RECAP

MODERN APPLICATIONS NEED:

VECTOR DATABASE = VECTOR STORAGE + SEMANTIC SEARCH

Insert lots of vectors:

- 1. Create embedding vector *x*
- 2. Store *x* in specialized DB (with associated attributes)

Query data quickly:

- 3. Embed query as vector *q*
- 4. Find nearest neighbours to *q*

RDBMS VDBMS

- Different requirements \rightarrow different design!
- Main differences:
 - Records vs vectors
 - SQL vs NN
 - ACID vs eventual
- Key challenges:
 - Large vectors
 - No structure
 - Slow updates

	Traditional DB (RDBMS)	Vector DB (VDBMS)
Data	Records	Vectors
Queries	Relational algebra	Nearest neighbors + filtering
Advanced query features	Join, group, FK, cursors	None of those*
Updates	To part of record To multiple records	On whole vector Insert/delete/replace
Consistency	Strong + transactions	Eventual, tunable
Index updates	Fast	Slow
Storage	Row/column based, LSM	Vector is opaque blob
Hardware, scaling cost	Uniform , moderate	Diverse, expensive (GPUs)
Architecture	More monolithic	More disaggregated

II. QUERYING

QUERYING

- Have: query vector q
- Want: "some" set of vectors "near" q
- What is "near"? → similarity score

QUERYING

- Have: query vector q
- Want: "some" set of vectors "near" q
- What is "near"? → similarity score
- Which "some"? → various query types

QUERYING

- Have: query vector q
- Want: "some" set of vectors "near" q
- What is "near"? → similarity score
- Which "some"? → various query types
- When? \rightarrow as fast as possible

DISTANCE/SIMILARITY SCORES

- Given vectors $v, q \rightarrow$ number expressing similarity/distance of v to q
- $d(v,q): \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$

Used by most embedding models Implemented in most VDBMS

These are similarity functions: high d(v,q) is "closer" \rightarrow must "reverse" score if we want distance

CHANGE SIMILARITY TO DISTANCE

Ways to "reverse" similarity score d?

- Simple inversion: just use -d
 - Problems: $d(v, v) \neq 0$ and d(q, v) can be negative

• Add one dimension to vectors, then use Euclidean/cosine

- For cosine distance: $\frac{1-d}{2}$
- For inner product:
 - Use --d for graph-based index

[Morozov and Babenko, NeurIPS'18]

[Bachrach, RecSys'14]

$$\hat{v} = \left[v, \sqrt{\phi^2 - \|v\|^2}\right], \hat{q} = [q, 0] \Rightarrow \operatorname{argmin} \|\hat{v} - \hat{q}\| = \operatorname{argmax} v \cdot q$$

• To limit range, transform: $\frac{1}{1+e^d}$ (numerically problematic, not often done)

DISTANCE/SIMILARITY SCORES

- Given vectors $v, q \rightarrow$ number expressing similarity/distance of v to q
- $d(v,q): \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$

Name	Function $d(v,q)$	Range	
Euclidean distance	$\ v-q\ = \sqrt{\sum (v_i - q_i)^2}$	\mathbb{R}^+	
Inner product* , MIPS+	$v \cdot q = v^{\mathrm{T}}q = \sum v_i q_i$	\mathbb{R}	Used by most embedding mod
Cosine similarity*	$\frac{v \cdot q}{\ v\ \ q\ }$	[-1,1]	
Mahalanobis distance	$\sqrt{(v-q)^T M(q-q)}$	\mathbb{R}	\leftarrow Can use for learned score:
Hamming distance	Num of $v_i \neq q_i$	\mathbb{N}	
Manhattan distance	$\ v-q\ _1 = \sum q_i - v_i $	\mathbb{R}^+	
* Similarity: high $d(v,q)$ is "cl	oser" $ ightarrow$ must "reverse" score for di	stance	

⁺ MIPS = Maximum Inner Product Search

M. Gabel, CSC2233 Topics in Vector Databases

Used by most embedding models

knn query - The Workhorse

- Find k nearest neighbours (kNN)
- Denote:
 - S = stored vectors q = query R = result set
- Find set of k vectors in S closest to q
- Generally: returned vectors sorted by distance from q
- Formally:

return R = { r_i } \subseteq S such that $\forall v \in R: d(q, v) \leq \min_{x \in S \setminus R} d(q, x)$ and |R| = k and $d(r_i, q) < d(r_{i+1}, q)$

In pgvector

SELECT * FROM items
ORDER BY vec <-> '[1,6.4,-2.1]'
LIMIT 5;

RANGE QUERY

• Range: get all vectors within range t

• $R = \{v \in S \mid d(q, v) \le t\}$

- Not as common but is used
 - Hard to determine *t* from application

SELECT * FROM	items		
WHERE vec <->	'[1,6.4,-2.1]'	<	4;

PREDICATED QUERIES

- Other names: attribute filtering, hybrid queries, mixed queries.
- kNN/range query + predicate on associated attributes.
- Return nearest neighbours that satisfy predicate.
- Sounds simple?
- An active research problem!
 - ANNS indexes do not like predicates.
 - Challenging to implement quickly!
 - Several recent papers inlucding in 2024.

Example: find 3 nearest **green** products with **price under 100\$** in Pinecone

index.query(namespace="products", vector=[0.81, 0.46, 0.41, 0.64, 0.11], filter={ "price": {"\$1t": 100}, "color": {"\$eq": "green"} top k=3, include metadata=True

RUNNING PREDICATED QUERIES

"Find 5 nearest neighbours with 50 < price < 100 and color is green or red"

ANNS index (clustering) int index (B-tree) String equality index (hash)

- **Prefiltering**: first filter price, color \rightarrow then kNN?
 - Cannot use ANNS index (lost structure due to filter)
 - Filter very selective? \rightarrow result is small \rightarrow flat scan is fast.
 - Filter not selective? → result is huge → flat scan too slow!
- **Postfiltering**: first kNN \rightarrow then price, color?
 - May result in less than k vectors, or even zero.
 - \rightarrow Low accuracy

RUNNING PREDICATED QUERIES

"Find 5 nearest neighbours with 50 < price < 100 and color is green or red"

ANNS index (clustering) int index (B-tree) String equality index (hash)

- **Prefiltering**: first filter price, color \rightarrow then kNN?
 - Cannot use ANNS index (lost structure due to filter)
 - Filter very selective? \rightarrow result is small \rightarrow flat scan is fast.
 - Filter not selective? → result is huge → flat scan too slow!
- **Postfiltering**: first kNN \rightarrow then price, color?
 - May result in less than k vectors, or even zero.
 - \rightarrow Low accuracy

ANNS index and attribute index **do not mix**!

THREE FILTERING STRATEGIES

Ο

 \bigcirc

1. Prefilter then scan:

- Example: exhaustive scan
- Good with highly selective predicate.
- **2. Postfilter** with larger k
 - First kNN with $k' = f \cdot k$, f > 1
 - Then filter top k' to select top k
 - Good with low-selectivity, small k

3. Single stage scan

- Combine index traversal with filtering
- Holy grail!
- We will see some papers

Choose using statistics + cost model

EXAMPLE IMPLEMENTATIONS

• Block-first scan (prefilter):

- 1. Build bitmap = predicate output for each vector
- 2. Use bitmap during kNN
- Milvus, AnalyticsDB-V
- Problem: breaks graph-based index
- \rightarrow Use attributes when building graph (Filtered-DiskANN)
- Visit-first Scan (single-stage):
 - 1. Start with neareast neighbour
 - 2. Incrementally add next neighbour that pass filter.
 - 3. Stop when have *k*.
 - Good for low-selectivity filter
 - Done by Timescale (pgvectorscale/StreamingDiskANN)

Pre-partition by attribute range

• Partition data based on attribute value.

• Query multiple partitions and combine.

Used in Milvus

Hard! → ANNS index search is not incremental (no backtracking).

- Other names: hybrid search, multi-modal search
- Simultaneous search in multiple vector spaces
- Or single entity has multiple vectors
- Why?
 - Combine text and audio search
 - Encode faces from several angles
 - Encode product as text + image
 - Multiple embedding models
 - Encode data at multiple scales

- Find 3 nearest neighbors to face, fingerprint, voice print, gait analysis
- Idea:
 - Issue 3-NN in all spaces
 - Combine somehow
- Problem: potentially no overlap
 - Up to 12 different people
 - How do we merge scores?
 - Not easily!

answer

- Naïve method:
 - 1. Run *m* kNN searches $\rightarrow mk$ vectors (from up to *mk* items)
 - 2. Combine scores across items
 - Min, weighted average, max, learned, ...
 - 3. Select top k

→ Can miss true neighbours! (due to how we combine scores)

- Classic top-k algorithms?
 - Require "get next candidate" operation
 - \rightarrow Not supported by most vector indices!

• Vector fusion

- Store concatenated vectors as single long v
- Single kNN search over concatenated q
- Math works for inner product, not for Euclidean
- Iterative merging (Milvus)
 - Based on classic top-k algorithm NRA
 - 1. Issue kNN queries with k'
 - 2. Run NRA on result sets, stop if finished.
 - 3. Double k', go to 1
- MUST [Wang, ICDE'24]
- <u>Recent work</u> by Timescale on streaming retrieval index

RERANKING STEP AFTER QUERYING

- Many VDBMS provide re-ranking
- Reorder kNN result to improve relevance:
 - 1. Get kNN result set
 - 2. Apply **re-ranking model** to result
- Common in RAG, search, recommendation
- Why?
 - Distance scores measure similarity, not relevance
 - They are simplistic
 - Approximation introduces errors
 - Can afford to be smarter in rerank
 - Can incorporate context in re-ranking model

EXACT kNN SEARCH IS SLOW!

• Exhaustive search is **very slow**:

- Compute d(q, v) for all v, then sort / use priority queue / top-k
- Supports exact kNN, range queries, predicated queries, everything
- Time: O(ND) + top k time
- Solution: approximate nearest neighbour search (ANNS)
 - Return k vectors, not guaranteed to be nearest
- Key enabler: **ANNS index**
 - Quick but potentially inaccurate queries
 - Slower inserts, potential memory, storage costs

SEARCHING WITH ANNS INDEX

- Given q, quickly find potential neighbours
- The index deal:
 - Faster search \bigcirc
 - Less accuracy, more memory, slower updates \mathfrak{S}
- Example
 - Building: cluster vectors, associate with nearest centroid
 - Querying: find nearest centroid to q, search its list
 - Errors: q near edge \rightarrow may miss nearer neighbours!
- Let's talk about indexing!

