Sparse Hashing for Scalable Approximate Model Counting: When Theory and Practice Finally Meet

Kuldeep S. Meel

School of Computing, National University of Singapore

Joint work with S. Akshay

Corresponding publication: LICS-20

- Boolean variables $X_1, X_2, \cdots X_n$
- Formula F over $X_1, X_2, \cdots X_n$
- Sol(F) = { solutions of F }

- Boolean variables $X_1, X_2, \cdots X_n$
- Formula F over $X_1, X_2, \cdots X_n$
- Sol(F) = { solutions of F }
- Model Counting: Determine |Sol(F)|

- Boolean variables $X_1, X_2, \cdots X_n$
- Formula F over $X_1, X_2, \cdots X_n$
- Sol(F) = { solutions of F }
- Model Counting: Determine |Sol(F)|
- Given $F := (X_1 \lor X_2)$

- Boolean variables $X_1, X_2, \cdots X_n$
- Formula F over $X_1, X_2, \cdots X_n$
- Sol(F) = { solutions of F }
- Model Counting: Determine |Sol(F)|
- Given $F := (X_1 \lor X_2)$
- $Sol(F) = \{(0,1), (1,0), (1,1)\}$

- Boolean variables $X_1, X_2, \cdots X_n$
- Formula F over $X_1, X_2, \cdots X_n$
- Sol(F) = { solutions of F }
- Model Counting: Determine |Sol(F)|
- Given $F := (X_1 \lor X_2)$
- $Sol(F) = \{(0,1), (1,0), (1,1)\}$
- |Sol(F)| = 3

Applications across Computer Science

• Probabilistic $(1 + \varepsilon)$ -Approximation

$$\Pr\left[\frac{|\mathsf{Sol}(F)|}{1+\varepsilon} \leq ApproxCount(F,\varepsilon,\delta) \leq |\mathsf{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$$

• Probabilistic $(1 + \varepsilon)$ -Approximation

$$\Pr\left[\frac{|\mathsf{Sol}(F)|}{1+\varepsilon} \leq ApproxCount(F,\varepsilon,\delta) \leq |\mathsf{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$$

• Constant Factor Approximation: $(4,\delta)$

$$\Pr\left[\frac{|\mathsf{Sol}(F)|}{4} \leq ConstantCount(F,\delta) \leq 4 \cdot |\mathsf{Sol}(F)|\right] \geq 1 - \delta$$

• Probabilistic $(1 + \varepsilon)$ -Approximation

$$\Pr\left[\frac{|\mathsf{Sol}(F)|}{1+\varepsilon} \le ApproxCount(F,\varepsilon,\delta) \le |\mathsf{Sol}(F)|(1+\varepsilon)\right] \ge 1-\delta$$

• Constant Factor Approximation: $(4,\delta)$

$$\Pr\left[\frac{|\mathsf{Sol}(F)|}{4} \leq ConstantCount(F,\delta) \leq 4 \cdot |\mathsf{Sol}(F)|\right] \geq 1 - \delta$$

• From 4 to 2-factor Let $G = F_1 \wedge F_2$ (i.e., two identical copies of F)

$$\frac{|\mathsf{Sol}(G)|}{4} \leq C \leq 4 \cdot |\mathsf{Sol}(G)| \implies \frac{|\mathsf{Sol}(F)|}{2} \leq \sqrt{C} \leq 2 \cdot |\mathsf{Sol}(F)|$$

• Probabilistic $(1 + \varepsilon)$ -Approximation

$$\Pr\left[\frac{|\mathsf{Sol}(F)|}{1+\varepsilon} \le ApproxCount(F,\varepsilon,\delta) \le |\mathsf{Sol}(F)|(1+\varepsilon)\right] \ge 1-\delta$$

• Constant Factor Approximation: $(4,\delta)$

$$\Pr\left[\frac{|\mathsf{Sol}(F)|}{4} \leq \mathsf{ConstantCount}(F,\delta) \leq 4 \cdot |\mathsf{Sol}(F)|\right] \geq 1 - \delta$$

• From 4 to 2-factor Let $G = F_1 \wedge F_2$ (i.e., two identical copies of F)

$$\frac{|\mathsf{Sol}(G)|}{4} \leq C \leq 4 \cdot |\mathsf{Sol}(G)| \implies \frac{|\mathsf{Sol}(F)|}{2} \leq \sqrt{C} \leq 2 \cdot |\mathsf{Sol}(F)|$$

• From 4 to $(1 + \varepsilon)$ -factor Construct $G = F_1 \wedge F_2 \dots F_{\frac{1}{\varepsilon}}$ And then we can take $\frac{1}{\varepsilon}$ -root The Rise of Hashing-based Approach: Promise of Scalability and Guarantees (S83,GSS06,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16 KM18,ATD18,SM19,ABM20,SGM20)

As Simple as Counting Dots

As Simple as Counting Dots

As Simple as Counting Dots

 $\mathsf{Estimate} = \mathsf{Number} \text{ of solutions in a cell } \times \mathsf{Number} \text{ of cells}$

Challenges

Challenge 1 What is exactly a *small cell* ?

Challenge 2 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions? Challenge 3 How many cells?

- A cell is small cell if it has \approx thresh solutions.
- Two choices for thresh.
 - thresh = ${\rm constant}$ \rightarrow 4-factor approximation
 - thresh = $\mathcal{O}(\frac{1}{\varepsilon^2})$ gives $(1 + \varepsilon)$ -approximation directly

- A cell is small cell if it has \approx thresh solutions.
- Two choices for thresh.
 - thresh = $\mathrm{constant} \rightarrow$ 4-factor approximation
 - thresh = $\mathcal{O}(\frac{1}{\varepsilon^2})$ gives $(1 + \varepsilon)$ -approximation directly
- Z_m be the number of solutions in a randomly chosen cell ; we are interested in cases $E[Z_m] \ge 1$

- A cell is small cell if it has \approx thresh solutions.
- Two choices for thresh.
 - thresh = $constant \rightarrow$ 4-factor approximation
 - thresh = $\mathcal{O}(\frac{1}{\varepsilon^2})$ gives $(1 + \varepsilon)$ -approximation directly
- Z_m be the number of solutions in a randomly chosen cell ; we are interested in cases E[Z_m] ≥ 1
- For thresh = $\mathcal{O}(\frac{1}{\varepsilon^2})$, we need dispersion index: $\frac{\sigma^2[Z_m]}{(E[Z_m])} \leq \text{some constant}$
- For thresh = constant, sufficient to have coefficient of variation: $\frac{\sigma^2[Z_m]}{(E[Z_m])^2} \leq \text{some constant}$

- A cell is small cell if it has \approx thresh solutions.
- Two choices for thresh.
 - thresh = $\mathrm{constant} \rightarrow$ 4-factor approximation
 - thresh = $\mathcal{O}(rac{1}{arepsilon^2})$ gives (1+arepsilon)-approximation directly
- Z_m be the number of solutions in a randomly chosen cell ; we are interested in cases E[Z_m] ≥ 1
- For thresh = $\mathcal{O}(\frac{1}{\varepsilon^2})$, we need
 - dispersion index: $\frac{\sigma^2[Z_m]}{(E[Z_m])} \leq \text{some constant}$
- For thresh = constant, sufficient to have coefficient of variation: $\frac{\sigma^2[Z_m]}{(E[Z_m])^2} \le \text{some constant}$

Techniques based on thresh = $\mathcal{O}(\frac{1}{\varepsilon^2})$ such as ApproxMC scale significantly better than those based on thresh = constant.

Challenge 2 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenge 2 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h: assignments \rightarrow cells (hashing)
- Solutions in a cell α : Sol(F) \cap { $y \mid h(y) = \alpha$ }

Challenge 2 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h: assignments \rightarrow cells (hashing)
- Solutions in a cell α : Sol $(F) \cap \{y \mid h(y) = \alpha\}$
- Choose h randomly from a specially constructed large family H of hash functions
 Carter and Wegman 1977

Pairwise Independent Hashing

- Variables: $X_1, X_2, \cdots X_n$
- To construct $h: \{0,1\}^n \to \{0,1\}^m$, choose m random XORs
- Pick every X_i with prob. $\frac{1}{2}$ and XOR them
 - $-X_1\oplus X_3\oplus X_6\cdots\oplus X_{n-2}$
 - Expected size of each XOR: $\frac{n}{2}$

Pairwise Independent Hashing

- Variables: $X_1, X_2, \cdots X_n$
- To construct $h: \{0,1\}^n \to \{0,1\}^m$, choose m random XORs
- Pick every X_i with prob. $\frac{1}{2}$ and XOR them

$$-X_1\oplus X_3\oplus X_6\cdots\oplus X_{n-2}$$

- Expected size of each XOR: $\frac{n}{2}$
- To choose $\alpha \in \{0,1\}^m$, set every XOR equation to 0 or 1 randomly

$$X_1 \oplus X_3 \oplus X_6 \cdots \oplus X_{n-2} = 0 \tag{Q_1}$$

$$X_2 \oplus X_5 \oplus X_6 \cdots \oplus X_{n-1} = 1 \tag{Q_2}$$

 (\cdots)

$$X_1 \oplus X_2 \oplus X_5 \cdots \oplus X_{n-2} = 1 \tag{Q_m}$$

• Solutions in a cell: $F \land Q_1 \cdots \land Q_m$

The Performance Bottleneck: SAT Calls

- Variables: $X_1, X_2, \cdots X_n$
- Set of XORs

$$X_1 \oplus X_3 \oplus X_6 \cdots \oplus X_{n-2} = 0 \tag{Q_1}$$

$$X_2 \oplus X_5 \oplus X_6 \dots \oplus X_{n-1} = 1 \tag{Q_2}$$

 (\cdots)

$$X_1 \oplus X_2 \oplus X_5 \cdots \oplus X_{n-2} = 1 \tag{Q_m}$$

• Solutions in a cell: $F \land Q_1 \cdots \land Q_m$

The Performance Bottleneck: SAT Calls

- Variables: $X_1, X_2, \cdots X_n$
- Set of XORs

$$X_1 \oplus X_3 \oplus X_6 \cdots \oplus X_{n-2} = 0 \tag{Q_1}$$

$$X_2 \oplus X_5 \oplus X_6 \dots \oplus X_{n-1} = 1 \tag{Q_2}$$

 (\cdots)

$$X_1 \oplus X_2 \oplus X_5 \cdots \oplus X_{n-2} = 1 \tag{Q_m}$$

- Solutions in a cell: $F \land Q_1 \cdots \land Q_m$
- Performance of state of the art SAT solvers degrade with increase in the size of XORs (SAT Solvers != SAT oracles)

The Hope of Short XORs

- View the set of XORs as Matrices: AX = b where $\cdot = \wedge$ and $+ = \oplus$
 - A is 0-1 matrix of size $m \times n$
 - b is 0-1 matrix of size $m \times 1$
- If we pick every variable X_i with probability p.
 - Expected Size of each XOR: np

•
$$\Pr[\sigma_1 \text{ is in Cell}] = \Pr[A\sigma_1 = b] = \frac{1}{2^m}$$

- $E[Z_m] = \sum_{\sigma \in \text{Sol}(F)} \Pr[\sigma_1 \text{ is in Cell}] = \frac{|\text{Sol}(F)|}{2^m}$

Now,

$$\begin{aligned} \Pr[\sigma_1 \text{ and } \sigma_2 \text{ are in Cell}] &= \Pr[A\sigma_1 = b = A\sigma_2] \\ &= \Pr[A\sigma_1 = b] \Pr[A(\sigma_2 - \sigma_1) = 0] \\ &= \frac{1}{2^m} \left(\frac{1}{2} + \frac{(1-2p)^w}{2}\right)^m \end{aligned}$$

The Elephant in the Room: Dispersion Index

•
$$\sigma^2[Z_m] \leq \mathsf{E}[Z_m] + \sum_{\sigma_1 \in \mathsf{Sol}(F)} \sum_{\substack{\sigma_2 \in \mathsf{Sol}(F) \\ w = d(\sigma_1, \sigma_2)}} r(w, m)$$

- where, $r(w, m) = \frac{1}{2^m} \left(\left(\frac{1}{2} + \frac{(1-2p)^w}{2} \right)^m - \frac{1}{2^m} \right)$
• For $p = \frac{1}{2}$, we have $\frac{\sigma^2[Z_m]}{\mathsf{E}[Z_m]} \leq 1$

The First Decade

- The first decade (GSS07,EGSS14,ZCSE16,AD17,ATD18) - $\sum_{\sigma_1 \in \text{Sol}(F)} \sum_{\substack{\sigma_2 \in \text{Sol}(F)\\ w = d(\sigma_1, \sigma_2)}} r(w, m) \le \sum_{\sigma_1 \in \text{Sol}(F)} \sum_{w=0}^n {n \choose w} r(w, m)$
 - $\binom{n}{w}$ grows very fast with *n*, so can't upper bound $\frac{\sigma^2[Z_m]}{E[Z_m]}$ by a constant.

The First Decade

 $w=d(\sigma_1,\sigma_2)$

- The first decade (GSS07,EGSS14,ZCSE16,AD17,ATD18) - $\sum_{\sigma_1 \in \text{Sol}(F)} \sum_{\sigma_2 \in \text{Sol}(F)} r(w, m) \leq \sum_{\sigma_1 \in \text{Sol}(F)} \sum_{w=0}^n {n \choose w} r(w, m)$
 - $-\binom{n}{w}$ grows very fast with *n*, so can't upper bound $\frac{\sigma^2[Z_m]}{E[Z_m]}$ by a constant.

- But,
$$\frac{\sigma^2[Z_m]}{(\mathbb{E}[Z_m])^2} \le 1$$
 for $p = \mathcal{O}(\frac{\log m}{m})$ (ZCSE16,AD17,ATD18)

The First Decade

• The first decade (GSS07,EGSS14,ZCSE16,AD17,ATD18) $\sum_{n=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$

$$-\sum_{\sigma_1\in\mathsf{Sol}(F)}\sum_{\substack{\sigma_2\in\mathsf{Sol}(F)\\w=d(\sigma_1,\sigma_2)}}r(w,m)\leq \sum_{\sigma_1\in\mathsf{Sol}(F)}\sum_{w=0}^{\prime\prime}\binom{n}{w}r(w,m)$$

- $\binom{n}{w}$ grows very fast with *n*, so can't upper bound $\frac{\sigma^2[Z_m]}{E[Z_m]}$ by a constant.
- But, $\frac{\sigma^2[Z_m]}{(\mathbb{E}[Z_m])^2} \le 1$ for $p = \mathcal{O}(\frac{\log m}{m})$ (ZCSE16,AD17,ATD18)
- The weak bounds lead to significant slowdown: typically $100 \times$ to $1000 \times$ factor of slowdown! (ADM20)

•
$$\sum_{\sigma_1 \in \mathsf{Sol}(F)} \sum_{\substack{\sigma_2 \in \mathsf{Sol}(F) \\ w = d(\sigma_1, \sigma_2)}} r(w, m) = \sum_{w=1}^n C_F(w) r(w, m)$$

• $C_F(w) = |\{\sigma_1, \sigma_2 \in Sol(F) \mid d(\sigma_1, \sigma_2) = w\}|$

• Question What is the maximum value of $C_F(1)$?

•
$$\sum_{\sigma_1 \in \mathsf{Sol}(F)} \sum_{\substack{\sigma_2 \in \mathsf{Sol}(F) \\ w = d(\sigma_1, \sigma_2)}} r(w, m) = \sum_{w=1}^n C_F(w) r(w, m)$$

• $C_F(w) = |\{\sigma_1, \sigma_2 \in Sol(F) \mid d(\sigma_1, \sigma_2) = w\}|$

• Question What is the maximum value of $C_F(1)$?

• Well,
$$C_F(1) \leq |\mathsf{Sol}(F)|\binom{n}{1}$$

• Suppose
$$n = 3$$
 and $|Sol(F)| = 3$

• Possibilities:
$$\{(0,0,0), (1,0,0), (0,1,0), (0,0,1)\}$$

•
$$\sum_{\sigma_1 \in \mathsf{Sol}(F)} \sum_{\substack{\sigma_2 \in \mathsf{Sol}(F) \\ w = d(\sigma_1, \sigma_2)}} r(w, m) = \sum_{w=1}^n C_F(w) r(w, m)$$

• $C_F(w) = |\{\sigma_1, \sigma_2 \in Sol(F) \mid d(\sigma_1, \sigma_2) = w\}|$

• Question What is the maximum value of $C_F(1)$?

• Well,
$$C_F(1) \leq |\mathsf{Sol}(F)|\binom{n}{1}$$

- Suppose n = 3 and |Sol(F)| = 3
- Possibilities: $\{(0,0,0), (1,0,0), (0,1,0), (0,0,1)\}$

Theorem (Harper's Theorem (1962))

 $C_{F}(1) \leq |\mathsf{Sol}(F)| {\ell \choose 1}$ where $\ell = \log |\mathsf{Sol}(F)|$

Lemma (Rashtchian and Raynaud 2019)

$$\sum_{w=1}^{n} C_{F}(w) \leq \sum_{w=1}^{n} {\binom{8e\sqrt{n\cdot\ell}}{w}} where \ \ell = \log |\mathsf{Sol}(F)|$$

Lemma (Rashtchian and Raynaud 2019)

$$\sum_{w=1}^{n} C_{F}(w) \leq \sum_{w=1}^{n} {8e\sqrt{n \cdot \ell} \choose w}$$
 where $\ell = \log |\mathsf{Sol}(F)|$

What about $\sum_{w=1}^{n} C_F(w)r(w,m)$?

Lemma (Rashtchian and Raynaud 2019)

$$\sum_{w=1}^{n} C_{F}(w) \leq \sum_{w=1}^{n} {8e\sqrt{n \cdot \ell} \choose w}$$
 where $\ell = \log |\mathsf{Sol}(F)|$

What about
$$\sum_{w=1}^{n} C_F(w)r(w,m)$$
?

Lemma

$$\sum_{w=1}^{n} C_{F}(w) r(w,m) \leq \sum_{w=1}^{n} \binom{8e\sqrt{n \cdot \ell}}{w} r(w,m) \text{ where } \ell = \log |\mathsf{Sol}(F)|$$

• Improvement from $\binom{n}{w}$ to $\binom{8e\sqrt{n\cdot\ell}}{w}$

•
$$\frac{\binom{n}{w}}{\binom{8e\sqrt{n\cdot\ell}}{w}} \approx \left(\frac{n}{\ell}\right)^{\frac{w}{2}}$$

Theorem (Informal)

For all
$$q, k$$
, $|Sol(F)| \le k \cdot 2^m$, $p = O(\frac{\log m}{m})$ we have

$$\frac{\sigma^2[Z_m]}{\mathsf{E}[Z_m]} \le q(a \text{ constant})$$

Recall, average size of XORs: $n \cdot p$ Improvement of p from $\frac{m/2}{m}$ to $\frac{\log m}{m}$

Theorem (Informal)

For all q, k, $|Sol(F)| \le k \cdot 2^m$, $p = O(\frac{\log m}{m})$ we have

$$\frac{\sigma^2[Z_m]}{\mathsf{E}[Z_m]} \le q(a \text{ constant})$$

Recall, average size of XORs: $n \cdot p$ Improvement of p from $\frac{m/2}{m}$ to $\frac{\log m}{m}$

Challenge: No meaningful bounds on |Sol(F)|

• We want to partition into 2^{m^*} cells such that $2^{m^*} = \frac{|Sol(F)|}{thresh}$

- We want to partition into 2^{m^*} cells such that $2^{m^*} = \frac{|Sol(F)|}{thresh}$
 - Check for every $m=0,1,\cdots n$ if the number of solutions \leq thresh

• We want to partition into 2^{m^*} cells such that $2^{m^*} = \frac{|Sol(F)|}{thresh}$

– Check for every $m = 0, 1, \cdots n$ if the number of solutions \leq thresh

• We want to partition into 2^{m^*} cells such that $2^{m^*} = \frac{|Sol(F)|}{thresh}$ - Check for every $m = 0, 1, \dots n$ if the number of solutions \leq thresh

• We want to partition into 2^{m^*} cells such that $2^{m^*} = \frac{|Sol(F)|}{thresh}$ - Check for every $m = 0, 1, \dots, n$ if the number of solutions \leq thresh

The Secrets of Hashing-based Techniques

Challenge How do we obtain meaningful bounds on |Sol(F)|? Solution : We do not need to!

Key Insight : When adding *m*-th XOR, theoretical analysis only requires $\frac{\sigma^2[Z_m]}{\mathbb{E}[Z_m]} \leq q$ whenever $|\text{Sol}(F)| \leq \text{thresh} \cdot 2^m$

The Secrets of Hashing-based Techniques

Challenge How do we obtain meaningful bounds on |Sol(F)|? Solution : We do not need to!

- Key Insight : When adding *m*-th XOR, theoretical analysis only requires $\frac{\sigma^2[Z_m]}{E[Z_m]} \leq q$ whenever $|Sol(F)| \leq thresh \cdot 2^m$
 - Suppose *m*-th XOR is added with p_m and $p_1 \ge p_2 \cdots \ge p_m$

•
$$\sigma^2[Z_m] \leq \mathsf{E}[Z_m] + \sum_{\substack{\sigma_1 \in \mathsf{Sol}(F) \ w = d(\sigma_1, \sigma_2)}} \sum_{\substack{\sigma_2 \in \mathsf{Sol}(F) \ w = d(\sigma_1, \sigma_2)}} r(w, m)$$

$$egin{split} r(w,m) &= rac{1}{2^m} \left(\prod_{i=1}^m \left(rac{1}{2} + rac{(1-2p_i)^w}{2}
ight) - rac{1}{2^m}
ight) \ &\leq rac{1}{2^m} \left(\prod_{i=1}^m \left(rac{1}{2} + rac{(1-2p_m)^w}{2}
ight)^m - rac{1}{2^m}
ight) \end{split}$$

The Secrets of Hashing-based Techniques

Challenge How do we obtain meaningful bounds on |Sol(F)|? Solution : We do not need to!

- Key Insight : When adding *m*-th XOR, theoretical analysis only requires $\frac{\sigma^2[Z_m]}{E[Z_m]} \leq q$ whenever $|Sol(F)| \leq thresh \cdot 2^m$
 - Suppose *m*-th XOR is added with p_m and $p_1 \ge p_2 \cdots \ge p_m$

•
$$\sigma^2[Z_m] \leq \mathsf{E}[Z_m] + \sum_{\substack{\sigma_1 \in \mathsf{Sol}(F) \ w = d(\sigma_1, \sigma_2)}} \sum_{\substack{\sigma_2 \in \mathsf{Sol}(F) \ w = d(\sigma_1, \sigma_2)}} r(w, m)$$

$$egin{split} r(w,m) &= rac{1}{2^m} \left(\prod_{i=1}^m \left(rac{1}{2} + rac{(1-2p_i)^w}{2}
ight) - rac{1}{2^m}
ight) \ &\leq rac{1}{2^m} \left(\prod_{i=1}^m \left(rac{1}{2} + rac{(1-2p_m)^w}{2}
ight)^m - rac{1}{2^m}
ight) \end{split}$$

• Add *m*-th XOR with
$$p_m = \mathcal{O}(rac{\log m}{m})$$

Sparse Hash Functions

 $H_{1,1}^{Rennes}$: Sparse hash functions that guarantee q = 1.1

Experimental Evaluation

Benchmark	Vars	$log_2(Count)$	ApproxMC4	ApproxMC5	Speedup
03B-4	27966	28.55	983.72	1548.96	0.64
squaring23	710	23.11	0.66	1.21	0.55
case144	765	82.07	102.65	202.06	0.51
modexp8-4-6	83953	32.13	788.23	920.34	0.86
min-28s	3933	459.23	48.63	35.83	1.36
s9234a_7_4	6313	246.0	4.77	2.45	1.95
min-8	1545	284.78	8.86	4.59	1.93
s13207a_7_4	9386	699.0	34.94	17.05	2.05
min-16	3065	539.88	33.67	16.61	2.03
90-15-4-q	1065	839.25	273.1	135.75	2.01
s35932_15_7	17918	1761.0	-	72.32	-
s38417_3_2	25528	1663.02	-	71.04	-
75-10-8-q	460	360.13	-	4850.28	-
90-15-8-q	1065	840.0	-	3717.05	-

Remember; thresh = $\mathcal{O}(\frac{\sigma^2[Z_m]}{\mathsf{E}[Z_m]} \cdot \frac{1}{\varepsilon^2})$ $\frac{\sigma^2[Z_m]}{\mathsf{E}[Z_m]} \leq 1$ for 2-wise independent; $\frac{\sigma^2[Z_m]}{\mathsf{E}[Z_m]} \leq q = 1.1$ for $H_{1,1}^{Rennes}$. The first sparse XOR-based scheme to achieve speedup without loss of theoretical gurantees

- Hashing-based techniques employ random XORs, and promise theoretical guarantees and scalability
- The runtime of SAT solvers depend on the size of XORs
- Meaningful bounds on $\frac{\sigma^2[Z_m]}{\mathsf{E}[Z_m]}$ via Isoperimetric inequalities.
- The first sparse XOR scheme to attain speedup improvement without loss of theoretical guarantees
- Future Directions:
 - Theoretical Lower bounds on the sparsity of XORs
 - Algorithmic Achieving speedup without slow down for any instance
 - System Design of Sparse XOR-based XOR solving modules
- Open-source Tool: https://github.com/meelgroup/approxmc