
III. INDEXING

WHY INDEX?

• Flat (brute force) kNN search

• Exact results

• But N comparisons → Too slow!

• If we partition dataset

• Fewer comparisons → faster search

• Can introduce errors

• ANNS index is key to VDBMS performance!

• But has costs!
• Can increase errors, memory, update cost

M. Gabel, CSC2233 Topics in Vector Databases 2

PERFORMANCE TRADEOFFS

• ANNS indexes trade between:

• Search speed

• Accuracy

• Memory

• Build/update cost

• Crucial: search speed-accuracy tradeoff

• Index type + configuration determine specific point

• How to choose index and configuration?

• Tune manually on your data

• Automatically using VDBMS optimizer (if exists)

M. Gabel, CSC2233 Topics in Vector Databases 3

accuracy

performance

exhaustive
search

HNSW
M=20, ef=32

IVF n=1024

IVF n=64
SQ bits=4

SQ bits=16

(illustration only, not real data)

METRICS

• Recall-K@K (aka “recall@K” aka “recall”)
• Fraction of true k nearest neighbours returned by query

• Alternative: out of k vectors returned, how many are truly kNN?

• Alternative: overlap between true kNN and vectors returned by query.

• Example:
query 𝒒 with 𝑘 = 5 returns 𝑥1 … 𝑥5
𝑥1, 𝑥3, 𝑥4, 𝑥5 are true nearest neigbhbours
but 𝑥2 is not (𝒖 is closer to 𝒒 but is missed)
→ recall5@5 = 4/𝑘 = 4/5 = 0.8 or 80%

• Latency: milliseconds per query

• Throughput: queries per second

M. Gabel, CSC2233 Topics in Vector Databases 4

𝑥1
𝑥3

𝑥4

𝑥2

𝑥5
𝑢

𝒒

ANNS INDEXES

• Vectors ≠ attributes
ANNS index ≠ RDBMS index

• Can’t use B-trees.

• Need new tricks:
• Learned (data-based) partitioning.

• Lossy compression (quantization).

• Randomization.

• New problems:

• Slow index updates (due to complex structure)

• Frequent rebuilds (since updates degrade index performance)

M. Gabel, CSC2233 Topics in Vector Databases 5

Attribute Vector

Granularity attribute whole vector

Accuracy exact approximate

Natural structure ordinal or
sortable

no natural
structure

Fast updates, delete yes sometimes

Self-balancing yes sometimes

Data-dependent no often

INDEX TYPES

• Cluster-based: partition space to buckets
of similar vectors

• IVF, PQ

• Graph-based: connect similar vectors to
make traversal graph

• HNSW

• DiskANN

• LSH: locality-sensitive hashing
• Many variants

• Tree: partition space hierarchically
• RP tree

• ANNOY

ANNS index characteristics:

• Memory or disk resident:
• Most are memory-resident

• Periodic rebuilding:
• Some indexes require occasional rebuilds

• E.g., classic HNSW, IVF

• Support incremental updates:
• Yes, no, or partially supported

• Real delete or tombstone?

• Error bounds:
• Only LSH, RPTree

M. Gabel, CSC2233 Topics in Vector Databases 11

IT’S TIME!

• Let’s look at a real index.

• Flat Index

M. Gabel, CSC2233 Topics in Vector Databases 12

IT’S TIME!

• Let’s look at a real index.

• Flat Index … actually just brute force search.

M. Gabel, CSC2233 Topics in Vector Databases 13

FLAT INDEX

• Store vectors in table.

• To query: scan table, compute distances, return top-k
• With priority queue or just sorting

• Really?

M. Gabel, CSC2233 Topics in Vector Databases 14

FLAT INDEX

• Store vectors in table.

• To query: scan table, compute distances, return top-k
• With priority queue or just sorting

• Really? Really!
• Exact search (fully accurate)
• Very fast updates, no rebuilds
• Filtered search is easy
• Fast GPU implementations
• No extra memory

M. Gabel, CSC2233 Topics in Vector Databases 15

FLAT INDEX

• Store vectors in table.

• To query: scan table, compute distances, return top-k
• With priority queue or just sorting

• Really? Really!
• Exact search (fully accurate)
• Very fast updates, no rebuilds
• Filtered search is easy
• Fast GPU implementations
• No extra memory

• Good for small collections (< 100K vectors)
• Or more!

Neos [Huang, ICDE’24]: 1M vectors @ 1500 QPS with 4 GPUs off SSD

M. Gabel, CSC2233 Topics in Vector Databases 16

SINGLE CORE PERFORMANCE @ 1M

• AMD EPYC 7302 at 3GHz, AVX 2

• FAISS using inner-prod trick

M. Gabel, CSC2233 Topics in Vector Databases 17

20 QPS
@ D=128

6 QPS @
D=768

• Synthetic Gaussian data

QPS < 10
@ D > 256

ANN-
BENCHMARKS

• AWS r6i.16xlarge (Xeon)

• AWS r6i.16xlarge (3rd gen Xeon)

• SIFT 1M

• Benchmark by
ann-benchmarks.com

• Exact search with BLAS: 16 QPS

• IVF (clustering):
→ x50 time faster

• Graph index:
→ ×100 – ×500 times faster

M. Gabel, CSC2233 Topics in Vector Databases

6 QPS @
D=768

18

BLAS exact
16 QPS @ 100%

HNSW (FAISS)
3000 QPS @ 95%

DiskANN / Vamana
7000 QPS @ 95%

IVF (FAISS)
900 QPS @ 96%

https://ann-benchmarks.com/sift-128-euclidean_10_euclidean.html

LSH: LOCALITY SENSITIVE HASHING

N O R M A L H A S H

• Different items → different hash
• Similar but not identical? Different hash

• Minimize collisions.

LO C A L I T Y S E N S I T I V E H A S H

• Hash depends on location

• Near items → same hash

• Maximize collisions

M. Gabel, CSC2233 Topics in Vector Databases 19

ℎ(𝑥) ℎ(𝑥)

LSH: LOCALITY SENSITIVE HASHING

N O R M A L H A S H

• Different items → different hash
• Similar but not identical? Different hash

• Minimize collisions.

LO C A L I T Y S E N S I T I V E H A S H

• Hash depends on location

• Near items → same hash

• Maximize collisions

M. Gabel, CSC2233 Topics in Vector Databases 20

𝑣1

𝑣2

𝑣1

𝑣2

ℎ(𝑥) ℎ(𝑥)

LSH: LOCALITY SENSITIVE HASHING

N O R M A L H A S H

• Different items → different hash
• Similar but not identical? Different hash

• Minimize collisions.

LO C A L I T Y S E N S I T I V E H A S H

• Hash depends on location

• Near items → same hash

• Maximize collisions

M. Gabel, CSC2233 Topics in Vector Databases 22

𝑣1

𝑣2

𝑣1

𝑣2

𝑣1

𝑣1

ℎ(𝑥)

𝑣2

𝑣2

ℎ(𝑥)

LSH: LOCALITY SENSITIVE HASHING

N O R M A L H A S H

• Different items → different hash
• Similar but not identical? Different hash

• Minimize collisions.

LO C A L I T Y S E N S I T I V E H A S H

• Hash depends on location

• Near items → same hash

• Maximize collisions

M. Gabel, CSC2233 Topics in Vector Databases 23

𝑣1

𝑣2

𝑣3

𝑣1

𝑣2

𝑣3

𝑣3

𝑣1

𝑣2

𝑣1 𝑣2

𝑣3
ℎ(𝑥) ℎ(𝑥)

ANNS WITH LSH

Suppose we have ℎ(⋅) where

• 𝑢 near 𝑣 → ℎ 𝑢 = ℎ(𝑣)

• 𝑢 far from 𝑣 → ℎ 𝑢 ≠ ℎ(𝑣)

To insert 𝒙:

• Add x to bucket ℎ 𝑥

To query for 𝒒:

• Compare 𝑞 to vectors in ℎ 𝑞 bucket
• Ideally: nearby vectors → same hash bucket

• Return 𝑘 nearest (rerank or use prio-queue)

M. Gabel, CSC2233 Topics in Vector Databases 24

with high
probability 𝑔1

𝒉 𝒙 = 𝟏𝟎𝟏𝟏𝟎

𝒉 𝒚 = 𝟎𝟎𝟏𝟎𝟎

𝑔2

𝑔4

𝑔3

𝑔5

𝒉 𝒒 = 𝟏𝟏𝟏𝟏𝟎

𝑥

𝑦

𝑞

NEAREST NEIGHBOUR WITH LSH

• One ℎ 𝑥 not enough

• Repeat to reduce error probability
• 𝐿 hash tables, each with different random ℎ(𝑥)

• Insert vector into 𝐿 tables

• Query in 𝐿 tables

• Rerank

• Downside: larger query time

• Set 𝐿 to achieve desired error bounds
• Or based on memory, and estimate bounds

• Both depend on N, ℎ 𝑥

M. Gabel, CSC2233 Topics in Vector Databases 25

Vast literature:
• Finding good ℎ ⋅ for different 𝑑, data
• Accuracy, memory guarantees
• Searching buckets

LSH PROPERTIES

• Many variants:
• E2LSH – classic random projection LSH, works for Euclidean distances

• IndexLSH – project to binary, search with Hamming distance [FAISS, 2023]

• FALCONN – cosine similarity, needs rebuilds [Andoni, NeurIPS’15]

• SPANN – learn ℎ(𝑥) , disk resident, needs rebuilds [Chen, NeurIPS’21]

• LSH is theoretically elegant…
✓ Fast incremental updates

✓ Bounded error, memory (one of very few)

✓ No rebuilds (data-independent)

• … but seldom actually used in VDBMS
• Inferior performance in all aspects [Briggs, 2024]

• Too slow when D > 128

M. Gabel, CSC2233 Topics in Vector Databases 37

Research
continues…

IVF: INVERTED FILE INDEX

(also called clustering)

• Choose number of buckets (clusters) 𝑘

• Cluster vectors (e.g., k-means)

• To index 𝑣
• Find nearest centroid

• Add 𝑣 to cell (cluster)

• To query 𝑞
• Find nearest centroid

• Compare 𝑞 to vectors inside cell

M. Gabel, CSC2233 Topics in Vector Databases 38

Problem:
missed neighbour
in other cluster

NEIGHBOUR IN OTHER CLUSTER?

→ List vectors near edges in two cells

→ Increase search scope: probe m > 1 nearest cells

M. Gabel, CSC2233 Topics in Vector Databases 39

m = 1 m = 4

IVF OVER TIME

• Add some points.

• Cluster selected by nearest centroid

• Add more points…

• Even more!

M. Gabel, CSC2233 Topics in Vector Databases 40

IVF OVER TIME

• Add some points.

• Cluster selected by nearest centroid

• Add more points…

• Even more!

• IVF cluster do not match data
• More error near edges

• Unbalanced cluster lists

M. Gabel, CSC2233 Topics in Vector Databases 41

IVF OVER TIME

• Add some points.

• Cluster selected by nearest centroid

• Add more points…

• Even more!

• IVF cluster do not match data
• More error near edges

• Unbalanced cluster lists

• Solution: rebuild clusters periodically
• Or update clusters incrementally [Xu, SOSP'23]

M. Gabel, CSC2233 Topics in Vector Databases 42

IVF PROPERTIES

PA R A M E T E R S

• 𝑘 number of cells

• Higher 𝑘 → sparser cell → faster search

• 𝑚 number of probes

• High 𝑚 → more accuracy, slower search

P R O P E R T I E S

✓Low memory overhead

✓Fast updates
• New vectors immediately visible

✓Easy to scale (higher 𝑘)

• Reasonable performance

× Needs rebuilding

• Adding vectors degrades accuracy

• Recompute clusters periodically

M. Gabel, CSC2233 Topics in Vector Databases 43

HNSW [MALKOV, TPAMI’20]

• Hierarchically Navigable Small Worlds

• Crown jewel of ANN indexes
• Near SotA speed-accuracy tradeoff

• Available quality implementations

• Used in Qdrant, Weaviate (custom variants)

• … not quite SotA in academia

• Combines two ideas:
1. Navigable Small World:

graph for traversal with greedy search

2. Hierarchical skips:
higher layers allow fast skips

M. Gabel, CSC2233 Topics in Vector Databases 45

NAVIGABLE SMALL WORLD (NSW)

• Class of graphs:
• Add long- and short-range edges

• Characteristic path length 𝑂 log 𝑁

• Greedy search (DFS):
• Start at entry point

• Add its neighbours to candidate list

• Go to candidate nearest to query

• Repeat until no such candidate

• Search path is 𝑂 log 𝑁

• Problem: average out-degree 𝑂 log 𝑁
→ Polylogarithmic 𝑂(log𝐶 𝑁) search time (𝐶 > 1)

M. Gabel, CSC2233 Topics in Vector Databases 46

query

entry point

nearest
neighbour

SKIP LIST

S E A R C H
• Start at top layer

• Search in current layer.

• When cannot continue, move to lower layer.

I N S E R T
• Insert to bottom list

• Flip coin, if heads stop.

• Otherwise, move to higher layer and insert

M. Gabel, CSC2233 Topics in Vector Databases 47

HNSW = NSW + SKIP LIST

M. Gabel, CSC2233 Topics in Vector Databases 49

• Hierarchical graphs

• Replicate some points across layers

• Make long edges at higher layers

• Make short edges at lower layers

• Out-degree bounded by construction
• Parameter Mmax

HNSW = NSW + SKIP LIST

M. Gabel, CSC2233 Topics in Vector Databases 50

HNSW = NSW + SKIP LIST

• To query:

M. Gabel, CSC2233 Topics in Vector Databases 51

entry point

query

nearest neighbour

layer 2

layer 1

layer 0

HNSW = NSW + SKIP LIST

• To query:

• Enter at top layer

• Greedy search

• Move to nearest connected neighbour

• Done? Move to lower layer

M. Gabel, CSC2233 Topics in Vector Databases 52

entry point

query

nearest neighbour

layer 2

layer 1

layer 0

HNSW = NSW + SKIP LIST

• To query:

• Enter at top layer

• Greedy search

• Move to nearest connected neighbour

• Done? Move to lower layer

• Result: 𝑂 log 𝑁 search
• Because out-degree bounded

M. Gabel, CSC2233 Topics in Vector Databases 53

entry point

nearest neighbour

layer 2

layer 1

layer 0

query

HNSW = NSW + SKIP LIST

• To query:

• Enter at top layer

• Greedy search

• Move to nearest connected neighbour

• Done? Move to lower layer

• Result: 𝑂 log 𝑁 search
• Because out-degree bounded

• Improve recall (incurs overhead):

• At layer 0, expand search to efSearch > 1
neigbours

M. Gabel, CSC2233 Topics in Vector Databases 54

entry point layer 2

layer 1

layer 0

query

INSERTION (OVERVIEW)

To insert vector 𝑥:

1. Choose highest layer for 𝑥 (randomly)

2. Add 𝑥 to each layer, one at a time:
• Do greedy search in the layer

• Create node and connect to neighbours in layer (based on greedy search)

Some details:

• Search output used as entry point of next layer (same with query)

• Expand: multiple entry points → better recall (same with query)

• Trim trim edge lists → avoid inflating out-degree

M. Gabel, CSC2233 Topics in Vector Databases 55

INSERTION (MORE DETAILS)

To insert 𝑥:

• Select highest layer L for 𝑥
• Sample L ~ LogUniform

• Find candidate entry point 𝑝
• Greedy search for 𝑥 stops, stop at layer L+1

• Find 𝑊 = efConstruction closest neigbours of 𝑝 to 𝑥

• Phase 2:
• Insert 𝑥 at this layer

• Connect 𝑥 to 𝑀 best neighbours in 𝑊

• Trim edges of 𝑊 to Mmax

• Move to lower layer, W as set of candidate points

M. Gabel, CSC2233 Topics in Vector Databases 56

prevent out-degree from growing
due to multiple inserts

More candidates → better accuracy

M parameter

PROPERTIES OF HNSW

YAY ! ☺

✓Excellent accuracy

✓Very fast

✓Near SotA for speed + accuracy

✓Good for relatively static data

✓Less memory than LSH
• Reasonable for many datasets

✓ Incremental updates possible…
• In theory

O H N O E S ! 

× Higher memory than IVF, PQ

• Addressed

× Insert slower than query

× Delete could disconnect graph
• Uses tombstones

→ Updates
 ballon memory or
 degrade accuracy

M. Gabel, CSC2233 Topics in Vector Databases 57[Singh, arXiv ‘21]

HNSW

DiskANN

HNSW CONFIGURATION

• Complex tradeoffs!
• Many parameters
• Interplay between them

• How to select?
• Tune manually

• Optimizer (if available)

• Rules of thumb and guides

M. Gabel, CSC2233 Topics in Vector Databases 58

Parameter Description query time insert time memory recall

M
Mmax

nearest neighbours added per vertex
max out-degree (often set Mmax = M)

✓ ✓ ✓ ✓

efSearch how many searches in query last phase ✓ ✓

efConstruction how many entry points when building index (if M high) ✓ (if M low)

efConstruction does not affect
recall beyond reasonable value
… except if M is very low, then
efConstruction can compensate

From Pinecone documentation [Briggs, 2024]

Affects…

https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
https://www.pinecone.io/learn/series/faiss/vector-indexes/
https://www.pinecone.io/learn/series/faiss/vector-indexes/

RECAP
Index Good Bad

Flat Exact
Low memory
Fast updates
No rebuilds

Not feasible for large datasets (> 10K)

M. Gabel, CSC2233 Topics in Vector Databases 59

RECAP
Index Good Bad

Flat Exact
Low memory
Fast updates
No rebuilds

Not feasible for large datasets (> 10K)

IVF Decent speed
Good accuracy
One parameter

Not fastest
Needs rebuilds

M. Gabel, CSC2233 Topics in Vector Databases 60

RECAP
Index Good Bad

Flat Exact
Low memory
Fast updates
No rebuilds

Not feasible for large datasets (> 10K)

IVF Decent speed
Good accuracy
One parameter

Not fastest
Needs rebuilds

HNSW Excellent speed
Excellent
accuracy

Needs rebuilds
Memory ballooning
More parameters

M. Gabel, CSC2233 Topics in Vector Databases 61

RECAP
Index Good Bad

Flat Exact
Low memory
Fast updates
No rebuilds

Not feasible for large datasets (> 10K)

IVF Decent speed
Good accuracy
One parameter

Not fastest
Needs rebuilds

HNSW Excellent speed
Excellent
accuracy

Needs rebuilds
Memory ballooning
More parameters

LSH Bounded error
Fast updates
No rebuilds

Not feasible for large vectors (>128)
High memory
Inferior performance (very rarely used)

M. Gabel, CSC2233 Topics in Vector Databases 62

To choose, consider
requirements:

• Dataset size

• Vectors length

• Update frequency

• Dynamicity

• Update visibility

• Freshness

• Speed
Recall
Memory

WE JUST TOUCHED THE SURFACE

M. Gabel, CSC2233 Topics in Vector Databases 63

from [Pan, VLDBJ ’24]

Not today

	Slide 1: III. IndexING
	Slide 2: Why Index?
	Slide 3: Performance Tradeoffs
	Slide 4: MetricS
	Slide 5: ANNS Indexes
	Slide 11: Index Types
	Slide 12: It’s Time!
	Slide 13: It’s Time!
	Slide 14: Flat Index
	Slide 15: Flat Index
	Slide 16: Flat Index
	Slide 17: Single Core PERFORMANCE @ 1M
	Slide 18: ANN-BENCHMARKS
	Slide 19: LSH: Locality Sensitive Hashing
	Slide 20: LSH: Locality Sensitive Hashing
	Slide 22: LSH: Locality Sensitive Hashing
	Slide 23: LSH: Locality Sensitive Hashing
	Slide 24: ANNS With LSH
	Slide 25: Nearest Neighbour With LSH
	Slide 37: LSH Properties
	Slide 38: IVF: Inverted File Index
	Slide 39: Neighbour in Other Cluster?
	Slide 40: IVF Over Time
	Slide 41: IVF Over Time
	Slide 42: IVF Over Time
	Slide 43: IVF Properties
	Slide 45: HNSW [Malkov, TPAMI’20]
	Slide 46: Navigable Small World (NSW)
	Slide 47: Skip List
	Slide 49: HNSW = NSW + SKIP LIST
	Slide 50: HNSW = NSW + SKIP LIST
	Slide 51: HNSW = NSW + SKIP LIST
	Slide 52: HNSW = NSW + SKIP LIST
	Slide 53: HNSW = NSW + SKIP LIST
	Slide 54: HNSW = NSW + SKIP LIST
	Slide 55: Insertion (Overview)
	Slide 56: Insertion (More Details)
	Slide 57: Properties of HNSW
	Slide 58: HNSW Configuration
	Slide 59: Recap
	Slide 60: Recap
	Slide 61: Recap
	Slide 62: Recap
	Slide 63: We Just Touched the Surface

