Sparse Hashing for Scalable Approximate Model
 Counting: When Theory and Practice Finally Meet

Kuldeep S. Meel

School of Computing, National University of Singapore

> Joint work with S. Akshay

Corresponding publication: LICS-20

Model Counting

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$

Model Counting

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- Model Counting: Determine $|\operatorname{Sol}(F)|$

Model Counting

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- Model Counting: Determine $|\operatorname{Sol}(F)|$
- Given $F:=\left(X_{1} \vee X_{2}\right)$

Model Counting

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- Model Counting: Determine $|\operatorname{Sol}(F)|$
- Given $F:=\left(X_{1} \vee X_{2}\right)$
- Sol $(F)=\{(0,1),(1,0),(1,1)\}$

Model Counting

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- Model Counting: Determine $|\operatorname{Sol}(F)|$
- Given $F:=\left(X_{1} \vee X_{2}\right)$
- Sol $(F)=\{(0,1),(1,0),(1,1)\}$
- $|\operatorname{Sol}(F)|=3$

Applications across Computer Science

Different Shades of Approximation

- Probabilistic $(1+\varepsilon)$-Approximation

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxCount}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta
$$

Different Shades of Approximation

- Probabilistic $(1+\varepsilon)$-Approximation

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxCount}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta
$$

- Constant Factor Approximation: $(4, \delta)$

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{4} \leq \operatorname{ConstantCount}(F, \delta) \leq 4 \cdot|\operatorname{Sol}(F)|\right] \geq 1-\delta
$$

Different Shades of Approximation

- Probabilistic $(1+\varepsilon)$-Approximation

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxCount}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta
$$

- Constant Factor Approximation: $(4, \delta)$

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{4} \leq \text { ConstantCount }(F, \delta) \leq 4 \cdot|\operatorname{Sol}(F)|\right] \geq 1-\delta
$$

- From 4 to 2-factor

Let $G=F_{1} \wedge F_{2}$ (i.e., two identical copies of F)

$$
\frac{|\operatorname{Sol}(G)|}{4} \leq C \leq 4 \cdot|\operatorname{Sol}(G)| \Longrightarrow \frac{|\operatorname{Sol}(F)|}{2} \leq \sqrt{C} \leq 2 \cdot|\operatorname{Sol}(F)|
$$

Different Shades of Approximation

- Probabilistic $(1+\varepsilon)$-Approximation

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxCount}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta
$$

- Constant Factor Approximation: $(4, \delta)$

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{4} \leq \operatorname{ConstantCount}(F, \delta) \leq 4 \cdot|\operatorname{Sol}(F)|\right] \geq 1-\delta
$$

- From 4 to 2-factor

Let $G=F_{1} \wedge F_{2}$ (i.e., two identical copies of F)

$$
\frac{|\operatorname{Sol}(G)|}{4} \leq C \leq 4 \cdot|\operatorname{Sol}(G)| \Longrightarrow \frac{|\operatorname{Sol}(F)|}{2} \leq \sqrt{C} \leq 2 \cdot|\operatorname{Sol}(F)|
$$

- From 4 to $(1+\varepsilon)$-factor

Construct $G=F_{1} \wedge F_{2} \ldots F_{\frac{1}{\varepsilon}}$ And then we can take $\frac{1}{\varepsilon}$-root

Hashing-Based Techniques

The Rise of Hashing-based Approach: Promise of Scalability and Guarantees (S83,GSS06,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16 KM18,ATD18,SM19,ABM20,SGM20)

As Simple as Counting Dots

As Simple as Counting Dots

As Simple as Counting Dots

Pick a random cell

Estimate $=$ Number of solutions in a cell \times Number of cells

Challenges

Challenge 1 What is exactly a small cell ?

Challenges

Challenge 1 What is exactly a small cell ?

Challenge 2 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?
Challenge 3 How many cells?

Challenges

Challenge 1 What is exactly a small cell ?

- A cell is small cell if it has \approx thresh solutions.
- Two choices for thresh.
- thresh $=$ constant $\rightarrow 4$-factor approximation
- thresh $=\mathcal{O}\left(\frac{1}{\varepsilon^{2}}\right)$ gives $(1+\varepsilon)$-approximation directly

Challenges

Challenge 1 What is exactly a small cell ?

- A cell is small cell if it has \approx thresh solutions.
- Two choices for thresh.
- thresh $=$ constant $\rightarrow 4$-factor approximation
- thresh $=\mathcal{O}\left(\frac{1}{\varepsilon^{2}}\right)$ gives $(1+\varepsilon)$-approximation directly
- Z_{m} be the number of solutions in a randomly chosen cell ; we are interested in cases $\mathrm{E}\left[Z_{m}\right] \geq 1$

Challenges

Challenge 1 What is exactly a small cell ?

- A cell is small cell if it has \approx thresh solutions.
- Two choices for thresh.
- thresh $=$ constant $\rightarrow 4$-factor approximation
- thresh $=\mathcal{O}\left(\frac{1}{\varepsilon^{2}}\right)$ gives $(1+\varepsilon)$-approximation directly
- Z_{m} be the number of solutions in a randomly chosen cell ; we are interested in cases $\mathrm{E}\left[Z_{m}\right] \geq 1$
- For thresh $=\mathcal{O}\left(\frac{1}{\varepsilon^{2}}\right)$, we need dispersion index: $\frac{\sigma^{2}\left[Z_{m}\right]}{\left(\mathrm{E}\left[Z_{m}\right]\right)} \leq$ some constant
- For thresh $=$ constant, sufficient to have coefficient of variation: $\frac{\sigma^{2}\left[Z_{m}\right]}{\left(\mathrm{E}\left[Z_{m}\right]\right)^{2}} \leq$ some constant

Challenges

Challenge 1 What is exactly a small cell ?

- A cell is small cell if it has \approx thresh solutions.
- Two choices for thresh.
- thresh $=$ constant $\rightarrow 4$-factor approximation
- thresh $=\mathcal{O}\left(\frac{1}{\varepsilon^{2}}\right)$ gives $(1+\varepsilon)$-approximation directly
- Z_{m} be the number of solutions in a randomly chosen cell ; we are interested in cases $\mathrm{E}\left[Z_{m}\right] \geq 1$
- For thresh $=\mathcal{O}\left(\frac{1}{\varepsilon^{2}}\right)$, we need dispersion index: $\frac{\sigma^{2}\left[Z_{m}\right]}{\left(\mathrm{E}\left[Z_{m}\right]\right)} \leq$ some constant
- For thresh $=$ constant, sufficient to have coefficient of variation: $\frac{\sigma^{2}\left[Z_{m}\right]}{\left(\mathrm{E}\left[Z_{m}\right]\right)^{2}} \leq$ some constant
Techniques based on thresh $=\mathcal{O}\left(\frac{1}{\varepsilon^{2}}\right)$ such as ApproxMC scale significantly better than those based on thresh $=$ constant.

Challenges

Challenge 1 What is exactly a small cell ?
Challenge 2 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenges

Challenge 1 What is exactly a small cell ?
Challenge 2 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Solutions in a cell α : $\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}$

Challenges

Challenge 1 What is exactly a small cell ?
Challenge 2 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Solutions in a cell α : $\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}$
- Choose h randomly from a specially constructed large family H of hash functions
Carter and Wegman 1977

Pairwise Independent Hashing

- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}$
- Expected size of each XOR: $\frac{n}{2}$

Pairwise Independent Hashing

- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}$
- Expected size of each XOR: $\frac{n}{2}$
- To choose $\alpha \in\{0,1\}^{m}$, set every XOR equation to 0 or 1 randomly

$$
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
$$

- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$
- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- Set of XORs

$$
\begin{array}{r}
x_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
x_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
$$

- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$
- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- Set of XORs

$$
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
$$

- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$
- Performance of state of the art SAT solvers degrade with increase in the size of XORs (SAT Solvers != SAT oracles)

The Hope of Short XORs

- View the set of XORs as Matrices: $A X=b$ where $\cdot=\wedge$ and $+=\oplus$
- A is 0-1 matrix of size $m \times n$
- b is $0-1$ matrix of size $m \times 1$
- If we pick every variable X_{i} with probability p.
- Expected Size of each XOR: np
- $\operatorname{Pr}\left[\sigma_{1}\right.$ is in Cell $]=\operatorname{Pr}\left[A \sigma_{1}=b\right]=\frac{1}{2^{m}}$
$-\mathrm{E}\left[Z_{m}\right]=\sum_{\sigma \in \operatorname{Sol}(F)} \operatorname{Pr}\left[\sigma_{1}\right.$ is in Cell $]=\frac{|\mathrm{Sol}(F)|}{2^{m}}$
- Now,

$$
\begin{aligned}
\operatorname{Pr}\left[\sigma_{1} \text { and } \sigma_{2} \text { are in Cell }\right] & =\operatorname{Pr}\left[A \sigma_{1}=b=A \sigma_{2}\right] \\
& =\operatorname{Pr}\left[A \sigma_{1}=b\right] \operatorname{Pr}\left[A\left(\sigma_{2}-\sigma_{1}\right)=0\right] \\
& =\frac{1}{2^{m}}\left(\frac{1}{2}+\frac{(1-2 p)^{w}}{2}\right)^{m}
\end{aligned}
$$

- $\sigma^{2}\left[Z_{m}\right] \leq \mathrm{E}\left[Z_{m}\right]+\sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} r(w, m)$
- where, $r(w, m)=\frac{1}{2^{m}}\left(\left(\frac{1}{2}+\frac{(1-2 p)^{w}}{2}\right)^{m}-\frac{1}{2^{m}}\right)$
- For $p=\frac{1}{2}$, we have $\frac{\sigma^{2}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq 1$
- The first decade
(GSS07,EGSS14,ZCSE16,AD17,ATD18)
$-\sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} r(w, m) \leq \sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{w=0}^{n}\binom{n}{w} r(w, m)$
- $\binom{n}{w}$ grows very fast with n, so can't upper bound $\frac{\sigma^{2}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]}$ by a constant.
- The first decade
(GSS07,EGSS14,ZCSE16,AD17,ATD18)
$-\sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} r(w, m) \leq \sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{w=0}^{n}\binom{n}{w} r(w, m)$
- $\binom{n}{w}$ grows very fast with n, so can't upper bound $\frac{\sigma^{2}\left[Z_{m}\right]}{E\left[Z_{m}\right]}$ by a constant.
- But, $\frac{\sigma^{2}\left[Z_{m}\right]}{\left(\mathrm{E}\left[Z_{m}\right]\right)^{2}} \leq 1$ for $p=\mathcal{O}\left(\frac{\log m}{m}\right)$

The First Decade

- The first decade
(GSS07,EGSS14,ZCSE16,AD17,ATD18)
$-\sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} r(w, m) \leq \sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{w=0}^{n}\binom{n}{w} r(w, m)$
$-\binom{n}{w}$ grows very fast with n, so can't upper bound $\frac{\sigma^{2}\left[Z_{m}\right]}{E\left[Z_{m}\right]}$ by a constant.
- But, $\frac{\sigma^{2}\left[Z_{m}\right]}{\left(\mathrm{E}\left[Z_{m}\right]\right)^{2}} \leq 1$ for $p=\mathcal{O}\left(\frac{\log m}{m}\right)$
(ZCSE16,AD17,ATD18)
- The weak bounds lead to significant slowdown: typically $100 \times$ to $1000 \times$ factor of slowdown!

- $\sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} r(w, m)=\sum_{w=1}^{n} C_{F}(w) r(w, m)$
- $C_{F}(w)=\left|\left\{\sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F) \mid d\left(\sigma_{1}, \sigma_{2}\right)=w\right\}\right|$
- Question What is the maximum value of $C_{F}(1)$?
- $\sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} r(w, m)=\sum_{w=1}^{n} C_{F}(w) r(w, m)$
- $C_{F}(w)=\left|\left\{\sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F) \mid d\left(\sigma_{1}, \sigma_{2}\right)=w\right\}\right|$
- Question What is the maximum value of $C_{F}(1)$?
- Well, $C_{F}(1) \leq|\operatorname{Sol}(F)|\binom{n}{1}$
- Suppose $n=3$ and $|\operatorname{Sol}(F)|=3$
- Possibilities: $\{(0,0,0),(1,0,0),(0,1,0),(0,0,1)\}$

The Power of Isoperimetric Inequalities

- $\sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} r(w, m)=\sum_{w=1}^{n} C_{F}(w) r(w, m)$
- $C_{F}(w)=\left|\left\{\sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F) \mid d\left(\sigma_{1}, \sigma_{2}\right)=w\right\}\right|$
- Question What is the maximum value of $C_{F}(1)$?
- Well, $C_{F}(1) \leq|\operatorname{Sol}(F)|\binom{n}{1}$
- Suppose $n=3$ and $|\operatorname{Sol}(F)|=3$
- Possibilities: $\{(0,0,0),(1,0,0),(0,1,0),(0,0,1)\}$

Theorem (Harper's Theorem (1962))
$C_{F}(1) \leq|\operatorname{Sol}(F)|\binom{\ell}{1}$ where $\ell=\log |\operatorname{Sol}(F)|$

The Power of Isoperimetric Inequalities

Lemma (Rashtchian and Raynaud 2019)

$$
\sum_{w=1}^{n} C_{F}(w) \leq \sum_{w=1}^{n}\binom{8 e \sqrt{n \cdot \ell}}{w} \text { where } \ell=\log |\operatorname{Sol}(F)|
$$

The Power of Isoperimetric Inequalities

> Lemma (Rashtchian and Raynaud 2019)
> $\sum_{w=1}^{n} C_{F}(w) \leq \sum_{w=1}^{n}\binom{8 \mathrm{e} \sqrt{n \cdot \ell}}{w}$ where $\ell=\log |\operatorname{Sol}(F)|$
> What about $\sum_{w=1}^{n} C_{F}(w) r(w, m) ?$

The Power of Isoperimetric Inequalities

Lemma (Rashtchian and Raynaud 2019)

$\sum_{w=1}^{n} C_{F}(w) \leq \sum_{w=1}^{n}\binom{8 e \sqrt{n \cdot \ell}}{w}$ where $\ell=\log |\operatorname{Sol}(F)|$
What about $\sum_{w=1}^{n} C_{F}(w) r(w, m)$?

Lemma
 $\sum_{w=1}^{n} C_{F}(w) r(w, m) \leq \sum_{w=1}^{n}\binom{8 e \sqrt{n \cdot \ell}}{w} r(w, m)$ where $\ell=\log |\operatorname{Sol}(F)|$

- Improvement from $\binom{n}{w}$ to $\binom{8 e \sqrt{n \cdot \ell}}{w}$
- $\frac{\binom{n}{w}}{\binom{8 e \sqrt{n \cdot \ell}}{w}} \approx\left(\frac{n}{\ell}\right)^{\frac{w}{2}}$

From Linear to Logarithmic Size XORs

Theorem (Informal)

For all $q, k,|\operatorname{Sol}(F)| \leq k \cdot 2^{m}, p=\mathcal{O}\left(\frac{\log m}{m}\right)$ we have

$$
\frac{\sigma^{2}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq q(\text { a constant })
$$

Recall, average size of XORs: $n \cdot p$ Improvement of p from $\frac{m / 2}{m}$ to $\frac{\log m}{m}$

From Linear to Logarithmic Size XORs

Theorem (Informal)

For all $q, k,|\operatorname{Sol}(F)| \leq k \cdot 2^{m}, p=\mathcal{O}\left(\frac{\log m}{m}\right)$ we have

$$
\frac{\sigma^{2}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq q(\text { a constant })
$$

Recall, average size of XORs: $n \cdot p$ Improvement of p from $\frac{m / 2}{m}$ to $\frac{\log m}{m}$

Challenge: No meaningful bounds on $|\operatorname{Sol}(F)|$

How many cells?

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$

How many cells?

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Check for every $m=0,1, \cdots n$ if the number of solutions \leq thresh

How many cells?

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Check for every $m=0,1, \cdots n$ if the number of solutions \leq thresh

How many cells?

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Check for every $m=0,1, \cdots n$ if the number of solutions \leq thresh

How many cells?

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Check for every $m=0,1, \cdots n$ if the number of solutions \leq thresh

The Secrets of Hashing-based Techniques

Challenge How do we obtain meaningful bounds on $|\operatorname{Sol}(F)|$?
Solution : We do not need to!
Key Insight : When adding m-th XOR, theoretical analysis only requires $\frac{\sigma^{2}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq q$ whenever $|\operatorname{Sol}(F)| \leq$ thresh $\cdot 2^{m}$

The Secrets of Hashing-based Techniques

Challenge How do we obtain meaningful bounds on $|\operatorname{Sol}(F)|$?
Solution : We do not need to!
Key Insight : When adding m-th XOR, theoretical analysis only requires $\frac{\sigma^{2}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq q$ whenever $|\operatorname{Sol}(F)| \leq$ thresh $\cdot 2^{m}$

- Suppose m-th XOR is added with p_{m} and $p_{1} \geq p_{2} \cdots \geq p_{m}$
- $\sigma^{2}\left[Z_{m}\right] \leq \mathrm{E}\left[Z_{m}\right]+\sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} r(w, m)$

$$
\begin{aligned}
r(w, m) & =\frac{1}{2^{m}}\left(\prod_{i=1}^{m}\left(\frac{1}{2}+\frac{\left(1-2 p_{i}\right)^{w}}{2}\right)-\frac{1}{2^{m}}\right) \\
& \leq \frac{1}{2^{m}}\left(\prod_{i=1}^{m}\left(\frac{1}{2}+\frac{\left(1-2 p_{m}\right)^{w}}{2}\right)^{m}-\frac{1}{2^{m}}\right)
\end{aligned}
$$

The Secrets of Hashing-based Techniques

Challenge How do we obtain meaningful bounds on $|\operatorname{Sol}(F)|$?
Solution : We do not need to!
Key Insight : When adding m-th XOR, theoretical analysis only requires $\frac{\sigma^{2}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq q$ whenever $|\operatorname{Sol}(F)| \leq$ thresh $\cdot 2^{m}$

- Suppose m-th XOR is added with p_{m} and $p_{1} \geq p_{2} \cdots \geq p_{m}$
- $\sigma^{2}\left[Z_{m}\right] \leq \mathrm{E}\left[Z_{m}\right]+\sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} r(w, m)$

$$
\begin{aligned}
r(w, m) & =\frac{1}{2^{m}}\left(\prod_{i=1}^{m}\left(\frac{1}{2}+\frac{\left(1-2 p_{i}\right)^{w}}{2}\right)-\frac{1}{2^{m}}\right) \\
& \leq \frac{1}{2^{m}}\left(\prod_{i=1}^{m}\left(\frac{1}{2}+\frac{\left(1-2 p_{m}\right)^{w}}{2}\right)^{m}-\frac{1}{2^{m}}\right)
\end{aligned}
$$

- Add m-th XOR with $p_{m}=\mathcal{O}\left(\frac{\log m}{m}\right)$

Sparse Hash Functions

$H_{1.1}^{\text {Rennes }}: ~ S p a r s e ~ h a s h ~ f u n c t i o n s ~ t h a t ~ g u a r a n t e e ~ q=1.1 ~$

Experimental Evaluation

Benchmark	Vars	$\log _{2}$ (Count)	ApproxMC4	ApproxMC5	Speedup
03B-4	27966	28.55	983.72	1548.96	0.64
squaring23	710	23.11	0.66	1.21	0.55
case144	765	82.07	102.65	202.06	0.51
modexp8-4-6	83953	32.13	788.23	920.34	0.86
min-28s	3933	459.23	48.63	35.83	1.36
s9234a_7_4	6313	246.0	4.77	2.45	1.95
min-8	1545	284.78	8.86	4.59	1.93
s13207a_7_4	9386	699.0	34.94	17.05	2.05
min-16	3065	539.88	33.67	16.61	2.03
90-15-4-q	1065	839.25	273.1	135.75	2.01
s35932_15_7	17918	1761.0	-	72.32	-
s38417_3-2	25528	1663.02	-	71.04	-
75-10-8-q	460	360.13	-	4850.28	-
$90-15-8-q$	1065	840.0	-	3717.05	-

Remember; thresh $=\mathcal{O}\left(\frac{\sigma^{2}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \cdot \frac{1}{\varepsilon^{2}}\right)$
$\frac{\sigma^{2}\left[Z_{m}\right]}{E\left[Z_{m}\right]} \leq 1$ for 2-wise independent; $\frac{\sigma^{2}\left[Z_{m}\right]}{E\left[Z_{m}\right]} \leq q=1.1$ for $H_{1.1}^{\text {Rennes }}$. The first sparse XOR-based scheme to achieve speedup without loss of theoretical gurantees

Conclusion

- Hashing-based techniques employ random XORs, and promise theoretical guarantees and scalability
- The runtime of SAT solvers depend on the size of XORs
- Meaningful bounds on $\frac{\sigma^{2}\left[Z_{m}\right]}{E\left[Z_{m}\right]}$ via Isoperimetric inequalities.
- The first sparse XOR scheme to attain speedup improvement without loss of theoretical guarantees
- Future Directions:
- Theoretical Lower bounds on the sparsity of XORs
- Algorithmic Achieving speedup without slow down for any instance
- System Design of Sparse XOR-based XOR solving modules
- Open-source Tool: https://github.com/meelgroup/approxmc

