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How do we guarantee that systems work 
correctly ?

Functional Verification

▪ Formal verification

▪ Challenges: formal requirements, scalability

▪ ~10-15% of verification effort 

▪ Dynamic verification: dominant approach
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Dynamic Verification

▪ Design is simulated with test vectors

▪ Test vectors represent different verification 
scenarios 

▪ Results from simulation compared to 
intended results

▪ Challenge: Exceedingly large test space!
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Motivating Example

a b

c

64 bit 64 bit

64 bit

c = f(a,b)

How do we test the circuit works ?

• Try for all values of a and b
• 2128 possibilities 
• Sun will go nova before done!
• Not scalable
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▪ Test vectors: solutions of constraints

▪ Proposed by Lichtenstein, Malka, Aharon (IAAI 94) 5

Sources for Constraints
• Designers: 

1. a +64 11 *32 b = 12
2. a <64 (b >> 4)

• Past Experience: 
1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200
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64 bit

64 bit

c = f(a,b)

Constrained-Random Simulation



Constrained-Random Simulation

Problem: How can we uniformly sample the values of a and b 
satisfying the above constraints? 6
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2. a <64 (b >> 4)
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• Users:
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Problem Formulation

Set of Constraints

Sample satisfying assignments 
uniformly at random

SAT Formula

SAT Sampling
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Roadmap

▪ SAT Sampling

▪ Model Counting

▪ Works inspired from core ideas

▪ Future Directions
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Prior Work
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Core Idea
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Cells should be roughly equal in size and small 
enough to enumerate completely

Partitioning into cells
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Pick a random cell

Partitioning into cells

Pick a random solution from this cell 



How to Partition?

How to partition into roughly equal 
small cells of solutions without 
knowing the distribution of 
solutions? 

r-Universal Hashing
[Carter-Wegman 1979] 
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Universal Hashing
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▪ Hash functions: mapping {0,1}n to {0,1}m  

▪ (2n elements to 2m cells)

▪ Random inputs => All cells are roughly equal (in expectation)

▪ Universal family of hash functions:
▪ Choose hash function randomly from family

▪ For arbitrary distribution on inputs => All cells are roughly equal 
(in expectation)



Strong Universality

▪ H(n,m,r): Family of r-universal hash functions mapping 
{0,1}n to {0,1}m  (2n elements to 2m cells)
▪ r: degree of independence of hashed inputs

▪ Higher r =>  Stronger guarantee on range of size of cells

▪ r-wise universality => Polynomials of degree r-1

▪ Stronger universality => Higher complexity
16



Hashing-based Approaches

n-universal hashing

Uniform Generation

All cells required to  be small

BGP Algorithm (Bellare et al, 2000) 17

Solution space



n-universal hashing 3-universal hashing

Uniform Generation

Random

Only a randomly chosen 
cell needs to be “small”

BGP Algorithm

Almost-Uniform Generation

UniGen
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Solution space

All cells required to  be small

Scaling to ~0.8M  Variables

From tens of variables to 
~0.8M  variables! 



Underlying Hash Functions

▪ A cell can be represented as the conjunction of: 

▪ Input formula F

▪ m random XOR constraints

▪ 2m is the number of cells desired

▪ Use CryptoMiniSAT for CNF + XOR formulas
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▪ Uniformity

▪ Almost- Uniformity

▪ UniGen succeeds with probability 0.52 (Previous 
best known: 0.125)

Strong Theoretical Guarantees
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2-3 Orders of Magnitude Faster
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Results: Uniformity

• Benchmark: case110.cnf;   #var: 287;  #clauses: 1263
• Total Runs: 4x106; Total Solutions : 16384
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Results: Uniformity

• Benchmark: case110.cnf;   #var: 287;  #clauses: 1263
• Total Runs: 4x106; Total Solutions : 16384
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Roadmap

▪ SAT Sampling

▪ Model Counting

▪ Works inspired from core ideas

▪ Future Directions

24



What is Model Counting?

▪ Given a SAT formula F

▪ RF: Set of all solutions of F

▪ Problem (#SAT): Estimate the number of solutions of 
F (#F) i.e., what is the cardinality of RF?

▪ E.g., F = (a v b)

▪ RF = {(0,1), (1,0), (1,1)}

▪ The number of solutions (#F) = 3

#P: The class of counting problems for 
decision problems in NP! 25



Practical Applications

26

Wide range of applications!

▪ Estimating coverage achieved

▪ Probabilistic reasoning/Bayesian inference 

▪ Planning with uncertainty

▪ Multi-agent/ adversarial reasoning 

[Roth 96, Sang 04, Bacchus 04, Domshlak 07]



Counting through Partitioning
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Counting through Partitioning 
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Pick a random cell

Total # of solutions= #solutions in the cell
* total # of cells



Strong Theoretical Results
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ApproxMC (CNF: F, tolerance: e, confidence:d)

Suppose ApproxMC(F,e,d) returns C.  Then,

ApproxMC runs in time polynomial in log (1-d)-1,
|F|, e-1 relative to SAT oracle

The First Scalable 
Approximate Model Counter



Mean Error: Only 4% (e: 0.75)
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Mean error: 4% – much smaller than the 
theoretical guarantee of 75%
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Roadmap

▪ SAT Sampling

▪ Model Counting

▪ Works inspired from core ideas

▪ Future Directions
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Extensions

Sampling 
Techniques
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Applications and follow up

▪ Quantified Information flow (Fremont et al, 2014)

▪ Hashing-based integration (Ermon et al, 2014)

▪ Control Improvisation(Fremont et al, 2014)

▪ Probabilistic programming(Chistikov et al, 2015)
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Roadmap

▪ SAT Sampling

▪ Model Counting

▪ Works inspired from core ideas

▪ Future Directions
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Extension to More Expressive 
Domains (SMT, CSP, ASP)

▪ Efficient 3-universal/2-universal hashing schemes 

▪ Solvers to handle F + Hash efficiently

▪ CryptoMiniSAT has fueled progress for SAT 
domain

▪ Similar solvers for other domains? 
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Deeper understanding of hashing

▪ Improved works on sampling require 3-universal 
hash functions while 2-universal is sufficient for 
counting

▪ Sampling and counting are inter-reducible via 
Jerrum, Valiant & Vazirani (1986)
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Key Takeaways 

▪ Sampling and counting are fundamental problems with wide 
variety of applications

▪ Prior methods  failed to scale or offered very weak theoretical 
guarantees

▪ UniGen: The first scalable generator with theoretical 
gaurantees of almost-uniformity

▪ ApproxMC: The first scalable approximate model counter

▪ Extensions of underlying techniques in different contexts

▪ Visit: www.cs.rice.edu/~kgm2/ for papers/tools/source code!

37

http://www.cs.rice.edu/~kgm2/


Acknowledgements

▪ Advisors

▪ Moshe Vardi (Rice)

▪ Collaborators

▪ Daniel Fremont (UCB)

▪ Dror Fried (Rice)

▪ Alexander Ivrii (IBM, Haifa) 

▪ Sharad Malik (Princeton)

▪ Sanjit Seshia (UCB)

▪ Supratik Chakraborty (IITB) 38



Backup Slides
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Can Solve a Large Class of Problems

40

Large class of problems that lie beyond the exact 
counters but can be computed by ApproxMC
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Exploring CNF+XOR

▪ Very little understanding as of now

▪ Eager/Lazy approach for XORs? 

▪ How to reduce size of XORs further?
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Weighted Counting

Ref: “Distribution-Aware Sampling and Weighted Model Counting for 
SAT” (In Proc. of AAAI 2014 )
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Weighted Counting

Given
▪ CNF Formula F

▪ Weight Function W over assignments

Problem
▪ What is the sum of weights of satisfying assignments?

Example
▪ F = (a ∨ b) 

▪ W([0,1]) = W([1,0]) = 1/3      W([1,1]) = W([0,0]) = 1/6

▪ W(F) = 1/3 + 1/3 + 1/6 = 5/6

43
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Partition into (weighted) equal 
“small” cells
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Pick a random cell

Pick (by weight) a random solution from this cell 

Partition into (weighted) equal 
“small” cells



Can you always achieve 
partitioning?

What if one solution dominates the entire solution 
space

Tilt = wmax/wmin

Small tilt →All solutions contribute 
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How to handle large tilt?
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Handling Large Tilt

Can be achieved with Pseudo-Boolean Solver
Still a SAT problem not Optimization
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