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Model Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

• Sol(F ) = { solutions of F }

• Model Counting: Determine |Sol(F )|
• Given F := (X1 ∨ X2)

• Sol(F ) = {(0, 1), (1, 0), (1, 1)}
• |Sol(F )| = 3
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Applications across Computer Science
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Different Shades of Approximation

• Probabilistic (1 + ε)-Approximation

Pr

[ |Sol(F )|
1 + ε

≤ ApproxCount(F , ε, δ) ≤ |Sol(F )|(1 + ε)

]
≥ 1− δ

• Constant Factor Approximation: (4,δ)

Pr

[ |Sol(F )|
4

≤ ConstantCount(F , δ) ≤ 4 · |Sol(F )|
]
≥ 1− δ

• From 4 to 2-factor
Let G = F1 ∧ F2 (i.e., two identical copies of F )

|Sol(G )|
4

≤C ≤ 4 · |Sol(G )| =⇒ |Sol(F )|
2

≤
√
C ≤ 2 · |Sol(F )|

• From 4 to (1 + ε)-factor
Construct G = F1 ∧ F2 . . .F 1

ε
And then we can take 1

ε -root
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Hashing-Based Techniques

The Rise of Hashing-based Approach: Promise of Scalability and
Guarantees
(S83,GSS06,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16

KM18,ATD18,SM19,ABM20,SGM20)
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As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells
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Challenges

Challenge 1 What is exactly a small cell ?

• A cell is small cell if it has ≈ thresh solutions.
• Two choices for thresh.

– thresh = constant → 4-factor approximation
– thresh = O( 1

ε2 ) gives (1 + ε)-approximation directly

• Zm be the number of solutions in a randomly chosen
cell ; we are interested in cases E[Zm] ≥ 1

• For thresh = O( 1
ε2
), we need

dispersion index: σ
2[Zm]

(E[Zm])
≤ some constant

• For thresh = constant, sufficient to have
coefficient of variation: σ2[Zm]

(E[Zm])2
≤ some constant

Techniques based on thresh = O( 1
ε2
) such as ApproxMC scale

significantly better than those based on thresh = constant.
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Challenges

Challenge 1 What is exactly a small cell ?

Challenge 2 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F ) ∩ {y | h(y) = α}
• Choose h randomly from a specially constructed large
family H of hash functions
Carter and Wegman 1977
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Pairwise Independent Hashing

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2

– Expected size of each XOR: n
2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · · )
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm
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The Performance Bottleneck: SAT Calls

• Variables: X1,X2, · · ·Xn

• Set of XORs

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · · )
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• Performance of state of the art SAT solvers degrade with increase
in the size of XORs (SAT Solvers != SAT oracles)
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The Hope of Short XORs

• View the set of XORs as Matrices: AX = b where · = ∧ and
+ = ⊕

– A is 0-1 matrix of size m × n
– b is 0-1 matrix of size m × 1

• If we pick every variable Xi with probability p .

– Expected Size of each XOR: np

• Pr[σ1is in Cell] = Pr[Aσ1 = b] = 1
2m

– E[Zm] =
∑

σ∈Sol(F ) Pr[σ1is in Cell] = |Sol(F )|
2m

• Now,

Pr[σ1 and σ2 are in Cell] = Pr[Aσ1 = b = Aσ2]

= Pr[Aσ1 = b] Pr[A(σ2 − σ1) = 0]

=
1

2m

(
1

2
+

(1− 2p)w

2

)m
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The Elephant in the Room: Dispersion Index

• σ2[Zm] ≤ E[Zm] +
∑

σ1∈Sol(F )

∑
σ2∈Sol(F )
w=d(σ1,σ2)

r(w ,m)

– where, r(w ,m) = 1
2m

((
1
2 + (1−2p)w

2

)m
− 1

2m

)
• For p = 1

2 , we have σ2[Zm]
E[Zm]

≤ 1
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The First Decade

• The first decade (GSS07,EGSS14,ZCSE16,AD17,ATD18)

–
∑

σ1∈Sol(F )

∑
σ2∈Sol(F )
w=d(σ1,σ2)

r(w ,m) ≤∑σ1∈Sol(F )

∑n
w=0

(
n
w

)
r(w ,m)

–
(
n
w

)
grows very fast with n, so can’t upper bound σ2[Zm]

E[Zm]
by a

constant.

– But, σ2[Zm]
(E[Zm])2

≤ 1 for p = O( logmm ) (ZCSE16,AD17,ATD18)

– The weak bounds lead to significant slowdown: typically 100× to
1000× factor of slowdown! (ADM20)
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The Power of Isoperimetric Inequalities

• ∑
σ1∈Sol(F )

∑
σ2∈Sol(F )
w=d(σ1,σ2)

r(w ,m) =
n∑

w=1
CF (w)r(w ,m)

• CF (w) = |{σ1, σ2 ∈ Sol(F ) | d(σ1, σ2) = w}|
• Question What is the maximum value of CF (1)?

• Well, CF (1) ≤ |Sol(F )|
(n
1

)
• Suppose n = 3 and |Sol(F )| = 3

• Possibilities: {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

Theorem (Harper’s Theorem (1962))

CF (1) ≤ |Sol(F )|
(
ℓ
1

)
where ℓ = log |Sol(F )|
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The Power of Isoperimetric Inequalities

Lemma (Rashtchian and Raynaud 2019)

n∑
w=1

CF (w) ≤
n∑

w=1

(8e√n·ℓ
w

)
where ℓ = log |Sol(F )|

What about
n∑

w=1
CF (w)r(w ,m) ?

Lemma
n∑

w=1
CF (w)r(w ,m) ≤

n∑
w=1

(8e√n·ℓ
w

)
r(w ,m) where ℓ = log |Sol(F )|

• Improvement from
(n
w

)
to
(8e√n·ℓ

w

)
• (nw)

(8e
√
n·ℓ

w )
≈ (nℓ )

w
2
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From Linear to Logarithmic Size XORs

Theorem (Informal)

For all q, k , |Sol(F )| ≤ k · 2m, p = O( logmm ) we have

σ2[Zm]

E[Zm]
≤ q(a constant)

Recall, average size of XORs: n · p
Improvement of p from m/2

m to logm
m

Challenge: No meaningful bounds on |Sol(F )|
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How many cells?

• We want to partition into 2m
∗
cells such that 2m

∗
= |Sol(F )|

thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh

# of sols
≤ thresh?
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– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh

# of sols
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# of sols
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Estimate =
# of sols ×
# of cells # of sols
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· · ·

No No

No
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The Secrets of Hashing-based Techniques

Challenge How do we obtain meaningful bounds on |Sol(F )|?
Solution : We do not need to!

Key Insight : When adding m-th XOR, theoretical analysis only

requires σ2[Zm]
E[Zm]

≤ q whenever |Sol(F )| ≤ thresh · 2m
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Sparse Hash Functions

0 100 200 300 400 500 600 700 800 900 1000

m
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4∗log2(m+1)
m

HRennes
1.1 : Sparse hash functions that guarantee q = 1.1
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Experimental Evaluation

Benchmark Vars log2(Count) ApproxMC4 ApproxMC5 Speedup
03B-4 27966 28.55 983.72 1548.96 0.64
squaring23 710 23.11 0.66 1.21 0.55
case144 765 82.07 102.65 202.06 0.51
modexp8-4-6 83953 32.13 788.23 920.34 0.86
min-28s 3933 459.23 48.63 35.83 1.36
s9234a 7 4 6313 246.0 4.77 2.45 1.95
min-8 1545 284.78 8.86 4.59 1.93
s13207a 7 4 9386 699.0 34.94 17.05 2.05
min-16 3065 539.88 33.67 16.61 2.03
90-15-4-q 1065 839.25 273.1 135.75 2.01
s35932 15 7 17918 1761.0 – 72.32 –
s38417 3 2 25528 1663.02 – 71.04 –
75-10-8-q 460 360.13 – 4850.28 –
90-15-8-q 1065 840.0 – 3717.05 –

Remember; thresh = O(σ
2[Zm]
E[Zm]

· 1
ε2
)

σ2[Zm]
E[Zm]

≤ 1 for 2-wise independent; σ2[Zm]
E[Zm]

≤ q = 1.1 for HRennes
1.1 .

The first sparse XOR-based scheme to achieve speedup without loss of
theoretical gurantees
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Conclusion

• Hashing-based techniques employ random XORs, and promise
theoretical guarantees and scalability

• The runtime of SAT solvers depend on the size of XORs

• Meaningful bounds on σ2[Zm]
E[Zm]

via Isoperimetric inequalities.

• The first sparse XOR scheme to attain speedup improvement
without loss of theoretical guarantees

• Future Directions:

– Theoretical Lower bounds on the sparsity of XORs
– Algorithmic Achieving speedup without slow down for any instance
– System Design of Sparse XOR-based XOR solving modules

• Open-source Tool: https://github.com/meelgroup/approxmc
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