Word-Level Hashing Approach to Approximate Probabilistic Inference

Kuldeep S. Meel
 Rice University

Joint work with Supratik Chakraborty (IITB), Rakesh Mistry (IITB), and Moshe Y. Vardi (Rice)

Graphical Models

$\operatorname{Pr}[$ Attend $=$ Yes \cap Topic=GM \cap Time=Morning $]=0.7^{*} 0.65^{*} 0.35$

Probabilistic Inference

Probabilistic Inference

- Exact computation is intractable (\#P-complete)
- Approximate techniques:
- Markov Chain Monte Carlo Methods
- Variational Approximation
- Interval Propagation
- Randomization in combinatorial reasoning tools

Drawback:
Either Performance or Theoretical Guarantees but Not Both

Reduction to Model Counting

Model Counting

- Given a SAT formula F
- R_{F} : Set of all solutions of F
- Problem (\#SAT): Estimate the number of solutions of F $(\# F)$ i.e., what is the cardinality of R_{F} ?
- E.g., F = (a v b)
- $\mathrm{R}_{\mathrm{F}}=\{(0,1),(1,0),(1,1)\}$
- The number of solutions (\#F) = 3
\#P: The class of counting problems for decision problems in NP!

Long History of Work

- Proved \#P complete (Valiant 1977)
- Approximate variant: introduced by Stockmeyer (1983)
- Uniform sampling is inter-reducible to approximate counting (Jerrum, Valiant and Vazirani 1986)
-FPRAS for approximate \#DNF (Karp, Luby 1985)
- No practical techniques for CNF

Partitioning into equal "small" cells

Partitioning into equal "small" cells

Partitioning into equal "small" cells

Estimate = \# of models in cell * \# of cells

How to Partition?

How to partition into roughly equal small cells of models without knowing the distribution of models?

Universal Hashing
[Carter-Wegman 1979]

XOR-Based Hashing

- Partition 2^{n} space into 2^{m} cells
- Variables: $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots \ldots, \mathrm{X}_{\mathrm{n}}$
- Pick every variable with prob. $1 / 2$, XOR them and add $0 / 1$ with prob. $1 / 2$
- $\mathrm{X}_{1}+\mathrm{X}_{3}+\mathrm{X}_{6}+\ldots \mathrm{X}_{\mathrm{n}-1}+0$
- To construct h: $\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- $\alpha \in\{0,1\}^{m} \rightarrow$ Set every XOR equation to 0 or 1 randomly
- The cell: F \wedge XOR (CNF+XOR)

Size of cell

- Too large => Hard to enumerate
- Too small => Variance can be very high

$$
\text { pivot }=5(1+1 / \varepsilon)^{2}
$$

PAC Counter: ApproxMC(F, $\varepsilon, \delta)$

- For right choice of m, large number of cells are "small"
- "almost all" the cells are "roughly" equal
- Check if a randomly picked cell is "small"
- If yes, then estimate $=\#$ of solutions in cell * 2^{m}

ApproxMC(F, $\varepsilon, \delta)$

ApproxMC(F, $\varepsilon, \delta)$

ApproxMC(F, $\varepsilon, \delta)$

ApproxMC(F, $\varepsilon, \delta)$

Key Lemmas

Let $m^{*}=\log \left|R_{F}\right|-\log$ pivot

Lemma 1: The algorithm terminates with $m \in\left[m^{*}-1, m^{*}\right]$ with high probability

Lemma 2: The estimate from a randomly picked cell for $m \in$ [$m^{*}-1, m^{*}$] is correct with high probability

Approximate Model Counting

- Approximate Model Counting

$$
\operatorname{Pr}\left[\frac{\left|R_{F}\right|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq(1+\varepsilon)\left|R_{F}\right|\right] \geq 1-\delta
$$

- Hashing-based Approaches
- AAAI 2014
- CAV 2013
- TACAS 2015
- CP 2013
- IJCAI 2015
- UAI 2013
- ICML 2015
- NIPS 2013
- UAI 2015
- DAC 2014
- AAAI 2016
- ICML 2014
- AISTATS 2016

Bit-level reasoning

- XOR-based (mod 2) hash functions in all prior works
- Variables in Graphical Models are not binary
- Approach: Perform "bit-blasting"
- $\operatorname{Dom}(X)=\{0,1,2,3\}$
- X can be represented using two bits $\left(y_{1}, y_{2}\right)$ such that $X=$ $y_{1} y_{2}$
- XOR constraints over y_{i} variables
- Require solvers to perform bit-level reasoning

Word-level Revolution

- Development of SMT Solvers to reason directly at the level of "words", i.e. variables
- No need for "bit-blasting"
- The biggest advance in formal methods in last 25 years [John Rushby, 2011]

Articles with "SMT Solver" or "Satisfiability Modulo Theory"

Our Contributions

- $\mathrm{H}_{\text {SMT }}$: Efficient word-level Hash Function
- SMTApproxMC: Efficient word-level counter

Theory: QF-BV

Towards Efficient word-level Hashing

- Lifting hashing from (mod 2) to (mod $\left.2^{k}\right)$ constraints -k: largest "bit-width"
- Linear inequality constraints
- $h_{1}:=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}+b$
- $a_{1}, a_{2}, \ldots . a_{n}, b$, are randomly chosen from 0 to $2^{k}-1$
- $\alpha_{1}:=$ " $<2^{k-1 " ~ o r ~ " ~} \geq 2^{k-1}$ "

Theoretical Guarantees: 2-universal

- $h_{1}:=\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}+b\right)$
- $\alpha_{1}:=<2^{k-1}$
- $\sigma_{1}=\left\{x_{1}=v_{1}, x_{2}=v_{2} \ldots x_{n}=v_{n}\right\}$
- $\operatorname{Pr}\left[\sigma_{1} \vDash\left(h_{1}=\alpha_{1}\right)\right]$
- Transform σ_{1} to ($0,0 \ldots .0$)
- $\operatorname{Pr}\left[(0,0, \ldots .0) \vDash\left(h_{1}=\alpha_{1}\right)\right]=\operatorname{Pr}\left[\mathrm{b}<2^{k-1}\right]=\frac{1}{2}$
$\cdot \operatorname{Pr}\left[\sigma_{2} \vDash\left(h_{1}=\alpha_{1}\right) \mid \sigma_{1} \vDash\left(h_{1}=\alpha_{1}\right)\right]$
- Transform σ_{1} to $(0,0 \ldots . .0)$
- Transform σ_{2} to (1,0.....0)
$\cdot \operatorname{Pr}\left[\sigma_{2} \vDash\left(h_{1}=\alpha_{1}\right) \mid \sigma_{1} \vDash\left(h_{1}=\alpha_{1}\right)\right]=\operatorname{Pr}\left[a_{1}+b<2^{k-1} \mid b<2^{k-1}\right]=\frac{1}{2}$

Word-Level Counter

1. $F^{\prime}=F$
2. for $\mathrm{i}=1$ to k :
3. If ($\left|R_{F^{\prime}}\right|>$ pivot):
4. $\quad F^{\prime}=F \wedge\left\{\left(a_{1} x_{1}+a_{2} x_{2}+\cdots \cdot a_{n} x_{n}+b^{\prime \prime} \geq\right.\right.$ " or" $\left.\left.<{ }^{\prime \prime} 2^{k-1}\right)\right\}$
5. Else:
6. If $\left(\left|R_{F^{\prime}}\right|==0\right)$:
7. Return \perp
8. Return $\left|R_{F^{\prime}}\right| * 2^{\mathrm{i}}$

Diagnosis

- Look for hash functions that are polynomial to solve by themselves

Towards Efficient word-level Hashing

- Lifting hashing from $(\bmod 2)$ to $(\bmod p)$ constraints $\cdot \mathbf{p}$: smallest prime greater than domain of variables (2^{k})
- Linear equality $(\bmod p)$ constraints to partition into p cells
- $\left|\operatorname{Dom}\left(x_{i}\right)\right| \leq 2^{k}$
- $h_{1}:=\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}+b\right)(\bmod \mathrm{p})$
- $a_{1}, a_{2}, \ldots . a_{n}, b$, are randomly chosen from 0 to $\mathrm{p}-1$

Theoretical Guarantees: 2-universal

- $h_{1}:=\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}+b\right)(\bmod \mathrm{p})$
- $\sigma_{1}=\left\{x_{1}=v_{1}, x_{2}=v_{2} \ldots x_{n}=v_{n}\right\}$
- $\operatorname{Pr}\left[\sigma_{1} \vDash\left(h_{1}=\alpha_{1}\right)\right]$
- Transform σ_{1} to ($0,0 \ldots . .0$)
- $\operatorname{Pr}\left[(0,0, \ldots .0) \vDash\left(h_{1}=\alpha_{1}\right)\right]=\operatorname{Pr}[\mathrm{b}==0]=\frac{1}{\mathrm{p}}$
$\cdot \operatorname{Pr}\left[\sigma_{2} \vDash\left(h_{1}=\alpha_{1}\right) \mid \sigma_{1} \vDash\left(h_{1}=\alpha_{1}\right)\right]$
- Transform σ_{1} to $(0,0 \ldots . .0)$
- Transform σ_{2} to ($1,0 \ldots . . .0$)
- $\operatorname{Pr}\left[\sigma_{2} \vDash\left(h_{1}=\alpha_{1}\right) \mid \sigma_{1} \vDash\left(h_{1}=\alpha_{1}\right)\right]=\operatorname{Pr}\left[a_{1}=1\right]=\frac{1}{p}$

Word-Level Counter

1. $F^{\prime}=F$
2. for $\mathrm{i}=1$ to k :
3. If ($\left|R_{F^{\prime}}\right|>$ pivot):
4. $\quad F^{\prime}=F \wedge\left\{\left(a_{1} x_{1}+a_{2} x_{2}+\cdots \cdot a_{n} x_{n}+b=\alpha\right) \bmod \mathrm{p}\right\}$
5. Else:
6. If $\left(\left|R_{F^{\prime}}\right|==0\right)$:
7. Return \perp
8. Return $\left|R_{F^{\prime}}\right| * \mathrm{p}^{\mathrm{i}}$

Diagnosis

- Number of cells $(N)=p^{c}$
- C: Number of Linear Constraints
- N is too small \rightarrow Number of solutions is too large
- N is too large \rightarrow Number of solutions is very small (Avg < 0)
- Need finer control over number of cells

SMTApproxMC (F, ε, δ)

1. $F^{\prime}=F ; \mathrm{i}=0$
$p_{i}=$ smallest prime greater than $2^{k+1-2^{i}}$
2. For $\mathrm{j}=1$ to k :
3. If $\left(\left|R_{F^{\prime}}\right|>\right.$ pivot $)$:
4. $\quad F^{\prime}=F \wedge\left\{\left(a_{1} x_{1}+a_{2} x_{2}+\cdots \cdot a_{n} x_{n}+b=\alpha\right) \bmod p_{i}\right\}$
5. Else:
6. $\quad \operatorname{If}\left(\left|R_{F^{\prime}}\right|==0 \& \mathrm{p}_{\mathrm{i}}>2\right)$:
7. $\quad F^{\prime}=$ Pop out last constraint; i++
8. $\quad F^{\prime}=F \wedge\left\{\left(a_{1} x_{1}+a_{2} x_{2}+\cdots \cdot a_{n} x_{n}+b=\alpha\right) \bmod p_{i}\right\}$
9. \quad Return $\left|R_{F^{\prime}}\right| * N$

$\mathrm{H}_{\text {Smт }}$: Efficient word-level Hash Function

- Use different primes to control the number of cells
- Choose appropriate N and express as product of preferred primes, i.e. $N=p_{1}{ }^{c_{1}} p_{2}{ }^{c_{2}} p_{3}{ }^{c_{3}} \ldots \ldots p_{n}{ }^{c_{n}}$
- $\mathrm{H}_{\text {SMT }}$:
- $c_{1}\left(\bmod p_{1}\right)$ constraints
- $c_{2}\left(\bmod p_{2}\right)$ constraints
-
- $\mathrm{H}_{\text {SMT }}$ satisfies guarantees of 2-universality

SMTApproxMC

Estimate = \# of models in cell * \# of cells

Theoretical Guarantees

- F: Formula over bounded domain variables;
- R_{F} : Solution Space of F
- SMTApproxMC

$$
\operatorname{Pr}\left[\frac{\left|R_{F}\right|}{1+\varepsilon} \leq \operatorname{SMTApproxMC}(F, \varepsilon, \delta) \leq(1+\varepsilon)\left|R_{F}\right|\right] \geq 1-\delta
$$

- Polynomial in $F, \frac{1}{\varepsilon}, \log \left(\frac{1}{\delta}\right)$ relative to word-level oracle

Experimental Evaluations

- Over 150 benchmarks from:
- Ising Models
- ISCAS89 Circuits
- Program Synthesis
- Comparison with state of the art tool: CDM
- Based on Chistikov, Dimitrova, and Majumdar 2015
- Similar to Ermon et al, Chakraborty et al, Belle et al, etc..
- Uses XOR-based hash functions (bit level!)
- Objectives:
- Quality of estimates
- Runtime performance comparison

Quality Comparison

- $\operatorname{Pr}\left[\frac{\left|R_{F}\right|}{1+\varepsilon} \leq \operatorname{SMTApproxMC}(F, \varepsilon, \delta) \leq(1+\varepsilon)\left|R_{F}\right|\right] \geq 1-\delta$
- Experiments with $\varepsilon=0.8 \quad \delta=0.1$

Quality Comparison

Runtime Performance Comparison

SMTApproxMC is 2-10 times faster than CDM

Future Work

SMT + Mod p

- For SAT: CNF + XOR
- CryptoMiniSAT has been solver of choice
- Gaussian elimination for added XOR constraints
- SMT Solver with Gaussian elimination for added Linear equality constraints
- Preferred primes dependent on SMT solver's architecture?

SMT Sampling

- Sampling is inter-reducible to counting (JVV 1986)
- Algorithm is highly impractical (linear number of calls to approx counter)
- Hashing-based framework for sampling
- UniGen (Chakraborty,M.,Vardi, 2013)
- Requires 3-universal guarantees
- $\mathrm{H}_{\text {SMT }}$ can provide only 2-universal guarantees
- Design efficient algorithms with only 2-universal requirement?

For tools/papers: www.kuldeepmeel.com

