@COMMENT This file was generated by bib2html.pl version 0.94
@COMMENT written by Patrick Riley
@COMMENT This file came from Kuldeep S. Meel's publication pages at
@COMMENT http://www.comp.nus.edu.sg/~meel/publications/
@inproceedings{MPC20,
author = { Meel, Kuldeep S. and
Pote, Yash and
Chakraborty, Sourav},
title = {On Testing of Samplers},
booktitle=NIPS,
year={2020},
month=dec,
nameorder={random},
bib2html_rescat={Distribution Testing},
url = {https://arxiv.org/abs/2010.12918},
bib2html_pubtype = {Refereed Conference},
abstract = { Given a set of items F and a weight function W, the problem of sampling seeks to sample an item proportional to its weight. Sampling is a fundamental problem in machine learning. The daunting computational complexity of sampling with formal guarantees leads designers to propose heuristics-based techniques for which no rigorous theoretical analysis exists to quantify the quality of generated distributions.
This poses a challenge in designing a testing methodology to test whether a sampler under test generates samples according to a given distribution. Only recently, Chakraborty and Meel (2019) designed the first scalable verifier, called Barbarik1, for samplers in the special case when the weight function W is constant, that is, when the sampler is supposed to sample uniformly from F . The techniques in Barbarik1, however, fail to handle general weight functions.
The primary contribution of this paper is an affirmative answer to the above challenge: motivated by Barbarik1 but using different techniques and analysis, we design Barbarik2 an algorithm to test whether the distribution generated by a sampler is $\varepsilon$-close or $\eta$-far from any target distribution. In contrast to black-box sampling techniques that require a number of samples proportional to |F| , Barbarik2 requires only $\mathcal{O}(titl(W,\varphi)2/\eta(\eta-6\varepsilon)3)$ samples, where the tilt is the maximum ratio of weights of two satisfying assignments. Barbarik2 can handle any arbitrary weight function. We present a prototype implementation of Barbarik2 and use it to test three state-of-the-art samplers. },
}