The Rise of Approximate Model Counting: A Child of SAT Revolution

Kuldeep S. Meel

National University of Singapore

Max Planck Institute for Security and Privacy

2^{3} Years and Counting

S. Akshay (IITB, India), Teodora Baluta (NUS, SG), Fabrizio Biondi (Avast, CZ), Supratik Chakraborty (IITB, India), Alexis de Colnet (NUS, SG), Remi Delannoy (NUS, SG), Jeffrey Dudek (Rice,US), Leonardo Duenas-Osorio (Rice,US), Mike Enescu (Inria, France) Daniel Fremont (UCB, US), Dror Fried (Open U., Israel), Stephan Gocht (Lund U., Sweden), Rahul Gupta (IITK, India), Annelie Heuser (Inria, France), Alexander Ivrii (IBM, Israel), Alexey Ignatiev (IST, Portugal), Axel Legay (UCL, Belgium), Sharad Malik (Princeton, US), Joao Marques Silva (IST, Portugal), Rakesh Mistry (IITB, India), Nina Narodytska ((VMWare, US), Roger Paredes (Rice,US), Yash Pote (NUS, SG), Jean Quilbeuf(Inria, France), Subhajit Roy (IITK, India), Mate Soos (NUS, SG), Prateek Saxena (NUS, SG), Sanjit Seshia (UCB, US), Shubham Sharma (IITK, India), Aditya Shrotri(Rice,US), Moshe Vardi (Rice,US)

Special shout out to Mate Soos, maintainer of ApproxMC Open source tool: github.com/meelgroup/approxmc

Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using "and" (\wedge) "or", (\vee) and "not" (\neg), is there a satisfying solution (an assignment of 0 's and 1 's to the variables that makes the expression equal 1)?
Example:

$$
\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{1} \vee x_{4}\right)
$$

Solution: $x_{1}=0, x_{2}=0, x_{3}=1, x_{4}=1$

Modern SAT solvers are able to deal routinely with practical problems that involve millions of variables, although such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Modern SAT solvers are able to deal routinely with practical problems that involve millions of variables, although such problems were regarded as hopeless just a few years ago. (Donald Knuth, 2016)

Industrial usage of SAT Solvers: Model Checking, Planning, Genome Rearrangement, Telecom Feature Subscription, Resource Constrained Scheduling, Noise Analysis, Games, ...

Modern SAT solvers are able to deal routinely with practical problems that involve millions of variables, although such problems were regarded as hopeless just a few years ago. (Donald Knuth, 2016)

Industrial usage of SAT Solvers: Model Checking, Planning, Genome Rearrangement, Telecom Feature Subscription, Resource Constrained Scheduling, Noise Analysis, Games, ...

Now that SAT is "easy", it is time to look beyond satisfiability

Counting

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$

Counting

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- Counting: Determine $|\operatorname{Sol}(F)|$
- Approximation: $\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq c \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$

Counting

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of F \}
- Counting: Determine $|\operatorname{Sol}(F)|$
- Approximation: $\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq c \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$
- Given $F:=\left(X_{1} \vee X_{2}\right)$
- $\operatorname{Sol}(F)=\{(0,1),(1,0),(1,1)\}$
- $|\operatorname{Sol}(F)|=3$

Applications across Computer Science

Testing of AI systems
Information Leakage
Network Reliability

Testing of AI systems
Information Leakage Model Counting
Network Reliability

Testing of AI systems
Information Leakage Model Counting Hashing Framework
Network Reliability

The Rise of Hashing-based Approach: Promise of Scalability and Guarantees (S83,GSS06,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16 KM18,ATD18,SM19,ABM20,SGM20)

- Classical verification/testing setup for traditional systems
- System captured as a model $M(\mathcal{I}, \mathcal{O})$ via logical constraints
- Specification $\varphi(\mathcal{I}, \mathcal{O})$: relationship between input and output
- Methodology: SAT (i.e., find one execution of M such that φ is not satisfied)
- Classical verification/testing setup for traditional systems
- System captured as a model $M(\mathcal{I}, \mathcal{O})$ via logical constraints
- Specification $\varphi(\mathcal{I}, \mathcal{O})$: relationship between input and output
- Methodology: SAT (i.e., find one execution of M such that φ is not satisfied)
- Modern Machine Learning Systems
- Model: A given neural network and an image
- Specification: For all small perturbations, the model should not give different answers.

Testing of AI Systems

- Classical verification/testing setup for traditional systems
- System captured as a model $M(\mathcal{I}, \mathcal{O})$ via logical constraints
- Specification $\varphi(\mathcal{I}, \mathcal{O})$: relationship between input and output
- Methodology: SAT (i.e., find one execution of M such that φ is not satisfied)
- Modern Machine Learning Systems
- Model: A given neural network and an image
- Specification: For all small perturbations, the model should not give different answers.

"Panda" Imperceptible "Gibbon" Perturbation

Testing of AI Systems

- Classical verification/testing setup for traditional systems
- System captured as a model $M(\mathcal{I}, \mathcal{O})$ via logical constraints
- Specification $\varphi(\mathcal{I}, \mathcal{O})$: relationship between input and output
- Methodology: SAT (i.e., find one execution of M such that φ is not satisfied)
- Modern Machine Learning Systems
- Model: A given neural network and an image
- Specification: For all small perturbations, the model should not give different answers.

"Panda" Imperceptible "Gibbon" Perturbation
- Acceptable despite multiple executions with error
- Estimate the frequency of such behavior: Counting

Quantitative Information Flow

Algorithm PC1 (SP, UI)
1: for $i=0 ; i<S P . l e n g t h() ; i++$ do
2: if $\mathrm{SP}[i] \neq \mathrm{UI}[i]$ then
3: return "No"
4: return "Yes"
5: end for

```
Algorithm PC2 (SP, UI)
    : match \(=\) "Yes"
    2: for \(i=0 ; i<\) SP.length( \() ; i++\) do
    3: if \(S P[i] \neq U I[i]\) then
4: match=" No"
5: end for
6: return match
```

Quantification of Information Leakage between PC1 and PC2 via side-channels (such as time?)

- Annotate every line of program with time taken and perform symbolic analysis
- Shannon Entropy $=\sum_{t} \operatorname{Pr}[$ finishtime $=t] \log \frac{1}{\operatorname{Pr}[\text { time }=t]}$
(Bang et al., 2016)

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?

Figure: Plantersville, SC

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$

Figure: Plantersville, SC

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$
- $\pi_{s, t}$: configuration where s and t are disconnected
- Represented as a solution to set of constraints over edge variables

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$
- $\pi_{s, t}$: configuration where s and t are disconnected
- Represented as a solution to set of constraints over edge variables
- $\operatorname{Pr}[\mathrm{s}$ and t are disconnected $]=\sum_{\pi_{s, t}} W\left(\pi_{s, t}\right)$

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[s$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$
- $\pi_{s, t}$: configuration where s and t are disconnected
- Represented as a solution to set of constraints over edge variables
- $\operatorname{Pr}[\mathrm{s}$ and t are disconnected $]=\sum_{\pi_{s, t}} W\left(\pi_{s, t}\right)$
(DMPV, AAAI 17, ICASP-13, RESS 2019)

Prior Work

Strong guarantees but poor scalability

- Exact counters (Birnbaum and Lozinskii 1999, Jr. and Schrag 1997, Sang et al. 2004, Thurley 2006)
- Hashing-based approach (Stockmeyer 1983, Jerrum Valiant and Vazirani 1986)

Weak guarantees but impressive scalability

- Bounding counters (Gomes et al. 2007,Kroc, Sabharwal, and Selman 2008, Gomes, Sabharwal, and Selman 2006, Kroc, Sabharwal, and Selman 2008)
- Sampling-based techniques
(Wei and Selman 2005, Rubinstein 2012, Gogate and Dechter 2011)

Prior Work

Strong guarantees but poor scalability

- Exact counters (Birnbaum and Lozinskii 1999, Jr. and Schrag 1997, Sang et al. 2004, Thurley 2006)
- Hashing-based approach (Stockmeyer 1983, Jerrum Valiant and Vazirani 1986)

Weak guarantees but impressive scalability

- Bounding counters (Gomes et al. 2007,Kroc, Sabharwal, and Selman 2008, Gomes, Sabharwal, and Selman 2006, Kroc, Sabharwal, and Selman 2008)
- Sampling-based techniques (Wei and Selman 2005, Rubinstein 2012, Gogate and Dechter 2011)

How to bridge this gap between theory and practice?

Standing on the Shoulders of SAT Revolution

Obs 1 SAT Solver \neq NP Oracle

Standing on the Shoulders of SAT Revolution

Obs 1 SAT Solver \neq NP Oracle

- Return a satisfying assignment if satisfiable
- The performance of solver depends on the formulas

Standing on the Shoulders of SAT Revolution

Obs 1 SAT Solver \neq NP Oracle

- Return a satisfying assignment if satisfiable
- The performance of solver depends on the formulas

Obs 2 Memoryfulness

- Incremental Solving: Often easier to solve F followed by G if we G can be written as $G=F \wedge H$
- If $F \rightarrow C$ then $(F \wedge H) \Longrightarrow C$

Counting in Bochum

How many people in Bochum like coffee?

- Population of Bochum $=364 \mathrm{~K}$
- Assign every person a unique $(n=) 19$ bit identifier $\left(2^{n}=364 \mathrm{~K}\right)$

Counting in Bochum

How many people in Bochum like coffee?

- Population of Bochum $=364 \mathrm{~K}$
- Assign every person a unique ($n=$) 19 bit identifier $\left(2^{n}=364 \mathrm{~K}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $364 \mathrm{~K} / 50$

Counting in Bochum

How many people in Bochum like coffee?

- Population of Bochum $=364 \mathrm{~K}$
- Assign every person a unique ($n=$) 19 bit identifier $\left(2^{n}=364 \mathrm{~K}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $364 \mathrm{~K} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50

Counting in Bochum

How many people in Bochum like coffee?

- Population of Bochum $=364 \mathrm{~K}$
- Assign every person a unique ($n=$) 19 bit identifier $\left(2^{n}=364 \mathrm{~K}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $364 \mathrm{~K} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee

Counting in Bochum

How many people in Bochum like coffee?

- Population of Bochum $=364 \mathrm{~K}$
- Assign every person a unique ($n=$) 19 bit identifier $\left(2^{n}=364 \mathrm{~K}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $364 \mathrm{~K} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y

Counting in Bochum

How many people in Bochum like coffee?

- Population of Bochum $=364 \mathrm{~K}$
- Assign every person a unique ($n=$) 19 bit identifier $\left(2^{n}=364 \mathrm{~K}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $364 \mathrm{~K} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y
- Attempt \#2: Enumerate every person who likes coffee

Counting in Bochum

How many people in Bochum like coffee?

- Population of Bochum $=364 \mathrm{~K}$
- Assign every person a unique ($n=$) 19 bit identifier $\left(2^{n}=364 \mathrm{~K}\right)$
- Attempt $\# 1$: Pick 50 people and count how many of them like coffee and multiple by $364 \mathrm{~K} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y
- Attempt \#2: Enumerate every person who likes coffee
- Potentially 2^{n} queries

Can we do with lesser \# of SAT queries $-\mathcal{O}(n)$ or $\mathcal{O}(\log n)$?

As Simple as Counting Dots

As Simple as Counting Dots

As Simple as Counting Dots

Pick a random cell

Estimate $=$ Number of solutions in a cell \times Number of cells

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenge 2 How many cells?

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Solutions in a cell α : $\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}$

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Solutions in a cell α : $\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}$
- Deterministic h unlikely to work

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Solutions in a cell α : $\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}$
- Deterministic h unlikely to work
- Choose h randomly from a large family H of hash functions
Universal Hashing (Carter and Wegman 1977)

2-wise independent Hashing

- Let H be family of 2 -wise independent hash functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{m}$

$$
\begin{gathered}
\forall y_{1}, y_{2} \in\{0,1\}^{n}, \alpha_{1}, \alpha_{2} \in\{0,1\}^{m}, h \stackrel{R}{\leftarrow} H \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1}\right]=\operatorname{Pr}\left[h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right) \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1} \wedge h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right)^{2}
\end{gathered}
$$

2-wise independent Hashing

- Let H be family of 2-wise independent hash functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{m}$

$$
\begin{gathered}
\forall y_{1}, y_{2} \in\{0,1\}^{n}, \alpha_{1}, \alpha_{2} \in\{0,1\}^{m}, h \stackrel{R}{\leftarrow} H \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1}\right]=\operatorname{Pr}\left[h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right) \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1} \wedge h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right)^{2}
\end{gathered}
$$

- The power of 2-wise independentity
- Z be the number of solutions in a randomly chosen cell
$-\mathrm{E}[Z]=\frac{\mid \text { Sol }(F) \mid}{2^{m}}$
$-\sigma^{2}[Z] \leq \mathrm{E}[Z]$

2-wise independent Hash Functions

- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}$
- Expected size of each XOR: $\frac{n}{2}$

2-wise independent Hash Functions

- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}$
- Expected size of each XOR: $\frac{n}{2}$
- To choose $\alpha \in\{0,1\}^{m}$, set every XOR equation to 0 or 1 randomly

$$
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
$$

- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$

2-wise independent Hash Functions

- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}$
- Expected size of each XOR: $\frac{n}{2}$
- To choose $\alpha \in\{0,1\}^{m}$, set every XOR equation to 0 or 1 randomly

$$
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
$$

- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$
- Performance of state of the art SAT solvers depends on the formulas (SAT Solvers != SAT oracles)

Improved 2-wise Independent Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not

Improved 2-wise Independent Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not
- Random XORs need to be constructed only over I
(CMV DAC14)

Improved 2-wise Independent Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not
- Random XORs need to be constructed only over l (CMV DAC14)
- Typically I is $1-2$ orders of magnitude smaller than X
- Auxiliary variables introduced during encoding phase are dependent

Improved 2-wise Independent Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not
- Random XORs need to be constructed only over I (CMV DAC14)
- Typically I is $1-2$ orders of magnitude smaller than X
- Auxiliary variables introduced during encoding phase are dependent
(Tseitin 1968)
Algorithmic procedure to determine I?

Improved 2-wise Independent Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not
- Random XORs need to be constructed only over I (CMV DAC14)
- Typically I is $1-2$ orders of magnitude smaller than X
- Auxiliary variables introduced during encoding phase are dependent
(Tseitin 1968)
Algorithmic procedure to determine I ?
- $F P^{N P}$ procedure via reduction to Minimal Unsatisfiable Subset

Improved 2-wise Independent Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not
- Random XORs need to be constructed only over I (CMV DAC14)
- Typically I is $1-2$ orders of magnitude smaller than X
- Auxiliary variables introduced during encoding phase are dependent
(Tseitin 1968)
Algorithmic procedure to determine I ?
- $F P^{N P}$ procedure via reduction to Minimal Unsatisfiable Subset
- Two orders of magnitude runtime improvement (IMMV; CP15, Constraints16)

The Hope of Short XORs

- If we pick every variable X_{i} with probability p.
- Expected Size of each XOR: np
$-\mathrm{E}\left[Z_{m}\right]=\frac{|\operatorname{Sol}(F)|}{2^{m}}$
$-\sigma^{2}\left[Z_{m}\right] \leq \mathrm{E}\left[Z_{m}\right]+\sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} r(w, m)$
- where, $r(w, m)=\left(\left(\frac{1}{2}+\frac{(1-2 p)^{w}}{2}\right)^{m}-\frac{1}{2^{m}}\right)$
- For $p=\frac{1}{2}$, we have $\frac{\sigma^{2}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq 1$
- Earlier Attempts
(GSS07,EGSS14,ZCSE16,AD17,ATD18)
$-\sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} r(w, m) \leq \sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{w=0}^{n}\binom{n}{w} r(w, m)$
- $\binom{n}{w}$ grows very fast with n, so could not upper bound $\frac{\sigma^{2}\left[Z_{m}\right]}{E\left[Z_{m}\right]}$
- The weak bounds lead to significant slowdown: typically $100 \times$ to $1000 \times$ factor of slowdown!
- $\sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} r(w, m)=\sum_{w=0}^{n} C_{F}(w) r(w, m)$
- $C_{F}(w)=\left|\left\{\sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F) \mid d\left(\sigma_{1}, \sigma_{2}\right)=w\right\}\right|$

The Power of Isoperimetric Inequalities

- $\sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} r(w, m)=\sum_{w=0}^{n} C_{F}(w) r(w, m)$
- $C_{F}(w)=\left|\left\{\sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F) \mid d\left(\sigma_{1}, \sigma_{2}\right)=w\right\}\right|$
- Isoperimetric Inequalities!

Lemma

$\sum_{w=0}^{n} C_{F}(w) r(w, m) \leq \sum_{w=0}^{n}\binom{8 e \sqrt{n \cdot \ell}}{w} r(w, m)$ where $\ell=\log |\operatorname{Sol}(F)|$

$$
\left.-\frac{\binom{n}{w}}{\binom{\operatorname{sel}}{w}} \approx\left(\frac{n}{\ell \cdot \ell}\right)\right)^{\frac{w}{2}}
$$

From Linear to Logarithmic Size XORs

Theorem (MA, LICS-20)

For all $q, k,|\operatorname{Sol}(F)| \leq k \cdot 2^{m}, p=\mathcal{O}\left(\frac{\log m}{m}\right)$ we have

$$
\frac{\sigma^{2}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq q(\text { a constant })
$$

Recall, average size of XORs: $n \cdot p$ Improvement of p from $\frac{m / 2}{m}$ to $\frac{\log m}{m}$

Sparse Hash Functions

$H_{1.1}^{\text {Rennes }}: ~ S p a r s e ~ h a s h ~ f u n c t i o n s ~ t h a t ~ g u a r a n t e e ~ q=1.1 ~$

Handling CNF+XOR Formulas

- CNF + Sparse XORs are still CNF+XOR formulas.
- Translating XORs to CNF and performing CDCL is not sufficient

Handling CNF+XOR Formulas

- CNF + Sparse XORs are still CNF+XOR formulas.
- Translating XORs to CNF and performing CDCL is not sufficient
- XORs can be solved by Gaussian elimination
- CryptoMiniSAT: Solver designed to perform CDCL and Gaussian Elimination in tandem
- BIRD2 (Blast, Inprocess, Recover, Detach, and Destroy): Tighter integration
(SM19, SGM20)

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Independent Support-based XORs
- Specialized CNF Solvers

Challenge 2 How many cells?

Challenge 2: How many cells?

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$

Challenge 2: How many cells?

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}$
- Check for every $m=0,1, \cdots n$ if the number of solutions \leq thresh

ApproxMC

ApproxMC

ApproxMC

ApproxMC

ApproxMC

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES
- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES
- Logarithmic search (\# of SAT calls: $\mathcal{O}(\log n)$)
- Incremental Search

ApproxMC

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- Query n: Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES
- Logarithmic search (\# of SAT calls: $\mathcal{O}(\log n)$)
- Incremental Search
- Will this work? Will the " m " where we stop be close to m^{*} ?

ApproxMC

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES
- Logarithmic search (\# of SAT calls: $\mathcal{O}(\log n)$)
- Incremental Search
- Will this work? Will the " m " where we stop be close to m^{*} ?
- Challenge Query i and Query j are not independent
- Independence crucial to analysis (Stockmeyer 1983, ...)

ApproxMC

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- Query n: Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES
- Logarithmic search (\# of SAT calls: $\mathcal{O}(\log n)$)
- Incremental Search
- Will this work? Will the " m " where we stop be close to m^{*} ?
- Challenge Query i and Query j are not independent
- Independence crucial to analysis (Stockmeyer 1983, …)
- Key Insight: The probability of making a bad choice of Q_{i} is very small for $i \ll m^{*}$

Taming the Curse of Dependence

$$
\text { Let } 2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \left(\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\right)\right)
$$

Lemma (1)

ApproxMC terminates with $m \in\left\{m^{*}-1, m^{*}\right\}$ with probability ≥ 0.8

Lemma (2)

For $m \in\left\{m^{*}-1, m^{*}\right\}$, estimate obtained from a randomly picked cell lies within a tolerance of ε of $|\operatorname{Sol}(F)|$ with probability ≥ 0.8

Repeat $\mathcal{O}(\log (1 / \delta))$ times and return the median

ApproxMC

Theorem (Correctness)
$\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$
Theorem (Complexity)
ApproxMC (F, ε, δ) makes $\mathcal{O}\left(\frac{\log n \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)$ calls to SAT oracle.

ApproxMC

Theorem (Correctness)

$\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$

Theorem (Complexity)

ApproxMC (F, ε, δ) makes $\mathcal{O}\left(\frac{\log n \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)$ calls to SAT oracle.

Theorem (FPRAS for DNF; (MSV, FSTTCS 17; CP 18, IJCAI-19))

If F is a DNF formula, then ApproxMC is FPRAS - different from the Monte-Carlo based FPRAS for DNF (Karp, Luby 1983)

Reliability of Critical Infrastructure Networks

Timeout $=1000$ seconds

Reliability of Critical Infrastructure Networks

Figure: Plantersville, SC

- $G=(V, E)$; source node: s
- Compute $\operatorname{Pr}[\mathrm{t}$ is disconnected]?

Timeout $=1000$ seconds

Reliability of Critical Infrastructure Networks

Figure: Plantersville, SC

- $G=(V, E)$; source node: s
- Compute $\operatorname{Pr}[t$ is disconnected]?

Timeout $=1000$ seconds

Improvements Over the Years

Enabling "Counting Revolution"

Challenge Problems

Enabling "Counting Revolution"

Challenge Problems

Neural Network Robustness Handle 1000 neurons per layer
Civil Engineering Reliability for Los Angeles Transmission Grid Security Leakage Measurement for $\mathrm{C}++$ program with 1 K lines

Enabling "Counting Revolution"

Challenge Problems

Neural Network Robustness Handle 1000 neurons per layer
Civil Engineering Reliability for Los Angeles Transmission Grid Security Leakage Measurement for $\mathrm{C}++$ program with 1 K lines

Technical Directions

- Beyond SAT: Satisfiability Modulo Theory
- Formula-Dependent Sparser XOR constraints
- Tighter integration between solvers and algorithms

Enabling "Counting Revolution"

Challenge Problems

Neural Network Robustness Handle 1000 neurons per layer
Civil Engineering Reliability for Los Angeles Transmission Grid Security Leakage Measurement for $\mathrm{C}++$ program with 1 K lines

Technical Directions

- Beyond SAT: Satisfiability Modulo Theory
- Formula-Dependent Sparser XOR constraints
- Tighter integration between solvers and algorithms

Questions?

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?

Figure: Plantersville, SC

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$

Figure: Plantersville, SC

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$
- $\pi_{s, t}$: configuration where s and t are disconnected
- Represented as a solution to set of constraints over edge variables

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$
- $\pi_{s, t}$: configuration where s and t are disconnected
- Represented as a solution to set of constraints over edge variables
- $\operatorname{Pr}[\mathrm{s}$ and t are disconnected $]=\sum_{\pi_{s, t}} W\left(\pi_{s, t}\right)$

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[s$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$
- $\pi_{s, t}$: configuration where s and t are disconnected
- Represented as a solution to set of constraints over edge variables
- $\operatorname{Pr}[\mathrm{s}$ and t are disconnected $]=\sum_{\pi_{s, t}} W\left(\pi_{s, t}\right)$
(DMPV, AAAI 17, ICASP-13, RESS 2019)

Reliability of Critical Infrastructure Networks

Timeout $=1000$ seconds

Reliability of Critical Infrastructure Networks

Figure: Plantersville, SC

- $G=(V, E)$; source node: s
- Compute $\operatorname{Pr}[\mathrm{t}$ is disconnected]?

Timeout $=1000$ seconds

Reliability of Critical Infrastructure Networks

Figure: Plantersville, SC

- $G=(V, E)$; source node: s
- Compute $\operatorname{Pr}[t$ is disconnected]?

Timeout $=1000$ seconds
(DMPV, AAAI17)

