Word-Level Hashing Approach to Approximate Probabilistic Inference

Kuldeep S. Meel

Rice University

Joint work with Supratik Chakraborty (IITB), Rakesh Mistry (IITB), and Moshe Y. Vardi (Rice)

Graphical Models

 $Pr[Attend = Yes \cap Topic=GM \cap Time=Morning] = 0.7*0.65*0.35$

Probabilistic Inference

Probabilistic Inference

• Exact computation is intractable (#P-complete)

- Approximate techniques:
 - Markov Chain Monte Carlo Methods
 - Variational Approximation
 - Interval Propagation
 - Randomization in combinatorial reasoning tools

Drawback:

Either Performance or Theoretical Guarantees but Not Both

Reduction to Model Counting

Model Counting

- Given a SAT formula F
- $\cdot R_F$: Set of all solutions of F
- Problem (#SAT): Estimate the number of solutions of F (#F) i.e., what is the cardinality of $R_{\rm F}?$
- E.g., F = (a v b)
- $R_F = \{(0,1), (1,0), (1,1)\}$
- The number of solutions (#F) = 3

#P: The class of counting problems for decision problems in NP!

Long History of Work

- Proved #P complete (Valiant 1977)
- Approximate variant: introduced by Stockmeyer (1983)
- Uniform sampling is inter-reducible to approximate counting (Jerrum, Valiant and Vazirani 1986)
- FPRAS for approximate #DNF (Karp, Luby 1985)
- No practical techniques for CNF

Partitioning into equal "small" cells

Partitioning into equal "small" cells

Partitioning into equal "small" cells

Estimate = # of models in cell * # of cells

How to Partition?

How to partition into *roughly equal small* cells of models *without* knowing the distribution of models?

Universal Hashing [Carter-Wegman 1979]

XOR-Based Hashing

- Partition 2^n space into 2^m cells
- Variables: $X_1, X_2, X_3, \ldots, X_n$
- Pick every variable with prob. $\frac{1}{2}$,XOR them and add ~0/1 with prob. $\frac{1}{2}$
- $X_1 + X_3 + X_6 + \dots X_{n-1} + 0$
- To construct h: $\{0,1\}^n \to \{0,1\}^m,$ choose m random XORs
- $\alpha \in \{0,1\}^m \to \operatorname{Set}$ every XOR equation to 0 or 1 randomly
- The cell: $F \land XOR$ (CNF+XOR)

Size of cell

• Too large => Hard to enumerate

• Too small => Variance can be very high

pivot = $5(1 + 1/\varepsilon)^2$

PAC Counter: ApproxMC(F, ε , δ)

- For right choice of m, large number of cells are "small"
 - "almost all" the cells are "roughly" equal
- Check if a randomly picked cell is "small"
- If yes, then estimate = # of solutions in cell $* 2^m$

ApproxMC(F, ε , δ)

ApproxMC(F, ε , δ)

ApproxMC(F, ε , δ)

ApproxMC(F, ε , δ)

Key Lemmas

Let $m^* = \log |R_F| - \log pivot$

Lemma 1: The algorithm terminates with $m \in [m^* - 1, m^*]$ with high probability

Lemma 2: The estimate from a randomly picked cell for $m \in [m^* - 1, m^*]$ is correct with high probability

Approximate Model Counting

- Approximate Model Counting $\Pr\left[\frac{|R_F|}{1+\varepsilon} \le \operatorname{ApproxMC}(F,\varepsilon,\delta) \le (1+\varepsilon)|R_F|\right] \ge 1-\delta$
- Hashing-based Approaches
 - CAV 2013
 - CP 2013
 - UAI 2013
 - NIPS 2013
 - DAC 2014
 - ICML 2014

- AAAI 2014
- TACAS 2015
- IJCAI 2015
- ICML 2015
- UAI 2015
- AAAI 2016
- AISTATS 2016

Bit-level reasoning

- XOR-based (mod 2) hash functions in **all** prior works
- Variables in Graphical Models are not binary
- Approach: Perform "bit-blasting"
 - $Dom(X) = \{0, 1, 2, 3\}$
 - X can be represented using two bits (y_1, y_2) such that $X = y_1 y_2$
 - XOR constraints over y_i variables
- Require solvers to perform bit-level reasoning

Word-level Revolution

- Development of SMT Solvers to reason directly at the level of "words", i.e. variables
 - No need for "bit-blasting"
- The biggest advance in formal methods in last 25 years [John Rushby, 2011]

Articles with "SMT Solver" or "Satisfiability Modulo Theory"

Our Contributions

• H_{SMT} : Efficient word-level Hash Function

SMTApproxMC: Efficient word-level counter

Theory: QF-BV

Towards Efficient word-level Hashing

- Lifting hashing from (mod 2) to (mod 2^k) constraints
 - k: largest "bit-width"
- Linear inequality constraints
 - $\cdot h_1 \coloneqq a_1 x_1 + a_2 x_2 + \dots + a_n x_n + b$
 - *a*₁, *a*₂, ..., *a*_n, *b*, are randomly chosen from 0 to 2^k-1 *α*₁ := "< 2^{k-1}" or "≥ 2^{k-1}"

Theoretical Guarantees: 2-universal

• $h_1 \coloneqq (a_1 x_1 + a_2 x_2 + \dots + a_n x_n + b)$ • $\alpha_1 := < 2^{k-1}$

•
$$\sigma_1 = \{x_1 = v_1, x_2 = v_2 \dots x_n = v_n\}$$

- $\Pr[\sigma_1 \vDash (h_1 = \alpha_1)]$
 - Transform σ_1 to (0,0....0)
 - $\Pr[(0,0,...,0) \vDash (h_1 = \alpha_1)] = \Pr[b < 2^{k-1}] = \frac{1}{2}$

•
$$\Pr[\sigma_2 \vDash (h_1 = \alpha_1) \mid \sigma_1 \vDash (h_1 = \alpha_1)]$$

- Transform σ_1 to (0,0....0)
- Transform σ_2 to $(1, 0, \dots, 0)$

• $\Pr[\sigma_2 \models (h_1 = \alpha_1) \mid \sigma_1 \models (h_1 = \alpha_1)] = \Pr[a_1 + b < 2^{k-1} \mid b < 2^{k-1}] = \frac{1}{2}$

Word-Level Counter

- 1. F' = F
- 2. for i= 1 to k:
- 3. If $(|R_{F'}| > \text{pivot})$:

4.
$$F' = F \wedge \{ (a_1 x_1 + a_2 x_2 + \dots , a_n x_n + b^{``} \ge " \text{ or } " < " 2^{k-1}) \}$$

5. Else:

- 6. If $(|R_{F'}| == 0)$:
- 7. Return ⊥
- 8. Return $|R_{F'}| * 2^i$

 Look for hash functions that are polynomial to solve by themselves

Towards Efficient word-level Hashing

Lifting hashing from (mod 2) to (mod p) constraints
p: smallest prime greater than domain of variables (2^k)

- Linear equality (mod p) constraints to partition into p cells
 - $|Dom(x_i)| \le 2^k$
 - $h_1 \coloneqq (a_1x_1 + a_2x_2 + \dots + a_nx_n + b) \pmod{p}$
 - a_1, a_2, \dots, a_n, b , are randomly chosen from 0 to p-1

Theoretical Guarantees: 2-universal

• $h_1 \coloneqq (a_1x_1 + a_2x_2 + \dots + a_nx_n + b) \pmod{p}$

•
$$\sigma_1 = \{x_1 = v_1, x_2 = v_2 \dots x_n = v_n\}$$

- $\Pr[\sigma_1 \models (h_1 = \alpha_1)]$ • Transform σ_1 to (0,0....0) • $\Pr[(0,0,....0) \models (h_1 = \alpha_1)] = \Pr[b == 0] = \frac{1}{p}$
- $\Pr[\sigma_2 \vDash (h_1 = \alpha_1) \mid \sigma_1 \vDash (h_1 = \alpha_1)]$
 - Transform σ_1 to (0,0....0)
 - Transform σ_2 to $(1, 0, \dots, 0)$
 - $\Pr[\sigma_2 \vDash (h_1 = \alpha_1) \mid \sigma_1 \vDash (h_1 = \alpha_1)] = \Pr[a_1 = 1] = \frac{1}{p}$

Word-Level Counter

- 1. F' = F
- 2. for i= 1 to k:
- 3. If $(|R_{F'}| > \text{pivot})$:
- 4. $F' = F \land \{(a_1x_1 + a_2x_2 + \dots , a_nx_n + b = \alpha) \mod p\}$
- 5. Else:
- 6. If $(|R_{F'}| == 0)$:
- 7. Return ⊥
- 8. Return $|R_{F'}| * p^i$

Diagnosis

- Number of cells (N) = p^c
 - C: Number of Linear Constraints
- N is too small \rightarrow Number of solutions is too large
- N is too large \rightarrow Number of solutions is very small (Avg < 0)

• Need finer control over number of cells

SMTApproxMC(F, ε, δ)

1. F' = F; i = 0

 $p_i = \text{smallest prime greater than } 2^{k+1-2^i}$

- 2. For j = 1 to k:
- 3. If $(|R_{F'}| > \text{pivot})$:
- 4. $F' = F \land \{(a_1 x_1 + a_2 x_2 + \dots , a_n x_n + b = \alpha) \mod p_i\}$
- 5. Else:
- 6. If $(|R_{F'}| == 0 \& p_i > 2)$:
- 7. F' = Pop out last constraint; i++
- 8. $F' = F \land \{(a_1 x_1 + a_2 x_2 + \dots , a_n x_n + b = \alpha) \mod p_i\}$
- 9. Return $|R_{F'}| * N$

H_{SMT} : Efficient word-level Hash Function

- Use different primes to control the number of cells
- Choose appropriate N and express as product of *preferred* primes, i.e. $N = p_1^{c_1} p_2^{c_2} p_3^{c_3} \dots p_n^{c_n}$
- H_{SMT} :
 - $c_1 \pmod{p_1}$ constraints
 - $c_2 \pmod{p_2}$ constraints
 - •

 ${\mbox{ }} H_{SMT}$ satisfies guarantees of 2-universality

SMTApproxMC

Estimate = # of models in cell * # of cells

Theoretical Guarantees

- F: Formula over bounded domain variables;
- R_F : Solution Space of *F*
- SMTApproxMC

$$\Pr\left[\frac{|R_F|}{1+\varepsilon} \le \mathsf{SMTApproxMC}(F, \varepsilon, \delta) \le (1+\varepsilon)|R_F|\right] \ge 1-\delta$$

• Polynomial in $F, \frac{1}{\varepsilon}, \log\left(\frac{1}{\delta}\right)$ relative to word-level oracle

Experimental Evaluations

- Over 150 benchmarks from:
 - Ising Models
 - ISCAS89 Circuits
 - Program Synthesis
- Comparison with state of the art tool: CDM
 - Based on Chistikov, Dimitrova, and Majumdar 2015
 - Similar to Ermon et al, Chakraborty et al, Belle et al, etc..
 - Uses XOR-based hash functions (bit level!)
- Objectives:
 - Quality of estimates
 - Runtime performance comparison

Quality Comparison

•
$$\Pr\left[\frac{|R_F|}{1+\varepsilon} \leq \text{SMTApproxMC}(F,\varepsilon,\delta) \leq (1+\varepsilon)|R_F|\right] \geq 1-\delta$$

• Experiments with $\varepsilon = 0.8$ $\delta = 0.1$

• Observed
$$\varepsilon = \max\{\frac{|R_F|}{\text{SMTApproxMC}(F,\varepsilon,\delta)} - 1, \frac{\text{SMTApproxMC}(F,\varepsilon,\delta)}{|R_F|} - 1\}$$

Quality Comparison

Runtime Performance Comparison

Future Work

SMT + Mod p

- For SAT: CNF + XOR
- CryptoMiniSAT has been solver of choice
 - Gaussian elimination for added XOR constraints

- SMT Solver with Gaussian elimination for added Linear equality constraints
- Preferred primes dependent on SMT solver's architecture?

SMT Sampling

- Sampling is inter-reducible to counting (JVV 1986)
 - Algorithm is highly impractical (linear number of calls to approx counter)

- Hashing-based framework for sampling
 - UniGen (Chakraborty, M., Vardi, 2013)
 - Requires 3-universal guarantees
- H_{SMT} can provide only 2-universal guarantees
 - Design efficient algorithms with only 2-universal requirement?

For tools/papers: www.kuldeepmeel.com