Word-Level Hashing Approach to Approximate Probabilistic Inference

Kuldeep S. Meel
Rice University

Joint work with Supratik Chakraborty (IITB), Rakesh Mistry (IITB), and Moshe Y. Vardi (Rice)
Graphical Models

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Attend</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evening</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afternoon</td>
<td>GM</td>
<td>Yes</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Pr[Attend = Yes \cap Topic=GM \cap Time=Morning] = 0.7*0.65*0.35
Probabilistic Inference

Time		Topic

Morning	0.35
Afternoon	0.2
Evening	0.45

 Attend

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Attend</th>
<th>Pr</th>
<th>NLP</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
<td>...</td>
<td>GM</td>
<td>0.65</td>
</tr>
<tr>
<td>Afternoon</td>
<td>GM</td>
<td>Yes</td>
<td>0.7</td>
<td>Other</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Pr [Attend = Yes | Topic=GM]

Event

Evidence
Probabilistic Inference

- Exact computation is intractable (#P-complete)

- Approximate techniques:
 - Markov Chain Monte Carlo Methods
 - Variational Approximation
 - Interval Propagation
 - Randomization in combinatorial reasoning tools

Drawback:

Either Performance or Theoretical Guarantees but Not Both
Reduction to Model Counting

\[\text{Pr} \{ \text{Attend} = \text{Yes} \mid \text{Topic} = \text{GM} \} \]

Roth 1996
Model Counting

• Given a SAT formula F
• R_F: Set of all solutions of F
• Problem (#SAT): Estimate the number of solutions of F ($#F$) i.e., what is the cardinality of R_F?
• E.g., $F = (a \lor b)$
• $R_F = \{(0,1), (1,0), (1,1)\}$
• The number of solutions ($#F$) = 3

#P: The class of counting problems for decision problems in NP!
Long History of Work

• Proved $\#P$ complete (Valiant 1977)

• Approximate variant: introduced by Stockmeyer (1983)

• Uniform sampling is inter-reducible to approximate counting (Jerrum, Valiant and Vazirani 1986)

• FPRAS for approximate $\#DNF$ (Karp, Luby 1985)

• No practical techniques for CNF
Partitioning into equal “small” cells
Partitioning into equal “small” cells
Partitioning into equal “small” cells

Pick a random cell

Estimate = # of models in cell * # of cells
How to Partition?

How to partition into *roughly equal small* cells of models *without* knowing the distribution of models?

Universal Hashing
[Carter-Wegman 1979]
XOR-Based Hashing

• Partition 2^n space into 2^m cells
• Variables: $X_1, X_2, X_3, \ldots, X_n$
• Pick every variable with prob. $\frac{1}{2}$, XOR them and add 0/1 with prob. $\frac{1}{2}$
• $X_1 + X_3 + X_6 + \ldots + X_{n-1} + 0$
• To construct h: $\{0,1\}^n \rightarrow \{0,1\}^m$, choose m random XORs
• $\alpha \in \{0,1\}^m \rightarrow$ Set every XOR equation to 0 or 1 randomly
• The cell: $F \land \text{XOR (CNF+XOR)}$
Size of cell

- Too large => Hard to enumerate
- Too small => Variance can be very high

\[\text{pivot} = 5\left(1 + \frac{1}{\varepsilon}\right)^2 \]
Choose m
Choose $h \in H(n, m, 3)$

- For right choice of m, large number of cells are “small”
- “almost all” the cells are “roughly” equal
- Check if a randomly picked cell is “small”
- If yes, then estimate $= \#$ of solutions in cell $\times 2^m$
ApproxMC\((F, \varepsilon, \delta)\)
ApproxMC(F, ε, δ)

#sols < pivot → NO
ApproxMC(\(F, \varepsilon, \delta\))

Estimate:
\# of sols * 2^m

\#sols < pivot

YES
ApproxMC(F, ε, δ)

Key Lemmas

Let $m^* = \log|R_F| - \log\text{pivot}$

Lemma 1: The algorithm terminates with $m \in [m^* - 1, m^*]$ with high probability

Lemma 2: The estimate from a randomly picked cell for $m \in [m^* - 1, m^*]$ is correct with high probability
Approximate Model Counting

- Approximate Model Counting

\[
\Pr \left[\frac{|R_F|}{1 + \varepsilon} \leq \text{ApproxMC}(F, \varepsilon, \delta) \leq (1 + \varepsilon)|R_F| \right] \geq 1 - \delta
\]

- Hashing-based Approaches

 - CAV 2013
 - CP 2013
 - UAI 2013
 - NIPS 2013
 - DAC 2014
 - ICML 2014

 - AAAI 2014
 - TACAS 2015
 - IJCAI 2015
 - ICML 2015
 - UAI 2015
 - AAAI 2016
 - AISTATS 2016
Bit-level reasoning

• XOR-based (mod 2) hash functions in all prior works

• Variables in Graphical Models are not binary

• Approach: Perform “bit-blasting”
 • $\text{Dom}(X) = \{0, 1, 2, 3\}$
 • X can be represented using two bits (y_1, y_2) such that $X = y_1y_2$
 • XOR constraints over y_i variables

• Require solvers to perform bit-level reasoning
Word-level Revolution

• Development of SMT Solvers to reason directly at the level of “words”, i.e. variables
 • No need for “bit-blasting”

• The biggest advance in formal methods in last 25 years

[John Rushby, 2011]
Our Contributions

• H_{SMT}: Efficient word-level Hash Function

• SMTApproxMC: Efficient word-level counter

Theory: QF-BV
Towards Efficient word-level Hashing

• Lifting hashing from (mod 2) to (mod 2^k) constraints
 • k: largest “bit-width”

• Linear inequality constraints
 • $h_1 := a_1 x_1 + a_2 x_2 + \cdots + a_n x_n + b$
 • a_1, a_2, \ldots, a_n, b, are randomly chosen from 0 to 2^k-1
 • $\alpha_1 := "< 2^{k-1}"$ or "$\geq 2^{k-1}"$
Theoretical Guarantees: 2-universal

\[h_1 := (a_1 x_1 + a_2 x_2 + \cdots + a_n x_n + b) \]
\[\alpha_1 := < 2^{k-1} \]
\[\sigma_1 = \{ x_1 = v_1, x_2 = v_2 \ldots x_n = v_n \} \]
\[\Pr[\sigma_1 \vdash (h_1 = \alpha_1)] \]
 * Transform \(\sigma_1 \) to (0,0,...,0)
 * \(\Pr[(0,0,...,0) \vdash (h_1 = \alpha_1)] = \Pr[b < 2^{k-1}] = \frac{1}{2} \)

\[\Pr[\sigma_2 \vdash (h_1 = \alpha_1) \mid \sigma_1 \vdash (h_1 = \alpha_1)] \]
 * Transform \(\sigma_1 \) to (0,0,...,0)
 * Transform \(\sigma_2 \) to (1,0,...,0)
 * \(\Pr[\sigma_2 \vdash (h_1 = \alpha_1) \mid \sigma_1 \vdash (h_1 = \alpha_1)] = \Pr[a_1 + b < 2^{k-1} \mid b < 2^{k-1}] = \frac{1}{2} \)
Word-Level Counter

1. $F' = F$
2. for $i = 1$ to k:
3. If ($|R_{F'}| > \text{pivot}$):
4. \[F' = F \land \{(a_1x_1 + a_2x_2 + \cdots a_nx_n + b \geq \text{"or" } 2^{k-1})\} \]
5. Else:
6. If ($|R_{F'}| == 0$):
7. \text{Return } \perp
8. \text{Return } |R_{F'}| \ast 2^i
Diagnosis

• Look for hash functions that are polynomial to solve by themselves
Towards Efficient word-level Hashing

• Lifting hashing from (mod 2) to (mod p) constraints
 • p: smallest prime greater than domain of variables (2^k)

• Linear equality (mod p) constraints to partition into p cells
 • $|Dom(x_i)| \leq 2^k$
 • $h_1 := (a_1x_1 + a_2x_2 + \ldots + a_nx_n + b) \pmod{p}$
 • a_1, a_2, \ldots, a_n, b, are randomly chosen from 0 to p-1
Theoretical Guarantees: 2-universal

\(h_1 := (a_1 x_1 + a_2 x_2 + \cdots + a_n x_n + b \pmod{p}) \)

\(\sigma_1 = \{ x_1 = v_1, x_2 = v_2, \ldots, x_n = v_n \} \)

\(\Pr[\sigma_1 \models (h_1 = \alpha_1)] \)
 * Transform \(\sigma_1 \) to (0,0,\ldots,0)
 * \(\Pr[(0,0,\ldots,0) \models (h_1 = \alpha_1)] = \Pr[b == 0] = \frac{1}{p} \)

\(\Pr[\sigma_2 \models (h_1 = \alpha_1) \mid \sigma_1 \models (h_1 = \alpha_1)] \)
 * Transform \(\sigma_1 \) to (0,0,\ldots,0)
 * Transform \(\sigma_2 \) to (1,0,\ldots,0)
 * \(\Pr[\sigma_2 \models (h_1 = \alpha_1) \mid \sigma_1 \models (h_1 = \alpha_1)] = \Pr[a_1 = 1] = \frac{1}{p} \)
Word-Level Counter

1. $F' = F$
2. for i= 1 to k:
3. If $(|R_{F'}| > \text{pivot})$:
 4. $F' = F \land \{(a_1x_1 + a_2x_2 + \cdots + a_nx_n + b = \alpha) \mod p\}$
5. Else:
6. If $(|R_{F'}| == 0)$:
 7. Return \perp
8. Return $|R_{F'}| * p^i$
Diagnosis

• Number of cells \((N) = p^c\)
 • \(C\): Number of Linear Constraints

• \(N\) is too small \rightarrow Number of solutions is too large

• \(N\) is too large \rightarrow Number of solutions is very small (Avg < 0)

• Need finer control over number of cells
SMTApproxMC(\(F, \varepsilon, \delta\))

1. \(F' = F; \ i = 0\)
2. For \(j = 1\) to \(k:\)
3. If (\(|R_{F'}| > \text{pivot}\)):
4. \(F' = F \land \{(a_1x_1 + a_2x_2 + \cdots a_nx_n + b = \alpha) \mod p_i\}\)
5. Else:
6. If (\(|R_{F'}| == 0 \& p_i > 2\)):
7. \(F' = \text{Pop out last constraint; } i++\)
8. \(F' = F \land \{(a_1x_1 + a_2x_2 + \cdots a_nx_n + b = \alpha) \mod p_i\}\)
9. Return \(|R_{F'}| \ast N\)

\(p_i = \text{smallest prime greater than } 2^{k+1-2^i}\)
H\textsubscript{SMT}: Efficient word-level Hash Function

- Use different primes to control the number of cells

- Choose appropriate \(N \) and express as product of *preferred* primes, i.e. \(N = p_1^{c_1} p_2^{c_2} p_3^{c_3} \ldots \ p_n^{c_n} \)

- \(H\textsubscript{SMT} \):
 - \(c_1 \) (mod \(p_1 \)) constraints
 - \(c_2 \) (mod \(p_2 \)) constraints
 - \(\ldots \ldots \)

- \(H\textsubscript{SMT} \) satisfies guarantees of 2-universality
SMTApproxMC

Pick a random cell

Estimate = # of models in cell * # of cells
Theoretical Guarantees

• F: Formula over bounded domain variables;

• R_F: Solution Space of F

• SMTApproxMC

\[
\Pr \left[\frac{|R_F|}{1 + \varepsilon} \leq \text{SMTApproxMC}(F, \varepsilon, \delta) \leq (1 + \varepsilon)|R_F| \right] \geq 1 - \delta
\]

• Polynomial in $F, \frac{1}{\varepsilon}, \log \left(\frac{1}{\delta} \right)$ relative to word-level oracle
Experimental Evaluations

• Over 150 benchmarks from:
 • Ising Models
 • ISCAS89 Circuits
 • Program Synthesis

• Comparison with state of the art tool: CDM
 • Based on Chistikov, Dimitrova, and Majumdar 2015
 • Similar to Ermon et al, Chakraborty et al, Belle et al, etc..
 • Uses XOR-based hash functions (bit level!)

• Objectives:
 • Quality of estimates
 • Runtime performance comparison
Quality Comparison

\[\Pr \left[\frac{|R_F|}{1+\varepsilon} \leq \text{SMTApproxMC}(F, \varepsilon, \delta) \leq (1 + \varepsilon)|R_F| \right] \geq 1 - \delta \]

- Experiments with \(\varepsilon = 0.8 \quad \delta = 0.1 \)

- Observed \(\varepsilon = \max\left\{ \frac{|R_F|}{\text{SMTApproxMC}(F, \varepsilon, \delta)} - 1, \frac{\text{SMTApproxMC}(F, \varepsilon, \delta)}{|R_F|} - 1 \right\} \)
Quality Comparison

Allowed Error (ε) = 0.8
Observed Avg Error = 0.04

($\varepsilon = 0.8$)
Runtime Performance Comparison

SMTApproxMC is 2-10 times faster than CDM
Future Work
SMT + Mod p

- For SAT: CNF + XOR

- CryptoMiniSAT has been solver of choice
 - Gaussian elimination for added XOR constraints

- SMT Solver with Gaussian elimination for added Linear equality constraints

- Preferred primes dependent on SMT solver’s architecture?
SMT Sampling

- Sampling is inter-reducible to counting (JVV 1986)
 - Algorithm is highly impractical (linear number of calls to approx counter)

- Hashing-based framework for sampling
 - UniGen (Chakraborty, M., Vardi, 2013)
 - Requires 3-universal guarantees

- H_{SMT} can provide only 2-universal guarantees
 - Design efficient algorithms with only 2-universal requirement?

For tools/papers: www.kuldeepmeel.com