
Towards a Theory for Computing with SAT Solvers

What’s the Power of a Satisfying Assignment?

Kuldeep S. Meel

University of Toronto

Joint work with Sourav Chakraborty, Diptarka Chakraborty, Remi Delannoy, and
Gunjan Kumar

Relevant publication: LICS-22 and ICALP-23

Slide 1/ 27

Analysis of Algorithms

Knuth: “People who analyze algorithms experience double happiness. Firstly, they
encounter the beauty of mathematical patterns in elegant computational procedures.
Secondly, they gain practical benefits as their theories enhance efficiency and economy
in various applications.”

Knuth’s Approach to Algorithm Analysis (1962)

• A Scientific way to analyze algorithms

• Identifying operation costs and input models
• Examining operation frequencies
• Calculating total runtime:

∑
op

frequency(op) · cost(op)

• Objectives

• Predicting algorithm performance
• Facilitating algorithm comparison and improvement
• Encounter beauty of mathematical patterns

Slide 2/ 27

Analysis of Algorithms

Knuth: “People who analyze algorithms experience double happiness. Firstly, they
encounter the beauty of mathematical patterns in elegant computational procedures.
Secondly, they gain practical benefits as their theories enhance efficiency and economy
in various applications.”

Knuth’s Approach to Algorithm Analysis (1962)

• A Scientific way to analyze algorithms

• Identifying operation costs and input models
• Examining operation frequencies
• Calculating total runtime:

∑
op

frequency(op) · cost(op)

• Objectives

• Predicting algorithm performance
• Facilitating algorithm comparison and improvement

• Encounter beauty of mathematical patterns

Slide 2/ 27

Analysis of Algorithms

Knuth: “People who analyze algorithms experience double happiness. Firstly, they
encounter the beauty of mathematical patterns in elegant computational procedures.
Secondly, they gain practical benefits as their theories enhance efficiency and economy
in various applications.”

Knuth’s Approach to Algorithm Analysis (1962)

• A Scientific way to analyze algorithms

• Identifying operation costs and input models
• Examining operation frequencies
• Calculating total runtime:

∑
op

frequency(op) · cost(op)

• Objectives

• Predicting algorithm performance
• Facilitating algorithm comparison and improvement
• Encounter beauty of mathematical patterns

Slide 2/ 27

A Theory for PTIME and Beyond

Edmonds, 1965: A Theory of Efficient Combinatorial Algorithms (PTIME)

Cook, 1971; Levin, 1973: Non-deterministic Polynomial Time (NP) Computations

Karp, 1972: The Surprising Power of NP-Completeness

Stockmeyer, 1972: A Theory of Polynomial Hierarchy Based on Oracles

A Rich Theory of Algorithms Relying on Oracles

• For four decades, the theoretical framework involving oracle-based computations
has primarily remained within theoretical discussions

• Largely due to our inability to tackle NP-complete problems in practice until
recently.

Slide 3/ 27

A Theory for PTIME and Beyond

Edmonds, 1965: A Theory of Efficient Combinatorial Algorithms (PTIME)

Cook, 1971; Levin, 1973: Non-deterministic Polynomial Time (NP) Computations

Karp, 1972: The Surprising Power of NP-Completeness

Stockmeyer, 1972: A Theory of Polynomial Hierarchy Based on Oracles

A Rich Theory of Algorithms Relying on Oracles

• For four decades, the theoretical framework involving oracle-based computations
has primarily remained within theoretical discussions

• Largely due to our inability to tackle NP-complete problems in practice until
recently.

Slide 3/ 27

A Theory for PTIME and Beyond

Edmonds, 1965: A Theory of Efficient Combinatorial Algorithms (PTIME)

Cook, 1971; Levin, 1973: Non-deterministic Polynomial Time (NP) Computations

Karp, 1972: The Surprising Power of NP-Completeness

Stockmeyer, 1972: A Theory of Polynomial Hierarchy Based on Oracles

A Rich Theory of Algorithms Relying on Oracles

• For four decades, the theoretical framework involving oracle-based computations
has primarily remained within theoretical discussions

• Largely due to our inability to tackle NP-complete problems in practice until
recently.

Slide 3/ 27

The SAT Revolution

Boolean Satisfiability (SAT): Given a Boolean formula, is there a solution, i.e., an
assignment of 0’s and 1’s to the variables that makes the formula equal 1?

Example: (X1 ∨ ¬X2 ∨ ¬X3) ∧ (X2 ∨ ¬X3) X1 = 1,X2 = 1,X3 = 1

Knuth, 2016: These so-called “SAT solvers” can now routinely find solutions to
practical problems that involve millions of variables and were thought until very
recently to be hopelessly difficult.

[Late 2000’s]: Now that SAT is “easy”, it is time to look beyond satisfiability

• Development of algorithmic frameworks for optimization/MaxSAT, counting,
sampling, and synthesis

Slide 4/ 27

The SAT Revolution

Boolean Satisfiability (SAT): Given a Boolean formula, is there a solution, i.e., an
assignment of 0’s and 1’s to the variables that makes the formula equal 1?

Example: (X1 ∨ ¬X2 ∨ ¬X3) ∧ (X2 ∨ ¬X3) X1 = 1,X2 = 1,X3 = 1

Knuth, 2016: These so-called “SAT solvers” can now routinely find solutions to
practical problems that involve millions of variables and were thought until very
recently to be hopelessly difficult.

[Late 2000’s]: Now that SAT is “easy”, it is time to look beyond satisfiability

• Development of algorithmic frameworks for optimization/MaxSAT, counting,
sampling, and synthesis

Slide 4/ 27

Reducing the Chasm Between Oracles and Solvers

We will focus on the case of Boolean Formulas

NP Oracle: Return Yes (“Accept”) if a formula φ is satisfiable else Return No

SAT Solver: Return a satisfying assignment if a formula φ is satisfiable else Returns No

• SAT solvers also return proof of unsatisfiablity but we will ignore that for now.

Need to analyze complexity with respect to oracles that capture behavior of SAT
solvers

SAT Oracle: Return a satisfying assignment if φ is satisfiable else Return No

Not limited to Boolean formulas: Every decision procedure for an NP-complete
problem that has been implemented always gives a witness whenever it can prove
satisfying assignment

Slide 5/ 27

SAT Oracles and simulation by NP oracles

SAT Oracles can be simulated by n calls to NP oracles, so what’s the big deal?

• Satisfying Assignment: Given a formula φ, find a satisfying assignment if it exists

• Complexity: NP(n) ; SAT(1)

• There is “ONLY” a factor of n difference.

• Factor n is the difference between today and 1995
• On a formula with million variables, today’s solvers are often 106 than a

solver in 1995.
• If all we had were the solvers from 1995, we wouldn’t be bothered about

computing with SAT solvers

• Fine-Grained Analysis matters: It’s not always exactly a factor n

• Satisfiability: Given a formula φ, is it satisfiable?

• Complexity: NP(1) ; SAT(1)

• Objectives of Analysis of Algorithms: Predicting algorithm performance &
facilitating algorithm improvement

• Algorithm analysis should be based on oracles that capture the physical reality

Slide 6/ 27

SAT Oracles and simulation by NP oracles

SAT Oracles can be simulated by n calls to NP oracles, so what’s the big deal?

• Satisfying Assignment: Given a formula φ, find a satisfying assignment if it exists

• Complexity: NP(n) ; SAT(1)

• There is “ONLY” a factor of n difference.

• Factor n is the difference between today and 1995
• On a formula with million variables, today’s solvers are often 106 than a

solver in 1995.
• If all we had were the solvers from 1995, we wouldn’t be bothered about

computing with SAT solvers

• Fine-Grained Analysis matters: It’s not always exactly a factor n

• Satisfiability: Given a formula φ, is it satisfiable?

• Complexity: NP(1) ; SAT(1)

• Objectives of Analysis of Algorithms: Predicting algorithm performance &
facilitating algorithm improvement

• Algorithm analysis should be based on oracles that capture the physical reality

Slide 6/ 27

SAT Oracles and simulation by NP oracles

SAT Oracles can be simulated by n calls to NP oracles, so what’s the big deal?

• Satisfying Assignment: Given a formula φ, find a satisfying assignment if it exists

• Complexity: NP(n) ; SAT(1)

• There is “ONLY” a factor of n difference.

• Factor n is the difference between today and 1995
• On a formula with million variables, today’s solvers are often 106 than a

solver in 1995.
• If all we had were the solvers from 1995, we wouldn’t be bothered about

computing with SAT solvers

• Fine-Grained Analysis matters: It’s not always exactly a factor n

• Satisfiability: Given a formula φ, is it satisfiable?

• Complexity: NP(1) ; SAT(1)

• Objectives of Analysis of Algorithms: Predicting algorithm performance &
facilitating algorithm improvement

• Algorithm analysis should be based on oracles that capture the physical reality

Slide 6/ 27

SAT Oracles and simulation by NP oracles

SAT Oracles can be simulated by n calls to NP oracles, so what’s the big deal?

• Satisfying Assignment: Given a formula φ, find a satisfying assignment if it exists

• Complexity: NP(n) ; SAT(1)

• There is “ONLY” a factor of n difference.

• Factor n is the difference between today and 1995
• On a formula with million variables, today’s solvers are often 106 than a

solver in 1995.
• If all we had were the solvers from 1995, we wouldn’t be bothered about

computing with SAT solvers

• Fine-Grained Analysis matters: It’s not always exactly a factor n

• Satisfiability: Given a formula φ, is it satisfiable?

• Complexity: NP(1) ; SAT(1)

• Objectives of Analysis of Algorithms: Predicting algorithm performance &
facilitating algorithm improvement

• Algorithm analysis should be based on oracles that capture the physical reality

Slide 6/ 27

SAT Oracles and simulation by NP oracles

SAT Oracles can be simulated by n calls to NP oracles, so what’s the big deal?

• Satisfying Assignment: Given a formula φ, find a satisfying assignment if it exists

• Complexity: NP(n) ; SAT(1)

• There is “ONLY” a factor of n difference.

• Factor n is the difference between today and 1995
• On a formula with million variables, today’s solvers are often 106 than a

solver in 1995.
• If all we had were the solvers from 1995, we wouldn’t be bothered about

computing with SAT solvers

• Fine-Grained Analysis matters: It’s not always exactly a factor n

• Satisfiability: Given a formula φ, is it satisfiable?

• Complexity: NP(1) ; SAT(1)

• Objectives of Analysis of Algorithms: Predicting algorithm performance &
facilitating algorithm improvement

• Algorithm analysis should be based on oracles that capture the physical reality

Slide 6/ 27

Sampling and Counting

Almost-Uniform Sampling: Given a Boolean formula φ and tolerance parameter ε
output solutions σ such that

1

(1 + ε)|sol(φ)|
≤ Pr[σ is output] ≤

1 + ε

|sol(φ)|

Approximate Model Counting: Given a Boolean formula φ, tolerance parameter ε and
confidence parameter δ, output c such that

Pr

[
|sol(φ)|
1 + ε

≤ c ≤ (1 + ε)|sol(φ)|
]
≥ 1− δ

We will assume ε to be a constant in this talk

Slide 7/ 27

The Power of Inter-reducibility of Sampling and Counting
Jerrum, Valiant, and Vazirani, 1986

Assumes access to a (approximate) model counter

• Can be implemented with O(log n · log δ−1) NP-oracle calls

For a given formula φ,

• Assign x1 = 1 with probability |sol(φ∧x1)|
|sol(φ)|

• Say we assigned x1 = 1, now assign x2 = 1 with probability |sol(φ∧x1∧x2)|
|sol(φ∧x1)|

• And so on until we have assigned all the variables

Complexity Analysis: n calls to counter where δ for counter needs to be set to O(2−n)

• NP Oracle: O(n2 log n) queries

• SAT Oracle: O(n2 log n) queries

• JVV can not use the power of SAT oracle

Objectives of Analysis of Algorithms: Facilitating algorithm improvement

Can we get algorithms with better complexity ?

Delannoy and M; LICS-23 Yes, for query complexity with respect to SAT Oracles

Slide 8/ 27

The Power of Inter-reducibility of Sampling and Counting
Jerrum, Valiant, and Vazirani, 1986

Assumes access to a (approximate) model counter

• Can be implemented with O(log n · log δ−1) NP-oracle calls

For a given formula φ,

• Assign x1 = 1 with probability |sol(φ∧x1)|
|sol(φ)|

• Say we assigned x1 = 1, now assign x2 = 1 with probability |sol(φ∧x1∧x2)|
|sol(φ∧x1)|

• And so on until we have assigned all the variables

Complexity Analysis: n calls to counter where δ for counter needs to be set to O(2−n)

• NP Oracle: O(n2 log n) queries

• SAT Oracle: O(n2 log n) queries

• JVV can not use the power of SAT oracle

Objectives of Analysis of Algorithms: Facilitating algorithm improvement

Can we get algorithms with better complexity ?

Delannoy and M; LICS-23 Yes, for query complexity with respect to SAT Oracles

Slide 8/ 27

The Power of Inter-reducibility of Sampling and Counting
Jerrum, Valiant, and Vazirani, 1986

Assumes access to a (approximate) model counter

• Can be implemented with O(log n · log δ−1) NP-oracle calls

For a given formula φ,

• Assign x1 = 1 with probability |sol(φ∧x1)|
|sol(φ)|

• Say we assigned x1 = 1, now assign x2 = 1 with probability |sol(φ∧x1∧x2)|
|sol(φ∧x1)|

• And so on until we have assigned all the variables

Complexity Analysis: n calls to counter where δ for counter needs to be set to O(2−n)

• NP Oracle: O(n2 log n) queries

• SAT Oracle: O(n2 log n) queries

• JVV can not use the power of SAT oracle

Objectives of Analysis of Algorithms: Facilitating algorithm improvement

Can we get algorithms with better complexity ?

Delannoy and M; LICS-23 Yes, for query complexity with respect to SAT Oracles

Slide 8/ 27

The Power of Inter-reducibility of Sampling and Counting
Jerrum, Valiant, and Vazirani, 1986

Assumes access to a (approximate) model counter

• Can be implemented with O(log n · log δ−1) NP-oracle calls

For a given formula φ,

• Assign x1 = 1 with probability |sol(φ∧x1)|
|sol(φ)|

• Say we assigned x1 = 1, now assign x2 = 1 with probability |sol(φ∧x1∧x2)|
|sol(φ∧x1)|

• And so on until we have assigned all the variables

Complexity Analysis: n calls to counter where δ for counter needs to be set to O(2−n)

• NP Oracle: O(n2 log n) queries

• SAT Oracle: O(n2 log n) queries

• JVV can not use the power of SAT oracle

Objectives of Analysis of Algorithms: Facilitating algorithm improvement

Can we get algorithms with better complexity ?

Delannoy and M; LICS-23 Yes, for query complexity with respect to SAT Oracles

Slide 8/ 27

UniSamp: Partitioning is all you Need

Pick a random cell

Enumerate Solutions in a randomly chosen Cell
Pick a solution uniformly at random from enumerated solutions

Slide 9/ 27

UniSamp: Partitioning is all you Need

Pick a random cell

Enumerate Solutions in a randomly chosen Cell
Pick a solution uniformly at random from enumerated solutions

Slide 9/ 27

UniSamp: Partitioning is all you Need

Pick a random cell

Enumerate Solutions in a randomly chosen Cell
Pick a solution uniformly at random from enumerated solutions

Slide 9/ 27

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without
knowing the distribution of solutions?

• Rely on the power of 3-wise independent hash functions

• Can be implemented with XOR-based Hash functions

Challenge 2 How many cells?

• thresh = 200
• Number of cells: 2m ≈ |sol(φ)|

thresh

• Invoke an approximate counter to get an estimate of |sol(φ)|

Complexity Analysis: One call to counter, followed by enumeration of thresh solutions

• NP Oracle: O(log n + n)

• SAT Oracle: O(log n) Enumeration requires only thresh calls to SAT oracle

Slide 10/ 27

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without
knowing the distribution of solutions?

• Rely on the power of 3-wise independent hash functions

• Can be implemented with XOR-based Hash functions

Challenge 2 How many cells?

• thresh = 200
• Number of cells: 2m ≈ |sol(φ)|

thresh

• Invoke an approximate counter to get an estimate of |sol(φ)|

Complexity Analysis: One call to counter, followed by enumeration of thresh solutions

• NP Oracle: O(log n + n)

• SAT Oracle: O(log n) Enumeration requires only thresh calls to SAT oracle

Slide 10/ 27

Predicting Algorithm Performance and Comparison

NP Oracle SAT Oracle

JVV n2 log n n2 log n
UniSamp n + log n log n

Benchmark Variables Clauses JVV UniSamp
Time (sec/sample) Time (sec/sample)

s27 new 3 2 17 31 0.38 0.02
4step 165 418 timeout 1.03
s420 15 7 366 994 timeout 1.56
GuidanceService2.sk 715 2181 timeout 1.00
GuidanceService.sk 988 3088 timeout 1.06
prod-2s 1113 4974 timeout 6.91
90-16-2-q 1216 1920 timeout 3254.91
UserServiceImpl.sk 1509 5009 timeout 0.72
blasted squaring41 4185 13599 timeout 3348.58
ProcessBean.sk 4768 14458 timeout 5.87
doublyLinkedList.sk 6890 26918 timeout 6.28
01B-1 9159 39959 timeout 345.59
107.sk 3 90 8948 40147 timeout 7.51
LoginService.sk 8200 26689 timeout 7.13
sort.sk 8 52 12125 49611 timeout 11.46
enqueueSeqSK.sk 16466 58515 timeout 29.71
compress.sk 44901 166948 timeout 123.19
hash-4 188361 755882 timeout 315.34

SAT Oracle model predicts algorithm performance and facilitates algorithm
comparison

Slide 11/ 27

Predicting Algorithm Performance and Comparison

NP Oracle SAT Oracle

JVV n2 log n n2 log n
UniSamp n + log n log n

Benchmark Variables Clauses JVV UniSamp
Time (sec/sample) Time (sec/sample)

s27 new 3 2 17 31 0.38 0.02
4step 165 418 timeout 1.03
s420 15 7 366 994 timeout 1.56
GuidanceService2.sk 715 2181 timeout 1.00
GuidanceService.sk 988 3088 timeout 1.06
prod-2s 1113 4974 timeout 6.91
90-16-2-q 1216 1920 timeout 3254.91
UserServiceImpl.sk 1509 5009 timeout 0.72
blasted squaring41 4185 13599 timeout 3348.58
ProcessBean.sk 4768 14458 timeout 5.87
doublyLinkedList.sk 6890 26918 timeout 6.28
01B-1 9159 39959 timeout 345.59
107.sk 3 90 8948 40147 timeout 7.51
LoginService.sk 8200 26689 timeout 7.13
sort.sk 8 52 12125 49611 timeout 11.46
enqueueSeqSK.sk 16466 58515 timeout 29.71
compress.sk 44901 166948 timeout 123.19
hash-4 188361 755882 timeout 315.34

SAT Oracle model predicts algorithm performance and facilitates algorithm
comparison

Slide 11/ 27

Outline

Objectives

• Predicting algorithm performance

• Facilitating algorithm comparison and improvement

• Encounter beauty of mathematical patterns

Sampling

• SAT Oracle captures algorithm’s performance and allowed comparison

• Enabled development of new algorithm

Counting: Given φ, ε and δ, output c such that

Pr

[
|sol(φ)|
1 + ε

≤ c ≤ (1 + ε)|sol(φ)|
]
≥ 1− δ

• NP-hard, so need a way to perform computations with NP oracles

Slide 12/ 27

Outline

Objectives

• Predicting algorithm performance

• Facilitating algorithm comparison and improvement

• Encounter beauty of mathematical patterns

Sampling

• SAT Oracle captures algorithm’s performance and allowed comparison

• Enabled development of new algorithm

Counting: Given φ, ε and δ, output c such that

Pr

[
|sol(φ)|
1 + ε

≤ c ≤ (1 + ε)|sol(φ)|
]
≥ 1− δ

• NP-hard, so need a way to perform computations with NP oracles

Slide 12/ 27

The Computation Model for NP Queries

Stockmeyer’s Model, 1983: Input: A formula φ, Decision oracle

counter NP oracle

formula ψ

φ ∧ ψ is satisfiable/ UNSAT

Adaptivity: Queries can be adaptive, i.e., ψ can be chosen aribtrarily depending on the
answer of previous answers

Impact All the known approximate counting techniques fit in Stockmeyer’s model

• Their queries are of the φ ∧ ψ for input formula φ

Slide 13/ 27

Lower and Upper Bounds

Stockmeyer, 1983: Θ(log n) to NP Oracle are Necessary and Sufficient

ψ1

ψ3

· · ·

2n2n − 1

· · ·

· · ·· · ·

ψ2

· · ·

· · ·· · ·

ψ
2n−1

2120

SAT UNSAT

Since count ∈ {0, 1, . . . , 2n}, therefore a 2-approximation counter must be able to
return log(2n) = n possible values.

Thus, 2q ≥ n, i.e., q ≥ log n.

Slide 14/ 27

Lower and Upper Bounds

Stockmeyer, 1983: Θ(log n) to NP Oracle are Necessary and Sufficient

ψ1

ψ3

· · ·

2n2n − 1

· · ·

· · ·· · ·

ψ2

· · ·

· · ·· · ·

ψ
2n−1

2120

SAT UNSAT

Since count ∈ {0, 1, . . . , 2n}, therefore a 2-approximation counter must be able to
return log(2n) = n possible values.

Thus, 2q ≥ n, i.e., q ≥ log n.

Slide 14/ 27

From Theory to Practice

While Stockmeyer’s method had the query complexity of O(log n), it did not lend
itself to practical methods

ApproxMC (2013–Present): Design of a practical approximate model counter

• NP Oracle: O(n log n) queries

• SAT Oracle: O(log n) queries

A Key Observation: Complexity of Query |sol(φ)| ≤ thresh for some constant thresh

• Enumerate solutions one by one until we have found thresh solutions

• NP Oracle: O(n · thresh)
• SAT Oracle: O(thresh)

SAT Oracle guides algorithm improvement

Slide 15/ 27

Stockmeyer’s Model’s Impact and SAT Oracle
• All the known approximate counting techniques fit in Stockmeyer’s model

• But, all these methods replace NP oracle calls with SAT Solver in practice.

A Natural Extension to SAT Oracle

counter SAT oracle

formula ψ

σ ∈ sol(φ ∧ ψ)/ UNSAT

• How many SAT Oracle Queries are Necessary?

• Upper bounds for NP oracles are also upper bounds for SAT Oracles
• Lower bounds for NP oracles don’t imply lower bounds for SAT Oracles

• Beyond curiosity: Is it possible to somehow use satisfying assignment to our
advantage in designing future queries?

Theorem (Chakraborty, Chakraborty, Kumar, M.; ICALP-23)

Every approximate counter must makes Ω̃(log n) queries to SAT oracle

Slide 16/ 27

Stockmeyer’s Model’s Impact and SAT Oracle
• All the known approximate counting techniques fit in Stockmeyer’s model

• But, all these methods replace NP oracle calls with SAT Solver in practice.

A Natural Extension to SAT Oracle

counter SAT oracle

formula ψ

σ ∈ sol(φ ∧ ψ)/ UNSAT

• How many SAT Oracle Queries are Necessary?

• Upper bounds for NP oracles are also upper bounds for SAT Oracles
• Lower bounds for NP oracles don’t imply lower bounds for SAT Oracles

• Beyond curiosity: Is it possible to somehow use satisfying assignment to our
advantage in designing future queries?

Theorem (Chakraborty, Chakraborty, Kumar, M.; ICALP-23)

Every approximate counter must makes Ω̃(log n) queries to SAT oracle

Slide 16/ 27

Stockmeyer’s Model’s Impact and SAT Oracle
• All the known approximate counting techniques fit in Stockmeyer’s model

• But, all these methods replace NP oracle calls with SAT Solver in practice.

A Natural Extension to SAT Oracle

counter SAT oracle

formula ψ

σ ∈ sol(φ ∧ ψ)/ UNSAT

• How many SAT Oracle Queries are Necessary?

• Upper bounds for NP oracles are also upper bounds for SAT Oracles
• Lower bounds for NP oracles don’t imply lower bounds for SAT Oracles

• Beyond curiosity: Is it possible to somehow use satisfying assignment to our
advantage in designing future queries?

Theorem (Chakraborty, Chakraborty, Kumar, M.; ICALP-23)

Every approximate counter must makes Ω̃(log n) queries to SAT oracle

Slide 16/ 27

SAT Oracles: The Limitation of Stockmeyer’s Proof Technique

ψ

ψ1

σ1 σ2 σ3 σ4 σ5

sat unsat

• degree of a node can be as large as the number of satisfying assignments in
φ ∧ ψ, i.e., 2n.

• Previous approach will give (2n)q ≥ n, i.e., q > log n/n.

Slide 17/ 27

Proof Sketch of Our Lower Bound

• Focus on a stronger SAT Oracle

• The SAT Oracle will not return an arbitrary satisfying assignment but
satisfying assignment chosen uniformly at random.

• A Restricted class of counting algorithms: Semi-oblivious counters

• Lower bound for Semi-oblivious counters.

• Show that they are equivalent to general counters

Slide 18/ 27

General Counter

Counter SAT oracle

ψ1
σ1 ∈ sol(φ ∧ ψ1))

σ1

ψ2
σ2 ∈ sol(φ ∧ ψ2)

σ2

ψi
σi ∈ sol(φ ∧ ψi)

σi

Slide 19/ 27

Semi-Oblivious Counter

Counter SAT oracle

ψ1
σ1 ∈ sol(φ ∧ ψ1)

conf (σ1)

ψ2
σ2 ∈ sol(φ ∧ ψ2)

conf (σ2)

ψi
σi ∈ sol(φ ∧ ψi)

conf (σi)

conf (σi):
• Is σi = σ1, σi = σ2, . . . , σi = σi−1?

• Does σi ∈ sol(ψ1), σi ∈ sol(ψ2), . . . , σi ∈ sol(ψi−1)

There are 2(i − 1) possibilities for conf (σi)

Slide 20/ 27

Semi-Oblivious Counter

ψ1

ψ2

ψ3

ψ4
{σ1, σ2}

σ3

σ4

Information revealed to counter: (1) σ1 = σ2 ̸= σ3 ̸= σ4
(2) σ1 = σ2 ∈ ψ1, ψ2, ̸∈ ψ3, ψ4; σ3 ∈ ψ3, ̸∈ ψ1, ψ2, ψ4; σ4 ∈ ψ4, ̸∈ ψ1, ψ2, ψ3

Slide 21/ 27

Achieving Lower Bound

Degree is at most 22i ≤ 22q .

If q is the number of queries then

(22q)q ≥ number of leaves ≥ n =⇒ q ≥
√

log n

Using techniques from information theory, we improve this lower bound to log n.

Lemma

Any semi-oblivious counter must make Ω̃(log n) queries to a SAT oracle.

Lemma

A semi-oblivious counter can simulate a general counter..

Theorem

Any counter must make Ω̃(log n) queries to a SAT oracle.

Slide 22/ 27

Achieving Lower Bound

Degree is at most 22i ≤ 22q .

If q is the number of queries then

(22q)q ≥ number of leaves ≥ n =⇒ q ≥
√

log n

Using techniques from information theory, we improve this lower bound to log n.

Lemma

Any semi-oblivious counter must make Ω̃(log n) queries to a SAT oracle.

Lemma

A semi-oblivious counter can simulate a general counter..

Theorem

Any counter must make Ω̃(log n) queries to a SAT oracle.

Slide 22/ 27

Achieving Lower Bound

Degree is at most 22i ≤ 22q .

If q is the number of queries then

(22q)q ≥ number of leaves ≥ n =⇒ q ≥
√

log n

Using techniques from information theory, we improve this lower bound to log n.

Lemma

Any semi-oblivious counter must make Ω̃(log n) queries to a SAT oracle.

Lemma

A semi-oblivious counter can simulate a general counter..

Theorem

Any counter must make Ω̃(log n) queries to a SAT oracle.

Slide 22/ 27

Main Lemma (Informal)

History (Transcript) till step i is a sequence:

{(ψ1, σ1), (ψ2, σ2), . . . , (ψi , σi)}

Lemma (Informal)

Consider two different histories such that the corresponding sample-configurations are
the same. Then there is an isomorphic relabeling σ : {0, 1}n → {0, 1}n that maps one
to other.

So any (general) counter (wlog) should behave in a similar way as
long as configurations are the same.

In other words, suffices for the general counter to just see the configurations.

Slide 23/ 27

Isomorphic Relabelling

If configurations are the same then histories are equivalent up to relabeling, i.e.,
mutual information is very small.

ψ1

ψ2

ψ3

ψ4
{σ1, σ2}

σ3

σ4

ψ1

ψ2

ψ3

ψ4 {s′1, s′2}

s′3

s′4

σ

σ

σ

σ({(ψ1, σ1), . . . , (ψi , σi)}) = {(ψ1, σ
′
1), . . . , (ψi , σ

′
i)}

Slide 24/ 27

Recap of Results

While Stockmeyer’s method had the query complexity of O(log n), it did not lend
itself to practical methods

ApproxMC (2013–Present): Design of a practical approximate model counter

• NP Oracle: O(n log n) queries

• SAT Oracle: O(log n) queries

Theorem

Every approximate counter must makes Ω̃(log n) queries to SAT oracle

Reflections:

• Facilitating algorithm comparison and improvement

• Development of new techniques

Slide 25/ 27

Summary

Objectives of Analysis of Algorithms

• Predicting algorithm performance

• Facilitating algorithm comparison and improvement

• Encounter beauty of mathematical patterns

Sampling

• SAT Oracle captures algorithm’s performance and allowed comparison

• Enabled development of new algorithm

Counting

• SAT Oracle captures algorithm’s performance and allowed comparison

• Enabled development of new algorithm

• New Technical Challenges; more mathematical beauty to explore

Algorithm analysis should be based on oracles that capture the physical reality

Slide 26/ 27

Summary

Objectives of Analysis of Algorithms

• Predicting algorithm performance

• Facilitating algorithm comparison and improvement

• Encounter beauty of mathematical patterns

Sampling

• SAT Oracle captures algorithm’s performance and allowed comparison

• Enabled development of new algorithm

Counting

• SAT Oracle captures algorithm’s performance and allowed comparison

• Enabled development of new algorithm

• New Technical Challenges; more mathematical beauty to explore

Algorithm analysis should be based on oracles that capture the physical reality

Slide 26/ 27

Where do we go from here?

We have barely started: The Entire Polynomial Hierarchy is there to explore

MaxSAT: Given a unsatisfiable formula, what is the maximum number of clauses that
can be satisfied?

• log n calls to NP oracle are necessary and sufficient

• What about SAT Oracle?

• Not just mere curiosity

• Existing MaxSAT solvers rely on the underlying SAT solvers. so upper
bounds can lead to practical runtime improvements

Finding relationship between PSAT [1] versus PSAT [log n] vs PSAT [n]

SAT Solvers also provide proofs. What’s the power of SAT Oracle with Proofs?

Algorithm analysis should be based on oracles that capture the physical reality

Slide 27/ 27

Where do we go from here?

We have barely started: The Entire Polynomial Hierarchy is there to explore

MaxSAT: Given a unsatisfiable formula, what is the maximum number of clauses that
can be satisfied?

• log n calls to NP oracle are necessary and sufficient

• What about SAT Oracle?

• Not just mere curiosity

• Existing MaxSAT solvers rely on the underlying SAT solvers. so upper
bounds can lead to practical runtime improvements

Finding relationship between PSAT [1] versus PSAT [log n] vs PSAT [n]

SAT Solvers also provide proofs. What’s the power of SAT Oracle with Proofs?

Algorithm analysis should be based on oracles that capture the physical reality

Slide 27/ 27

Where do we go from here?

We have barely started: The Entire Polynomial Hierarchy is there to explore

MaxSAT: Given a unsatisfiable formula, what is the maximum number of clauses that
can be satisfied?

• log n calls to NP oracle are necessary and sufficient

• What about SAT Oracle?

• Not just mere curiosity

• Existing MaxSAT solvers rely on the underlying SAT solvers. so upper
bounds can lead to practical runtime improvements

Finding relationship between PSAT [1] versus PSAT [log n] vs PSAT [n]

SAT Solvers also provide proofs. What’s the power of SAT Oracle with Proofs?

Algorithm analysis should be based on oracles that capture the physical reality

Slide 27/ 27

Where do we go from here?

We have barely started: The Entire Polynomial Hierarchy is there to explore

MaxSAT: Given a unsatisfiable formula, what is the maximum number of clauses that
can be satisfied?

• log n calls to NP oracle are necessary and sufficient

• What about SAT Oracle?

• Not just mere curiosity

• Existing MaxSAT solvers rely on the underlying SAT solvers. so upper
bounds can lead to practical runtime improvements

Finding relationship between PSAT [1] versus PSAT [log n] vs PSAT [n]

SAT Solvers also provide proofs. What’s the power of SAT Oracle with Proofs?

Algorithm analysis should be based on oracles that capture the physical reality

Slide 27/ 27

