
III. INDEXING



WHY INDEX?

• Flat (brute force) kNN search

• Exact results

• But N comparisons → Too slow!

• If we partition dataset 

• Fewer comparisons → faster search

• Can introduce errors

• ANNS index is key to VDBMS performance!

• But has costs!
• Can increase errors, memory, update cost
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PERFORMANCE TRADEOFFS

• ANNS indexes trade between:

• Search speed

• Accuracy

• Memory

• Build/update cost

• Crucial: search speed-accuracy tradeoff

• Index type + configuration determine specific point

• How to choose index and configuration?

• Tune manually on your data

• Automatically using VDBMS optimizer (if exists)
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exhaustive 
search

HNSW 
M=20, ef=32

IVF n=1024

IVF n=64
SQ bits=4

SQ bits=16

(illustration only, not real data)



METRICS

• Recall-K@K (aka “recall@K” aka “recall”)
• Fraction of true k nearest neighbours returned by query

• Alternative: out of k vectors returned, how many are truly kNN?

• Alternative: overlap between true kNN and vectors returned by query.

• Example: 
query 𝒒 with 𝑘 = 5 returns 𝑥1 … 𝑥5   
𝑥1, 𝑥3, 𝑥4, 𝑥5 are true nearest neigbhbours
but 𝑥2 is not (𝒖 is closer to 𝒒 but is missed)
→ recall5@5 = 4/𝑘 = 4/5 = 0.8 or 80%

• Latency: milliseconds per query

• Throughput: queries per second
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ANNS INDEXES

• Vectors ≠ attributes
ANNS index ≠ RDBMS index

• Can’t use B-trees.

• Need new tricks:
• Learned (data-based) partitioning.

• Lossy compression (quantization).

• Randomization.

• New problems:

• Slow index updates (due to complex structure)

• Frequent rebuilds (since updates degrade index performance)
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Attribute Vector

Granularity attribute whole vector

Accuracy exact approximate

Natural structure ordinal or 
sortable

no natural 
structure

Fast updates, delete yes sometimes

Self-balancing yes sometimes

Data-dependent no often



INDEX TYPES

• Cluster-based: partition space to buckets 
of similar vectors

• IVF, PQ

• Graph-based: connect similar vectors to 
make traversal graph

• HNSW

• DiskANN

• LSH: locality-sensitive hashing
• Many variants

• Tree: partition space hierarchically
• RP tree

• ANNOY

ANNS index characteristics:

• Memory or disk resident: 
• Most are memory-resident

• Periodic rebuilding:
• Some indexes require occasional rebuilds

• E.g., classic HNSW, IVF

• Support incremental updates: 
• Yes, no, or partially supported

• Real delete or tombstone?

• Error bounds: 
• Only LSH, RPTree
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IT’S TIME!

• Let’s look at a real index.

• Flat Index
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IT’S TIME!

• Let’s look at a real index.

• Flat Index … actually just brute force search.
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FLAT INDEX

• Store vectors in table.

• To query: scan table, compute distances, return top-k
• With priority queue or just sorting

• Really? 
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FLAT INDEX

• Store vectors in table.

• To query: scan table, compute distances, return top-k
• With priority queue or just sorting

• Really? Really!
• Exact search (fully accurate)
• Very fast updates, no rebuilds
• Filtered search is easy
• Fast GPU implementations
• No extra memory 
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FLAT INDEX

• Store vectors in table.

• To query: scan table, compute distances, return top-k
• With priority queue or just sorting

• Really? Really!
• Exact search (fully accurate)
• Very fast updates, no rebuilds
• Filtered search is easy
• Fast GPU implementations
• No extra memory 

• Good for small collections (< 100K vectors)
• Or more!

Neos [Huang, ICDE’24]: 1M vectors @ 1500 QPS with 4 GPUs off SSD
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SINGLE CORE PERFORMANCE @ 1M 

• AMD EPYC 7302 at 3GHz, AVX 2

• FAISS using inner-prod trick
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20 QPS 
@ D=128

6 QPS @ 
D=768

• Synthetic Gaussian data

QPS < 10 
@ D > 256



ANN-
BENCHMARKS

• AWS r6i.16xlarge (Xeon)

• AWS r6i.16xlarge (3rd gen Xeon)

• SIFT 1M 

• Benchmark by
ann-benchmarks.com

• Exact search with BLAS: 16 QPS

• IVF (clustering): 
→ x50 time faster 

• Graph index:
→ ×100 – ×500 times faster
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6 QPS @ 
D=768
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BLAS exact
16 QPS @ 100%

HNSW (FAISS)
3000 QPS @ 95%

DiskANN / Vamana
7000 QPS @ 95%

IVF (FAISS)
900 QPS @ 96% 

https://ann-benchmarks.com/sift-128-euclidean_10_euclidean.html


LSH: LOCALITY SENSITIVE HASHING

N O R M A L  H A S H

• Different items → different hash
• Similar but not identical? Different hash

• Minimize collisions.

LO C A L I T Y  S E N S I T I V E  H A S H

• Hash depends on location

• Near items → same hash

• Maximize collisions
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LSH: LOCALITY SENSITIVE HASHING

N O R M A L  H A S H

• Different items → different hash
• Similar but not identical? Different hash

• Minimize collisions.

LO C A L I T Y  S E N S I T I V E  H A S H

• Hash depends on location

• Near items → same hash

• Maximize collisions
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ANNS WITH LSH

Suppose we have ℎ(⋅) where

• 𝑢 near 𝑣 → ℎ 𝑢 = ℎ(𝑣)

• 𝑢 far from 𝑣 → ℎ 𝑢 ≠ ℎ(𝑣)

To insert 𝒙:

• Add x to bucket ℎ 𝑥

To query for 𝒒:

• Compare 𝑞 to vectors in ℎ 𝑞  bucket
• Ideally: nearby vectors → same hash bucket

• Return 𝑘 nearest (rerank or use prio-queue)
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with high
probability 𝑔1

𝒉 𝒙 = 𝟏𝟎𝟏𝟏𝟎

𝒉 𝒚 = 𝟎𝟎𝟏𝟎𝟎

𝑔2

𝑔4

𝑔3

𝑔5

𝒉 𝒒 = 𝟏𝟏𝟏𝟏𝟎

𝑥

𝑦

𝑞



NEAREST NEIGHBOUR WITH LSH

• One ℎ 𝑥  not enough

• Repeat to reduce error probability
• 𝐿 hash tables, each with different random ℎ(𝑥)

• Insert vector into 𝐿 tables

• Query in 𝐿 tables

• Rerank

• Downside: larger query time

• Set 𝐿 to achieve desired error bounds
• Or based on memory, and estimate bounds

• Both depend on N, ℎ 𝑥
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Vast literature:
• Finding good ℎ ⋅  for different 𝑑, data
• Accuracy, memory guarantees
• Searching buckets



LSH PROPERTIES

• Many variants:
• E2LSH – classic random projection LSH, works for Euclidean distances

• IndexLSH – project to binary, search with Hamming distance [FAISS, 2023] 

• FALCONN – cosine similarity, needs rebuilds [Andoni, NeurIPS’15] 

• SPANN – learn ℎ(𝑥) , disk resident, needs rebuilds [Chen, NeurIPS’21]

• LSH is theoretically elegant…
✓ Fast incremental updates 

✓ Bounded error, memory (one of very few)

✓ No rebuilds (data-independent)

• … but seldom actually used in VDBMS
• Inferior performance in all aspects [Briggs, 2024]

• Too slow when D > 128

M. Gabel, CSC2233 Topics in Vector Databases 37

Research 
continues…



IVF: INVERTED FILE INDEX

(also called clustering)

• Choose number of buckets (clusters) 𝑘

• Cluster vectors (e.g., k-means)

• To index 𝑣     
• Find nearest centroid

• Add 𝑣 to cell (cluster)

• To query 𝑞
• Find nearest centroid

• Compare 𝑞 to vectors inside cell
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Problem:
missed neighbour 
in other cluster



NEIGHBOUR IN OTHER CLUSTER?

→ List vectors near edges in two cells

→ Increase search scope: probe m > 1 nearest cells
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m = 1 m = 4



IVF OVER TIME

• Add some points.

• Cluster selected by nearest centroid

• Add more points…

• Even more!
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IVF OVER TIME

• Add some points.

• Cluster selected by nearest centroid

• Add more points…

• Even more!

• IVF cluster do not match data
• More error near edges

• Unbalanced cluster lists
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IVF OVER TIME

• Add some points.

• Cluster selected by nearest centroid

• Add more points…

• Even more!

• IVF cluster do not match data
• More error near edges

• Unbalanced cluster lists

• Solution: rebuild clusters periodically
• Or update clusters incrementally [Xu, SOSP'23]
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IVF PROPERTIES

PA R A M E T E R S

• 𝑘 number of cells

• Higher 𝑘 → sparser cell → faster search

• 𝑚 number of probes

• High 𝑚 → more accuracy, slower search

P R O P E R T I E S

✓Low memory overhead

✓Fast updates
• New vectors immediately visible

✓Easy to scale (higher 𝑘)

• Reasonable performance

× Needs rebuilding

• Adding vectors degrades accuracy

• Recompute clusters periodically
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HNSW   [MALKOV, TPAMI’20]

• Hierarchically Navigable Small Worlds

• Crown jewel of ANN indexes
• Near SotA speed-accuracy tradeoff

• Available quality implementations

• Used in Qdrant, Weaviate (custom variants)

• … not quite SotA in academia

• Combines two ideas:
1. Navigable Small World:

graph for traversal with greedy search

2. Hierarchical skips:
higher layers allow fast skips
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NAVIGABLE SMALL WORLD (NSW)

• Class of graphs:
• Add long- and short-range edges

• Characteristic path length 𝑂 log 𝑁

• Greedy search (DFS):
• Start at entry point

• Add its neighbours to candidate list

• Go to candidate nearest to query

• Repeat until no such candidate

• Search path is 𝑂 log 𝑁

• Problem: average out-degree 𝑂 log 𝑁
→ Polylogarithmic 𝑂(log𝐶 𝑁) search time (𝐶 > 1)
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query

entry point

nearest
neighbour



SKIP LIST

S E A R C H
• Start at top layer

• Search in current layer.

• When cannot continue, move to lower layer.

I N S E R T
• Insert to bottom list

• Flip coin, if heads stop. 

• Otherwise, move to higher layer and insert
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HNSW = NSW + SKIP LIST
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• Hierarchical graphs

• Replicate some points across layers

• Make long edges at higher layers

• Make short edges at lower layers

• Out-degree bounded by construction
• Parameter Mmax



HNSW = NSW + SKIP LIST
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HNSW = NSW + SKIP LIST

• To query:
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entry point

query

nearest neighbour

layer 2

layer 1

layer 0



HNSW = NSW + SKIP LIST

• To query:

• Enter at top layer

• Greedy search

• Move to nearest connected neighbour

• Done? Move to lower layer
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HNSW = NSW + SKIP LIST

• To query:

• Enter at top layer

• Greedy search

• Move to nearest connected neighbour

• Done? Move to lower layer

• Result: 𝑂 log 𝑁  search
• Because out-degree bounded
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HNSW = NSW + SKIP LIST

• To query:

• Enter at top layer

• Greedy search

• Move to nearest connected neighbour

• Done? Move to lower layer

• Result: 𝑂 log 𝑁  search
• Because out-degree bounded

• Improve recall (incurs overhead):

• At layer 0, expand search to efSearch > 1 
neigbours
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entry point layer 2

layer 1

layer 0

query



INSERTION (OVERVIEW)

To insert vector 𝑥:

1. Choose highest layer for 𝑥 (randomly)

2. Add 𝑥 to each layer, one at a time:
• Do greedy search in the layer

• Create node and connect to neighbours in layer (based on greedy search)

Some details:

• Search output used as entry point of next layer (same with query)

• Expand: multiple entry points → better recall (same with query)

• Trim trim edge lists → avoid inflating out-degree
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INSERTION (MORE DETAILS)

To insert 𝑥:

• Select highest layer L for 𝑥 
• Sample L ~ LogUniform

• Find candidate entry point 𝑝
• Greedy search for 𝑥 stops, stop at layer L+1

• Find 𝑊 = efConstruction closest neigbours of 𝑝 to 𝑥

• Phase 2:
• Insert 𝑥 at this layer

• Connect 𝑥 to 𝑀 best neighbours in 𝑊

• Trim edges of 𝑊 to Mmax

• Move to lower layer, W as set of candidate points
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prevent out-degree from growing 
due to multiple inserts

More candidates → better accuracy

M parameter 



PROPERTIES OF HNSW

YAY !  ☺

✓Excellent accuracy

✓Very fast

✓Near SotA for speed + accuracy

✓Good for relatively static data

✓Less memory than LSH
• Reasonable for many datasets

✓ Incremental updates possible… 
• In theory 

O H  N O E S !  

× Higher memory than IVF, PQ

• Addressed 

× Insert slower than query

× Delete could disconnect graph
• Uses tombstones

→ Updates
     ballon memory or
     degrade accuracy
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HNSW

DiskANN



HNSW CONFIGURATION

• Complex tradeoffs!
• Many parameters
• Interplay between them

• How to select?
• Tune manually

• Optimizer (if available)

• Rules of thumb and guides
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Parameter Description query time insert time memory recall

M
Mmax

nearest neighbours added per vertex
max out-degree (often set Mmax = M)

✓ ✓ ✓ ✓

efSearch how many searches in query last phase ✓ ✓

efConstruction how many entry points when building index (if M high) ✓ (if M low)

efConstruction does not affect 
recall beyond reasonable value
… except if M is very low, then 
efConstruction can compensate

From Pinecone documentation [Briggs, 2024] 

Affects…

https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
https://www.pinecone.io/learn/series/faiss/vector-indexes/
https://www.pinecone.io/learn/series/faiss/vector-indexes/


RECAP
Index Good Bad

Flat Exact
Low memory
Fast updates
No rebuilds

Not feasible for large datasets (> 10K)
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RECAP
Index Good Bad

Flat Exact
Low memory
Fast updates
No rebuilds

Not feasible for large datasets (> 10K)

IVF Decent speed
Good accuracy
One parameter

Not fastest
Needs rebuilds
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RECAP
Index Good Bad

Flat Exact
Low memory
Fast updates
No rebuilds

Not feasible for large datasets (> 10K)

IVF Decent speed
Good accuracy
One parameter

Not fastest
Needs rebuilds

HNSW Excellent speed
Excellent 
accuracy

Needs rebuilds
Memory ballooning
More parameters
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RECAP
Index Good Bad

Flat Exact
Low memory
Fast updates
No rebuilds

Not feasible for large datasets (> 10K)

IVF Decent speed
Good accuracy
One parameter

Not fastest
Needs rebuilds

HNSW Excellent speed
Excellent 
accuracy

Needs rebuilds
Memory ballooning
More parameters

LSH Bounded error
Fast updates
No rebuilds

Not feasible for large vectors (>128)
High memory
Inferior performance (very rarely used)
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To choose, consider 
requirements:

• Dataset size

• Vectors length

• Update frequency

• Dynamicity

• Update visibility

• Freshness

• Speed 
Recall
Memory



WE JUST TOUCHED THE SURFACE
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from [Pan, VLDBJ ’24] 

Not today
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