
Counting, Sampling, and Synthesis: The Quest for Scalability

Kuldeep S. Meel

School of Computing

National University of Singapore

Computing: The Story of an Endless Quest for Scalability

Watson, 1940s: “I think there is a world market for about five computers.”

Gates & Allen, 1970s: “A computer on every desk and in every home”

2020: 22 billion IoT connected devices

Slide 1/ 37

Counting, Sampling, and Synthesis: The Quest for Scalability

Computing: The Story of an Endless Quest for Scalability

Watson, 1940s: “I think there is a world market for about five computers.”

Gates & Allen, 1970s: “A computer on every desk and in every home”

2020: 22 billion IoT connected devices

Slide 1/ 37

Automated Reasoning
PC1 (char [] SP , char [] UI) {

f o r (i n t i =0; i<UI . l e n g t h () ; i++) {
i f (SP [i] != UI [i]) r e t u r n No ;

}
r e t u r n Yes ;

} |=
satisfies

|=M(I,O) P(I,O)

Central Question Is it always the case that M |= P?

Equivalently, can it be the case that M∧¬P?

Boolean Satisfiability (SAT): Given a Boolean formula, is there a solution, i.e., an
assignment of 0’s and 1’s to the variables that makes the formula equal 1?

Example: (X1 ∨ ¬X2 ∨ ¬X3) ∧ (X2 ∨ ¬X3) X1 = 1,X2 = 1,X3 = 1

Cook, 1971; Levin, 1973: SAT is NP-complete (= “intractable”)

Knuth, 2016: These so-called “SAT solvers” can now routinely find solutions to
practical problems that involve millions of variables and were thought until very
recently to be hopelessly difficult.

[Circa 2012]: Now that SAT is “easy”, it is time to look beyond satisfiability

Slide 2/ 37

Automated Reasoning
PC1 (char [] SP , char [] UI) {

f o r (i n t i =0; i<UI . l e n g t h () ; i++) {
i f (SP [i] != UI [i]) r e t u r n No ;

}
r e t u r n Yes ;

} |=
satisfies

|=M(I,O) P(I,O)

Central Question Is it always the case that M |= P?

Equivalently, can it be the case that M∧¬P?

Boolean Satisfiability (SAT): Given a Boolean formula, is there a solution, i.e., an
assignment of 0’s and 1’s to the variables that makes the formula equal 1?

Example: (X1 ∨ ¬X2 ∨ ¬X3) ∧ (X2 ∨ ¬X3) X1 = 1,X2 = 1,X3 = 1

Cook, 1971; Levin, 1973: SAT is NP-complete (= “intractable”)

Knuth, 2016: These so-called “SAT solvers” can now routinely find solutions to
practical problems that involve millions of variables and were thought until very
recently to be hopelessly difficult.

[Circa 2012]: Now that SAT is “easy”, it is time to look beyond satisfiability

Slide 2/ 37

Automated Reasoning
PC1 (char [] SP , char [] UI) {

f o r (i n t i =0; i<UI . l e n g t h () ; i++) {
i f (SP [i] != UI [i]) r e t u r n No ;

}
r e t u r n Yes ;

} |=
satisfies

|=M(I,O) P(I,O)

Central Question Is it always the case that M |= P?

Equivalently, can it be the case that M∧¬P?

Boolean Satisfiability (SAT): Given a Boolean formula, is there a solution, i.e., an
assignment of 0’s and 1’s to the variables that makes the formula equal 1?

Example: (X1 ∨ ¬X2 ∨ ¬X3) ∧ (X2 ∨ ¬X3) X1 = 1,X2 = 1,X3 = 1

Cook, 1971; Levin, 1973: SAT is NP-complete (= “intractable”)

Knuth, 2016: These so-called “SAT solvers” can now routinely find solutions to
practical problems that involve millions of variables and were thought until very
recently to be hopelessly difficult.

[Circa 2012]: Now that SAT is “easy”, it is time to look beyond satisfiability

Slide 2/ 37

Automated Reasoning
PC1 (char [] SP , char [] UI) {

f o r (i n t i =0; i<UI . l e n g t h () ; i++) {
i f (SP [i] != UI [i]) r e t u r n No ;

}
r e t u r n Yes ;

} |=
satisfies

|=M(I,O) P(I,O)

Central Question Is it always the case that M |= P?

Equivalently, can it be the case that M∧¬P?

Boolean Satisfiability (SAT): Given a Boolean formula, is there a solution, i.e., an
assignment of 0’s and 1’s to the variables that makes the formula equal 1?

Example: (X1 ∨ ¬X2 ∨ ¬X3) ∧ (X2 ∨ ¬X3) X1 = 1,X2 = 1,X3 = 1

Cook, 1971; Levin, 1973: SAT is NP-complete (= “intractable”)

Knuth, 2016: These so-called “SAT solvers” can now routinely find solutions to
practical problems that involve millions of variables and were thought until very
recently to be hopelessly difficult.

[Circa 2012]: Now that SAT is “easy”, it is time to look beyond satisfiability

Slide 2/ 37

Automated Reasoning
PC1 (char [] SP , char [] UI) {

f o r (i n t i =0; i<UI . l e n g t h () ; i++) {
i f (SP [i] != UI [i]) r e t u r n No ;

}
r e t u r n Yes ;

} |=
satisfies

|=M(I,O) P(I,O)

Central Question Is it always the case that M |= P?

Equivalently, can it be the case that M∧¬P?

Boolean Satisfiability (SAT): Given a Boolean formula, is there a solution, i.e., an
assignment of 0’s and 1’s to the variables that makes the formula equal 1?

Example: (X1 ∨ ¬X2 ∨ ¬X3) ∧ (X2 ∨ ¬X3) X1 = 1,X2 = 1,X3 = 1

Cook, 1971; Levin, 1973: SAT is NP-complete (= “intractable”)

Knuth, 2016: These so-called “SAT solvers” can now routinely find solutions to
practical problems that involve millions of variables and were thought until very
recently to be hopelessly difficult.

[Circa 2012]: Now that SAT is “easy”, it is time to look beyond satisfiability

Slide 2/ 37

Automated Reasoning
PC1 (char [] SP , char [] UI) {

f o r (i n t i =0; i<UI . l e n g t h () ; i++) {
i f (SP [i] != UI [i]) r e t u r n No ;

}
r e t u r n Yes ;

} |=
satisfies

|=M(I,O) P(I,O)

Central Question Is it always the case that M |= P?

Equivalently, can it be the case that M∧¬P?

Boolean Satisfiability (SAT): Given a Boolean formula, is there a solution, i.e., an
assignment of 0’s and 1’s to the variables that makes the formula equal 1?

Example: (X1 ∨ ¬X2 ∨ ¬X3) ∧ (X2 ∨ ¬X3) X1 = 1,X2 = 1,X3 = 1

Cook, 1971; Levin, 1973: SAT is NP-complete (= “intractable”)

Knuth, 2016: These so-called “SAT solvers” can now routinely find solutions to
practical problems that involve millions of variables and were thought until very
recently to be hopelessly difficult.

[Circa 2012]: Now that SAT is “easy”, it is time to look beyond satisfiability

Slide 2/ 37

Automated Reasoning
PC1 (char [] SP , char [] UI) {

f o r (i n t i =0; i<UI . l e n g t h () ; i++) {
i f (SP [i] != UI [i]) r e t u r n No ;

}
r e t u r n Yes ;

} |=
satisfies

|=M(I,O) P(I,O)

Central Question Is it always the case that M |= P?

Equivalently, can it be the case that M∧¬P?

Boolean Satisfiability (SAT): Given a Boolean formula, is there a solution, i.e., an
assignment of 0’s and 1’s to the variables that makes the formula equal 1?

Example: (X1 ∨ ¬X2 ∨ ¬X3) ∧ (X2 ∨ ¬X3) X1 = 1,X2 = 1,X3 = 1

Cook, 1971; Levin, 1973: SAT is NP-complete (= “intractable”)

Knuth, 2016: These so-called “SAT solvers” can now routinely find solutions to
practical problems that involve millions of variables and were thought until very
recently to be hopelessly difficult.

[Circa 2012]: Now that SAT is “easy”, it is time to look beyond satisfiability

Slide 2/ 37

Beyond SAT I: Quantification

PC2 (char [] SP , char [] UI) {
match = t r u e ;
f o r (i n t i =0; i<UI . l e n g t h () ; i++) {

i f (SP [i] != UI [i]) match=f a l s e ;
e l s e match = match ;

}
i f match r e t u r n Yes ;
e l s e r e tu rn No ;

}

Information Leakage Fairness

Robustness Critical Infrastructure

Quantification: How often does M satisfy P?

Counting

Slide 3/ 37

Beyond SAT I: Quantification

PC2 (char [] SP , char [] UI) {
match = t r u e ;
f o r (i n t i =0; i<UI . l e n g t h () ; i++) {

i f (SP [i] != UI [i]) match=f a l s e ;
e l s e match = match ;

}
i f match r e t u r n Yes ;
e l s e r e tu rn No ;

}

Information Leakage Fairness

Robustness Critical Infrastructure

Quantification: How often does M satisfy P?

Counting

Slide 3/ 37

Beyond SAT II: Sampling

Constrained-Random Verification Configuration Testing

• System is simulated with test vectors

• Constraints represent relevant verification scenarios

• Test vectors: random solutions of constraints

Sampling

Slide 4/ 37

Beyond SAT III: Automated Synthesis

· · ·
Inputs
I

Specification: P(I,O)
age 25

capital-gain 4000
occupation coach

f (u, v) ≥ u;
f (u, v) ≥ v ;
f (u, v) = u ∨
f (u, v) = v)

· · ·
Outputs
O

Synthesis

Slide 5/ 37

Beyond SAT III: Automated Synthesis

· · ·
Inputs
I

Specification: P(I,O)
age 25

capital-gain 4000
occupation coach

f (u, v) ≥ u;
f (u, v) ≥ v ;
f (u, v) = u ∨
f (u, v) = v)

· · ·
Outputs
O

Synthesis

Slide 5/ 37

Beyond SAT III: Automated Synthesis

· · ·
Inputs
I

Specification: P(I,O)
age 25

capital-gain 4000
occupation coach

f (u, v) ≥ u;
f (u, v) ≥ v ;
f (u, v) = u ∨
f (u, v) = v)

· · ·
Outputs
O

int i = 0
while(i < n)
{

if (xi < xi+1)
yi = xi

else
yi = xi+1

i = i+1
}

Synthesis

Slide 5/ 37

Research Overview

Synthesis

Interpretable
Learning

Program
Synthesis

Circuit Synthesis

[MM18,GM19,GMM20]

[GRM21]

[GRM20,GSRM21]

Sampling

Hardware
Validation

Configuration
Checking

Ride Sharing

[SGRM18,GSRM19]

[BLM20,GSCM21]

[YLM23]

Counting

Infrastructure
Resilience

Neural Network
Verification

Information
Leakage

[DMPV17,PDMV19]

[BEHLMQ18,GJM22]

[BSSMS19,NSIMM19]
[SNIMMY22]

Slide 6/ 37

Research Overview

Synthesis

Interpretable
Learning

Program
Synthesis

Circuit Synthesis

[MM18,GM19,GMM20]

[GRM21]

[GRM20,GSRM21]

Sampling

Hardware
Validation

Configuration
Checking

Ride Sharing

[SGRM18,GSRM19]

[BLM20,GSCM21]

[YLM23]

Counting

Infrastructure
Resilience

Neural Network
Verification

Information
Leakage

[DMPV17,PDMV19]

[BEHLMQ18,GJM22]

[BSSMS19,NSIMM19]
[SNIMMY22]

Artificial Intelligence AAAI:17×, IJCAI:9×, NeurIPS: 6×, SAT:5×, CP:8×, KR:1×

Formal Methods CAV:6×, TACAS: 3×, ICCAD: 2×, DATE:2×, DAC: 1×

Logic/Databases LICS:2×, LPAR:2×, PODS:3×

Software Engineering ICSE:2×, FSE: 2×, CCS:1×

Today’s Talk: Counting

Slide 6/ 37

Counting

• Given: A Boolean formula F over X1,X2, · · ·Xn

• Sol(F) = { solutions of F }
• SAT: Determine if Sol(F) is non-empty

• Counting: Determine |Sol(F)|

• Example: F := (X1 ∨ X2)

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• |Sol(F)| = 3

• Generalization to arbitrary weights

• Given weight function (implicitly represented) W : {0, 1}n 7→ [0, 1]
• W (F) = Σy∈Sol(F)W (y)
• (Weighted) Counting: Determine W (F)

Today’s talk: We focus on unweighted case, i.e., |Sol(F)|

Slide 7/ 37

Counting

• Given: A Boolean formula F over X1,X2, · · ·Xn

• Sol(F) = { solutions of F }
• SAT: Determine if Sol(F) is non-empty

• Counting: Determine |Sol(F)|
• Example: F := (X1 ∨ X2)

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• |Sol(F)| = 3

• Generalization to arbitrary weights

• Given weight function (implicitly represented) W : {0, 1}n 7→ [0, 1]
• W (F) = Σy∈Sol(F)W (y)
• (Weighted) Counting: Determine W (F)

Today’s talk: We focus on unweighted case, i.e., |Sol(F)|

Slide 7/ 37

Counting

• Given: A Boolean formula F over X1,X2, · · ·Xn

• Sol(F) = { solutions of F }
• SAT: Determine if Sol(F) is non-empty

• Counting: Determine |Sol(F)|
• Example: F := (X1 ∨ X2)

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• |Sol(F)| = 3

• Generalization to arbitrary weights

• Given weight function (implicitly represented) W : {0, 1}n 7→ [0, 1]
• W (F) = Σy∈Sol(F)W (y)
• (Weighted) Counting: Determine W (F)

Today’s talk: We focus on unweighted case, i.e., |Sol(F)|

Slide 7/ 37

Today’s Menu

Appetizer Applications

• Critical Infrastructure Resilience

• Quantitative Analysis of AI Systems

Main Course ApproxMC: A Scalable Counting Framework

Dessert Future Outlook

Slide 8/ 37

Resilience of Critical Infrastructure Networks [DMPV17,PDMV19]

Can we predict the likelihood of a blackout due to natural disaster?

• G = (V ,E); set of source nodes S and terminal node t

• failure probability g : E → [0, 1]

• Compute Pr[t is disconnected from S]?

Constrained Counting

Key Idea: Encode disconnectedness using constraints

Impact: The first theoretically sound estimates of resilience in power transmission
networks of ten medium sized cities in US

Slide 9/ 37

Resilience of Critical Infrastructure Networks [DMPV17,PDMV19]

Can we predict the likelihood of a blackout due to natural disaster?

• G = (V ,E); set of source nodes S and terminal node t

• failure probability g : E → [0, 1]

• Compute Pr[t is disconnected from S]?

Constrained Counting

Key Idea: Encode disconnectedness using constraints

Impact: The first theoretically sound estimates of resilience in power transmission
networks of ten medium sized cities in US

Slide 9/ 37

Resilience of Critical Infrastructure Networks [DMPV17,PDMV19]

Can we predict the likelihood of a blackout due to natural disaster?

• G = (V ,E); set of source nodes S and terminal node t

• failure probability g : E → [0, 1]

• Compute Pr[t is disconnected from S]?

Constrained Counting

Key Idea: Encode disconnectedness using constraints

Impact: The first theoretically sound estimates of resilience in power transmission
networks of ten medium sized cities in US

Slide 9/ 37

Quantitative Analysis of AI Systems [BSSMS19,NSMIS19,NSMISV22]

Our Focus: Binarized Neural Networks

Robustness Quantification

∣∣∣∣ {x : N (x + ε) ̸= N (x)}
∣∣∣∣

∣∣∣∣ {x : N (x + ε) ̸= N (x)}
∣∣∣∣︸ ︷︷ ︸

Encode Symbolically

Constrained Counting

Fairness Quantification

∣∣∣∣ {x : N (x ∧ Black) ̸= N (x ∧White)}
∣∣∣∣︸ ︷︷ ︸

Encode Symbolically

Impact: The first scalable technique for rigorous quantification of robustness and
fairness of Binarized Neural Networks

Slide 10/ 37

Quantitative Analysis of AI Systems [BSSMS19,NSMIS19,NSMISV22]

Our Focus: Binarized Neural Networks

Robustness Quantification

∣∣∣∣ {x : N (x + ε) ̸= N (x)}
∣∣∣∣︸ ︷︷ ︸

Encode Symbolically

Constrained Counting

Fairness Quantification

∣∣∣∣ {x : N (x ∧ Black) ̸= N (x ∧White)}
∣∣∣∣︸ ︷︷ ︸

Encode Symbolically

Impact: The first scalable technique for rigorous quantification of robustness and
fairness of Binarized Neural Networks

Slide 10/ 37

Quantitative Analysis of AI Systems [BSSMS19,NSMIS19,NSMISV22]

Our Focus: Binarized Neural Networks

Robustness Quantification

∣∣∣∣ {x : N (x + ε) ̸= N (x)}
∣∣∣∣︸ ︷︷ ︸

Encode Symbolically

Constrained Counting

Fairness Quantification

∣∣∣∣ {x : N (x ∧ Black) ̸= N (x ∧White)}
∣∣∣∣︸ ︷︷ ︸

Encode Symbolically

Impact: The first scalable technique for rigorous quantification of robustness and
fairness of Binarized Neural Networks

Slide 10/ 37

Quantitative Analysis of AI Systems [BSSMS19,NSMIS19,NSMISV22]

Our Focus: Binarized Neural Networks

Robustness Quantification

∣∣∣∣ {x : N (x + ε) ̸= N (x)}
∣∣∣∣︸ ︷︷ ︸

Encode Symbolically

Constrained Counting

Fairness Quantification

∣∣∣∣ {x : N (x ∧ Black) ̸= N (x ∧White)}
∣∣∣∣︸ ︷︷ ︸

Encode Symbolically

Impact: The first scalable technique for rigorous quantification of robustness and
fairness of Binarized Neural Networks

Slide 10/ 37

Applications across Computer Science

CountingInfrastructure
Resilience

Robustness
& Fairness

Quantification

Product Coverage
Estimation

Information
Leakage

Partition
Function

[DMPV17,PDMV19]

[BEHLMQ18,GJM22]

[BSSMS19,NSIMM19]
[SNIMMY22]

[BCLMV22]

[APM21]

Impact: Counting-based approach is now the state of the art for all these applications

Slide 11/ 37

So Fundamental Yet So Hard

Valiant, 1979: Counting exactly is #P-hard

Stockmeyer, 1983: Probably Approximately Correct (PAC) aka (ε, δ)-guarantees

Pr

[
|Sol(F)|
1 + ε

≤ ApproxCount(F, ε, δ) ≤ (1 + ε)|Sol(F)|
]
≥ 1− δ

Stoc83, JVV86, BP94: Polynomial calls to SAT oracle suffice

• Not practical

SAT Solver ̸= SAT Oracle

Performance of state of the art SAT solvers depends on the formulas

Slide 12/ 37

So Fundamental Yet So Hard

Valiant, 1979: Counting exactly is #P-hard

Stockmeyer, 1983: Probably Approximately Correct (PAC) aka (ε, δ)-guarantees

Pr

[
|Sol(F)|
1 + ε

≤ ApproxCount(F, ε, δ) ≤ (1 + ε)|Sol(F)|
]
≥ 1− δ

Stoc83, JVV86, BP94: Polynomial calls to SAT oracle suffice

• Not practical

SAT Solver ̸= SAT Oracle

Performance of state of the art SAT solvers depends on the formulas

Slide 12/ 37

So Fundamental Yet So Hard

Valiant, 1979: Counting exactly is #P-hard

Stockmeyer, 1983: Probably Approximately Correct (PAC) aka (ε, δ)-guarantees

Pr

[
|Sol(F)|
1 + ε

≤ ApproxCount(F, ε, δ) ≤ (1 + ε)|Sol(F)|
]
≥ 1− δ

Stoc83, JVV86, BP94: Polynomial calls to SAT oracle suffice

• Not practical

SAT Solver ̸= SAT Oracle

Performance of state of the art SAT solvers depends on the formulas

Slide 12/ 37

Snapshot from 2012

Theoretical Guarantees

Scalability

[GHSS07b]

[GHSS07a]

[KSB08]

[WS05]

[Sto83]

[GSS06]

[JVV86]

[SBK05]

[SBK05b]

[T06]

AAAI21:3×, CP21, KR21, PODS21: 2×, CAV21, AAAI22; LICS22

AAAI19, SAT19:2×, IJCAI19:2×, TACAS20,LICS20,CAV20:2×,
CP13,AAAI14,IJCAI15,AAAI16,IJCAI16:2×, IJCAI17,VMCAI18

State of the art tool in 2012 could handle one out of 1076 robustness instances

Can we bridge the gap between theory and practice?

Slide 13/ 37

Snapshot from 2012

Theoretical Guarantees

Scalability

[GHSS07b]

[GHSS07a]

[KSB08]

[WS05]

[Sto83]

[GSS06]

[JVV86]

[SBK05]

[SBK05b]

[T06]

AAAI21:3×, CP21, KR21, PODS21: 2×, CAV21, AAAI22; LICS22

AAAI19, SAT19:2×, IJCAI19:2×, TACAS20,LICS20,CAV20:2×,
CP13,AAAI14,IJCAI15,AAAI16,IJCAI16:2×, IJCAI17,VMCAI18

State of the art tool in 2012 could handle one out of 1076 robustness instances

Can we bridge the gap between theory and practice?

Slide 13/ 37

Snapshot from 2012

Theoretical Guarantees

Scalability

[GHSS07b]

[GHSS07a]

[KSB08]

[WS05]

[Sto83]

[GSS06]

[JVV86]

[SBK05]

[SBK05b]

[T06]

AAAI21:3×, CP21, KR21, PODS21: 2×, CAV21, AAAI22; LICS22

AAAI19, SAT19:2×, IJCAI19:2×, TACAS20,LICS20,CAV20:2×,
CP13,AAAI14,IJCAI15,AAAI16,IJCAI16:2×, IJCAI17,VMCAI18

State of the art tool in 2012 could handle one out of 1076 robustness instances

Can we bridge the gap between theory and practice?

Slide 13/ 37

Snapshot from 2012

Theoretical Guarantees

Scalability

[GHSS07b]

[GHSS07a]

[KSB08]

[WS05]

[Sto83]

[GSS06]

[JVV86]

[SBK05]

[SBK05b]

[T06]

AAAI21:3×, CP21, KR21, PODS21: 2×, CAV21, AAAI22; LICS22

AAAI19, SAT19:2×, IJCAI19:2×, TACAS20,LICS20,CAV20:2×,
CP13,AAAI14,IJCAI15,AAAI16,IJCAI16:2×, IJCAI17,VMCAI18

State of the art tool in 2012 could handle one out of 1076 robustness instances

Can we bridge the gap between theory and practice?

Slide 13/ 37

Counting in Atlanta

How many people in Atlanta like coffee?

• Population of Atlanta = 6.1M

• Assign every person a unique (n =) 23 bit identifier (2n ≈ 6.1M)

• Attempt #1: Pick 50 people and count how many of them like coffee and
multiply by 6.1M/50

• If only 1000 people like coffee, it is unlikely that we will find anyone who
likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

• Q1: Find a person who likes coffee
• Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

• Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

Slide 14/ 37

Counting in Atlanta

How many people in Atlanta like coffee?

• Population of Atlanta = 6.1M

• Assign every person a unique (n =) 23 bit identifier (2n ≈ 6.1M)

• Attempt #1: Pick 50 people and count how many of them like coffee and
multiply by 6.1M/50

• If only 1000 people like coffee, it is unlikely that we will find anyone who
likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

• Q1: Find a person who likes coffee
• Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

• Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

Slide 14/ 37

Counting in Atlanta

How many people in Atlanta like coffee?

• Population of Atlanta = 6.1M

• Assign every person a unique (n =) 23 bit identifier (2n ≈ 6.1M)

• Attempt #1: Pick 50 people and count how many of them like coffee and
multiply by 6.1M/50

• If only 1000 people like coffee, it is unlikely that we will find anyone who
likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

• Q1: Find a person who likes coffee
• Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

• Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

Slide 14/ 37

Counting in Atlanta

How many people in Atlanta like coffee?

• Population of Atlanta = 6.1M

• Assign every person a unique (n =) 23 bit identifier (2n ≈ 6.1M)

• Attempt #1: Pick 50 people and count how many of them like coffee and
multiply by 6.1M/50

• If only 1000 people like coffee, it is unlikely that we will find anyone who
likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

• Q1: Find a person who likes coffee
• Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

• Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

Slide 14/ 37

Counting in Atlanta

How many people in Atlanta like coffee?

• Population of Atlanta = 6.1M

• Assign every person a unique (n =) 23 bit identifier (2n ≈ 6.1M)

• Attempt #1: Pick 50 people and count how many of them like coffee and
multiply by 6.1M/50

• If only 1000 people like coffee, it is unlikely that we will find anyone who
likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

• Q1: Find a person who likes coffee
• Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

• Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

Slide 14/ 37

Counting in Atlanta

How many people in Atlanta like coffee?

• Population of Atlanta = 6.1M

• Assign every person a unique (n =) 23 bit identifier (2n ≈ 6.1M)

• Attempt #1: Pick 50 people and count how many of them like coffee and
multiply by 6.1M/50

• If only 1000 people like coffee, it is unlikely that we will find anyone who
likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

• Q1: Find a person who likes coffee
• Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

• Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

Slide 14/ 37

Counting in Atlanta

How many people in Atlanta like coffee?

• Population of Atlanta = 6.1M

• Assign every person a unique (n =) 23 bit identifier (2n ≈ 6.1M)

• Attempt #1: Pick 50 people and count how many of them like coffee and
multiply by 6.1M/50

• If only 1000 people like coffee, it is unlikely that we will find anyone who
likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

• Q1: Find a person who likes coffee
• Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

• Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

Slide 14/ 37

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

Slide 15/ 37

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

Slide 15/ 37

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

Slide 15/ 37

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without
knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)

• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash functions

2-wise Independent Hashing [CW77]

Challenge 2 How many cells?

Slide 16/ 37

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without
knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)

• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash functions

2-wise Independent Hashing [CW77]

Slide 16/ 37

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without
knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Deterministic h unlikely to work

• Choose h randomly from a large family H of hash functions

2-wise Independent Hashing [CW77]

Slide 16/ 37

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without
knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash functions

2-wise Independent Hashing [CW77]

Slide 16/ 37

2-wise Independent Hash Functions

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2
and XOR them

▶ X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

Slide 17/ 37

2-wise Independent Hash Functions

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2
and XOR them

▶ X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

Slide 17/ 37

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without
knowing the distribution of solutions?

Random XOR-based Hash Functions [CW77]

Challenge 2 How many cells?

Slide 18/ 37

Challenge 2: How many cells? [CMV13,CMV16]

• A cell is small if it has ≈ thresh = 5(1 + 1
ε
)2 solutions

• Many solutions =⇒ Many cells & Fewer solutions =⇒ Fewer cells

of sols
≤ thresh?

Theorem: Pr
[
|Sol(F)|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(F)|(1 + ε)
]
≥ 1− δ

Slide 19/ 37

Challenge 2: How many cells? [CMV13,CMV16]

• A cell is small if it has ≈ thresh = 5(1 + 1
ε
)2 solutions

• Many solutions =⇒ Many cells & Fewer solutions =⇒ Fewer cells

of sols
≤ thresh?

Theorem: Pr
[
|Sol(F)|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(F)|(1 + ε)
]
≥ 1− δ

Slide 19/ 37

Challenge 2: How many cells? [CMV13,CMV16]

• A cell is small if it has ≈ thresh = 5(1 + 1
ε
)2 solutions

• Many solutions =⇒ Many cells & Fewer solutions =⇒ Fewer cells

of sols
≤ thresh?

F ∧ Q1

of sols
≤ thresh?

No

Theorem: Pr
[
|Sol(F)|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(F)|(1 + ε)
]
≥ 1− δ

Slide 19/ 37

Challenge 2: How many cells? [CMV13,CMV16]

• A cell is small if it has ≈ thresh = 5(1 + 1
ε
)2 solutions

• Many solutions =⇒ Many cells & Fewer solutions =⇒ Fewer cells

of sols
≤ thresh?

F ∧ Q1

of sols
≤ thresh?

F ∧ Q1 ∧ Q2

No No

Theorem: Pr
[
|Sol(F)|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(F)|(1 + ε)
]
≥ 1− δ

Slide 19/ 37

Challenge 2: How many cells? [CMV13,CMV16]

• A cell is small if it has ≈ thresh = 5(1 + 1
ε
)2 solutions

• Many solutions =⇒ Many cells & Fewer solutions =⇒ Fewer cells

of sols
≤ thresh?

F ∧ Q1

of sols
≤ thresh?

F ∧ Q1 ∧ Q2

of sols
≤ thresh?

of sols
≤ thresh?

F ∧ Q1 ∧ Q2 . . . ∧ Qm

· · ·

F ∧ Q1 ∧ Q2 ∧ Q3

No No

No

Theorem: Pr
[
|Sol(F)|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(F)|(1 + ε)
]
≥ 1− δ

Slide 19/ 37

Challenge 2: How many cells? [CMV13,CMV16]

• A cell is small if it has ≈ thresh = 5(1 + 1
ε
)2 solutions

• Many solutions =⇒ Many cells & Fewer solutions =⇒ Fewer cells

of sols
≤ thresh?

F ∧ Q1

of sols
≤ thresh?

F ∧ Q1 ∧ Q2

of sols
≤ thresh?

Estimate =
of sols ×
of cells # of sols

≤ thresh?

F ∧ Q1 ∧ Q2 . . . ∧ Qm

· · ·

F ∧ Q1 ∧ Q2 ∧ Q3

No No

No

Yes

Theorem: Pr
[
|Sol(F)|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(F)|(1 + ε)
]
≥ 1− δ

Slide 19/ 37

Challenge 2: How many cells? [CMV13,CMV16]

• A cell is small if it has ≈ thresh = 5(1 + 1
ε
)2 solutions

• Many solutions =⇒ Many cells & Fewer solutions =⇒ Fewer cells

of sols
≤ thresh?

F ∧ Q1

of sols
≤ thresh?

F ∧ Q1 ∧ Q2

of sols
≤ thresh?

Estimate =
of sols ×
of cells # of sols

≤ thresh?

F ∧ Q1 ∧ Q2 . . . ∧ Qm

· · ·

F ∧ Q1 ∧ Q2 ∧ Q3

No No

No

Yes

Theorem: Pr
[
|Sol(F)|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(F)|(1 + ε)
]
≥ 1− δ

Slide 19/ 37

ApproxMC: Early Years (2013-16)

Handle reasonable formulas: reasonable grids, reasonable programs

2019: CP-13 paper selected as one of the 25 papers across 25 years of CP conference

B. Cook: Virtuous cycle: application areas drives more investment in foundational
tools, while improvements in the foundational tools drive further applications. Around
and around.

The definition of “reasonable” changes after every iteration of the cycle

Slide 20/ 37

ApproxMC: Early Years (2013-16)

Handle reasonable formulas: reasonable grids, reasonable programs

2019: CP-13 paper selected as one of the 25 papers across 25 years of CP conference

B. Cook: Virtuous cycle: application areas drives more investment in foundational
tools, while improvements in the foundational tools drive further applications. Around
and around.

The definition of “reasonable” changes after every iteration of the cycle

Slide 20/ 37

Closing Slide from Seminar at NUS in Feb 2017

2025 Target: 100× speedup over 2016

Slide 21/ 37

ApproxMC: In Pursuit of Scalability

1 10 100 1,000 5,000
1

400

800

1,200

1,600

Time

S
o
lv
ed

2016

1896 instances from diverse applications
All experiments on 2022 hardware

2016 630 instances, each in ≤ 5000 seconds
2022 950 instances, each in ≤ 1 second

Time taken (seconds) for an instance

2016: 3552.16 2019: 32.83 2020: 19.59 2022: 0.15

A speedup of 20,000× over 2016

Still provides (ε, δ)-guarantees

Slide 22/ 37

ApproxMC: In Pursuit of Scalability

1 10 100 1,000 5,000
1

400

800

1,200

1,600

Time

S
o
lv
ed

2022

2020

2019

2016

1896 instances from diverse applications
All experiments on 2022 hardware

2016 630 instances, each in ≤ 5000 seconds
2022 950 instances, each in ≤ 1 second

Time taken (seconds) for an instance

2016: 3552.16 2019: 32.83 2020: 19.59 2022: 0.15

A speedup of 20,000× over 2016

Still provides (ε, δ)-guarantees

Slide 22/ 37

ApproxMC: In Pursuit of Scalability

1 10 100 1,000 5,000
1

400

800

1,200

1,600

Time

S
o
lv
ed

2022

2016

1896 instances from diverse applications
All experiments on 2022 hardware

2016 630 instances, each in ≤ 5000 seconds
2022 950 instances, each in ≤ 1 second

Time taken (seconds) for an instance

2016: 3552.16 2019: 32.83 2020: 19.59 2022: 0.15

A speedup of 20,000× over 2016

Still provides (ε, δ)-guarantees

Slide 22/ 37

ApproxMC: In Pursuit of Scalability

1 10 100 1,000 5,000
1

400

800

1,200

1,600

Time

S
o
lv
ed

2022

2016

1896 instances from diverse applications
All experiments on 2022 hardware

2016 630 instances, each in ≤ 5000 seconds
2022 950 instances, each in ≤ 1 second

Time taken (seconds) for an instance

2016: 3552.16 2019: 32.83 2020: 19.59 2022: 0.15

A speedup of 20,000× over 2016

Still provides (ε, δ)-guarantees

Slide 22/ 37

In Pursuit of Scalability

LICS-20

SAT-20

Sparse hashing

LICS-20

SAT-20

Sparse hashing

CP-19

Duality

PODS-21,22

CP-18,IJCAI-19

DNF

CP-20

IJCAI-16,17,19

Phase Transition

ICCAD-22

Constraints-16

Indep Supp

ICCAD-22

Constraints-16

Indep Supp

NeurIPS-20

IJCAI-15

Chain Formulas

TACAS-20, AAAI-21

Symmetry

AAAI-23

IJCAI-19

Prob. Caching

CAV-20

AAAI-19

CNF-XOR

CAV-20

AAAI-19

CNF-XOR

CP-21

Pseudo-Boolean

KR-21

MaxSAT-XOR

SAT-21

Hardware Accelerator

Theoretical
Advances

Algorithmic
Engineering

Software
Development

Slide 23/ 37

In Pursuit of Scalability

LICS-20

SAT-20

Sparse hashing

CP-19

Duality

PODS-21,22

CP-18,IJCAI-19

DNF

CP-20

IJCAI-16,17,19

Phase Transition

ICCAD-22

Constraints-16

Indep Supp

NeurIPS-20

IJCAI-15

Chain Formulas

TACAS-20, AAAI-21

Symmetry

AAAI-23

IJCAI-19

Prob. Caching

CAV-20

AAAI-19

CNF-XOR

CP-21

Pseudo-Boolean

KR-21

MaxSAT-XOR

SAT-21

Hardware Accelerator

Theoretical
Advances

Algorithmic
Engineering

Software
Development

Slide 23/ 37

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the
distribution of solutions?

2-wise Independent Hash Functions

• Choose m random XORs: Q1,Q2, . . .Qm

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

Need to handle
F︸︷︷︸

CNF

∧Q1 · · · ∧ Qm︸ ︷︷ ︸
XOR

Performance of state of the art SAT solvers depends on the formulas

SAT Solvers != SAT oracles

Slide 24/ 37

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the
distribution of solutions?

2-wise Independent Hash Functions

• Choose m random XORs: Q1,Q2, . . .Qm

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

Need to handle
F︸︷︷︸

CNF

∧Q1 · · · ∧ Qm︸ ︷︷ ︸
XOR

Performance of state of the art SAT solvers depends on the formulas

SAT Solvers != SAT oracles

Slide 24/ 37

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the
distribution of solutions?

2-wise Independent Hash Functions

• Choose m random XORs: Q1,Q2, . . .Qm

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

Need to handle
F︸︷︷︸

CNF

∧Q1 · · · ∧ Qm︸ ︷︷ ︸
XOR

Performance of state of the art SAT solvers depends on the formulas

SAT Solvers != SAT oracles

Slide 24/ 37

New Architecture for CNF-XOR Formulas

Modern SAT Solvers: Conflict-Driven Clause Learning (CDCL) paradigm

• Guess an assignment to subset of variables, if conflict, remember the reason

• Continue until satisfiable/unsatisfiable

CDCL and XORs: Random XORs are hard for CDCL in theory and practice

• But there is a polynomial time procedure: Gauss-Jordan Elimination

level dec prop
0 x1
1 x3 → x5
2 x4 → x2,¬x5

CDCL

x1 x2 x3
1 0 1 0
1 1 1 1
1 1 0 0

Gauss-Jordan EliminationIncremental Incremental

∆ Trail

∆ Propagations
∆ Conflicts

Engineering an efficient CDCL-GJE solver [SM19; SGM20]

• Data-structures for efficient propagation and conflict analysis

• Supervised machine learning-guided heuristics

Slide 25/ 37

New Architecture for CNF-XOR Formulas

Modern SAT Solvers: Conflict-Driven Clause Learning (CDCL) paradigm

• Guess an assignment to subset of variables, if conflict, remember the reason

• Continue until satisfiable/unsatisfiable

CDCL and XORs: Random XORs are hard for CDCL in theory and practice

• But there is a polynomial time procedure: Gauss-Jordan Elimination

level dec prop
0 x1
1 x3 → x5
2 x4 → x2,¬x5

CDCL

x1 x2 x3
1 0 1 0
1 1 1 1
1 1 0 0

Gauss-Jordan Elimination

Incremental Incremental

∆ Trail

∆ Propagations
∆ Conflicts

Engineering an efficient CDCL-GJE solver [SM19; SGM20]

• Data-structures for efficient propagation and conflict analysis

• Supervised machine learning-guided heuristics

Slide 25/ 37

New Architecture for CNF-XOR Formulas

Modern SAT Solvers: Conflict-Driven Clause Learning (CDCL) paradigm

• Guess an assignment to subset of variables, if conflict, remember the reason

• Continue until satisfiable/unsatisfiable

CDCL and XORs: Random XORs are hard for CDCL in theory and practice

• But there is a polynomial time procedure: Gauss-Jordan Elimination

level dec prop
0 x1
1 x3 → x5
2 x4 → x2,¬x5

CDCL

x1 x2 x3
1 0 1 0
1 1 1 1
1 1 0 0

Gauss-Jordan EliminationIncremental Incremental

∆ Trail

∆ Propagations
∆ Conflicts

Engineering an efficient CDCL-GJE solver [SM19; SGM20]

• Data-structures for efficient propagation and conflict analysis

• Supervised machine learning-guided heuristics

Slide 25/ 37

New Architecture for CNF-XOR Formulas

Modern SAT Solvers: Conflict-Driven Clause Learning (CDCL) paradigm

• Guess an assignment to subset of variables, if conflict, remember the reason

• Continue until satisfiable/unsatisfiable

CDCL and XORs: Random XORs are hard for CDCL in theory and practice

• But there is a polynomial time procedure: Gauss-Jordan Elimination

level dec prop
0 x1
1 x3 → x5
2 x4 → x2,¬x5

CDCL

x1 x2 x3
1 0 1 0
1 1 1 1
1 1 0 0

Gauss-Jordan EliminationIncremental Incremental

∆ Trail

∆ Propagations
∆ Conflicts

Engineering an efficient CDCL-GJE solver [SM19; SGM20]

• Data-structures for efficient propagation and conflict analysis

• Supervised machine learning-guided heuristics

Slide 25/ 37

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the
distribution of solutions?

2-wise Independent Hash Functions

• Choose m random XORs: Q1,Q2, . . .Qm

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

✓Challenge 1 Need to handle CNF-XOR formulas

Software Development Specialized CDCL-GJE Solver with Data-Driven Heuristics

SAT Solvers != SAT oracles: Performance degrades with increase in the size of XORs

• Pick every Xi with prob. 1
2
and XOR them

• Expected size of each XOR: n
2

Challenge 2 Do we have really to pick every variable Xi with prob 1
2
?

Slide 26/ 37

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the
distribution of solutions?

2-wise Independent Hash Functions

• Choose m random XORs: Q1,Q2, . . .Qm

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

✓Challenge 1 Need to handle CNF-XOR formulas

Software Development Specialized CDCL-GJE Solver with Data-Driven Heuristics

SAT Solvers != SAT oracles: Performance degrades with increase in the size of XORs

• Pick every Xi with prob. 1
2
and XOR them

• Expected size of each XOR: n
2

Challenge 2 Do we have really to pick every variable Xi with prob 1
2
?

Slide 26/ 37

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the
distribution of solutions?

2-wise Independent Hash Functions

• Choose m random XORs: Q1,Q2, . . .Qm

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

✓Challenge 1 Need to handle CNF-XOR formulas

Software Development Specialized CDCL-GJE Solver with Data-Driven Heuristics

SAT Solvers != SAT oracles: Performance degrades with increase in the size of XORs

• Pick every Xi with prob. 1
2
and XOR them

• Expected size of each XOR: n
2

Challenge 2 Do we have really to pick every variable Xi with prob 1
2
?

Slide 26/ 37

Not All Variables Matter Equally

• Not all variables are required to specify solution space of F

• F := X3 ⇐⇒ (X1 ∨ X2)
• X1 and X2 uniquely determines rest of the variables (i.e., X3)

• I ⊆ X is independent support if it suffices to determine the solution space

• {X1,X2} is independent support

• Random XORs need to be constructed only over I [CMV14]

• Typically I is 1-2 orders of magnitude smaller than X

Algorithmic procedure to determine I?

• Approach I: log n

hard

calls to SAT solver via reduction to GMUS [IMMV15]

Best Student Paper, CP15

• Approach II: n easy calls to SAT solver via Padoa’s theorem [SM22]

Approach II + ApproxMC is up to 100× faster than Approach I + ApproxMC

SAT Solvers ̸= SAT Oracles

Slide 27/ 37

Not All Variables Matter Equally

• Not all variables are required to specify solution space of F

• F := X3 ⇐⇒ (X1 ∨ X2)
• X1 and X2 uniquely determines rest of the variables (i.e., X3)

• I ⊆ X is independent support if it suffices to determine the solution space

• {X1,X2} is independent support

• Random XORs need to be constructed only over I [CMV14]

• Typically I is 1-2 orders of magnitude smaller than X

Algorithmic procedure to determine I?

• Approach I: log n

hard

calls to SAT solver via reduction to GMUS [IMMV15]

Best Student Paper, CP15

• Approach II: n easy calls to SAT solver via Padoa’s theorem [SM22]

Approach II + ApproxMC is up to 100× faster than Approach I + ApproxMC

SAT Solvers ̸= SAT Oracles

Slide 27/ 37

Not All Variables Matter Equally

• Not all variables are required to specify solution space of F

• F := X3 ⇐⇒ (X1 ∨ X2)
• X1 and X2 uniquely determines rest of the variables (i.e., X3)

• I ⊆ X is independent support if it suffices to determine the solution space

• {X1,X2} is independent support

• Random XORs need to be constructed only over I [CMV14]

• Typically I is 1-2 orders of magnitude smaller than X

Algorithmic procedure to determine I?

• Approach I: log n

hard

calls to SAT solver via reduction to GMUS [IMMV15]

Best Student Paper, CP15

• Approach II: n easy calls to SAT solver via Padoa’s theorem [SM22]

Approach II + ApproxMC is up to 100× faster than Approach I + ApproxMC

SAT Solvers ̸= SAT Oracles

Slide 27/ 37

Not All Variables Matter Equally

• Not all variables are required to specify solution space of F

• F := X3 ⇐⇒ (X1 ∨ X2)
• X1 and X2 uniquely determines rest of the variables (i.e., X3)

• I ⊆ X is independent support if it suffices to determine the solution space

• {X1,X2} is independent support

• Random XORs need to be constructed only over I [CMV14]

• Typically I is 1-2 orders of magnitude smaller than X

Algorithmic procedure to determine I?
• Approach I: log n

hard

calls to SAT solver via reduction to GMUS [IMMV15]

Best Student Paper, CP15

• Approach II: n easy calls to SAT solver via Padoa’s theorem [SM22]

Approach II + ApproxMC is up to 100× faster than Approach I + ApproxMC

SAT Solvers ̸= SAT Oracles

Slide 27/ 37

Not All Variables Matter Equally

• Not all variables are required to specify solution space of F

• F := X3 ⇐⇒ (X1 ∨ X2)
• X1 and X2 uniquely determines rest of the variables (i.e., X3)

• I ⊆ X is independent support if it suffices to determine the solution space

• {X1,X2} is independent support

• Random XORs need to be constructed only over I [CMV14]

• Typically I is 1-2 orders of magnitude smaller than X

Algorithmic procedure to determine I?
• Approach I: log n hard calls to SAT solver via reduction to GMUS [IMMV15]

Best Student Paper, CP15

• Approach II: n easy calls to SAT solver via Padoa’s theorem [SM22]

Approach II + ApproxMC is up to 100× faster than Approach I + ApproxMC

SAT Solvers ̸= SAT Oracles

Slide 27/ 37

Not All Variables Matter Equally

• Not all variables are required to specify solution space of F

• F := X3 ⇐⇒ (X1 ∨ X2)
• X1 and X2 uniquely determines rest of the variables (i.e., X3)

• I ⊆ X is independent support if it suffices to determine the solution space

• {X1,X2} is independent support

• Random XORs need to be constructed only over I [CMV14]

• Typically I is 1-2 orders of magnitude smaller than X

Algorithmic procedure to determine I?
• Approach I: log n hard calls to SAT solver via reduction to GMUS [IMMV15]

Best Student Paper, CP15

• Approach II: n easy calls to SAT solver via Padoa’s theorem [SM22]

Approach II + ApproxMC is up to 100× faster than Approach I + ApproxMC

SAT Solvers ̸= SAT Oracles

Slide 27/ 37

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the
distribution of solutions?

2-wise Independent Hash Functions

• Choose m random XORs: Q1,Q2, . . .Qm

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

✓Challenge 1 Need to handle CNF-XOR formulas

Software Development Specialized CDCL-GJE Solver with Data-Driven Heuristics

SAT Solvers != SAT oracles: Performance degrades with increase in the size of XORs

• Pick every Xi with prob. 1
2
and XOR them

• Expected size of each XOR: n
2

✓Challenge 2 Do we have to really pick every variable Xi with prob 1
2
?

Algorithmic Engineering Pick Xi ∈ I

Challenge 3 Do we have to really pick every variable Xi with prob 1
2
?

• If we pick with prob p < 1
2
, then no guarantees of 2-wise independence

• Zm : Number of solutions in a randomly chosen cell

• 2-wise independence =⇒ Var[Zm]
E[Zm]

≤ 1 =⇒ Concentration bounds

Slide 28/ 37

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the
distribution of solutions?

2-wise Independent Hash Functions

• Choose m random XORs: Q1,Q2, . . .Qm

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

✓Challenge 1 Need to handle CNF-XOR formulas

Software Development Specialized CDCL-GJE Solver with Data-Driven Heuristics

SAT Solvers != SAT oracles: Performance degrades with increase in the size of XORs

• Pick every Xi with prob. 1
2
and XOR them

• Expected size of each XOR: n
2

✓Challenge 2 Do we have to really pick every variable Xi with prob 1
2
?

Algorithmic Engineering Pick Xi ∈ I

Challenge 3 Do we have to really pick every variable Xi with prob 1
2
?

• If we pick with prob p < 1
2
, then no guarantees of 2-wise independence

• Zm : Number of solutions in a randomly chosen cell

• 2-wise independence =⇒ Var[Zm]
E[Zm]

≤ 1 =⇒ Concentration bounds

Slide 28/ 37

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the
distribution of solutions?

2-wise Independent Hash Functions

• Choose m random XORs: Q1,Q2, . . .Qm

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

✓Challenge 1 Need to handle CNF-XOR formulas

Software Development Specialized CDCL-GJE Solver with Data-Driven Heuristics

SAT Solvers != SAT oracles: Performance degrades with increase in the size of XORs

• Pick every Xi with prob. 1
2
and XOR them

• Expected size of each XOR: n
2

✓Challenge 2 Do we have to really pick every variable Xi with prob 1
2
?

Algorithmic Engineering Pick Xi ∈ I

Challenge 3 Do we have to really pick every variable Xi with prob 1
2
?

• If we pick with prob p < 1
2
, then no guarantees of 2-wise independence

• Zm : Number of solutions in a randomly chosen cell

• 2-wise independence =⇒ Var[Zm]
E[Zm]

≤ 1 =⇒ Concentration bounds

Slide 28/ 37

Beyond 2-wise Independence [MA20]

Open problem (2013-19): Sparse (p < 1
2
) XORs that work in theory and practice

Theorem (Log-Sparse XORs suffice)

If we pick m-th XOR with pm = logm
m

, we have Var[Zm]
E[Zm]

≤ 1.1

Improvement of p from m/2
m

to logm
m

Var[Zm]

E[Zm]
≤ 1 + |Sol(F)|−1 ·

∑
σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

≈ collision probability︷ ︸︸ ︷
r(w , pm)

≤ 1 +
n∑

w=0

(n

w

)
r(w , pm)︸ ︷︷ ︸

Earlier Attempts

[EGSS14,ZCSE16,AD17,ATD18]

Rewrite
∑

σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w , pm) =
n∑

w=0

CF (w)r(w , pm)

CF (w) =
∣∣{σ1, σ2 ∈ Sol(F) | d(σ1, σ2) = w}

∣∣
Isopmerimetric Inequalities: Possible to bound CF (w) if bound on |Sol(F)| is known

Barrier: But |Sol(F)| can be arbitrarily large

Key Idea: In the context of Zm, It suffices to assume |Sol(F)| < 2m+u for small u.

Slide 29/ 37

Beyond 2-wise Independence [MA20]

Open problem (2013-19): Sparse (p < 1
2
) XORs that work in theory and practice

Theorem (Log-Sparse XORs suffice)

If we pick m-th XOR with pm = logm
m

, we have Var[Zm]
E[Zm]

≤ 1.1

Improvement of p from m/2
m

to logm
m

Var[Zm]

E[Zm]
≤ 1 + |Sol(F)|−1 ·

∑
σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

≈ collision probability︷ ︸︸ ︷
r(w , pm)

≤ 1 +
n∑

w=0

(n

w

)
r(w , pm)︸ ︷︷ ︸

Earlier Attempts

[EGSS14,ZCSE16,AD17,ATD18]

Rewrite
∑

σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w , pm) =
n∑

w=0

CF (w)r(w , pm)

CF (w) =
∣∣{σ1, σ2 ∈ Sol(F) | d(σ1, σ2) = w}

∣∣
Isopmerimetric Inequalities: Possible to bound CF (w) if bound on |Sol(F)| is known

Barrier: But |Sol(F)| can be arbitrarily large

Key Idea: In the context of Zm, It suffices to assume |Sol(F)| < 2m+u for small u.

Slide 29/ 37

Beyond 2-wise Independence [MA20]

Open problem (2013-19): Sparse (p < 1
2
) XORs that work in theory and practice

Theorem (Log-Sparse XORs suffice)

If we pick m-th XOR with pm = logm
m

, we have Var[Zm]
E[Zm]

≤ 1.1

Improvement of p from m/2
m

to logm
m

Var[Zm]

E[Zm]
≤ 1 + |Sol(F)|−1 ·

∑
σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

≈ collision probability︷ ︸︸ ︷
r(w , pm)

≤ 1 +
n∑

w=0

(n

w

)
r(w , pm)︸ ︷︷ ︸

Earlier Attempts

[EGSS14,ZCSE16,AD17,ATD18]

Rewrite
∑

σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w , pm) =
n∑

w=0

CF (w)r(w , pm)

CF (w) =
∣∣{σ1, σ2 ∈ Sol(F) | d(σ1, σ2) = w}

∣∣
Isopmerimetric Inequalities: Possible to bound CF (w) if bound on |Sol(F)| is known

Barrier: But |Sol(F)| can be arbitrarily large

Key Idea: In the context of Zm, It suffices to assume |Sol(F)| < 2m+u for small u.

Slide 29/ 37

Beyond 2-wise Independence [MA20]

Open problem (2013-19): Sparse (p < 1
2
) XORs that work in theory and practice

Theorem (Log-Sparse XORs suffice)

If we pick m-th XOR with pm = logm
m

, we have Var[Zm]
E[Zm]

≤ 1.1

Improvement of p from m/2
m

to logm
m

Var[Zm]

E[Zm]
≤ 1 + |Sol(F)|−1 ·

∑
σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

≈ collision probability︷ ︸︸ ︷
r(w , pm) ≤ 1 +

n∑
w=0

(n

w

)
r(w , pm)︸ ︷︷ ︸

Earlier Attempts

[EGSS14,ZCSE16,AD17,ATD18]

Rewrite
∑

σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w , pm) =
n∑

w=0

CF (w)r(w , pm)

CF (w) =
∣∣{σ1, σ2 ∈ Sol(F) | d(σ1, σ2) = w}

∣∣
Isopmerimetric Inequalities: Possible to bound CF (w) if bound on |Sol(F)| is known

Barrier: But |Sol(F)| can be arbitrarily large

Key Idea: In the context of Zm, It suffices to assume |Sol(F)| < 2m+u for small u.

Slide 29/ 37

Beyond 2-wise Independence [MA20]

Open problem (2013-19): Sparse (p < 1
2
) XORs that work in theory and practice

Theorem (Log-Sparse XORs suffice)

If we pick m-th XOR with pm = logm
m

, we have Var[Zm]
E[Zm]

≤ 1.1

Improvement of p from m/2
m

to logm
m

Var[Zm]

E[Zm]
≤ 1 + |Sol(F)|−1 ·

∑
σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

≈ collision probability︷ ︸︸ ︷
r(w , pm) ≤ 1 +

n∑
w=0

(n

w

)
r(w , pm)︸ ︷︷ ︸

Earlier Attempts

[EGSS14,ZCSE16,AD17,ATD18]

Rewrite
∑

σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w , pm) =
n∑

w=0

CF (w)r(w , pm)

CF (w) =
∣∣{σ1, σ2 ∈ Sol(F) | d(σ1, σ2) = w}

∣∣
Isopmerimetric Inequalities: Possible to bound CF (w) if bound on |Sol(F)| is known

Barrier: But |Sol(F)| can be arbitrarily large

Key Idea: In the context of Zm, It suffices to assume |Sol(F)| < 2m+u for small u.

Slide 29/ 37

Beyond 2-wise Independence [MA20]

Open problem (2013-19): Sparse (p < 1
2
) XORs that work in theory and practice

Theorem (Log-Sparse XORs suffice)

If we pick m-th XOR with pm = logm
m

, we have Var[Zm]
E[Zm]

≤ 1.1

Improvement of p from m/2
m

to logm
m

Var[Zm]

E[Zm]
≤ 1 + |Sol(F)|−1 ·

∑
σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

≈ collision probability︷ ︸︸ ︷
r(w , pm) ≤ 1 +

n∑
w=0

(n

w

)
r(w , pm)︸ ︷︷ ︸

Earlier Attempts

[EGSS14,ZCSE16,AD17,ATD18]

Rewrite
∑

σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w , pm) =
n∑

w=0

CF (w)r(w , pm)

CF (w) =
∣∣{σ1, σ2 ∈ Sol(F) | d(σ1, σ2) = w}

∣∣
Isopmerimetric Inequalities: Possible to bound CF (w) if bound on |Sol(F)| is known

Barrier: But |Sol(F)| can be arbitrarily large

Key Idea: In the context of Zm, It suffices to assume |Sol(F)| < 2m+u for small u.

Slide 29/ 37

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the
distribution of solutions?

2-wise Independent Hash Functions

• Choose m random XORs: Q1,Q2, . . .Qm

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

✓Challenge 1 Need to handle CNF-XOR formulas

Software Development Specialized CDCL-GJE Solver with Data-Driven Heuristics

SAT Solvers != SAT oracles: Performance degrades with increase in the size of XORs

• Pick every Xi with prob. 1
2
and XOR them

• Expected size of each XOR: n
2

✓Challenge 2 Do we have really to pick every variable Xi with prob 1
2
?

Algorithmic Engineering Pick Xi ∈ I

✓Challenge 3 Do we have really to pick every variable Xi with prob 1
2
?

Theoretical Advances Pick m-th XOR with pm = logm
m

Slide 29/ 37

In the Pursuit of Scalability

LICS-20

SAT-20

Sparse hashing

CP-19

Duality

PODS-21,22

CP-18,IJCAI-19

DNF

CP-20

IJCAI-16,17,19

Phase Transition

ICCAD-22

Constraints-16

Indep Supp

NeurIPS-20

IJCAI-15

Chain Formulas

TACAS-20, AAAI-21

Symmetry

AAAI-23

IJCAI-19

Prob. Caching

CAV-20

AAAI-19

CNF-XOR

CP-21

Pseudo-Boolean

KR-21

MaxSAT-XOR

SAT-21

Hardware Accelerator

Theoretical
Advances

Algorithmic
Engineering

Software
Development

Slide 30/ 37

Reliability of Critical Infrastructure Networks

Figure: Plantersville, SC

10 20 30 40 50 60

200

400

600

800

1,000

Terminal Node ID

T
im

e(
se
co

n
d
s)

Timeout = 1000 seconds

Impact: The first theoretically sound estimates of resilience in power transmission
networks of ten medium sized cities in US

Slide 31/ 37

Reliability of Critical Infrastructure Networks

Figure: Plantersville, SC

10 20 30 40 50 60

200

400

600

800

1,000

Terminal Node ID

T
im

e(
se
co

n
d
s)

RDA

Timeout = 1000 seconds

Impact: The first theoretically sound estimates of resilience in power transmission
networks of ten medium sized cities in US

Slide 31/ 37

Reliability of Critical Infrastructure Networks

Figure: Plantersville, SC

10 20 30 40 50 60

200

400

600

800

1,000

Terminal Node ID

T
im

e(
se
co

n
d
s)

RDA

ApproxMC

Timeout = 1000 seconds

Impact: The first theoretically sound estimates of resilience in power transmission
networks of ten medium sized cities in US

Slide 31/ 37

ApproxMC: Progress over the years

1 10 100 1,000 5,000
1

400

800

1,200

1,600

Time

S
o
lv
ed

2022

2020

2019

2016

1896 benchmarks from diverse applications

Time taken (seconds) for an instance

2016: 3552.16 2019: 32.83 2020: 19.59 2022: 0.15

A speedup of 20,000× over 2016

Slide 32/ 37

Another Iteration of Virtuous Cycle

B. Cook, 2022: Virtuous cycle: ...application areas drives more investment in
foundational tools, while improvements in the foundational tools drive further
applications. Around and around.

Slide 33/ 37

Another Iteration of Virtuous Cycle

B. Cook, 2022: Virtuous cycle: ...application areas drives more investment in
foundational tools, while improvements in the foundational tools drive further
applications. Around and around.

Slide 33/ 37

Generalizability

Union of Sets ApproxMC is Fully Polynomial Randomized Approximation Scheme
(FPRAS) – fundamentally different from the Monte-Carlo based FPRAS

• IJCAI-19 Sister Conferences Best Paper Award Track [MSV19]

Streaming Counting over a stream: Distinct Elements
Example: How many unique customers visit website?
Fundamental problem in Databases

• CACM Research Highlights [PVBM21]

• ACM SIGMOD 2022 Research Highlight
• “Best of PODS 2021” by ACM TODS

Unsatisfiable Subsets Count minimal subsets of clauses that are unsatisfiable.
Diagnosis metric for systems

• “Best Papers of CAV-20” by FMSD [BM20]

Slide 34/ 37

Generalizability

Union of Sets ApproxMC is Fully Polynomial Randomized Approximation Scheme
(FPRAS) – fundamentally different from the Monte-Carlo based FPRAS

• IJCAI-19 Sister Conferences Best Paper Award Track [MSV19]

Streaming Counting over a stream: Distinct Elements
Example: How many unique customers visit website?
Fundamental problem in Databases

• CACM Research Highlights [PVBM21]

• ACM SIGMOD 2022 Research Highlight
• “Best of PODS 2021” by ACM TODS

Unsatisfiable Subsets Count minimal subsets of clauses that are unsatisfiable.
Diagnosis metric for systems

• “Best Papers of CAV-20” by FMSD [BM20]

Slide 34/ 37

Generalizability

Union of Sets ApproxMC is Fully Polynomial Randomized Approximation Scheme
(FPRAS) – fundamentally different from the Monte-Carlo based FPRAS

• IJCAI-19 Sister Conferences Best Paper Award Track [MSV19]

Streaming Counting over a stream: Distinct Elements
Example: How many unique customers visit website?
Fundamental problem in Databases

• CACM Research Highlights [PVBM21]

• ACM SIGMOD 2022 Research Highlight
• “Best of PODS 2021” by ACM TODS

Unsatisfiable Subsets Count minimal subsets of clauses that are unsatisfiable.
Diagnosis metric for systems

• “Best Papers of CAV-20” by FMSD [BM20]

Slide 34/ 37

Counting, Sampling, and Synthesis

Synthesis

Interpretable
Learning

Program
Synthesis

Circuit Synthesis

[MM18,GM19,GMM20]

[GRM21]

[GRM20,GSRM21]

Sampling

Hardware
Validation

Configuration
Checking

Ride Sharing

[SGRM18,GSRM19]

[BLM20,GSCM21]

[YLM23]

Counting

Infrastructure
Resilience

Neural Network
Verification

Information
Leakage

[DMPV17,PDMV19]

[BEHLMQ18,GJM22]

[BSSMS19,NSIMM19]
[SNIMMY22]

Slide 35/ 37

In Pursuit of Scalability

1 10 100 1,000 5,000

400

800

1,200

1,600

Time
S
o
lv
ed

2022

2020

2019

2016

Counting over the years

1 10 100 1,000 5,000

400

800

1,200

1,600

Time

S
o
lv
ed

2022

2021

2020

2019

2016

Sampling over the years

1 10 100 1,000 7,200

200

400

600

Time

S
o
lv
ed

2021

2020

2019 SOTA

Synthesis over the years
ICCAD-21 & DATE-23 Best Paper Award Nomination

Slide 36/ 37

In Pursuit of Scalability

1 10 100 1,000 5,000

400

800

1,200

1,600

Time
S
o
lv
ed

2022

2020

2019

2016

Counting over the years

1 10 100 1,000 5,000

400

800

1,200

1,600

Time

S
o
lv
ed

2022

2021

2020

2019

2016

Sampling over the years

1 10 100 1,000 7,200

200

400

600

Time

S
o
lv
ed

2021

2020

2019 SOTA

Synthesis over the years
ICCAD-21 & DATE-23 Best Paper Award Nomination

Slide 36/ 37

Where do we go from here?

The Quest for Scalability is Endless

Today’s Counters/Samplers/Synthesis Engines ≈ SAT Solvers in early 2000s

Industrial Practice: 100× Speedup

Slide 36/ 37

Where do we go from here?

The Quest for Scalability is Endless

Today’s Counters/Samplers/Synthesis Engines ≈ SAT Solvers in early 2000s

Industrial Practice: 100× Speedup

Slide 36/ 37

The Pursuit of Scalablity

Mission 2028: 100× Speedup for Counting, Sampling, and Synthesis

Challenge Problems (for Counting)

Civil Engineering Rigorous resilience estimation for power grid of Los Angeles

Quantitative Evaluation Binarized neural network with 1M neurons

Software Engineering Information Flow analysis of programs with 10K lines of code

Technical Directions (for Counting)

Theoretical Advances Native reasoning over expressive theories (Beyond SMT)

Algorithmic Engineering Machine Learning-guided heuristic design

Software Development Hardware-accelerator aware tools

Certification: Approximate count is “correct” or the distribution generated is correct

• Applications to verification of probabilistic programming

• Building on recent advances in distribution testing

• Preliminary Work: AAAI-19, NeurIPS-20, NeurIPS-21, CP-22, NeurIPS-22

Slide 37/ 37

The Pursuit of Scalablity

Mission 2028: 100× Speedup for Counting, Sampling, and Synthesis

Challenge Problems (for Counting)

Civil Engineering Rigorous resilience estimation for power grid of Los Angeles

Quantitative Evaluation Binarized neural network with 1M neurons

Software Engineering Information Flow analysis of programs with 10K lines of code

Technical Directions (for Counting)

Theoretical Advances Native reasoning over expressive theories (Beyond SMT)

Algorithmic Engineering Machine Learning-guided heuristic design

Software Development Hardware-accelerator aware tools

Certification: Approximate count is “correct” or the distribution generated is correct

• Applications to verification of probabilistic programming

• Building on recent advances in distribution testing

• Preliminary Work: AAAI-19, NeurIPS-20, NeurIPS-21, CP-22, NeurIPS-22

Slide 37/ 37

It Takes a Village
Research Group
Durgesh Agrawal Teodora Baluta Jaroslav Bendik Bhavishya
Lorenzo Ciampiconi Alexis de Colnet Paulius Dilkas Bishwamittra Ghosh
Priyanka Golia Rahul Gupta Yacine Izza Md Mohimenul Kabir
Gunjan Kumar Lawqueen Kanesh Yong Lai Anna Latour
Yash Pote Shubham Sharma Mate Soos Arijit Shaw
Tim van Bremen Jiong Yang Suwei Yang

Collaborators

S. Akshay (IITB, IN) Alyas Almaawi(UTAustin,US) Eduard Baranov(UCLouvain, BE)
Rajkishore Barik(Intel,US) Debabrota Basu(Chalmers,US) Arnab Bhattacharya (NUS, SG)
Fabrizio Biondi (CS, FR) Kian Ming Adam Chai(DSO, SG) Diptarka Chakraborty(NUS,SG)
Sourav Chakraborty(ISIK, IN) Supratik Chakraborty (IITB, IN) Davin Choo(DSO, SG)
Zheng Leong Chua(IP, SG Tiago Cogumbreiro(Rice,US) Vincent Derkinderen(KUL, BE)
A. Dileep(IITD, India) Jeffrey M. Dudek(Rice,US) Leonardo Duenas-Osorio (Rice,US)
Michael A. Enescu(Inria, FR) Daniel J. Fremont(UCB,US) Dror Fried (Open U., IL)
Sutanu Gayen(NUS, SG) Stephan Gocht (Lund U., SE) Annelie Heuser(CNRS, FR)
Alexey Ignatiev(ULisboa, PT) Alexander Ivrii(IBM, IL) Saurabh Joshi(IITH, IN)
Mohan S. Kankanhalli(NUS, SG Sarfraz Khurshid(UTAustin,US) Raghav Kulkarni(CMI, IN)
Axel Legay (UCL, BE) Massimo Lupascu(NUS, SG) Deepak Majeti(Rice,US)
Sharad Malik(Princeton,US) Dmitry Malioutov(IBM,US) Joao Marques-Silva(ANITI, FR)
John M.Mellor-Crummey(Rice,US) Rakesh Mistry(IITB, IN) M.Mohammadalitajrishi(Polymtl,CA)
Karthik Murthy(Rice,US) Nina Narodytska(VMware,US) Roger Paredes(Rice,US)
Sri Raj Paul(Rice,US) Aduri Pavan(ISU,US) Gilles Pesant(Polymtl,CA)
Nicolas Prevot(London, UK) Jean Quilbeuf(Inria, FR) Subhajit Roy (IITK, IN)
Ammar F. Sabili(NUS, SG) Vivek Sarkar(Rice,US) Prateek Saxena(NUS, SG)
Jonathan Scarlett(NUS, SG) Sanjit A. Seshia(UCB,US) Shiqi Shen(NUS, SG)
Shweta Shinde(ETH,CH) Aditya A. Shrotri(Rice,US) Friedrich Slivovsky(TU Wien, AT)
Harold Soh(NUS, SG) Muhammad Usman(UTAustin,US) Moshe Y. Vardi(Rice,US)
N. V. Vinodchandran(UNL,US) Kaiyuan Wang(Google,US) Wenxi Wang(UTAustin,US)
Yaqi Xie(NUS, SG) Ziwei Xu(NUS, SG) Roland H. C. Yap(NUS, SG)

Funding Agencies: National Research Foundation, Ministry of Education, Defense Service Organization
Industrial Support: Grab Taxiholdings, Amazon, Microsoft Research

Slide 37/ 37

Counting, Sampling, and Synthesis

PC2 (char [] SP , char [] UI) {
match = t r u e ;
f o r (i n t i =0; i<UI . l e n g t h () ; i++) {

i f (SP [i] != UI [i]) match=f a l s e ;
e l s e match = match ;

}
i f match r e t u r n Yes ;
e l s e r e tu rn No ;

}

Synthesis

Interpretable
Learning

Program
Synthesis

Circuit Synthesis

[MM18,GM19,GMM20]

[GRM21]

[GRM20,GSRM21]

Sampling

Hardware
Validation

Configuration
Checking

Ride Sharing

[SGRM18,GSRM19]

[BLM20,GSCM21]

[YLM23]

Counting

Infrastructure
Resilience

Neural Network
Verification

Information
Leakage

[DMPV17,PDMV19]

[BEHLMQ18,GJM22]

[BSSMS19,NSIMM19]
[SNIMMY22]

LICS-20

SAT-20

Sparse hashing

CP-19

Duality

PODS-21,22

CP-18,IJCAI-19

DNF

CP-20

IJCAI-16,17,19

Phase Transition

ICCAD-22

Constraints-16

Indep Supp

NeurIPS-20

IJCAI-15

Chain Formulas

TACAS-20, AAAI-21

Symmetry

AAAI-23

IJCAI-19

Prob. Caching

AAAI-19, CAV-20

CNF-XOR

CP-21

Pseudo-Boolean

KR-21

MaxSAT-XOR

SAT-21

Hardware Accelerator

Theoretical
Advances

Algorithmic
Engineering

Software
Development

1 10 100 1,000 5,000
1

400

800

1,200

1,600

Time

S
o
lv
ed

2021

2020

2019

2016

These slides are available at tinyurl.com/meel-talk

Slide 37/ 37

tinyurl.com/meel-talk

Detailed Future Directions
Applications: Infrastructure Resilience, Information Leakage, Prob. Databases,
Configuration Testing, Partition Function, BNN Verification

Theoretical Advances
Formula-based Sparse-XORs DNF, Minimal Solutions, Chain formula
Revisiting FPRAS Permanent, Automata, Linear Extensions
Parameterized Complexity Addition of XORs
Streaming Delphic Sets
Synthesis A theory of learning from relations
Entropy Reduction in the number of queries
Algorithmic Engineering
Incremental Incremental Counting Queries
Bit-vectors Partitioning; Independent Support
Heuristic ML-guided heuristic synthesis
Distributed Streaming techniques
SMT Synthesis SMT Formula Learning
Beyond Qualititative Synthesis Optimal Functions, Approximate Synthesis
Software Development
Tighter Integration Multiple Queries
Hybrid Constraints Callbacks
XOR Handling PB-XOR, BNN-XOR, MaxSAT-XOR, ASP-XOR
Accelerators GPU
Knowledge Compilation SMT, Portfolio
Certification
Distribution Probabilistic Programming Equivalence
Counting Certificate for Approximation

Slide 37/ 37

