
RECAP

M. Gabel, CSC2233 Topics in Vector Databases 1

MODERN APPLICATIONS NEED:

Insert lots of vectors:

1. Create embedding vector x

2. Store x in specialized DB
 (with associated attributes)

Query data quickly:

3. Embed query as vector q

4. Find nearest neighbours to q

M. Gabel, CSC2233 Topics in Vector Databases

VECTOR DATABASE = VECTOR STORAGE + SEMANTIC SEARCH

model

query

data

reply

2

RDBMS VDBMS

• Different requirements → different design!

• Main differences:
• Records vs vectors

• SQL vs NN

• ACID vs eventual

• Key challenges:
• Large vectors

• No structure

• Slow updates

M. Gabel, CSC2233 Topics in Vector Databases 3

Traditional DB (RDBMS) Vector DB (VDBMS)

Data Records Vectors

Queries Relational algebra Nearest neighbors + filtering

Advanced query features Join, group, FK, cursors None of those*

Updates To part of record
To multiple records

On whole vector
Insert/delete/replace

Consistency Strong + transactions Eventual, tunable

Index updates Fast Slow

Storage Row/column based, LSM Vector is opaque blob

Hardware , scaling cost Uniform , moderate Diverse , expensive (GPUs)

Architecture More monolithic More disaggregated

II. QUERYING

4M. Gabel, CSC2233 Topics in Vector Databases

QUERYING

• Have: query vector q

• Want: “some” set of vectors “near” q

• What is “near”? → similarity score

M. Gabel, CSC2233 Topics in Vector Databases 5

QUERYING

• Have: query vector q

• Want: “some” set of vectors “near” q

• What is “near”? → similarity score

• Which “some”? → various query types

M. Gabel, CSC2233 Topics in Vector Databases 6

QUERYING

• Have: query vector q

• Want: “some” set of vectors “near” q

• What is “near”? → similarity score

• Which “some”? → various query types

• When? → as fast as possible

M. Gabel, CSC2233 Topics in Vector Databases 7

DISTANCE/SIMILARITY SCORES

• Given vectors 𝑣, 𝑞 → number expressing similarity/distance of 𝑣 to 𝑞

• 𝑑 𝑣, 𝑞 ∶ ℝ𝐷 × ℝ𝐷 → ℝ

M. Gabel, CSC2233 Topics in Vector Databases 9

Name Function 𝑑 𝑣, 𝑞 Range

Euclidean distance 𝑣 − 𝑞 = ∑ 𝑣𝑖 − 𝑞𝑖
2 ℝ+

Inner product* , MIPS 𝑣 ⋅ 𝑞 = vTq = ∑𝑣𝑖𝑞𝑖 ℝ

Cosine similarity*
𝑣 ⋅ 𝑞

𝑣 𝑞
−1,1

Used by most embedding models
Implemented in most VDBMS

* Similarity: high 𝑑 𝑣, 𝑞 is “closer” → must invert score for distance

MIPS = Maximum Inner Product Search

These are similarity functions: high 𝑑 𝑣, 𝑞 is “closer” → must “reverse” score if we want distance

CHANGE SIMILARITY TO DISTANCE

M. Gabel, CSC2233 Topics in Vector Databases 10

Ways to “reverse” similarity score 𝑑?

• Simple inversion: just use −𝑑

• Problems: 𝑑 𝑣, 𝑣 ≠ 0 and 𝑑 𝑞, 𝑣 can be negative

• For cosine distance:
1−𝑑

2

• For inner product:

• Use –d for graph-based index [Morozov and Babenko, NeurIPS’18]

• Add one dimension to vectors, then use Euclidean/cosine [Bachrach, RecSys’14]

ො𝑣 = 𝑣, 𝜙2 − 𝑣 2 , ො𝑞 = 𝑞, 0 ⇒ argmin ො𝑣 − ො𝑞 = argmax 𝑣 ⋅ 𝑞

• To limit range, transform:
1

1+𝑒𝑑 (numerically problematic, not often done)

DISTANCE/SIMILARITY SCORES

• Given vectors 𝑣, 𝑞 → number expressing similarity/distance of 𝑣 to 𝑞

• 𝑑 𝑣, 𝑞 ∶ ℝ𝐷 × ℝ𝐷 → ℝ

M. Gabel, CSC2233 Topics in Vector Databases 11

Name Function 𝑑 𝑣, 𝑞 Range

Euclidean distance 𝑣 − 𝑞 = ∑ 𝑣𝑖 − 𝑞𝑖
2 ℝ+

Inner product* , MIPS† 𝑣 ⋅ 𝑞 = vTq = ∑𝑣𝑖𝑞𝑖 ℝ

Cosine similarity*
𝑣 ⋅ 𝑞

𝑣 𝑞
−1,1

Mahalanobis distance 𝑣 − 𝑞 𝑇𝑀 𝑞 − q ℝ

Hamming distance Num of 𝑣𝑖 ≠ 𝑞𝑖 ℕ

Manhattan distance 𝑣 − 𝑞 1 = ∑ 𝑞𝑖 − 𝑣𝑖 ℝ+

Used by most embedding models
Implemented in most VDBMS

Can use for learned score:
learn 𝑀 from data

* Similarity: high 𝑑 𝑣, 𝑞 is “closer” → must “reverse” score for distance
† MIPS = Maximum Inner Product Search

kNN QUERY – THE WORKHORSE

• Find 𝑘 nearest neighbours (kNN)

• Denote:
 𝑆 = stored vectors
 𝑞 = query
 𝑅 = result set

• Find set of 𝑘 vectors in 𝑆 closest to 𝑞

• Generally: returned vectors sorted by distance from 𝑞

• Formally:
 return R = 𝑟𝑖 ⊆ 𝑆 such that ∀𝑣 ∈ 𝑅: 𝑑 𝑞, 𝑣 ≤ min

𝑥∈𝑆\𝑅
𝑑 𝑞, 𝑥 and

 𝑅 = 𝑘 and
 𝑑(𝑟𝑖 , 𝑞) < 𝑑(𝑟𝑖+1, 𝑞)

M. Gabel, CSC2233 Topics in Vector Databases 12

SELECT * FROM items

ORDER BY vec <-> '[1,6.4,-2.1]'

LIMIT 5;

In pgvector

RANGE QUERY

• Range: get all vectors within range 𝑡
• 𝑅 = 𝑣 ∈ 𝑆 | 𝑑 𝑞, 𝑣 ≤ 𝑡

• Not as common but is used

• Hard to determine 𝑡 from application

M. Gabel, CSC2233 Topics in Vector Databases 13

SELECT * FROM items

WHERE vec <-> '[1,6.4,-2.1]’ < 4;

In pgvector

PREDICATED QUERIES

• Other names: attribute filtering, hybrid queries, mixed queries.

• kNN/range query + predicate on associated attributes.

• Return nearest neighbours that satisfy predicate.

• Sounds simple?

• An active research problem!
• ANNS indexes do not like predicates.

• Challenging to implement quickly!

• Several recent papers inlucding in 2024.

M. Gabel, CSC2233 Topics in Vector Databases 15

index.query(

 namespace="products",

 vector=[0.81, 0.46, 0.41, 0.64, 0.11],

 filter={

 "price": {"$lt": 100},

 "color": {"$eq": "green"}

 },

 top_k=3,

 include_metadata=True

)

Example: find 3 nearest green products
with price under 100$ in Pinecone

RUNNING PREDICATED QUERIES

• “Find 5 nearest neighbours with 50 < price < 100 and color is green or red”

• Prefiltering: first filter price, color → then kNN?
• Cannot use ANNS index (lost structure due to filter)

• Filter very selective? → result is small → flat scan is fast.

• Filter not selective? → result is huge → flat scan too slow!

• Postfiltering: first kNN → then price, color?
• May result in less than k vectors, or even zero.

→ Low accuracy

M. Gabel, CSC2233 Topics in Vector Databases 17

ANNS index
(clustering)

int index
(B-tree)

String equality index
(hash)

RUNNING PREDICATED QUERIES

• “Find 5 nearest neighbours with 50 < price < 100 and color is green or red”

• Prefiltering: first filter price, color → then kNN?
• Cannot use ANNS index (lost structure due to filter)

• Filter very selective? → result is small → flat scan is fast.

• Filter not selective? → result is huge → flat scan too slow!

• Postfiltering: first kNN → then price, color?
• May result in less than k vectors, or even zero.

→ Low accuracy

M. Gabel, CSC2233 Topics in Vector Databases 18

ANNS index
(clustering)

int index
(B-tree)

String equality index
(hash)

ANNS index and
attribute index

do not mix!

THREE FILTERING STRATEGIES

1. Prefilter then scan:
• Example: exhaustive scan

• Good with highly selective predicate.

2. Postfilter with larger 𝑘
• First kNN with 𝑘′ = 𝑓 ⋅ 𝑘 , 𝑓 > 1

• Then filter top 𝑘′ to select top 𝑘

• Good with low-selectivity, small k

3. Single stage scan
• Combine index traversal with filtering

• Holy grail!

• We will see some papers

M. Gabel, CSC2233 Topics in Vector Databases 22

Choose using statistics + cost model

EXAMPLE IMPLEMENTATIONS

• Block-first scan (prefilter):
1. Build bitmap = predicate output for each vector

2. Use bitmap during kNN

• Milvus, AnalyticsDB-V

• Problem: breaks graph-based index

→ Use attributes when building graph (Filtered-DiskANN)

• Visit-first Scan (single-stage):
1. Start with neareast neighbour

2. Incrementally add next neighbour that pass filter.

3. Stop when have k.

• Good for low-selectivity filter

• Done by Timescale (pgvectorscale/StreamingDiskANN)

• Pre-partition by attribute range
• Partition data based on attribute value.

• Query multiple partitions and combine.

• Used in Milvus

M. Gabel, CSC2233 Topics in Vector Databases 23

Hard!
→ ANNS index search is not
incremental (no backtracking).

MULTI-VECTOR QUERIES

• Other names: hybrid search, multi-modal search

• Simultaneous search in multiple vector spaces

• Or single entity has multiple vectors

• Why?

• Combine text and audio search

• Encode faces from several angles

• Encode product as text + image

• Multiple embedding models

• Encode data at multiple scales

M. Gabel, CSC2233 Topics in Vector Databases 24

answer

query

MULTI-VECTOR QUERIES

• Find 3 nearest neighbors to face,
fingerprint, voice print, gait analysis

• Idea:
• Issue 3-NN in all spaces

• Combine somehow

• Problem: potentially no overlap

• Up to 12 different people

• How do we merge scores?

• Not easily!

M. Gabel, CSC2233 Topics in Vector Databases 25

answer

query

MULTI-VECTOR QUERIES

• Naïve method:

1. Run 𝑚 kNN searches → 𝑚𝑘 vectors (from up to 𝑚𝑘 items)

2. Combine scores across items

• Min, weighted average, max, learned, …

3. Select top 𝑘

→ Can miss true neighbours! (due to how we combine scores)

• Classic top-k algorithms?
• Require “get next candidate” operation

→ Not supported by most vector indices!

M. Gabel, CSC2233 Topics in Vector Databases 26

MULTI-VECTOR QUERIES

Recent work

• Vector fusion
• Store concatenated vectors as single long v

• Single kNN search over concatenated q

• Math works for inner product, not for Euclidean

• Iterative merging (Milvus)
Based on classic top-k algorithm NRA

1. Issue kNN queries with 𝑘’

2. Run NRA on result sets, stop if finished.

3. Double 𝑘’, go to 1

• MUST [Wang, ICDE’24]

• Recent work by Timescale on streaming retrieval index

M. Gabel, CSC2233 Topics in Vector Databases 27

https://www.timescale.com/blog/how-we-made-postgresql-as-fast-as-pinecone-for-vector-data/

RERANKING STEP AFTER QUERYING

• Many VDBMS provide re-ranking

• Reorder kNN result to improve relevance:
1. Get kNN result set

2. Apply re-ranking model to result

• Common in RAG, search, recommendation

• Why?
• Distance scores measure similarity, not relevance

• They are simplistic

• Approximation introduces errors

• Can afford to be smarter in rerank

• Can incorporate context in re-ranking model

M. Gabel, CSC2233 Topics in Vector Databases 29

a b c d e f g h i j

before very relevant

relevantirrelevant

c j b g i d a h e f

after

context

query

document rank

EXACT kNN SEARCH IS SLOW!

• Exhaustive search is very slow:

• Compute 𝑑 𝑞, 𝑣 for all 𝑣, then sort / use priority queue / top-k

• Supports exact kNN, range queries, predicated queries, everything

• Time: O(ND) + top k time

• Solution: approximate nearest neighbour search (ANNS)
• Return k vectors, not guaranteed to be nearest

• Key enabler: ANNS index
• Quick but potentially inaccurate queries

• Slower inserts, potential memory, storage costs

M. Gabel, CSC2233 Topics in Vector Databases 30

SEARCHING WITH ANNS INDEX

• Given q, quickly find potential neighbours

• The index deal:

• Faster search ☺

• Less accuracy, more memory, slower updates

• Example

• Building: cluster vectors, associate with nearest centroid

• Querying: find nearest centroid to q, search its list

• Errors: q near edge → may miss nearer neighbours!

• Let’s talk about indexing!

M. Gabel, CSC2233 Topics in Vector Databases 31

	Slide 1: RECAP
	Slide 2: Modern Applications Need:
	Slide 3: RDBMS VDBMS
	Slide 4: II. Querying
	Slide 5: Querying
	Slide 6: Querying
	Slide 7: Querying
	Slide 9: Distance/Similarity Scores
	Slide 10: Change Similarity to Distance
	Slide 11: Distance/Similarity Scores
	Slide 12: kNN Query – The Workhorse
	Slide 13: Range Query
	Slide 15: Predicated Queries
	Slide 17: Running Predicated Queries
	Slide 18: Running Predicated Queries
	Slide 22: Three Filtering Strategies
	Slide 23: Example Implementations
	Slide 24: Multi-Vector Queries
	Slide 25: Multi-Vector Queries
	Slide 26: Multi-Vector Queries
	Slide 27: Multi-Vector Queries
	Slide 29: Reranking STEP After Querying
	Slide 30: Exact kNN SEARCH is Slow!
	Slide 31: Searching With AnNS Index

