Counting, Sampling, and Synthesis: The Quest for Scalability

Kuldeep S. Meel
School of Computing
National University of Singapore

Counting, Sampling, and Synthesis: The Quest for Scalability

Computing: The Story of an Endless Quest for Scalability

Watson, 1940s: "I think there is a world market for about five computers."
Gates \& Allen, 1970s: "A computer on every desk and in every home"
2020: 22 billion loT connected devices

Automated Reasoning

Automated Reasoning

$\mathcal{M}(\mathcal{I}, \mathcal{O})$

$\mathcal{P}(\mathcal{I}, \mathcal{O})$

Automated Reasoning

$$
\mathcal{M}(\mathcal{I}, \mathcal{O})
$$

$$
\begin{array}{cl}
\models & \\
\text { satisfies } \\
\equiv & \mathcal{P}(\mathcal{I}, \mathcal{O})
\end{array}
$$

Central Question Is it always the case that $\mathcal{M} \vDash \mathcal{P}$?
Equivalently, can it be the case that $\mathcal{M} \wedge \neg \mathcal{P}$?

Automated Reasoning

$\mathcal{M}(\mathcal{I}, \mathcal{O})$

$$
\begin{array}{cl}
\models & \\
\text { satisfies } \\
= & \mathcal{P}(\mathcal{I}, \mathcal{O})
\end{array}
$$

Central Question Is it always the case that $\mathcal{M} \models \mathcal{P}$?
Equivalently, can it be the case that $\mathcal{M} \wedge \neg \mathcal{P}$?
Boolean Satisfiability (SAT): Given a Boolean formula, is there a solution, i.e., an assignment of 0 's and 1 's to the variables that makes the formula equal 1 ?

Example: $\left(X_{1} \vee \neg X_{2} \vee \neg X_{3}\right) \wedge\left(X_{2} \vee \neg X_{3}\right) \quad X_{1}=1, X_{2}=1, X_{3}=1$

Automated Reasoning

$\mathcal{M}(\mathcal{I}, \mathcal{O})$

$$
\begin{array}{ll}
\models & \\
\text { satisfies } \\
\equiv & \mathcal{P}(\mathcal{I}, \mathcal{O})
\end{array}
$$

Central Question Is it always the case that $\mathcal{M} \models \mathcal{P}$?
Equivalently, can it be the case that $\mathcal{M} \wedge \neg \mathcal{P}$?
Boolean Satisfiability (SAT): Given a Boolean formula, is there a solution, i.e., an assignment of 0 's and 1 's to the variables that makes the formula equal 1 ?

Example: $\left(X_{1} \vee \neg X_{2} \vee \neg X_{3}\right) \wedge\left(X_{2} \vee \neg X_{3}\right) \quad X_{1}=1, X_{2}=1, X_{3}=1$
Cook, 1971; Levin, 1973: SAT is NP-complete (= "intractable")

Automated Reasoning

satisfies

$$
\mathcal{M}(\mathcal{I}, \mathcal{O})
$$

$$
\mathcal{P}(\mathcal{I}, \mathcal{O})
$$

Central Question Is it always the case that $\mathcal{M} \models \mathcal{P}$?
Equivalently, can it be the case that $\mathcal{M} \wedge \neg \mathcal{P}$?
Boolean Satisfiability (SAT): Given a Boolean formula, is there a solution, i.e., an assignment of 0 's and 1 's to the variables that makes the formula equal 1 ?

Example: $\left(X_{1} \vee \neg X_{2} \vee \neg X_{3}\right) \wedge\left(X_{2} \vee \neg X_{3}\right) \quad X_{1}=1, X_{2}=1, X_{3}=1$
Cook, 1971; Levin, 1973: SAT is NP-complete ($=$ "intractable")
Knuth, 2016: These so-called "SAT solvers" can now routinely find solutions to practical problems that involve millions of variables and were thought until very recently to be hopelessly difficult.

Automated Reasoning

$\mathcal{M}(\mathcal{I}, \mathcal{O})$

$$
\begin{array}{ll}
\ldots & \\
\text { satisfies } \\
\equiv & \mathcal{P}(\mathcal{I}, \mathcal{O})
\end{array}
$$

Central Question Is it always the case that $\mathcal{M} \models \mathcal{P}$?
Equivalently, can it be the case that $\mathcal{M} \wedge \neg \mathcal{P}$?
Boolean Satisfiability (SAT): Given a Boolean formula, is there a solution, i.e., an assignment of 0 's and 1 's to the variables that makes the formula equal 1 ?

Example: $\left(X_{1} \vee \neg X_{2} \vee \neg X_{3}\right) \wedge\left(X_{2} \vee \neg X_{3}\right) \quad X_{1}=1, X_{2}=1, X_{3}=1$
Cook, 1971; Levin, 1973: SAT is NP-complete (= "intractable")
Knuth, 2016: These so-called "SAT solvers" can now routinely find solutions to practical problems that involve millions of variables and were thought until very recently to be hopelessly difficult.

[Circa 2012]: Now that SAT is "easy", it is time to look beyond satisfiability

Beyond SAT I: Quantification

PC2 (char [] SP, char [] UI)
match = true:
for (int $i=0 ; i<U I$. length (): $i++$) \{ if (SP[i] $!=U 1[i])$ match=false else match $=$ match;
if match return Yes:
else return No
Information Leakage

Fairness

Beyond SAT I: Quantification

```
        PC2 (char [] SP, char [] UI) {
        motch = true:; i<Ul. length (): i++) {
                if (SP[i] != UI[i]) match=false
                else match = match:
    match return Yes:
    Ise return No
\}
Information Leakage
```


Fairness

Robustness

Beyond SAT II: Sampling

Constrained-Random Verification

Configuration Testing

- System is simulated with test vectors
- Constraints represent relevant verification scenarios
- Test vectors: random solutions of constraints

Sampling

Beyond SAT III: Automated Synthesis

$$
\begin{array}{ll}
f(u, v) \geq u ; \\
f(u, v) \geq v ; & \\
f(u, v)=u v & \text { Specification: } \mathcal{P}(\mathcal{I}, \mathcal{O}) \\
f(u, v)=v) &
\end{array}
$$

age	25
capital-gain	4000
occupation	coach

Synthesis

Beyond SAT III: Automated Synthesis

$$
\begin{aligned}
& f(u, v) \geq u ; \\
& f(u, v) \geq v ; \\
& f(u, v)=u \vee \\
& f(u, v)=v)
\end{aligned}
$$

Specification: $\mathcal{P}(\mathcal{I}, \mathcal{O})$

age	25
capital-gain	4000
occupation	coach

Synthesis

Beyond SAT III: Automated Synthesis

$$
\begin{array}{ll}
f(u, v) \geq u ; \\
f(u, v) \geq v ; & \\
f(u, v)=u v & \text { Specification: } \mathcal{P}(\mathcal{I}, \mathcal{O}) \\
f(u, v)=v) &
\end{array}
$$

age	25
capital-gain	4000
occupation	coach

Synthesis

Research Overview

Research Overview

Artificial Intelligence

Formal Methods

Logic/Databases
Software Engineering

AAAI: $17 \times, \mathrm{IJCAI}: 9 \times$, NeurIPS: $6 \times$, SAT: $5 \times, \mathrm{CP}: 8 \times, \mathrm{KR}: 1 \times$ CAV: $6 \times$, TACAS: $3 \times$, ICCAD: $2 \times$, DATE: $2 \times$, DAC: $1 \times$ LICS: $2 \times$, LPAR: $2 \times$, PODS: $3 \times$

ICSE: $2 \times$, FSE: $2 \times$, CCS: $1 \times$
Today's Talk: Counting

Counting

- Given: A Boolean formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of F \}
- SAT: Determine if $\operatorname{Sol}(F)$ is non-empty
- Counting: Determine $|\mathrm{Sol}(F)|$

Counting

- Given: A Boolean formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of F \}
- SAT: Determine if $\operatorname{Sol}(F)$ is non-empty
- Counting: Determine $|\mathrm{Sol}(F)|$
- Example: $F:=\left(X_{1} \vee X_{2}\right)$
- $\operatorname{Sol}(F)=\{(0,1),(1,0),(1,1)\}$
- $|\operatorname{Sol}(F)|=3$

Counting

- Given: A Boolean formula F over $X_{1}, X_{2}, \ldots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of F \}
- SAT: Determine if $\operatorname{Sol}(F)$ is non-empty
- Counting: Determine $|\mathrm{Sol}(F)|$
- Example: $F:=\left(X_{1} \vee X_{2}\right)$
- $\operatorname{Sol}(F)=\{(0,1),(1,0),(1,1)\}$
- $|\operatorname{Sol}(F)|=3$
- Generalization to arbitrary weights
- Given weight function (implicitly represented) W : $\{0,1\}^{n} \mapsto[0,1]$
- $W(F)=\Sigma_{y \in \operatorname{Sol}(F)} W(y)$
- (Weighted) Counting: Determine $W(F)$

Today's talk: We focus on unweighted case, i.e., $|\operatorname{Sol}(F)|$

Today's Menu

Appetizer Applications

- Critical Infrastructure Resilience
- Quantitative Analysis of AI Systems

Main Course ApproxMC: A Scalable Counting Framework

Dessert Future Outlook

Can we predict the likelihood of a blackout due to natural disaster?

Can we predict the likelihood of a blackout due to natural disaster?

- $G=(V, E)$; set of source nodes S and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{t}$ is disconnected from $S]$?

Can we predict the likelihood of a blackout due to natural disaster?

- $G=(V, E)$; set of source nodes S and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{t}$ is disconnected from $S]$?

Constrained Counting

Key Idea: Encode disconnectedness using constraints

Impact: The first theoretically sound estimates of resilience in power transmission networks of ten medium sized cities in US

Quantitative Analysis of AI Systems

Our Focus: Binarized Neural Networks

Robustness Quantification

$$
|\{x: \mathcal{N}(x+\varepsilon) \neq \mathcal{N}(x)\}|
$$

Quantitative Analysis of AI Systems

Robustness Quantification

$$
\underbrace{\{x: \mathcal{N}(x+\varepsilon) \neq \mathcal{N}(x)\} \mid}_{\text {Encode Symbolically }}
$$

Constrained Counting

Quantitative Analysis of AI Systems

Robustness Quantification
Fairness Quantification

Constrained Counting

Quantitative Analysis of AI Systems

Robustness Quantification
Fairness Quantification

Constrained Counting

Impact: The first scalable technique for rigorous quantification of robustness and fairness of Binarized Neural Networks

Applications across Computer Science

Impact: Counting-based approach is now the state of the art for all these applications

So Fundamental Yet So Hard

Valiant, 1979: Counting exactly is \#P-hard

So Fundamental Yet So Hard

Valiant, 1979: Counting exactly is \#P-hard
Stockmeyer, 1983: Probably Approximately Correct (PAC) aka (ε, δ)-guarantees

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxCount}(\mathrm{F}, \varepsilon, \delta) \leq(1+\varepsilon)|\operatorname{Sol}(F)|\right] \geq 1-\delta
$$

Stoc83, JVV86, BP94: Polynomial calls to SAT oracle suffice

So Fundamental Yet So Hard

Valiant, 1979: Counting exactly is \#P-hard
Stockmeyer, 1983: Probably Approximately Correct (PAC) aka (ε, δ)-guarantees

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \text { ApproxCount }(\mathrm{F}, \varepsilon, \delta) \leq(1+\varepsilon)|\operatorname{Sol}(F)|\right] \geq 1-\delta
$$

Stoc83, JVV86, BP94: Polynomial calls to SAT oracle suffice

- Not practical

SAT Solver \neq SAT Oracle
Performance of state of the art SAT solvers depends on the formulas

Snapshot from 2012

Scalability

Theoretical Guarantees

Snapshot from 2012

Snapshot from 2012

State of the art tool in 2012 could handle one out of 1076 robustness instances Can we bridge the gap between theory and practice?

Theoretical Guarantees
State of the art tool in 2012 could handle one out of 1076 robustness instances
Can we bridge the gap between theory and practice?

Counting in Atlanta

How many people in Atlanta like coffee?

- Population of Atlanta $=6.1 \mathrm{M}$
- Assign every person a unique ($n=$) 23 bit identifier $\left(2^{n} \approx 6.1 \mathrm{M}\right)$

Counting in Atlanta

How many people in Atlanta like coffee?

- Population of Atlanta $=6.1 \mathrm{M}$
- Assign every person a unique $(n=) 23$ bit identifier $\left(2^{n} \approx 6.1 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiply by $6.1 \mathrm{M} / 50$

Counting in Atlanta

How many people in Atlanta like coffee?

- Population of Atlanta $=6.1 \mathrm{M}$
- Assign every person a unique $(n=) 23$ bit identifier $\left(2^{n} \approx 6.1 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiply by $6.1 \mathrm{M} / 50$
- If only 1000 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50

Counting in Atlanta

How many people in Atlanta like coffee?

- Population of Atlanta $=6.1 \mathrm{M}$
- Assign every person a unique $(n=) 23$ bit identifier $\left(2^{n} \approx 6.1 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiply by $6.1 \mathrm{M} / 50$
- If only 1000 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee

Counting in Atlanta

How many people in Atlanta like coffee?

- Population of Atlanta $=6.1 \mathrm{M}$
- Assign every person a unique $(n=) 23$ bit identifier $\left(2^{n} \approx 6.1 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiply by $6.1 \mathrm{M} / 50$
- If only 1000 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y

Counting in Atlanta

How many people in Atlanta like coffee?

- Population of Atlanta $=6.1 \mathrm{M}$
- Assign every person a unique $(n=) 23$ bit identifier $\left(2^{n} \approx 6.1 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiply by $6.1 \mathrm{M} / 50$
- If only 1000 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y
- Attempt \#2: Enumerate every person who likes coffee

Counting in Atlanta

How many people in Atlanta like coffee?

- Population of Atlanta $=6.1 \mathrm{M}$
- Assign every person a unique $(n=) 23$ bit identifier $\left(2^{n} \approx 6.1 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiply by $6.1 \mathrm{M} / 50$
- If only 1000 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y
- Attempt \#2: Enumerate every person who likes coffee
- Potentially 2^{n} queries

Can we do with lesser \# of SAT queries $-\mathcal{O}(n)$ or $\mathcal{O}(\log n)$?

As Simple as Counting Dots

As Simple as Counting Dots

As Simple as Counting Dots

Pick a random cell

Estimate $=$ Number of solutions in a cell \times Number of cells

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenge 2 How many cells?

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Deterministic h unlikely to work

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Deterministic h unlikely to work
- Choose h randomly from a large family H of hash functions

2-wise Independent Hashing

2-wise Independent Hash Functions

- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}$

2-wise Independent Hash Functions

- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}$
- To choose $\alpha \in\{0,1\}^{m}$, set every XOR equation to 0 or 1 randomly

$$
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
$$

- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?
Random XOR-based Hash Functions

Challenge 2 How many cells?

Challenge 2: How many cells?

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- Many solutions \Longrightarrow Many cells \& Fewer solutions \Longrightarrow Fewer cells
- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- Many solutions \Longrightarrow Many cells \& Fewer solutions \Longrightarrow Fewer cells

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- Many solutions \Longrightarrow Many cells \& Fewer solutions \Longrightarrow Fewer cells

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- Many solutions \Longrightarrow Many cells \& Fewer solutions \Longrightarrow Fewer cells

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- Many solutions \Longrightarrow Many cells \& Fewer solutions \Longrightarrow Fewer cells

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- Many solutions \Longrightarrow Many cells \& Fewer solutions \Longrightarrow Fewer cells

Challenge 2: How many cells?

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- Many solutions \Longrightarrow Many cells \& Fewer solutions \Longrightarrow Fewer cells

Theorem: $\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$

ApproxMC: Early Years (2013-16)

Handle reasonable formulas: reasonable grids, reasonable programs
2019: CP-13 paper selected as one of the 25 papers across 25 years of CP conference

ApproxMC: Early Years (2013-16)

Handle reasonable formulas: reasonable grids, reasonable programs
2019: CP-13 paper selected as one of the 25 papers across 25 years of CP conference
B. Cook: Virtuous cycle: application areas drives more investment in foundational tools, while improvements in the foundational tools drive further applications. Around and around.

The definition of "reasonable" changes after every iteration of the cycle

Closing Slide from Seminar at NUS in Feb 2017

Mission 2025: Constrained Counting and Sampling Revolution

Requires combinations of ideas from theory, statistics and systems

2025 Target: $100 \times$ speedup over 2016

ApproxMC: In Pursuit of Scalability

1896 instances from diverse applications
All experiments on 2022 hardware

ApproxMC: In Pursuit of Scalability

1896 instances from diverse applications
All experiments on 2022 hardware

ApproxMC: In Pursuit of Scalability

1896 instances from diverse applications
All experiments on 2022 hardware
2016630 instances, each in ≤ 5000 seconds
2022950 instances, each in ≤ 1 second

ApproxMC: In Pursuit of Scalability

1896 instances from diverse applications
All experiments on 2022 hardware
2016630 instances, each in ≤ 5000 seconds
2022950 instances, each in ≤ 1 second
Time taken (seconds) for an instance
2016: 3552.16 2019: 32.83 2020: 19.59 2022: 0.15

A speedup of $20,000 \times$ over 2016

Still provides (ε, δ)-guarantees

In Pursuit of Scalability

In Pursuit of Scalability

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

2-wise Independent Hash Functions

- Choose m random XORs: $Q_{1}, Q_{2}, \ldots Q_{m}$
- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

2-wise Independent Hash Functions

- Choose m random XORs: $Q_{1}, Q_{2}, \ldots Q_{m}$
- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$

Need to handle $\underbrace{F}_{\text {CNF }} \wedge \underbrace{Q_{1} \cdots \wedge Q_{m}}_{\text {XOR }}$

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

2-wise Independent Hash Functions

- Choose m random XORs: $Q_{1}, Q_{2}, \ldots Q_{m}$
- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$

Need to handle $\underbrace{F}_{\mathrm{CNF}} \wedge \underbrace{Q_{1} \cdots \wedge Q_{m}}_{\mathrm{XOR}}$
Performance of state of the art SAT solvers depends on the formulas SAT Solvers != SAT oracles

New Architecture for CNF-XOR Formulas

Modern SAT Solvers: Conflict-Driven Clause Learning (CDCL) paradigm

- Guess an assignment to subset of variables, if conflict, remember the reason
- Continue until satisfiable/unsatisfiable

CDCL and XORs: Random XORs are hard for CDCL in theory and practice

- But there is a polynomial time procedure: Gauss-Jordan Elimination

New Architecture for CNF-XOR Formulas

Modern SAT Solvers: Conflict-Driven Clause Learning (CDCL) paradigm

- Guess an assignment to subset of variables, if conflict, remember the reason
- Continue until satisfiable/unsatisfiable

CDCL and XORs: Random XORs are hard for CDCL in theory and practice

- But there is a polynomial time procedure: Gauss-Jordan Elimination

Gauss-Jordan Elimination

New Architecture for CNF-XOR Formulas

Modern SAT Solvers: Conflict-Driven Clause Learning (CDCL) paradigm

- Guess an assignment to subset of variables, if conflict, remember the reason
- Continue until satisfiable/unsatisfiable

CDCL and XORs: Random XORs are hard for CDCL in theory and practice

- But there is a polynomial time procedure: Gauss-Jordan Elimination

New Architecture for CNF-XOR Formulas

Modern SAT Solvers: Conflict-Driven Clause Learning (CDCL) paradigm

- Guess an assignment to subset of variables, if conflict, remember the reason
- Continue until satisfiable/unsatisfiable

CDCL and XORs: Random XORs are hard for CDCL in theory and practice

- But there is a polynomial time procedure: Gauss-Jordan Elimination

Incremental CDCL
Incremental Gauss-Jordan Elimination
Engineering an efficient CDCL-GJE solver
[SM19; SGM20]

- Data-structures for efficient propagation and conflict analysis
- Supervised machine learning-guided heuristics

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

2-wise Independent Hash Functions

- Choose m random XORs: $Q_{1}, Q_{2}, \ldots Q_{m}$
- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$
\checkmark Challenge 1 Need to handle CNF-XOR formulas
Software Development Specialized CDCL-GJE Solver with Data-Driven Heuristics SAT Solvers != SAT oracles: Performance degrades with increase in the size of XORs

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

2-wise Independent Hash Functions

- Choose m random XORs: $Q_{1}, Q_{2}, \ldots Q_{m}$
- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$
\checkmark Challenge 1 Need to handle CNF-XOR formulas
Software Development Specialized CDCL-GJE Solver with Data-Driven Heuristics
SAT Solvers != SAT oracles: Performance degrades with increase in the size of XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- Expected size of each XOR: $\frac{n}{2}$

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

2-wise Independent Hash Functions

- Choose m random XORs: $Q_{1}, Q_{2}, \ldots Q_{m}$
- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$
\checkmark Challenge 1 Need to handle CNF-XOR formulas
Software Development Specialized CDCL-GJE Solver with Data-Driven Heuristics
SAT Solvers != SAT oracles: Performance degrades with increase in the size of XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- Expected size of each XOR: $\frac{n}{2}$

Challenge 2 Do we have really to pick every variable X_{i} with prob $\frac{1}{2}$?

Not All Variables Matter Equally

- Not all variables are required to specify solution space of F
- $F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- $\mathcal{I} \subseteq X$ is independent support if it suffices to determine the solution space
- $\left\{X_{1}, X_{2}\right\}$ is independent support

Not All Variables Matter Equally

- Not all variables are required to specify solution space of F
- $F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- $\mathcal{I} \subseteq X$ is independent support if it suffices to determine the solution space
- $\left\{X_{1}, X_{2}\right\}$ is independent support
- Random XORs need to be constructed only over \mathcal{I}
- Typically \mathcal{I} is 1-2 orders of magnitude smaller than X

Not All Variables Matter Equally

- Not all variables are required to specify solution space of F
- $F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- $\mathcal{I} \subseteq X$ is independent support if it suffices to determine the solution space
- $\left\{X_{1}, X_{2}\right\}$ is independent support
- Random XORs need to be constructed only over \mathcal{I}
- Typically \mathcal{I} is $1-2$ orders of magnitude smaller than X

Algorithmic procedure to determine \mathcal{I} ?

Not All Variables Matter Equally

- Not all variables are required to specify solution space of F
- $F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- $\mathcal{I} \subseteq X$ is independent support if it suffices to determine the solution space
- $\left\{X_{1}, X_{2}\right\}$ is independent support
- Random XORs need to be constructed only over \mathcal{I}
- Typically \mathcal{I} is 1-2 orders of magnitude smaller than X

Algorithmic procedure to determine \mathcal{I} ?

- Approach I: $\log n \quad$ calls to SAT solver via reduction to GMUS

Not All Variables Matter Equally

- Not all variables are required to specify solution space of F
- $F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- $\mathcal{I} \subseteq X$ is independent support if it suffices to determine the solution space
- $\left\{X_{1}, X_{2}\right\}$ is independent support
- Random XORs need to be constructed only over \mathcal{I}
- Typically \mathcal{I} is 1-2 orders of magnitude smaller than X

Algorithmic procedure to determine \mathcal{I} ?

- Approach I: $\log n$ hard calls to SAT solver via reduction to GMUS

Not All Variables Matter Equally

- Not all variables are required to specify solution space of F
- $F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- $\mathcal{I} \subseteq X$ is independent support if it suffices to determine the solution space
- $\left\{X_{1}, X_{2}\right\}$ is independent support
- Random XORs need to be constructed only over \mathcal{I}
- Typically \mathcal{I} is 1-2 orders of magnitude smaller than X

Algorithmic procedure to determine \mathcal{I} ?

- Approach I: $\log n$ hard calls to SAT solver via reduction to GMUS

Best Student Paper, CP15

- Approach II: n easy calls to SAT solver via Padoa's theorem

Approach II + ApproxMC is up to $100 \times$ faster than Approach I + ApproxMC SAT Solvers \neq SAT Oracles

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

2-wise Independent Hash Functions

- Choose m random XORs: $Q_{1}, Q_{2}, \ldots Q_{m}$
- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$
\checkmark Challenge 1 Need to handle CNF-XOR formulas
Software Development Specialized CDCL-GJE Solver with Data-Driven Heuristics
SAT Solvers != SAT oracles: Performance degrades with increase in the size of XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- Expected size of each XOR: $\frac{n}{2}$
\checkmark Challenge 2 Do we have to really pick every variable X_{i} with prob $\frac{1}{2}$?
Algorithmic Engineering Pick $X_{i} \in \mathcal{I}$

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

2-wise Independent Hash Functions

- Choose m random XORs: $Q_{1}, Q_{2}, \ldots Q_{m}$
- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$
\checkmark Challenge 1 Need to handle CNF-XOR formulas
Software Development Specialized CDCL-GJE Solver with Data-Driven Heuristics
SAT Solvers != SAT oracles: Performance degrades with increase in the size of XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- Expected size of each XOR: $\frac{n}{2}$
\checkmark Challenge 2 Do we have to really pick every variable X_{i} with prob $\frac{1}{2}$?
Algorithmic Engineering Pick $X_{i} \in \mathcal{I}$
Challenge 3 Do we have to really pick every variable X_{i} with prob $\frac{1}{2}$?

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

2-wise Independent Hash Functions

- Choose m random XORs: $Q_{1}, Q_{2}, \ldots Q_{m}$
- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$
\checkmark Challenge 1 Need to handle CNF-XOR formulas
Software Development Specialized CDCL-GJE Solver with Data-Driven Heuristics
SAT Solvers != SAT oracles: Performance degrades with increase in the size of XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- Expected size of each XOR: $\frac{n}{2}$
\checkmark Challenge 2 Do we have to really pick every variable X_{i} with prob $\frac{1}{2}$?
Algorithmic Engineering Pick $X_{i} \in \mathcal{I}$
Challenge 3 Do we have to really pick every variable X_{i} with prob $\frac{1}{2}$?
- If we pick with prob $p<\frac{1}{2}$, then no guarantees of 2 -wise independence
- Z_{m} : Number of solutions in a randomly chosen cell
- 2-wise independence $\Longrightarrow \frac{\operatorname{Var}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq 1 \Longrightarrow$ Concentration bounds

Beyond 2-wise Independence

Open problem (2013-19): Sparse ($p<\frac{1}{2}$) XORs that work in theory and practice

Beyond 2-wise Independence

Open problem (2013-19): Sparse ($p<\frac{1}{2}$) XORs that work in theory and practice

Theorem (Log-Sparse XORs suffice)

If we pick m-th XOR with $p_{m}=\frac{\log m}{m}$, we have $\frac{\operatorname{Var}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq 1.1$
Improvement of p from $\frac{m / 2}{m}$ to $\frac{\log m}{m}$

Beyond 2-wise Independence

Open problem (2013-19): Sparse ($p<\frac{1}{2}$) XORs that work in theory and practice

Theorem (Log-Sparse XORs suffice)

If we pick m-th $X O R$ with $p_{m}=\frac{\log m}{m}$, we have $\frac{\operatorname{Var}\left[Z_{m}\right]}{E\left[Z_{m}\right]} \leq 1.1$
Improvement of p from $\frac{m / 2}{m}$ to $\frac{\log m}{m}$

$$
\frac{\operatorname{Var}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq 1+|\operatorname{Sol}(F)|^{-1} \cdot \sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} \overbrace{r\left(w, p_{m}\right)}^{\approx \text { collision probabi }}
$$

Beyond 2-wise Independence

Open problem (2013-19): Sparse ($p<\frac{1}{2}$) XORs that work in theory and practice

Theorem (Log-Sparse XORs suffice)

If we pick m-th XOR with $p_{m}=\frac{\log m}{m}$, we have $\frac{\operatorname{Var}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq 1.1$
Improvement of p from $\frac{m / 2}{m}$ to $\frac{\log m}{m}$

$$
\frac{\operatorname{Var}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq 1+|\operatorname{Sol}(F)|^{-1} \cdot \sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} \overbrace{r\left(w, p_{m}\right)}^{\text {collision probability }} \underbrace{\leq 1+\sum_{w=0}^{n}\binom{n}{w} r\left(w, p_{m}\right)}_{\substack{\text { EEGSSILier Attempts } \\ \text { [ESS14,ZCEE16,AD17,ATD18] }}}
$$

Beyond 2-wise Independence

Open problem (2013-19): Sparse ($p<\frac{1}{2}$) XORs that work in theory and practice

Theorem (Log-Sparse XORs suffice)

If we pick m-th XOR with $p_{m}=\frac{\log m}{m}$, we have $\frac{\operatorname{Var}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq 1.1$
Improvement of p from $\frac{m / 2}{m}$ to $\frac{\log m}{m}$

$$
\frac{\operatorname{Var}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq 1+|\operatorname{Sol}(F)|^{-1} \cdot \sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} \overbrace{r\left(w, p_{m}\right)}^{\text {collision probability }} \underbrace{\leq 1+\sum_{w=0}^{n}\binom{n}{w} r\left(w, p_{m}\right)}_{\substack{\text { [EGSS14,ZCSE16, AD17,ATD18] }}}
$$

$$
\begin{gathered}
\text { Rewrite } \sum_{\substack{\sigma_{1} \in \operatorname{Sol}(F)}} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\
w=d\left(\sigma_{1}, \sigma_{2}\right)}} r\left(w, p_{m}\right)=\sum_{w=0}^{n} C_{F}(w) r\left(w, p_{m}\right) \\
C_{F}(w)=\left|\left\{\sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F) \mid d\left(\sigma_{1}, \sigma_{2}\right)=w\right\}\right|
\end{gathered}
$$

Isopmerimetric Inequalities: Possible to bound $C_{F}(w)$ if bound on $|\operatorname{Sol}(F)|$ is known Barrier: But $|\mathrm{Sol}(F)|$ can be arbitrarily large

Beyond 2-wise Independence

Open problem (2013-19): Sparse ($p<\frac{1}{2}$) XORs that work in theory and practice

Theorem (Log-Sparse XORs suffice)

If we pick m-th XOR with $p_{m}=\frac{\log m}{m}$, we have $\frac{\operatorname{Var}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq 1.1$
Improvement of p from $\frac{m / 2}{m}$ to $\frac{\log m}{m}$

$$
\frac{\operatorname{Var}\left[Z_{m}\right]}{\mathrm{E}\left[Z_{m}\right]} \leq 1+|\operatorname{Sol}(F)|^{-1} \cdot \sum_{\sigma_{1} \in \operatorname{Sol}(F)} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\ w=d\left(\sigma_{1}, \sigma_{2}\right)}} \overbrace{r\left(w, p_{m}\right)}^{\text {collision probability }} \underbrace{\leq 1+\sum_{w=0}^{n}\binom{n}{w} r\left(w, p_{m}\right)}_{\substack{\text { [EGSS14,ZCSE16, AD17,ATD18] }}}
$$

$$
\begin{gathered}
\text { Rewrite } \sum_{\substack{\sigma_{1} \in \operatorname{Sol}(F)}} \sum_{\substack{\sigma_{2} \in \operatorname{Sol}(F) \\
w=d\left(\sigma_{1}, \sigma_{2}\right)}} r\left(w, p_{m}\right)=\sum_{w=0}^{n} C_{F}(w) r\left(w, p_{m}\right) \\
C_{F}(w)=\left|\left\{\sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F) \mid d\left(\sigma_{1}, \sigma_{2}\right)=w\right\}\right|
\end{gathered}
$$

Isopmerimetric Inequalities: Possible to bound $C_{F}(w)$ if bound on $|\operatorname{Sol}(F)|$ is known Barrier: But $|\mathrm{Sol}(F)|$ can be arbitrarily large
Key Idea: In the context of Z_{m}, It suffices to assume $|\operatorname{Sol}(F)|<2^{m+u}$ for small u.

Challenges in Pursuit of Scalability

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

2-wise Independent Hash Functions

- Choose m random XORs: $Q_{1}, Q_{2}, \ldots Q_{m}$
- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$
\checkmark Challenge 1 Need to handle CNF-XOR formulas
Software Development Specialized CDCL-GJE Solver with Data-Driven Heuristics
SAT Solvers != SAT oracles: Performance degrades with increase in the size of XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- Expected size of each XOR: $\frac{n}{2}$
\checkmark Challenge 2 Do we have really to pick every variable X_{i} with prob $\frac{1}{2}$?

Algorithmic Engineering Pick $X_{i} \in \mathcal{I}$

\checkmark Challenge 3 Do we have really to pick every variable X_{i} with prob $\frac{1}{2}$?
Theoretical Advances Pick m-th XOR with $p_{m}=\frac{\log m}{m}$

In the Pursuit of Scalability

Reliability of Critical Infrastructure Networks

Timeout $=1000$ seconds

Reliability of Critical Infrastructure Networks

Timeout $=1000$ seconds

Reliability of Critical Infrastructure Networks

Timeout $=1000$ seconds
Impact: The first theoretically sound estimates of resilience in power transmission networks of ten medium sized cities in US

ApproxMC: Progress over the years

1896 benchmarks from diverse applications

Time taken (seconds) for an instance
2016: 3552.16 2019: 32.83 2020: 19.59 2022: 0.15
A speedup of $20,000 \times$ over 2016

Another Iteration of Virtuous Cycle

B. Cook, 2022: Virtuous cycle: ...application areas drives more investment in foundational tools, while improvements in the foundational tools drive further applications. Around and around.

SharpTNI: Counting and Sampling Parsimonious Transmission Networks under a Weak Bottleneck
 Palash Sasshittal ${ }^{1}$ and Mohammed El-Kebir ${ }^{2}$ *

Check before You Change: Preventing Correlated Failures in Service Updates
Ennan Zhai †, Ang Chen ${ }^{\ddagger}$, Ruzica Piskac ${ }^{\circ}$, Mahesh Balakrishnan ${ }^{\text {s/* }}$
Bingchuan Tian ${ }^{\natural}$, Bo Song** Haoliang Zhang*

Automating the Development of Chosen Ciphertext Attacks

Gabrielle Beck, Maximilian Zinkus, and Matthew Green, Johns Hopkins University

Static Evaluation of Noninterference using Approximate Model Counting

Ziqiao Zhou Zhiyun Qian Michael K. Reiter Yinqian Zhang
A Study of the Learnability of Relational Properties Model Counting Meets Machine Learning (MCML)

Muhammad Usman University of Texas al Austin, USA muhammadusman@utexas.edu	Wenxi Wang University of Texas at Austin, USA wenxiweutexasedu	Marko Vasic Universily of Texas at Austin, USA vasio民utexasedu
Kaiyuan Wang'	Haris Vikalo	Sarfraz Khurshid

Quantifying Software Reliability via Model-Counting

Sammel Teuber ${ }^{(\infty)}$ e and Alexander Wbiglo

In Search for a Sat-friendly Binarized Neural Network Architecture

Nina Narodyttka Hongce Zhang ${ }^{\circ}$

Quantifying the Efficacy of Logic Locking Methods
Joseph Sweeney, Deepali Garg, Lawtence Pileggi

Another Iteration of Virtuous Cycle

B. Cook, 2022: Virtuous cycle: ...application areas drives more investment in foundational tools, while improvements in the foundational tools drive further applications. Around and around.

SharpTNI: Counting and Sampling Parsimonious Transmission Networks under a Weak Bottleneck
 Palash Sasshittal ${ }^{1}$ and Mohammed El-Kebir ${ }^{2}$ *

Check before You Change: Preventing Correlated Failures in Service Updates
Ennan Zhai ${ }^{\dagger}$, Ang Chen ${ }^{\ddagger}$, Ruzica $^{\text {Piskac }}{ }^{\circ}$, Mahesh Balakrishnan ${ }^{\text {T* }}$
Bingchuan Tian ${ }^{\text {n }}$, Bo Song** Haoliang Zhang*

Automating the Development of Chosen Ciphertext Attacks

Gabrielle Beck, Maximilian Zinkus, and Matthew Green, Johns Hopkins University

Model Counting (MC-2020)
Competition

- Tracke moder Coumtimiz weithtea moder Countume and Projected Moder Count

Workshop

- worksomp zozo

Model Counting (MC-2021)
Competition

Workshop on Counting and Sampling

Model Counting (MC-2022)
Competition
Part ot floc orymotic carmes

Workshop on Counting and sampling - Workhiop 2022 cin person evenc)

Static Evaluation of Noninterference using Approximate Model Counting

Ziqiao Zhou Zhiyun Qian Michael K. Reiter Yinqian Zhang

A Study of the Learnability of Relational Properties

Model Counting Meets Machine Learning (MCML)

Quantifying Software Reliability via Model-Counting

Sarmel Teubert(x) ${ }^{(2)}$ and Alexander Weiglo

In Search for a Sat-friendly binarized Neural Network Architecture

Nina Narodytska

Quantifying the Efficacy of Logic Locking Methods
Joseph Sweeney, Deepali Garg, Lawtence Pileggi

Generalizability

Union of Sets ApproxMC is Fully Polynomial Randomized Approximation Scheme (FPRAS) - fundamentally different from the Monte-Carlo based FPRAS

- IJCAI-19 Sister Conferences Best Paper Award Track
[MSV19]

Generalizability

Union of Sets ApproxMC is Fully Polynomial Randomized Approximation Scheme (FPRAS) - fundamentally different from the Monte-Carlo based FPRAS

- IJCAI-19 Sister Conferences Best Paper Award Track
[MSV19]

Streaming Counting over a stream: Distinct Elements
Example: How many unique customers visit website?
Fundamental problem in Databases

- CACM Research Highlights
[PVBM21]
- ACM SIGMOD 2022 Research Highlight
- "Best of PODS 2021" by ACM TODS

Generalizability

Union of Sets ApproxMC is Fully Polynomial Randomized Approximation Scheme (FPRAS) - fundamentally different from the Monte-Carlo based FPRAS

- IJCAI-19 Sister Conferences Best Paper Award Track
[MSV19]

Streaming Counting over a stream: Distinct Elements
Example: How many unique customers visit website?
Fundamental problem in Databases

- CACM Research Highlights
[PVBM21]
- ACM SIGMOD 2022 Research Highlight
- "Best of PODS 2021" by ACM TODS

Unsatisfiable Subsets Count minimal subsets of clauses that are unsatisfiable.
Diagnosis metric for systems

- "Best Papers of CAV-20" by FMSD

Counting, Sampling, and Synthesis

In Pursuit of Scalability

Counting over the years

In Pursuit of Scalability

Counting over the years

Sampling over the years

Synthesis over the years
ICCAD-21 \& DATE-23 Best Paper Award Nomination

Where do we go from here?

Where do we go from here?

The Quest for Scalability is Endless

Today's Counters/Samplers/Synthesis Engines \approx SAT Solvers in early 2000s

Industrial Practice: $100 \times$ Speedup

The Pursuit of Scalablity

Mission 2028: $100 \times$ Speedup for Counting, Sampling, and Synthesis

Challenge Problems (for Counting)
Civil Engineering Rigorous resilience estimation for power grid of Los Angeles
Quantitative Evaluation Binarized neural network with 1M neurons
Software Engineering Information Flow analysis of programs with 10K lines of code

Technical Directions (for Counting)
Theoretical Advances Native reasoning over expressive theories (Beyond SMT)
Algorithmic Engineering Machine Learning-guided heuristic design
Software Development Hardware-accelerator aware tools

The Pursuit of Scalablity

Mission 2028: $100 \times$ Speedup for Counting, Sampling, and Synthesis

Challenge Problems (for Counting)
Civil Engineering Rigorous resilience estimation for power grid of Los Angeles
Quantitative Evaluation Binarized neural network with 1M neurons
Software Engineering Information Flow analysis of programs with 10K lines of code

Technical Directions (for Counting)
Theoretical Advances Native reasoning over expressive theories (Beyond SMT)
Algorithmic Engineering Machine Learning-guided heuristic design
Software Development Hardware-accelerator aware tools
Certification: Approximate count is "correct" or the distribution generated is correct

- Applications to verification of probabilistic programming
- Building on recent advances in distribution testing
- Preliminary Work: AAAI-19, NeurIPS-20, NeurIPS-21, CP-22, NeurIPS-22

It Takes a Village

Research Group

Durgesh Agrawal
Lorenzo Ciampiconi
Priyanka Golia
Gunjan Kumar
Yash Pote
Tim van Bremen

Teodora Baluta
Alexis de Colnet Rahul Gupta
Lawqueen Kanesh Shubham Sharma Jiong Yang

Jaroslav Bendik
Paulius Dilkas
Yacine Izza
Yong Lai
Mate Soos
Suwei Yang

Bhavishya
Bishwamittra Ghosh
Md Mohimenul Kabir
Anna Latour
Arijit Shaw

```
Collaborators
```

S. Akshay (IITB, IN)

Rajkishore Barik(Intel,US)
Fabrizio Biondi (CS, FR)
Sourav Chakraborty(ISIK, IN)
Zheng Leong Chua(IP, SG
A. Dileep(IITD, India)

Michael A. Enescu(Inria, FR)
Sutanu Gayen(NUS, SG)
Alexey Ignatiev(ULisboa, PT)
Mohan S. Kankanhalli(NUS, SG
Axel Legay (UCL, BE)
Sharad Malik(Princeton,US)
John M.Mellor-Crummey(Rice,US)
Karthik Murthy(Rice,US)
Sri Raj Paul(Rice,US)
Nicolas Prevot(London, UK)
Ammar F. Sabili(NUS, SG)
Jonathan Scarlett(NUS, SG)
Shweta Shinde(ETH,CH)
Harold Soh(NUS, SG)
N. V. Vinodchandran(UNL,US)

Yaqi Xie(NUS, SG)

```
Alyas Almaawi(UTAustin,US)
Debabrota Basu(Chalmers,US)
Kian Ming Adam Chai(DSO, SG)
Supratik Chakraborty (IITB, IN)
Tiago Cogumbreiro(Rice,US)
Jeffrey M. Dudek(Rice,US)
Daniel J. Fremont(UCB,US)
Stephan Gocht (Lund U., SE)
Alexander Ivrii(IBM, IL)
Sarfraz Khurshid(UTAustin,US)
Massimo Lupascu(NUS, SG)
Dmitry Malioutov(IBM,US)
Rakesh Mistry(IITB, IN)
Nina Narodytska(VMware,US)
Aduri Pavan(ISU,US)
Jean Quilbeuf(Inria, FR)
Vivek Sarkar(Rice,US)
Sanjit A. Seshia(UCB,US)
Aditya A. Shrotri(Rice,US)
Muhammad Usman(UTAustin,US)
Kaiyuan Wang(Google,US)
Ziwei Xu(NUS, SG)
```

Alyas Almaawi(UTAustin,US)	Eduard Baranov(UCLouvain, BE)
Debabrota Basu(Chalmers,US)	Arnab Bhattacharya (NUS, SG)
Kian Ming Adam Chai(DSO, SG)	Diptarka Chakraborty(NUS,SG)
Supratik Chakraborty (IITB, IN)	Davin Choo(DSO, SG)
Tiago Cogumbreiro(Rice,US)	Vincent Derkinderen(KUL, BE)
Jeffrey M. Dudek(Rice,US)	Leonardo Duenas-Osorio (Rice,US)
Daniel J. Fremont(UCB,US)	Dror Fried (Open U., IL)
Stephan Gocht (Lund U., SE)	Annelie Heuser(CNRS, FR)
Alexander Ivrii(IBM, IL)	Saurabh Joshi(IITH, IN)
Sarfraz Khurshid(UTAustin,US)	Raghav Kulkarni(CMI, IN)
Massimo Lupascu(NUS, SG)	Deepak Majeti(Rice,US)
Dmitry Malioutov(IBM,US)	Joao Marques-Silva(ANITI, FR)
Rakesh Mistry(IITB, IN)	M.Mohammadalitajrishi(Polymtl,CA)
Nina Narodytska(VMware,US)	Roger Paredes(Rice,US)
Aduri Pavan(ISU,US)	Gilles Pesant(Polymtl,CA)
Jean Quilbeuf(Inria, FR)	Subhajit Roy (IITK, IN)
Vivek Sarkar(Rice,US)	Prateek Saxena(NUS, SG)
Sanjit A. Seshia(UCB,US)	Shiqi Shen(NUS, SG)
Aditya A. Shrotri(Rice,US)	Friedrich Slivovsky(TU Wien, AT)
Muhammad Usman(UTAustin,US)	Moshe Y. Vardi(Rice,US)
Kaiyuan Wang(Google,US)	Wenxi Wang(UTAustin,US)
Ziwei Xu(NUS, SG)	Roland H. C. Yap(NUS, SG)

Funding Agencies: National Research Foundation, Ministry of Education, Defense Service Organization Industrial Support: Grab Taxiholdings, Amazon, Microsoft Research

Counting, Sampling, and Synthesis

Advances

Algorithmic Engineering

Development

These slides are available at tinyurl.com/meel-talk

Detailed Future Directions

Applications: Infrastructure Resilience, Information Leakage, Prob. Databases, Configuration Testing, Partition Function, BNN Verification
Theoretical Advances
Formula-based Sparse-XORs DNF, Minimal Solutions, Chain formula
Revisiting FPRAS Permanent, Automata, Linear Extensions
Parameterized Complexity Addition of XORs
Streaming Delphic Sets
Synthesis A theory of learning from relations
Entropy Reduction in the number of queries
Algorithmic Engineering
Incremental Incremental Counting Queries
Bit-vectors Partitioning; Independent Support
Heuristic ML-guided heuristic synthesis
Distributed Streaming techniques
SMT Synthesis SMT Formula Learning
Beyond Qualititative Synthesis Optimal Functions, Approximate Synthesis
Software Development
Tighter Integration Multiple Queries
Hybrid Constraints Callbacks
XOR Handling PB-XOR, BNN-XOR, MaxSAT-XOR, ASP-XOR
Accelerators GPU
Knowledge Compilation SMT, Portfolio
Certification
Distribution Probabilistic Programming Equivalence
Counting Certificate for Approximation

