
Sparse Hashing for Scalable Approximate Model
Counting: When Theory and Practice Finally Meet

Kuldeep S. Meel

School of Computing, National University of Singapore

Joint work with S. Akshay

Corresponding publication: LICS-20

1/21

Model Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

• Sol(F) = { solutions of F }

• Model Counting: Determine |Sol(F)|
• Given F := (X1 ∨ X2)

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• |Sol(F)| = 3

2/21

Model Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

• Sol(F) = { solutions of F }
• Model Counting: Determine |Sol(F)|

• Given F := (X1 ∨ X2)

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• |Sol(F)| = 3

2/21

Model Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

• Sol(F) = { solutions of F }
• Model Counting: Determine |Sol(F)|
• Given F := (X1 ∨ X2)

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• |Sol(F)| = 3

2/21

Model Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

• Sol(F) = { solutions of F }
• Model Counting: Determine |Sol(F)|
• Given F := (X1 ∨ X2)

• Sol(F) = {(0, 1), (1, 0), (1, 1)}

• |Sol(F)| = 3

2/21

Model Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

• Sol(F) = { solutions of F }
• Model Counting: Determine |Sol(F)|
• Given F := (X1 ∨ X2)

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• |Sol(F)| = 3

2/21

Applications across Computer Science

Model
Counting

Network
Reliability

Hardware
Validation

Computational
Biology

Neural
Network

Robustness

Quantified
Information

Flow

3/21

Different Shades of Approximation

• Probabilistic (1 + ε)-Approximation

Pr

[|Sol(F)|
1 + ε

≤ ApproxCount(F , ε, δ) ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

• Constant Factor Approximation: (4,δ)

Pr

[|Sol(F)|
4

≤ ConstantCount(F , δ) ≤ 4 · |Sol(F)|
]
≥ 1− δ

• From 4 to 2-factor
Let G = F1 ∧ F2 (i.e., two identical copies of F)

|Sol(G)|
4

≤C ≤ 4 · |Sol(G)| =⇒ |Sol(F)|
2

≤
√
C ≤ 2 · |Sol(F)|

• From 4 to (1 + ε)-factor
Construct G = F1 ∧ F2 . . .F 1

ε
And then we can take 1

ε -root

4/21

Different Shades of Approximation

• Probabilistic (1 + ε)-Approximation

Pr

[|Sol(F)|
1 + ε

≤ ApproxCount(F , ε, δ) ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

• Constant Factor Approximation: (4,δ)

Pr

[|Sol(F)|
4

≤ ConstantCount(F , δ) ≤ 4 · |Sol(F)|
]
≥ 1− δ

• From 4 to 2-factor
Let G = F1 ∧ F2 (i.e., two identical copies of F)

|Sol(G)|
4

≤C ≤ 4 · |Sol(G)| =⇒ |Sol(F)|
2

≤
√
C ≤ 2 · |Sol(F)|

• From 4 to (1 + ε)-factor
Construct G = F1 ∧ F2 . . .F 1

ε
And then we can take 1

ε -root

4/21

Different Shades of Approximation

• Probabilistic (1 + ε)-Approximation

Pr

[|Sol(F)|
1 + ε

≤ ApproxCount(F , ε, δ) ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

• Constant Factor Approximation: (4,δ)

Pr

[|Sol(F)|
4

≤ ConstantCount(F , δ) ≤ 4 · |Sol(F)|
]
≥ 1− δ

• From 4 to 2-factor
Let G = F1 ∧ F2 (i.e., two identical copies of F)

|Sol(G)|
4

≤C ≤ 4 · |Sol(G)| =⇒ |Sol(F)|
2

≤
√
C ≤ 2 · |Sol(F)|

• From 4 to (1 + ε)-factor
Construct G = F1 ∧ F2 . . .F 1

ε
And then we can take 1

ε -root

4/21

Different Shades of Approximation

• Probabilistic (1 + ε)-Approximation

Pr

[|Sol(F)|
1 + ε

≤ ApproxCount(F , ε, δ) ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

• Constant Factor Approximation: (4,δ)

Pr

[|Sol(F)|
4

≤ ConstantCount(F , δ) ≤ 4 · |Sol(F)|
]
≥ 1− δ

• From 4 to 2-factor
Let G = F1 ∧ F2 (i.e., two identical copies of F)

|Sol(G)|
4

≤C ≤ 4 · |Sol(G)| =⇒ |Sol(F)|
2

≤
√
C ≤ 2 · |Sol(F)|

• From 4 to (1 + ε)-factor
Construct G = F1 ∧ F2 . . .F 1

ε
And then we can take 1

ε -root

4/21

Hashing-Based Techniques

The Rise of Hashing-based Approach: Promise of Scalability and
Guarantees
(S83,GSS06,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16

KM18,ATD18,SM19,ABM20,SGM20)

5/21

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

6/21

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

6/21

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

6/21

Challenges

Challenge 1 What is exactly a small cell ?

• A cell is small cell if it has ≈ thresh solutions.
• Two choices for thresh.

– thresh = constant → 4-factor approximation
– thresh = O(1

ε2) gives (1 + ε)-approximation directly

• Zm be the number of solutions in a randomly chosen
cell ; we are interested in cases E[Zm] ≥ 1

• For thresh = O(1
ε2
), we need

dispersion index: σ
2[Zm]

(E[Zm])
≤ some constant

• For thresh = constant, sufficient to have
coefficient of variation: σ2[Zm]

(E[Zm])2
≤ some constant

Techniques based on thresh = O(1
ε2
) such as ApproxMC scale

significantly better than those based on thresh = constant.

7/21

Challenges

Challenge 1 What is exactly a small cell ?

• A cell is small cell if it has ≈ thresh solutions.
• Two choices for thresh.

– thresh = constant → 4-factor approximation
– thresh = O(1

ε2) gives (1 + ε)-approximation directly

• Zm be the number of solutions in a randomly chosen
cell ; we are interested in cases E[Zm] ≥ 1

• For thresh = O(1
ε2
), we need

dispersion index: σ
2[Zm]

(E[Zm])
≤ some constant

• For thresh = constant, sufficient to have
coefficient of variation: σ2[Zm]

(E[Zm])2
≤ some constant

Challenge 2 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

Challenge 3 How many cells?

Techniques based on thresh = O(1
ε2
) such as ApproxMC scale

significantly better than those based on thresh = constant.

7/21

Challenges

Challenge 1 What is exactly a small cell ?

• A cell is small cell if it has ≈ thresh solutions.
• Two choices for thresh.

– thresh = constant → 4-factor approximation
– thresh = O(1

ε2) gives (1 + ε)-approximation directly

• Zm be the number of solutions in a randomly chosen
cell ; we are interested in cases E[Zm] ≥ 1

• For thresh = O(1
ε2
), we need

dispersion index: σ
2[Zm]

(E[Zm])
≤ some constant

• For thresh = constant, sufficient to have
coefficient of variation: σ2[Zm]

(E[Zm])2
≤ some constant

Techniques based on thresh = O(1
ε2
) such as ApproxMC scale

significantly better than those based on thresh = constant.

7/21

Challenges

Challenge 1 What is exactly a small cell ?

• A cell is small cell if it has ≈ thresh solutions.
• Two choices for thresh.

– thresh = constant → 4-factor approximation
– thresh = O(1

ε2) gives (1 + ε)-approximation directly

• Zm be the number of solutions in a randomly chosen
cell ; we are interested in cases E[Zm] ≥ 1

• For thresh = O(1
ε2
), we need

dispersion index: σ
2[Zm]

(E[Zm])
≤ some constant

• For thresh = constant, sufficient to have
coefficient of variation: σ2[Zm]

(E[Zm])2
≤ some constant

Techniques based on thresh = O(1
ε2
) such as ApproxMC scale

significantly better than those based on thresh = constant.

7/21

Challenges

Challenge 1 What is exactly a small cell ?

• A cell is small cell if it has ≈ thresh solutions.
• Two choices for thresh.

– thresh = constant → 4-factor approximation
– thresh = O(1

ε2) gives (1 + ε)-approximation directly

• Zm be the number of solutions in a randomly chosen
cell ; we are interested in cases E[Zm] ≥ 1

• For thresh = O(1
ε2
), we need

dispersion index: σ
2[Zm]

(E[Zm])
≤ some constant

• For thresh = constant, sufficient to have
coefficient of variation: σ2[Zm]

(E[Zm])2
≤ some constant

Techniques based on thresh = O(1
ε2
) such as ApproxMC scale

significantly better than those based on thresh = constant.

7/21

Challenges

Challenge 1 What is exactly a small cell ?

• A cell is small cell if it has ≈ thresh solutions.
• Two choices for thresh.

– thresh = constant → 4-factor approximation
– thresh = O(1

ε2) gives (1 + ε)-approximation directly

• Zm be the number of solutions in a randomly chosen
cell ; we are interested in cases E[Zm] ≥ 1

• For thresh = O(1
ε2
), we need

dispersion index: σ
2[Zm]

(E[Zm])
≤ some constant

• For thresh = constant, sufficient to have
coefficient of variation: σ2[Zm]

(E[Zm])2
≤ some constant

Techniques based on thresh = O(1
ε2
) such as ApproxMC scale

significantly better than those based on thresh = constant.

7/21

Challenges

Challenge 1 What is exactly a small cell ?

Challenge 2 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}
• Choose h randomly from a specially constructed large
family H of hash functions
Carter and Wegman 1977

8/21

Challenges

Challenge 1 What is exactly a small cell ?

Challenge 2 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}

• Choose h randomly from a specially constructed large
family H of hash functions
Carter and Wegman 1977

8/21

Challenges

Challenge 1 What is exactly a small cell ?

Challenge 2 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}
• Choose h randomly from a specially constructed large

family H of hash functions
Carter and Wegman 1977

8/21

Pairwise Independent Hashing

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2

– Expected size of each XOR: n
2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

9/21

Pairwise Independent Hashing

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2

– Expected size of each XOR: n
2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

9/21

The Performance Bottleneck: SAT Calls

• Variables: X1,X2, · · ·Xn

• Set of XORs

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• Performance of state of the art SAT solvers degrade with increase
in the size of XORs (SAT Solvers != SAT oracles)

10/21

The Performance Bottleneck: SAT Calls

• Variables: X1,X2, · · ·Xn

• Set of XORs

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• Performance of state of the art SAT solvers degrade with increase
in the size of XORs (SAT Solvers != SAT oracles)

10/21

The Hope of Short XORs

• View the set of XORs as Matrices: AX = b where · = ∧ and
+ = ⊕

– A is 0-1 matrix of size m × n
– b is 0-1 matrix of size m × 1

• If we pick every variable Xi with probability p .

– Expected Size of each XOR: np

• Pr[σ1is in Cell] = Pr[Aσ1 = b] = 1
2m

– E[Zm] =
∑

σ∈Sol(F) Pr[σ1is in Cell] = |Sol(F)|
2m

• Now,

Pr[σ1 and σ2 are in Cell] = Pr[Aσ1 = b = Aσ2]

= Pr[Aσ1 = b] Pr[A(σ2 − σ1) = 0]

=
1

2m

(
1

2
+

(1− 2p)w

2

)m

11/21

The Elephant in the Room: Dispersion Index

• σ2[Zm] ≤ E[Zm] +
∑

σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w ,m)

– where, r(w ,m) = 1
2m

((
1
2 + (1−2p)w

2

)m
− 1

2m

)
• For p = 1

2 , we have σ2[Zm]
E[Zm]

≤ 1

12/21

The First Decade

• The first decade (GSS07,EGSS14,ZCSE16,AD17,ATD18)

–
∑

σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w ,m) ≤∑σ1∈Sol(F)

∑n
w=0

(
n
w

)
r(w ,m)

–
(
n
w

)
grows very fast with n, so can’t upper bound σ2[Zm]

E[Zm]
by a

constant.

– But, σ2[Zm]
(E[Zm])2

≤ 1 for p = O(logmm) (ZCSE16,AD17,ATD18)

– The weak bounds lead to significant slowdown: typically 100× to
1000× factor of slowdown! (ADM20)

13/21

The First Decade

• The first decade (GSS07,EGSS14,ZCSE16,AD17,ATD18)

–
∑

σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w ,m) ≤∑σ1∈Sol(F)

∑n
w=0

(
n
w

)
r(w ,m)

–
(
n
w

)
grows very fast with n, so can’t upper bound σ2[Zm]

E[Zm]
by a

constant.
– But, σ2[Zm]

(E[Zm])2
≤ 1 for p = O(logmm) (ZCSE16,AD17,ATD18)

– The weak bounds lead to significant slowdown: typically 100× to
1000× factor of slowdown! (ADM20)

13/21

The First Decade

• The first decade (GSS07,EGSS14,ZCSE16,AD17,ATD18)

–
∑

σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w ,m) ≤∑σ1∈Sol(F)

∑n
w=0

(
n
w

)
r(w ,m)

–
(
n
w

)
grows very fast with n, so can’t upper bound σ2[Zm]

E[Zm]
by a

constant.
– But, σ2[Zm]

(E[Zm])2
≤ 1 for p = O(logmm) (ZCSE16,AD17,ATD18)

– The weak bounds lead to significant slowdown: typically 100× to
1000× factor of slowdown! (ADM20)

13/21

The Power of Isoperimetric Inequalities

• ∑
σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w ,m) =
n∑

w=1
CF (w)r(w ,m)

• CF (w) = |{σ1, σ2 ∈ Sol(F) | d(σ1, σ2) = w}|
• Question What is the maximum value of CF (1)?

• Well, CF (1) ≤ |Sol(F)|
(n
1

)
• Suppose n = 3 and |Sol(F)| = 3

• Possibilities: {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

Theorem (Harper’s Theorem (1962))

CF (1) ≤ |Sol(F)|
(
ℓ
1

)
where ℓ = log |Sol(F)|

14/21

The Power of Isoperimetric Inequalities

• ∑
σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w ,m) =
n∑

w=1
CF (w)r(w ,m)

• CF (w) = |{σ1, σ2 ∈ Sol(F) | d(σ1, σ2) = w}|
• Question What is the maximum value of CF (1)?

• Well, CF (1) ≤ |Sol(F)|
(n
1

)
• Suppose n = 3 and |Sol(F)| = 3

• Possibilities: {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

Theorem (Harper’s Theorem (1962))

CF (1) ≤ |Sol(F)|
(
ℓ
1

)
where ℓ = log |Sol(F)|

14/21

The Power of Isoperimetric Inequalities

• ∑
σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w ,m) =
n∑

w=1
CF (w)r(w ,m)

• CF (w) = |{σ1, σ2 ∈ Sol(F) | d(σ1, σ2) = w}|
• Question What is the maximum value of CF (1)?

• Well, CF (1) ≤ |Sol(F)|
(n
1

)
• Suppose n = 3 and |Sol(F)| = 3

• Possibilities: {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

Theorem (Harper’s Theorem (1962))

CF (1) ≤ |Sol(F)|
(
ℓ
1

)
where ℓ = log |Sol(F)|

14/21

The Power of Isoperimetric Inequalities

Lemma (Rashtchian and Raynaud 2019)

n∑
w=1

CF (w) ≤
n∑

w=1

(8e√n·ℓ
w

)
where ℓ = log |Sol(F)|

What about
n∑

w=1
CF (w)r(w ,m) ?

Lemma
n∑

w=1
CF (w)r(w ,m) ≤

n∑
w=1

(8e√n·ℓ
w

)
r(w ,m) where ℓ = log |Sol(F)|

• Improvement from
(n
w

)
to
(8e√n·ℓ

w

)
• (nw)

(8e
√
n·ℓ

w)
≈ (nℓ)

w
2

15/21

The Power of Isoperimetric Inequalities

Lemma (Rashtchian and Raynaud 2019)

n∑
w=1

CF (w) ≤
n∑

w=1

(8e√n·ℓ
w

)
where ℓ = log |Sol(F)|

What about
n∑

w=1
CF (w)r(w ,m) ?

Lemma
n∑

w=1
CF (w)r(w ,m) ≤

n∑
w=1

(8e√n·ℓ
w

)
r(w ,m) where ℓ = log |Sol(F)|

• Improvement from
(n
w

)
to
(8e√n·ℓ

w

)
• (nw)

(8e
√
n·ℓ

w)
≈ (nℓ)

w
2

15/21

The Power of Isoperimetric Inequalities

Lemma (Rashtchian and Raynaud 2019)

n∑
w=1

CF (w) ≤
n∑

w=1

(8e√n·ℓ
w

)
where ℓ = log |Sol(F)|

What about
n∑

w=1
CF (w)r(w ,m) ?

Lemma
n∑

w=1
CF (w)r(w ,m) ≤

n∑
w=1

(8e√n·ℓ
w

)
r(w ,m) where ℓ = log |Sol(F)|

• Improvement from
(n
w

)
to
(8e√n·ℓ

w

)
• (nw)

(8e
√
n·ℓ

w)
≈ (nℓ)

w
2

15/21

From Linear to Logarithmic Size XORs

Theorem (Informal)

For all q, k , |Sol(F)| ≤ k · 2m, p = O(logmm) we have

σ2[Zm]

E[Zm]
≤ q(a constant)

Recall, average size of XORs: n · p
Improvement of p from m/2

m to logm
m

Challenge: No meaningful bounds on |Sol(F)|

16/21

From Linear to Logarithmic Size XORs

Theorem (Informal)

For all q, k , |Sol(F)| ≤ k · 2m, p = O(logmm) we have

σ2[Zm]

E[Zm]
≤ q(a constant)

Recall, average size of XORs: n · p
Improvement of p from m/2

m to logm
m

Challenge: No meaningful bounds on |Sol(F)|

16/21

How many cells?

• We want to partition into 2m
∗
cells such that 2m

∗
= |Sol(F)|

thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh

of sols
≤ thresh?

17/21

How many cells?

• We want to partition into 2m
∗
cells such that 2m

∗
= |Sol(F)|

thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh

of sols
≤ thresh?

of sols
≤ thresh?

No

17/21

How many cells?

• We want to partition into 2m
∗
cells such that 2m

∗
= |Sol(F)|

thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh

of sols
≤ thresh?

of sols
≤ thresh?

No No

17/21

How many cells?

• We want to partition into 2m
∗
cells such that 2m

∗
= |Sol(F)|

thresh
– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

· · ·

No No

No

17/21

How many cells?

• We want to partition into 2m
∗
cells such that 2m

∗
= |Sol(F)|

thresh
– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

Estimate =
of sols ×
of cells # of sols

≤ thresh?

· · ·

No No

No

Yes

17/21

The Secrets of Hashing-based Techniques

Challenge How do we obtain meaningful bounds on |Sol(F)|?
Solution : We do not need to!

Key Insight : When adding m-th XOR, theoretical analysis only

requires σ2[Zm]
E[Zm]

≤ q whenever |Sol(F)| ≤ thresh · 2m

• Suppose m-th XOR is added with pm and p1 ≥ p2 · · · ≥ pm
• σ2[Zm] ≤ E[Zm] +

∑
σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w ,m)

r(w ,m) =
1

2m

(
m∏
i=1

(
1

2
+

(1− 2pi)
w

2

)
− 1

2m

)

≤ 1

2m

(
m∏
i=1

(
1

2
+

(1− 2pm)
w

2

)m

− 1

2m

)

• Add m-th XOR with pm = O(logmm)

18/21

The Secrets of Hashing-based Techniques

Challenge How do we obtain meaningful bounds on |Sol(F)|?
Solution : We do not need to!

Key Insight : When adding m-th XOR, theoretical analysis only

requires σ2[Zm]
E[Zm]

≤ q whenever |Sol(F)| ≤ thresh · 2m

• Suppose m-th XOR is added with pm and p1 ≥ p2 · · · ≥ pm
• σ2[Zm] ≤ E[Zm] +

∑
σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w ,m)

r(w ,m) =
1

2m

(
m∏
i=1

(
1

2
+

(1− 2pi)
w

2

)
− 1

2m

)

≤ 1

2m

(
m∏
i=1

(
1

2
+

(1− 2pm)
w

2

)m

− 1

2m

)

• Add m-th XOR with pm = O(logmm)

18/21

The Secrets of Hashing-based Techniques

Challenge How do we obtain meaningful bounds on |Sol(F)|?
Solution : We do not need to!

Key Insight : When adding m-th XOR, theoretical analysis only

requires σ2[Zm]
E[Zm]

≤ q whenever |Sol(F)| ≤ thresh · 2m

• Suppose m-th XOR is added with pm and p1 ≥ p2 · · · ≥ pm
• σ2[Zm] ≤ E[Zm] +

∑
σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w ,m)

r(w ,m) =
1

2m

(
m∏
i=1

(
1

2
+

(1− 2pi)
w

2

)
− 1

2m

)

≤ 1

2m

(
m∏
i=1

(
1

2
+

(1− 2pm)
w

2

)m

− 1

2m

)

• Add m-th XOR with pm = O(logmm)

18/21

Sparse Hash Functions

0 100 200 300 400 500 600 700 800 900 1000

m

0.1

0.2

0.3

0.4

0.5

p m

HRennes
1.1

4∗log2(m+1)
m

HRennes
1.1 : Sparse hash functions that guarantee q = 1.1

19/21

Experimental Evaluation

Benchmark Vars log2(Count) ApproxMC4 ApproxMC5 Speedup
03B-4 27966 28.55 983.72 1548.96 0.64
squaring23 710 23.11 0.66 1.21 0.55
case144 765 82.07 102.65 202.06 0.51
modexp8-4-6 83953 32.13 788.23 920.34 0.86
min-28s 3933 459.23 48.63 35.83 1.36
s9234a 7 4 6313 246.0 4.77 2.45 1.95
min-8 1545 284.78 8.86 4.59 1.93
s13207a 7 4 9386 699.0 34.94 17.05 2.05
min-16 3065 539.88 33.67 16.61 2.03
90-15-4-q 1065 839.25 273.1 135.75 2.01
s35932 15 7 17918 1761.0 – 72.32 –
s38417 3 2 25528 1663.02 – 71.04 –
75-10-8-q 460 360.13 – 4850.28 –
90-15-8-q 1065 840.0 – 3717.05 –

Remember; thresh = O(σ
2[Zm]
E[Zm]

· 1
ε2
)

σ2[Zm]
E[Zm]

≤ 1 for 2-wise independent; σ2[Zm]
E[Zm]

≤ q = 1.1 for HRennes
1.1 .

The first sparse XOR-based scheme to achieve speedup without loss of
theoretical gurantees

20/21

Conclusion

• Hashing-based techniques employ random XORs, and promise
theoretical guarantees and scalability

• The runtime of SAT solvers depend on the size of XORs

• Meaningful bounds on σ2[Zm]
E[Zm]

via Isoperimetric inequalities.

• The first sparse XOR scheme to attain speedup improvement
without loss of theoretical guarantees

• Future Directions:

– Theoretical Lower bounds on the sparsity of XORs
– Algorithmic Achieving speedup without slow down for any instance
– System Design of Sparse XOR-based XOR solving modules

• Open-source Tool: https://github.com/meelgroup/approxmc

21/21

https://github.com/meelgroup/approxmc

