
Word-Level Hashing
Approach to Approximate
Probabilistic Inference

Kuldeep S. Meel
Rice University

Joint work with Supratik Chakraborty (IITB), Rakesh Mistry (IITB), and Moshe Y.
Vardi (Rice)

1

Graphical Models

Morning 0.35

Afternoon 0.2

Evening 0.45

Time Topic

Attend

Time Topic Attend Pr

…. …. …. …

Afternoon GM Yes 0.7

NLP 0.25

GM 0.65

Other 0.1

Pr[Attend	=	Yes	∩ Topic=GM	∩ Time=Morning]		=	0.7*0.65*0.35 2

Probabilistic Inference

Morning 0.35

Afternoon 0.2

Evening 0.45

Time Topic

Attend

Time Topic Attend Pr

…. …. …. …

Afternoon GM Yes 0.7

NLP 0.25

GM 0.65

Other 0.1

Pr [Attend	=	Yes	|	Topic=GM]

Event Evidence

3

Probabilistic Inference

• Exact computation is intractable (#P-complete)
• Approximate techniques:

� Markov Chain Monte Carlo Methods
� Variational Approximation
� Interval Propagation
� Randomization in combinatorial reasoning tools

Drawback:
Either Performance or Theoretical Guarantees but Not Both

4

Reduction to Model Counting

Time Topic

Attend

Pr [Attend	=	Yes	|	Topic=GM]

Model	Counting

Roth	1996

5

Model Counting
• Given a SAT formula F
• RF: Set of all solutions of F
• Problem (#SAT): Estimate the number of solutions of F
(#F) i.e., what is the cardinality of RF?
• E.g., F = (a v b)
• RF = {(0,1), (1,0), (1,1)}
• The number of solutions (#F) = 3

#P:	The	class	of	counting	problems	for	decision	problems	in	NP!
6

7

Long History of Work
• Proved #P complete (Valiant 1977)

• Approximate variant: introduced by Stockmeyer (1983)

• Uniform sampling is inter-reducible to approximate counting
(Jerrum, Valiant and Vazirani 1986)

• FPRAS for approximate #DNF (Karp, Luby 1985)

• No practical techniques for CNF

Partitioning into equal “small” cells

8

9SMTApproxMC

Partitioning into equal “small” cells

10

Pick	a	random	cell

SMTApproxMC

Estimate	=	#	of	models	in	cell	*	#	of	cells	

Partitioning into equal “small” cells

How to Partition?

11

How to partition into roughly equal small cells of models
without knowing the distribution of models?

Universal Hashing
[Carter-Wegman 1979]

XOR-Based Hashing
• Partition 2n space into 2m cells
• Variables: X1, X2, X3,….., Xn

• Pick every variable with prob. ½ ,XOR them and add 0/1 with
prob. ½
• X1+X3+X6+…. Xn-1 + 0
• To construct h: 0,1 & → 0,1 (, choose m random XORs
• 𝛼	 ∈ 0,1 (→	Set every XOR equation to 0 or 1 randomly
• The cell: F ∧ XOR (CNF+XOR)

12

Size of cell

• Too large => Hard to enumerate
• Too small => Variance can be very high

pivot = 5(1 + 1/")2

13

PAC Counter: ApproxMC(F,𝜀, 𝛿)	

Choose	m
Choose	ℎ ∈ 𝐻 𝑛,𝑚, 3

• For	right	choice	of	m,	large	number	of	cells	are	“small”
• “almost	all”	the	cells	are	“roughly”	equal

• Check	if	a	randomly	picked	cell	is	“small”	
• If	yes,	then	estimate	=	#	of	solutions	in	cell	*	2(

14

ApproxMC(F,𝜀, 𝛿)	

#sols	<	
pivot

NO

15

ApproxMC(F,𝜀, 𝛿)	

#sols	<	
pivot

NO

16

ApproxMC(F,𝜀, 𝛿)	

#sols	<	
pivot

YES

Estimate:	
#	of	sols	*	2(

17

ApproxMC(F,𝜀, 𝛿)	
Key Lemmas

Let 𝑚∗ = log 𝑅; 	− log𝑝𝑖𝑣𝑜𝑡	

Lemma 1: The algorithm terminates with 𝑚 ∈ 𝑚∗ − 1	,𝑚∗ with
high probability

Lemma 2: The estimate from a randomly picked cell for 𝑚 ∈
𝑚∗ − 1	,𝑚∗ is correct with high probability

18

19

Approximate Model Counting
• Approximate Model Counting

Pr 	
𝑅;
1 + 𝜀 ≤ ApproxMC 𝐹, 𝜀, 𝛿 ≤ 1+ 𝜀 𝑅; 	 ≥ 1 − 𝛿

• Hashing-based Approaches

• CAV 2013

• CP 2013

• UAI 2013

• NIPS 2013

• DAC 2014

• ICML 2014

• AAAI	2014

• TACAS	2015

• IJCAI	2015

• ICML	2015

• UAI	2015

• AAAI	2016

• AISTATS	2016

Bit-level reasoning
• XOR-based (mod 2) hash functions in all prior works
• Variables in Graphical Models are not binary
• Approach: Perform “bit-blasting”
� 𝐷𝑜𝑚 𝑋 =	 0, 1, 2, 3
� X can be represented using two bits (𝑦P, 𝑦Q) such that 𝑋 =
𝑦P𝑦Q

� XOR constraints over 𝑦R	variables

• Require solvers to perform bit-level reasoning

20

Word-level Revolution
• Development of SMT Solvers to reason directly at the
level of “words”, i.e. variables
� No need for “bit-blasting”

• The biggest advance in formal methods in last 25 years
[John Rushby, 2011]

21

0

400

800

1200

1600

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Articles	with	“SMT	Solver”	or	“Satisfiability Modulo	 Theory”

Articles

Our Contributions

• HSMT: Efficient word-level Hash Function

• SMTApproxMC: Efficient word-level counter

Theory: QF-BV

22

23

Towards Efficient word-level Hashing
• Lifting hashing from (mod 2) to (mod 2S) constraints
� k: largest “bit-width”

• Linear inequality constraints
� ℎP ≔ 𝑎P𝑥P + 𝑎Q𝑥Q +⋯+ 𝑎&𝑥& + 𝑏
� 𝑎P, 𝑎Q, … . 𝑎&, 𝑏, are randomly chosen from 0 to 2S-1
� 𝛼P := “< 2S\P”	or “	≥ 2S\P”

24

Theoretical Guarantees: 2-universal
• ℎP ≔ (𝑎P𝑥P + 𝑎Q𝑥Q + ⋯+ 𝑎&𝑥& + 𝑏)	
• 𝛼P := < 2S\P

• 𝜎P = {𝑥P = 𝑣P, 𝑥Q = 𝑣Q … . 𝑥& = 𝑣&}
• Pr[𝜎P ⊨ (ℎP= 𝛼P)]
� Transform 𝜎P to (0,0….0)
� Pr[(0,0,....0) ⊨ (ℎP= 𝛼P)] = Pr b < 2S\P = P

Q

• Pr[𝜎Q ⊨ (ℎP= 𝛼P) |𝜎P ⊨ (ℎP= 𝛼P)]
� Transform 𝜎P to (0,0….0)
� Transform 𝜎Q to (1,0…..0)
� Pr[𝜎Q ⊨ (ℎP= 𝛼P) |𝜎P ⊨ (ℎP= 𝛼P)] = Pr[𝑎P + 𝑏 < 2S\P	|𝑏 < 2S\P] = P

Q

25

Word-Level Counter
1. 𝐹f = 𝐹
2. for i= 1 to k:
3. If (|𝑅;g| > pivot):
4. 𝐹f = 𝐹 ∧ { 𝑎P𝑥P + 𝑎Q𝑥Q +⋯ .𝑎&𝑥& + 𝑏	`` ≥ ”	𝑜𝑟	“ < “	2S\P	 }
5. Else:
6. If (|𝑅;g|==0):
7. Return ⊥
8. Return |𝑅;g| ∗ 2l

26

Diagnosis

• Look for hash functions that are polynomial to solve by
themselves

Towards Efficient word-level Hashing
• Lifting hashing from (mod 2) to (mod p) constraints
� p: smallest prime greater than domain of variables (2S)

• Linear equality (mod p) constraints to partition into p
cells

� 𝐷𝑜𝑚 𝑥R ≤ 2S	
� ℎP ≔ (𝑎P𝑥P + 𝑎Q𝑥Q +⋯+ 𝑎&𝑥& + 𝑏)	(mod p)
� 𝑎P, 𝑎Q, … . 𝑎&, 𝑏, are randomly chosen from 0 to p-1

27

28

Theoretical Guarantees: 2-universal
• ℎP ≔ (𝑎P𝑥P + 𝑎Q𝑥Q + ⋯+ 𝑎&𝑥& + 𝑏)	(mod p)
• 𝜎P = {𝑥P = 𝑣P, 𝑥Q = 𝑣Q … . 𝑥& = 𝑣&}
• Pr[𝜎P ⊨ (ℎP= 𝛼P)]
� Transform 𝜎P to (0,0….0)
� Pr[(0,0,....0) ⊨ (ℎP= 𝛼P)] = Pr b == 0 = P

m

• Pr[𝜎Q ⊨ (ℎP= 𝛼P) |𝜎P ⊨ (ℎP= 𝛼P)]
� Transform 𝜎P to (0,0….0)
� Transform 𝜎Q to (1,0…..0)
� Pr[𝜎Q ⊨ (ℎP= 𝛼P) |𝜎P ⊨ (ℎP= 𝛼P)] = Pr[𝑎P = 1] = P

n

29

Word-Level Counter
1. 𝐹f = 𝐹
2. for i= 1 to k:
3. If (|𝑅;g| > pivot):
4. 𝐹f = 𝐹 ∧ { 𝑎P𝑥P + 𝑎Q𝑥Q +⋯ .𝑎&𝑥& + 𝑏 = 𝛼 	mod p}
5. Else:
6. If (|𝑅;g|==0):
7. Return ⊥
8. Return |𝑅;g| ∗ pl

30

Diagnosis
• Number of cells (N) = pc

� C: Number of Linear Constraints

• N is too small → Number of solutions is too large
• N is too large → Number of solutions is very small (Avg < 0)

• Need finer control over number of cells

31

SMTApproxMC 𝐹, 𝜀, 𝛿
1. 𝐹f = 𝐹; i = 0
2. For j = 1 to k:
3. If (|𝑅;g| > pivot):
4. 𝐹f = 𝐹 ∧ { 𝑎P𝑥P + 𝑎Q𝑥Q +⋯ .𝑎&𝑥& + 𝑏 = 𝛼 	mod pi}
5. Else:
6. If (|𝑅;g|==0 & pi >2):
7. 𝐹f = Pop out last constraint; i++
8. 𝐹f = 𝐹 ∧ { 𝑎P𝑥P + 𝑎Q𝑥Q + ⋯ . 𝑎&𝑥& + 𝑏 = 𝛼 	mod pi}
9. Return |𝑅;g| ∗ N

𝑝R = smallest	prime	greater	than	2StP\Qu

HSMT: Efficient word-level Hash Function
• Use different primes to control the number of cells

• Choose appropriate N and express as product of preferred
primes, i.e. 𝑁 = 	𝑝P	

wx𝑝Q	
wy𝑝z	

w{…... 𝑝&	w|

• HSMT:
� 𝑐P (mod 𝑝P) constraints
� 𝑐Q (mod 𝑝Q) constraints
� ….....

• HSMT satisfies guarantees of 2-universality
32

SMTApproxMC

33

Pick	a	random	cell

Estimate	=	#	of	models	in	cell	*	#	of	cells	

Theoretical Guarantees
• 𝐹: Formula over bounded domain variables;
• R� ∶ Solution	Space	of	𝐹

• SMTApproxMC

Pr 	
𝑅;
1 + 𝜀 ≤ SMTApproxMC 𝐹, 𝜀, 𝛿 ≤ 1 + 𝜀 𝑅; 	 ≥ 1 − 𝛿

• Polynomial in 𝐹, P
�
, log P

�
	 relative to word-level oracle

34

Experimental Evaluations
• Over 150 benchmarks from:
� Ising Models
� ISCAS89 Circuits
� Program Synthesis

• Comparison with state of the art tool: CDM
� Based on Chistikov, Dimitrova, and Majumdar 2015

� Similar to Ermon et al, Chakraborty et al, Belle et al, etc..
� Uses XOR-based hash functions (bit level!)

• Objectives:
� Quality of estimates
� Runtime performance comparison

35

36

Quality Comparison

• Pr 	 ��
Pt�

≤ SMTApproxMC 𝐹, 𝜀, 𝛿 ≤ 1+ 𝜀 𝑅; 	 ≥ 1 − 𝛿

• Experiments with 𝜀 = 0.8										𝛿 = 0.1	

• Observed 𝜀 =	max{ ��
SMTApproxMC ;,�,�

- 1, SMTApproxMC ;,�,�
��

-1}

Quality Comparison

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Observed	
Error

Benchmarks

Allowed	Error	(𝜀) = 0.8
Observed	Avg Error	=	0.04

37

(𝜀 = 0.8)

Runtime Performance Comparison

1

10

100

1000

10000

P08 P72 P15 P77 P30 P18 P05 P64 P20 P75 S27

Time	 (s)

SMTApproxMC CDM

SMTApproxMC is	2-10	times	faster	than	CDM

Timeout

38

Highly	heterogeneous	
domains

Future Work

39

40

SMT + Mod p
• For SAT: CNF + XOR
• CryptoMiniSAT has been solver of choice
� Gaussian elimination for added XOR constraints

• SMT Solver with Gaussian elimination for added Linear equality
constraints
• Preferred primes dependent on SMT solver’s architecture?

41

SMT Sampling
• Sampling is inter-reducible to counting (JVV 1986)
� Algorithm is highly impractical (linear number of calls to approx counter)

• Hashing-based framework for sampling
� UniGen (Chakraborty,M.,Vardi, 2013)
� Requires 3-universal guarantees

• HSMT can provide only 2-universal guarantees
� Design efficient algorithms with only 2-universal requirement?

For tools/papers: www.kuldeepmeel.com

