
The Second Coming of Logic in Artificial
Intelligence

Kuldeep S. Meel

National University of Singapore

Acknowledgments to Moshe Y. Vardi for some of the slides.
I have serious allergy from electronic devices other than my own laptop.

So please turn off your devices.

Artificial Intelligence and Logic

Turing, 1950: “Opinions may vary as to the complexity which is suitable
in the child machine. One might try to make it as simple as possible
consistent with the general principles. Alternatively one might have a
complete system of logical inference built in. In the latter case the
store would be largely occupied with definitions and propositions. The
propositions would have various kinds of status, e.g., well-established
facts, conjectures, mathematically proved theorems, statements given by
an authority, expressions having the logical form of proposition but not a
belief-value”

1

Artificial Intelligence and Logic

• Newell, Shaw, and Simon, 1955: “Logic Theorist”

– Solved 38 of the first 52 theorems in Whitehead and Russell’s Principia
Mathematica

• McCarthy, 1958: “Programming with Common Sense ”

• Shapiro, 1982: “Algorithmic Program Debugging”

• Hayes-Roth, Waterman, and DB Lenat , 1958: “Building Expert
System”

Need tools to reason with logic

2

Aristotle’s Syllogisms

• All men are mortal

• Socrates is a man

Socrates is a mortal

3

Boole’s Symbolic Logic

Boole’s insight: Aristotle’s syllogisms are about classes of objects, which
can be treated algebraically.

“If an adjective, as ‘good’, is employed as a term of description, let us
represent by a letter, as y, all things to which the description ‘good’
is applicable, i.e., ‘all good things’, or the class of ‘good things’. Let
it further be agreed that by the combination xy shall be represented
that class of things to which the name or description represented by
x and y are simultaneously applicable. Thus, if x alone stands for
‘white’ things and y for ‘sheep’, let xy stand for ‘white sheep’.

4

Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using “and”
(∧) “or”, (∨) and “not” (¬), is there a satisfying solution (an assignment
of 0’s and 1’s to the variables that makes the expression equal 1)?

Example:

(¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x3 ∨ x1 ∨ x4)

Solution: x1 = 0, x2 = 0, x3 = 1, x4 = 1

5

Complexity of Boolean Reasoning

History:

• William Stanley Jevons, 1835-1882: “I have given much attention,
therefore, to lessening both the manual and mental labour of the process,
and I shall describe several devices which may be adopted for saving trouble
and risk of mistake.”

• Ernst Schröder, 1841-1902: “Getting a handle on the consequences
of any premises, or at least the fastest method for obtaining these
consequences, seems to me to be one of the noblest, if not the ultimate
goal of mathematics and logic.”

• Cook, 1971, Levin, 1973: Boolean Satisfiability is NP-complete.

6

P vs. NP : An Outstanding Open Problem

Does P = NP?

• The major open problem in theoretical computer science

• A major open problem in mathematics

– A Clay Institute Millennium Problem
– Million dollar prize!

What is this about? It is about computational complexity – how hard it is
to solve computational problems.

7

Computational Problems

Example: Graph – G = (V,E)

• V – set of nodes
• E – set of edges

Two notions:

• Hamiltonian Cycle: a cycle that visits every node exactly once.
• Eulerian Cycle: a cycle that visits every edge exactly once.

Question: How hard it is to find a Hamiltonian cycle? Eulerian cycle?

8

Computational Complexity

Measuring complexity: How many (Turing machine) operations does it
take to solve a problem of size n?

• Size of (V,E): number of nodes plus number of edges.

Complexity Class P : problems that can be solved in polynomial time – nc

for a fixed c

Examples:

• Is a number even?
• Is a number square?
• Does a graph have an Eulerian cycle?

What about the Hamiltonian Cycle Problem?

9

Hamiltonian Cycle

• Naive Algorithm: Exhaustive search – run time is n! operations

• “Smart” Algorithm: Dynamic programming – run time is 2n operations

Note: The universe is much younger than 2200 Planck time units!

Fundamental Question: Can we do better?

• Is Hamiltonian Cycle in P?

10

Checking Is Easy!

Observation: Checking if a given cycle is a Hamiltonian cycle of a
graph G = (V,E) is easy!

Complexity Class NP : problems where solutions can be checked in
polynomial time.

Examples:

• HamiltonianCycle
• Factoring numbers

Significance: Tens of thousands of optimization problems are in NP!!!

• CAD, flight scheduling, chip layout, protein folding, . . .

11

P vs. NP

• P : efficient discovery of solutions
• NP : efficient checking of solutions

The Big Question: Is P = NP or P 6= NP?

• Is checking really easier than discovering?

Intuitive Answer: Of course, checking is easier than discovering, so
P 6= NP !!!

• Metaphor: finding a needle in a haystack
• Metaphor: Sudoku
• Metaphor: mathematical proofs

Alas: We do not know how to prove that P 6= NP .

12

P 6= NP

Consequences:

• Cannot solve efficiently numerous important problems
• RSA encryption may be safe.

Question: Why is it so important to prove P 6= NP , if that is what is
commonly believed?

Answer:

• If we cannot prove it, we do not really understand it.
• May be P = NP and the “enemy” proved it and broke RSA!

13

P = NP

S. Aaronson, MIT: “If P = NP , then the world would be a profoundly
different place than we usually assume it to be. There would be no special
value in ‘creative leaps,’ no fundamental gap between solving a problem and
recognizing the solution once it’s found. Everyone who could appreciate
a symphony would be Mozart; everyone who could follow a step-by-step
argument would be Gauss.”

Consequences:

• Can solve efficiently numerous important problems.
• RSA encryption is not safe.

Question: Is it really possible that P = NP?

Answer: Yes! It’d require discovering a very clever algorithm, but it
took 40 years to prove that LinearProgramming is in P .

14

Sharpening The Problem

NP -Complete Problems: hardest problems is NP

• HamilatonianCycle is NP -complete! [Karp, 1972]

Corollary: P = NP if and only if HamiltonianCycle is in P

There are thousands of NP -complete problems. To resolve the P = NP
question, it’d suffice to prove that one of them is or is not in P .

15

History

• 1950-60s: Futile effort to show hardness of search problems.
• Stephen Cook, 1971: Boolean Satisfiability is NP-complete.
• Richard Karp, 1972: 20 additional NP-complete problems– 0-1 Integer

Programming, Clique, Set Packing, Vertex Cover, Set Covering,
Hamiltonian Cycle, Graph Coloring, Exact Cover, Hitting Set, Steiner
Tree, Knapsack, Job Scheduling, ...
– All NP-complete problems are polynomially equivalent!

• Leonid Levin, 1973 (independently): Six NP-complete problems
• M. Garey and D. Johnson, 1979: “Computers and Intractability: A Guide

to NP-Completeness” - hundreds of NP-complete problems!
• Clay Institute, 2000: $1M Award!

16

Artificial Intelligence and Logic

• Newell, Shaw, and Simon, 1955: “Logic Theorist”

– Solved 38 of the first 52 theorems in Whitehead and Russell’s Principia
Mathematica

• McCarthy, 1958: “Programming with Common Sense ”

• Shapiro, 1982: “Algorithmic Program Debugging”

• Hayes-Roth, Waterman, and DB Lenat , 1958: “Building Expert
System”

Need tools to reason with logic

Reasoning with logic is intractable; death of Logical AI!

17

And
Logic strikes back!

18

Algorithmic Boolean Reasoning: Early History

• Davis and Putnam, 1958: “Computational Methods in The
Propositional calculus”, unpublished report to the NSA

• Davis and Putnam, JACM 1960: “A Computing procedure for
quantification theory”

• Davis, Logemman, and Loveland, CACM 1962: “A machine program
for theorem proving”

DPLL Method: Propositional Satisfiability Test

• Convert formula to conjunctive normal form (CNF)

• Backtracking search for satisfying truth assignment

• Unit-clause preference

19

Modern SAT Solving

CDCL = conflict-driven clause learning

• Backjumping

• Smart unit-clause preference

• Conflict-driven clause learning

• Smart choice heuristic (brainiac vs speed demon)

• Restarts

Key Tools: GRASP, 1996; Chaff, 2001

Current capacity: millions of variables

20

CDCL SAT solver improvement
[Source: Simon 2015]

��

����

�����

�����

�����

�����

��� ��� ��� ���� ���� ���� ���� ���� ���� ����

�
�
�
��
�
��
�
���
�
�
�

�
���

�
�
��
�
�
�
�
�
�
�

���

�����������������
���������������

���������������������
��������������

���������������
��������������

��������������������
��������������

�����������������������
��������������������������

1 / 2

Applications of The CDCL SAT disruption

• Hundreds (thousands?) of practical applications

2 / 2

The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical
problems that involve many thousands of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Industrial usage of SAT Solvers: Hardware Verification, Planning,
Genome Rearrangement, Telecom Feature Subscription, Resource
Constrained Scheduling, Noise Analysis, Games, · · ·

Now that SAT is “easy”, it is time to look beyond satisfiability

The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical
problems that involve many thousands of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Industrial usage of SAT Solvers: Hardware Verification, Planning,
Genome Rearrangement, Telecom Feature Subscription, Resource
Constrained Scheduling, Noise Analysis, Games, · · ·

Now that SAT is “easy”, it is time to look beyond satisfiability

The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical
problems that involve many thousands of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Industrial usage of SAT Solvers: Hardware Verification, Planning,
Genome Rearrangement, Telecom Feature Subscription, Resource
Constrained Scheduling, Noise Analysis, Games, · · ·

Now that SAT is “easy”, it is time to look beyond satisfiability

Constrained Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• Sol(F) = { solutions of F }

• W (F) = Σy∈Sol(F)W (y)

• Constrained Counting: Determine

W (F)

• Given

– F := (X1 ∨ X2)
– W [(0, 0)] = W [(1, 1)] = 1

6 ;W [(1, 0)] = W [(0, 1)] = 1
3

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• W (F) = 1

3 + 1
3 + 1

6 = 5
6

Constrained Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• Sol(F) = { solutions of F }

• W (F) = Σy∈Sol(F)W (y)

• Constrained Counting: Determine |Sol(F)|

W (F)

• Given

– F := (X1 ∨ X2)
– W [(0, 0)] = W [(1, 1)] = 1

6 ;W [(1, 0)] = W [(0, 1)] = 1
3

• Sol(F) = {(0, 1), (1, 0), (1, 1)}

• W (F) = 1
3 + 1

3 + 1
6 = 5

6

Constrained Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• Sol(F) = { solutions of F }
• W (F) = Σy∈Sol(F)W (y)

• Constrained Counting: Determine W (F)

• Given

– F := (X1 ∨ X2)
– W [(0, 0)] = W [(1, 1)] = 1

6 ;W [(1, 0)] = W [(0, 1)] = 1
3

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• W (F) = 1

3 + 1
3 + 1

6 = 5
6

Constrained Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• Sol(F) = { solutions of F }
• W (F) = Σy∈Sol(F)W (y)

• Constrained Counting: Determine W (F)

• Given

– F := (X1 ∨ X2)
– W [(0, 0)] = W [(1, 1)] = 1

6 ;W [(1, 0)] = W [(0, 1)] = 1
3

• Sol(F) = {(0, 1), (1, 0), (1, 1)}

• W (F) = 1
3 + 1

3 + 1
6 = 5

6

Constrained Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• Sol(F) = { solutions of F }
• W (F) = Σy∈Sol(F)W (y)

• Constrained Counting: Determine W (F)

• Given

– F := (X1 ∨ X2)
– W [(0, 0)] = W [(1, 1)] = 1

6 ;W [(1, 0)] = W [(0, 1)] = 1
3

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• W (F) = 1

3 + 1
3 + 1

6 = 5
6

Applications across Computer Science

Counting
Network

Reliability

Probabilistic
Inference

Interpretable
Learning

Pattern
Mining

Quantified
Information

Flow

Can we reliably predict the effect of natural disasters on critical
infrastructure such as power grids?
Can we predict likelihood of a region facing blackout?

Can we reliably predict the effect of natural disasters on critical
infrastructure such as power grids?
Can we predict likelihood of a region facing blackout?

Can we reliably predict the effect of natural disasters on critical
infrastructure such as power grids?

Can we predict likelihood of a region facing blackout?

Can we reliably predict the effect of natural disasters on critical
infrastructure such as power grids?
Can we predict likelihood of a region facing blackout?

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

Constrained Counting (DMPV, AAAI 17)

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

Constrained Counting (DMPV, AAAI 17)

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

Constrained Counting (DMPV, AAAI 17)

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

Constrained Counting (DMPV, AAAI 17)

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

Constrained Counting (DMPV, AAAI 17)

Counting in Java

How many people in Java like coffee?

• Population of Java = 141M

• Assign every person a unique (n =) 26 bit identifier (2n = 141M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 141M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• NP Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

Counting in Java

How many people in Java like coffee?

• Population of Java = 141M

• Assign every person a unique (n =) 26 bit identifier (2n = 141M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 141M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• NP Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

Counting in Java

How many people in Java like coffee?

• Population of Java = 141M

• Assign every person a unique (n =) 26 bit identifier (2n = 141M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 141M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• NP Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

Counting in Java

How many people in Java like coffee?

• Population of Java = 141M

• Assign every person a unique (n =) 26 bit identifier (2n = 141M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 141M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• NP Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

Counting in Java

How many people in Java like coffee?

• Population of Java = 141M

• Assign every person a unique (n =) 26 bit identifier (2n = 141M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 141M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• NP Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

Counting in Java

How many people in Java like coffee?

• Population of Java = 141M

• Assign every person a unique (n =) 26 bit identifier (2n = 141M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 141M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• NP Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

Counting in Java

How many people in Java like coffee?

• Population of Java = 141M

• Assign every person a unique (n =) 26 bit identifier (2n = 141M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 141M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• NP Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}

• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash

functions
Universal Hashing (Carter and Wegman 1977)

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}

• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash

functions
Universal Hashing (Carter and Wegman 1977)

Challenge 2 How many cells?

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}

• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash

functions
Universal Hashing (Carter and Wegman 1977)

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}
• Deterministic h unlikely to work

• Choose h randomly from a large family H of hash
functions
Universal Hashing (Carter and Wegman 1977)

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}
• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash

functions
Universal Hashing (Carter and Wegman 1977)

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Universal Hash Functions

Challenge 2 How many cells?

Question 2: How many cells?

• A cell is small if it has less than thresh = 5(1 + 1
ε)2 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh

Question 2: How many cells?

• A cell is small if it has less than thresh = 5(1 + 1
ε)2 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh

Question 2: How many cells?

• A cell is small if it has less than thresh = 5(1 + 1
ε)2 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh

ApproxMC(F , ε, δ)

of sols
≤ thresh?

ApproxMC(F , ε, δ)

of sols
≤ thresh?

of sols
≤ thresh?

No

ApproxMC(F , ε, δ)

of sols
≤ thresh?

of sols
≤ thresh?

No No

ApproxMC(F , ε, δ)

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

· · ·

No No

No

ApproxMC(F , ε, δ)

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

Estimate =
of sols ×
of cells # of sols

≤ thresh?

· · ·

No No

No

Yes

ApproxMC(F , ε, δ)

Theorem (Correctness)

Pr
[
|Sol(F)|
1+ε ≤ ApproxMC(F , ε, δ) ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
log n log(1

δ
)

ε2
) calls to SAT oracle.

• Prior work required O(
n log n log(1

δ
)

ε) calls to SAT oracle (Stockmeyer

1983)

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E);
source node: s

• Compute Pr[t is
disconnected]?

10 20 30 40 50 60

200

400

600

800

1,000

Terminal

T
im

e(
se

co
n

d
s)

Timeout = 1000 seconds

(DMPV, AAAI17)

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E);
source node: s

• Compute Pr[t is
disconnected]?

10 20 30 40 50 60

200

400

600

800

1,000

Terminal

T
im

e(
se

co
n

d
s)

RDA

Timeout = 1000 seconds

(DMPV, AAAI17)

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E);
source node: s

• Compute Pr[t is
disconnected]?

10 20 30 40 50 60

200

400

600

800

1,000

Terminal

T
im

e(
se

co
n

d
s)

RDA
ApproxMC

Timeout = 1000 seconds

(DMPV, AAAI17)

Beyond Network Reliability

ApproxMC
Network

Reliability

Probabilistic
Inference

Quantified
Information

Flow

Program
Synthesis

(DMPV,
AAAI17)

(CFMSV, AAAI14), (IMMV,
CP15), (CFMV, IJCAI15), (CMMV,

AAAI16), (CMV, IJCAI16)

Fremont,
Rabe and

Seshia 2017

(CFMSV, AAAI14), Fremont
et al 2017, Ellis et al 2017

Mission 2025: Constrained Counting Revolution

2012 2013 2014 2015 2016 2017

101

102

103

104

105

S
p

ee
d

u
p

ov
er

20
12

st
at

e
of

th
e

ar
t

Mission 2025: Constrained Counting Revolution

2012 2013 2014 2015 2016 2017

101

102

103

104

105

CP 13
CAV 13

DAC 14
AAAI 14

IJCAI15
CP 15
TACAS 15

IJCAI 16a
IJCAI16b
AAAI16
Constraints16

IJCAI 17
AAAI-17

S
p

ee
d

u
p

ov
er

20
12

st
at

e
of

th
e

ar
t

Mission 2025: Constrained Counting Revolution

2012 2014 2016 2018 2020 2022 2024 2025

101

102

103

104

105
S

p
ee

d
u

p
ov

er
20

12
st

at
e

of
th

e
ar

t

Requires combinations of ideas from theory, statistics and systems

Mission 2025: Constrained Counting and Sampling
Revolution

• Tighter integration between solvers and algorithms

• Exploring solution space structure of CNF+XOR formulas
(DMV, IJCAI16)

(DMV, IJCAI17)

0 1 2 3 4 5 6

r: Density of 3-clauses

0.0

0.2

0.4

0.6

0.8

1.0

1.2

s:
D
en
si
ty

of
X
O
R
-c
la
u
se
s

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.00

• Beyond Boolean variables – without bit blasting

Mission 2025: Constrained Counting and Sampling
Revolution

• Tighter integration between solvers and algorithms

• Exploring solution space structure of CNF+XOR formulas
(DMV, IJCAI16)

(DMV, IJCAI17)

0 1 2 3 4 5 6

r: Density of 3-clauses

0.0

0.2

0.4

0.6

0.8

1.0

1.2

s:
D
en
si
ty

of
X
O
R
-c
la
u
se
s

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.00

• Beyond Boolean variables – without bit blasting

Mission 2025: Constrained Counting and Sampling
Revolution

• Tighter integration between solvers and algorithms

• Exploring solution space structure of CNF+XOR formulas
(DMV, IJCAI16)

(DMV, IJCAI17)

0 1 2 3 4 5 6

r: Density of 3-clauses

0.0

0.2

0.4

0.6

0.8

1.0

1.2

s:
D
en
si
ty

of
X
O
R
-c
la
u
se
s

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.00

• Beyond Boolean variables – without bit blasting

Mission 2025: Constrained Counting Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

Security Leakage Measurement for C++ program with 1K lines

Machine Learning Inference for Bayesian network with 10K nodes

The Potential of Hashing-based Framework

Programming Probabilistic programming

Theory Classification of Approximate Counting Complexity

Databases Streaming algorithms

We can only see a short distance ahead, but we can see plenty
there that needs to be done. (Turing, 1950)

Mission 2025: Constrained Counting Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

Security Leakage Measurement for C++ program with 1K lines

Machine Learning Inference for Bayesian network with 10K nodes

The Potential of Hashing-based Framework

Programming Probabilistic programming

Theory Classification of Approximate Counting Complexity

Databases Streaming algorithms

We can only see a short distance ahead, but we can see plenty
there that needs to be done. (Turing, 1950)

Mission 2025: Constrained Counting Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

Security Leakage Measurement for C++ program with 1K lines

Machine Learning Inference for Bayesian network with 10K nodes

The Potential of Hashing-based Framework

Programming Probabilistic programming

Theory Classification of Approximate Counting Complexity

Databases Streaming algorithms

We can only see a short distance ahead, but we can see plenty
there that needs to be done. (Turing, 1950)

Mission 2025: Constrained Counting Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

Security Leakage Measurement for C++ program with 1K lines

Machine Learning Inference for Bayesian network with 10K nodes

The Potential of Hashing-based Framework

Programming Probabilistic programming

Theory Classification of Approximate Counting Complexity

Databases Streaming algorithms

We can only see a short distance ahead, but we can see plenty
there that needs to be done. (Turing, 1950)

Mission 2025: Constrained Counting Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

Security Leakage Measurement for C++ program with 1K lines

Machine Learning Inference for Bayesian network with 10K nodes

The Potential of Hashing-based Framework

Programming Probabilistic programming

Theory Classification of Approximate Counting Complexity

Databases Streaming algorithms

We can only see a short distance ahead, but we can see plenty
there that needs to be done. (Turing, 1950)

Mission 2025: Constrained Counting Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

Security Leakage Measurement for C++ program with 1K lines

Machine Learning Inference for Bayesian network with 10K nodes

The Potential of Hashing-based Framework

Programming Probabilistic programming

Theory Classification of Approximate Counting Complexity

Databases Streaming algorithms

We can only see a short distance ahead, but we can see plenty
there that needs to be done. (Turing, 1950)

Mission 2025: Constrained Counting Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

Security Leakage Measurement for C++ program with 1K lines

Machine Learning Inference for Bayesian network with 10K nodes

The Potential of Hashing-based Framework

Programming Probabilistic programming

Theory Classification of Approximate Counting Complexity

Databases Streaming algorithms

We can only see a short distance ahead, but we can see plenty
there that needs to be done. (Turing, 1950)

