 10K)
IVF	Decent speed Good accuracy One parameter	Not fastest Needs rebuilds
HNSW	Excellent speed Excellent accuracy	Needs rebuilds Memory ballooning More parameters
LSH	Bounded error Fast updates No rebuilds	Not feasible for large vectors (>128) High memory Inferior performance (very rarely used)

To choose, consider requirements:

- Dataset size
- Vectors length
- Update frequency
 - Dynamicity
- Update visibility
 - Freshness
- Speed Recall Memory

WE JUST TOUCHED THE SURFACE

Structure	Index ^a	Partitioning	Residence	Complexity ^b			Updatec	Error Bound
				Constr	Space	Query		
Table	E ² LSH [47]	Space	Mem	Med.	High	Med.	Y	1
	FALCONN [30]	Space	Mem	Med.	High	Med.	R	1
	*SQ	Discrete	Mem	Med.	Low	Med.	Y	×
	*PQ	Clustering	Mem	Med.	Low	Med.	R	×
	*IVFSQ	Clustering	Mem	Med.	Low	Med.	R	×
	*IVFADC [66]	Clustering	Mem	Med.	Low	Med.	R	×
	SPANN [43]	Clustering	Disk	Med.	Med.	Med.	R	×
Tree	FLANN [92]	Space	Mem	High	High	Low	R	×
	RPTree [45, 46]	Space	Mem	Low	High	Low	R	1
	*ANNOY	Space	Mem	Low	High	Low	R	×
Graph	NN-Descent (KGraph) [51]	Proximity	Mem	Med.	Med.	Med.	Ν	×
	EFANNA	Proximity	Mem	High	Med.	Low	Ν	×
	FANNG [64]	Proximity	Mem	High	Med.	Med.	Ν	×
	NSG [56]	Proximity	Mem	High	Med.	Low	Ν	×
	Vamana (DiskANN) [111]	Proximity	Disk	Med.	Med.	Low	Ν	×
	*HNSW [85]	Proximity	Mem	Low	Med.	Low	Y	×

Not today

from [Pan, VLDBJ '24]