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Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using
“and” (∧) “or”, (∨) and “not” (¬), is there a satisfying solution (an
assignment of 0’s and 1’s to the variables that makes the expression
equal 1)?
Example:

(¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x3 ∨ x1 ∨ x4)

Solution: x1 = 0, x2 = 0, x3 = 1, x4 = 1
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The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with
practical problems that involve millions of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Industrial usage of SAT Solvers: Model Checking, Planning, Genome
Rearrangement, Telecom Feature Subscription, Resource Constrained
Scheduling, Noise Analysis, Games, · · ·

Now that SAT is “easy”, it is time to look beyond satisfiability
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Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

• Sol(F ) = { solutions of F }

• Counting: Determine |Sol(F )|
– Approximation: Pr

[
|Sol(F )|
1+ε ≤ c ≤ |Sol(F )|(1 + ε)

]
≥ 1− δ

• Given F := (X1 ∨ X2)

• Sol(F ) = {(0, 1), (1, 0), (1, 1)}
• |Sol(F )| = 3
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Applications across Computer Science

Counting
Network
Reliability

Hardware
Validation

Explainable
AI

Neural
Network

Robustness

Quantified
Information

Flow
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Today’s Menu

Testing of AI systems

Information Leakage

Network Reliability

Model Counting Hashing Framework

The Rise of Hashing-based Approach: Promise of Scalability and
Guarantees
(S83,GSS06,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16

KM18,ATD18,SM19,ABM20,SGM20)
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Testing of AI Systems

• Classical verification/testing setup for traditional systems

– System captured as a model M(I,O) via logical constraints

– Specification φ(I,O): relationship between input and output

– Methodology: SAT (i.e., find one execution of M such that φ is not
satisfied)

• Modern Machine Learning Systems
– Model: A given neural network and an image
– Specification: For all small perturbations, the model should not give

different answers.

“Panda”

+ =

Imperceptible 
Perturbation

“Gibbon”

• Acceptable despite multiple executions with error
• Estimate the frequency of such behavior: Counting (BSSMS, 2019)
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Quantitative Information Flow

Algorithm PC1 (SP, UI)

1: for i = 0; i <SP.length(); i++ do
2: if SP[i ] ̸= UI[i ] then
3: return “No”
4: return “Yes”
5: end for

Algorithm PC2 (SP, UI)

1: match = “Yes”
2: for i = 0; i <SP.length(); i++ do
3: if SP[i ] ̸= UI [i ] then
4: match=”No”
5: end for
6: return match

Quantification of Information Leakage between PC1 and PC2 via
side-channels (such as time?)

• Annotate every line of program with time taken and perform
symbolic analysis

• Shannon Entropy =
∑

t Pr[finishtime = t] log 1
Pr[time=t]

(Bang et al., 2016)
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Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E ); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[ s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

Constrained Counting ( DMPV, AAAI 17, ICASP-13, RESS 2019)
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Prior Work

Strong guarantees but poor scalability

• Exact counters (Birnbaum and Lozinskii 1999, Jr. and Schrag 1997, Sang et

al. 2004, Thurley 2006)

• Hashing-based approach (Stockmeyer 1983, Jerrum Valiant and Vazirani

1986)

Weak guarantees but impressive scalability

• Bounding counters (Gomes et al. 2007,Kroc, Sabharwal, and Selman 2008,

Gomes, Sabharwal, and Selman 2006, Kroc, Sabharwal, and Selman 2008)

• Sampling-based techniques (Wei and Selman 2005, Rubinstein 2012,

Gogate and Dechter 2011)

How to bridge this gap between theory and practice?
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Standing on the Shoulders of SAT Revolution

Obs 1 SAT Solver ̸= NP Oracle

• Return a satisfying assignment if satisfiable
• The performance of solver depends on the formulas

Obs 2 Memoryfulness

• Incremental Solving: Often easier to solve F followed
by G if we G can be written as G = F ∧ H
• If F → C then (F ∧ H) =⇒ C
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Counting in Bochum

How many people in Bochum like coffee?

• Population of Bochum = 364K

• Assign every person a unique (n =) 19 bit identifier (2n = 364K)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 364K/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee
• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

13/33



Counting in Bochum

How many people in Bochum like coffee?

• Population of Bochum = 364K

• Assign every person a unique (n =) 19 bit identifier (2n = 364K)
• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 364K/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee
• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

13/33



Counting in Bochum

How many people in Bochum like coffee?

• Population of Bochum = 364K

• Assign every person a unique (n =) 19 bit identifier (2n = 364K)
• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 364K/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee
• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

13/33



Counting in Bochum

How many people in Bochum like coffee?

• Population of Bochum = 364K

• Assign every person a unique (n =) 19 bit identifier (2n = 364K)
• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 364K/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

13/33



Counting in Bochum

How many people in Bochum like coffee?

• Population of Bochum = 364K

• Assign every person a unique (n =) 19 bit identifier (2n = 364K)
• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 364K/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee
• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

13/33



Counting in Bochum

How many people in Bochum like coffee?

• Population of Bochum = 364K

• Assign every person a unique (n =) 19 bit identifier (2n = 364K)
• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 364K/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee
• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

13/33



Counting in Bochum

How many people in Bochum like coffee?

• Population of Bochum = 364K

• Assign every person a unique (n =) 19 bit identifier (2n = 364K)
• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 364K/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee
• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

13/33



As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells
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Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F ) ∩ {y | h(y) = α}

• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash
functions
Universal Hashing (Carter and Wegman 1977)
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Challenge 2 How many cells?
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2-wise independent Hashing

• Let H be family of 2-wise independent hash functions mapping
{0, 1}n to {0, 1}m

∀y1, y2 ∈ {0, 1}n, α1, α2 ∈ {0, 1}m, h R←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(
1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(
1

2m

)2

• The power of 2-wise independentity

– Z be the number of solutions in a randomly chosen cell

– E[Z ] = |Sol(F )|
2m

– σ2[Z ] ≤ E[Z ]
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2-wise independent Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2

– Expected size of each XOR: n
2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · · )
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• Performance of state of the art SAT solvers depends on the
formulas (SAT Solvers != SAT oracles)
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Improved 2-wise Independent Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F ), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I ( CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

• FPNP procedure via reduction to Minimal Unsatisfiable Subset

• Two orders of magnitude runtime improvement
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The Hope of Short XORs

• If we pick every variable Xi with probability p .

– Expected Size of each XOR: np

– E[Zm] =
|Sol(F )|

2m

– σ2[Zm] ≤ E[Zm] +
∑

σ1∈Sol(F )

∑
σ2∈Sol(F )
w=d(σ1,σ2)

r(w ,m)

▶ where, r(w ,m) =
((

1
2
+ (1−2p)w

2

)m

− 1
2m

)
– For p = 1

2 , we have σ2[Zm]
E[Zm]

≤ 1

• Earlier Attempts (GSS07,EGSS14,ZCSE16,AD17,ATD18)

–
∑

σ1∈Sol(F )

∑
σ2∈Sol(F )
w=d(σ1,σ2)

r(w ,m) ≤∑
σ1∈Sol(F )

∑n
w=0

(
n
w

)
r(w ,m)

–
(
n
w

)
grows very fast with n, so could not upper bound σ2[Zm]

E[Zm]

– The weak bounds lead to significant slowdown: typically 100× to
1000× factor of slowdown! (ATD18,ABM20)
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The Power of Isoperimetric Inequalities

• ∑
σ1∈Sol(F )

∑
σ2∈Sol(F )
w=d(σ1,σ2)

r(w ,m) =
n∑

w=0
CF (w)r(w ,m)

• CF (w) = |{σ1, σ2 ∈ Sol(F ) | d(σ1, σ2) = w}|

• Isoperimetric Inequalities! (Rashtchian and Raynaud 2019)

Lemma
n∑

w=0
CF (w)r(w ,m) ≤

n∑
w=0

(8e√n·ℓ
w

)
r(w ,m) where ℓ = log |Sol(F )|

–
(n
w)

(8e
√

n·ℓ
w )
≈ ( nℓ )

w
2
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From Linear to Logarithmic Size XORs

Theorem (MA, LICS-20)

For all q, k , |Sol(F )| ≤ k · 2m, p = O( logmm ) we have

σ2[Zm]

E[Zm]
≤ q(a constant)

Recall, average size of XORs: n · p
Improvement of p from m/2

m to logm
m
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Sparse Hash Functions

0 100 200 300 400 500 600 700 800 900 1000

m
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p m

HRennes
1.1

4∗log2(m+1)
m

HRennes
1.1 : Sparse hash functions that guarantee q = 1.1
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Handling CNF+XOR Formulas

• CNF + Sparse XORs are still CNF+XOR formulas.
• Translating XORs to CNF and performing CDCL is not sufficient

– XORs can be solved by Gaussian elimination

• CryptoMiniSAT: Solver designed to perform CDCL and Gaussian
Elimination in tandem (SNC09)

• BIRD2 (Blast, Inprocess, Recover, Detach, and Destroy): Tighter
integration (SM19, SGM20)
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Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Independent Support-based XORs
• Specialized CNF Solvers

Challenge 2 How many cells?
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Challenge 2: How many cells?

• A cell is small if it has ≈ thresh = 5(1 + 1
ε )

2 solutions

• We want to partition into 2m
∗
cells such that 2m

∗
= |Sol(F )|

thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh
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ApproxMC

# of sols
≤ thresh?
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ApproxMC

# of sols
≤ thresh?

# of sols
≤ thresh?

# of sols
≤ thresh?

Estimate =
# of sols ×
# of cells # of sols

≤ thresh?

· · ·

No No

No

Yes
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ApproxMC

• We want to partition into 2m
∗
cells such that 2m

∗
= |Sol(F )|

thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh
– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh
– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi )

– If Query i returns YES, then Query i + 1 must return YES

– Logarithmic search (# of SAT calls: O(log n))
– Incremental Search

• Will this work? Will the “m” where we stop be close to m∗?

– Challenge Query i and Query j are not independent
– Independence crucial to analysis (Stockmeyer 1983, · · · )
– Key Insight: The probability of making a bad choice of Qi is very

small for i ≪ m∗

( CMV, IJCAI16)
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Taming the Curse of Dependence

Let 2m
∗
= |Sol(F )|

thresh (m∗ = log( |Sol(F )|thresh ))

Lemma (1)

ApproxMC terminates with m ∈ {m∗ − 1,m∗} with probability ≥ 0.8

Lemma (2)

For m ∈ {m∗ − 1,m∗}, estimate obtained from a randomly picked cell
lies within a tolerance of ε of |Sol(F )| with probability ≥ 0.8

Repeat O(log(1/δ)) times and return the median
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ApproxMC

Theorem (Correctness)

Pr
[
|Sol(F )|
1+ε ≤ ApproxMC(F , ε, δ) ≤ |Sol(F )|(1 + ε)

]
≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O( log n log(
1
δ
)

ε2
) calls to SAT oracle.

Theorem (FPRAS for DNF; (MSV, FSTTCS 17; CP 18, IJCAI-19))

If F is a DNF formula, then ApproxMC is FPRAS – different from the
Monte-Carlo based FPRAS for DNF (Karp, Luby 1983)
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Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E );
source node: s

• Compute Pr[ t is
disconnected]?
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Improvements Over the Years
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Enabling “Counting Revolution”

Challenge Problems

Neural Network Robustness Handle 1000 neurons per layer

Civil Engineering Reliability for Los Angeles Transmission Grid

Security Leakage Measurement for C++ program with 1K lines

Technical Directions

• Beyond SAT: Satisfiability Modulo Theory

• Formula-Dependent Sparser XOR constraints

• Tighter integration between solvers and algorithms

Questions?
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Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E ); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[ s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

Constrained Counting ( DMPV, AAAI 17, ICASP-13, RESS 2019)
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