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Life in The 21st Century!

How do we guarantee that the systems work correctly ?

2



Motivating Example

a b

c

64 bit 64 bit

64 bit

c = f(a,b)

How do we verify that this circuit 

works ?

• Try for all values of  a and b

• 2128 possibilities (1022 years)

• Not scalable
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Simulation-Based Verification

▪ Dominant paradigm in recent years

▪ Hardware design is simulated with test 
vectors

▪ Test vectors represent different verification 
scenarios 



Constrained-Random Simulation

Sources for Constraints

• Designers: 

1. 100 < b < 200

2. 300 < a < 451

3. 40 < a < 50 and 30 < b < 40

• Past Experience: 

1. 400 < a < 2000

2. 120 < b < 230

• Users:

1. 1000<a < 1100

2. 20000 < b < a < 22000

Problem: How can we uniformly sample the values of a and 

b satisfying the above constraints? 5

a b

c

64 bit

64 bit

64 bit

c = f(a,b)



Problem Formulation

Set of  Constraints

Given a SAT formula, can one uniformly 

sample solutions without enumerating all 

solutions while scaling to real world 

problems? 

SAT Formula

Scalable Uniform Generation of SAT-Witnesses
6

a b

c

64 bit

64 bit

c = f(a,b)

64 bit



Constrained 

Random 

Simulation

Sketch based 

Synthesis

Scalable Uniform 

Generation
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Automatic 

Problem 

Generation

Uniform Generation of  SAT-Witnesses



Sketch-Based Synthesis

▪ Given: Sketch and correctness condition

▪ Large space of  programs that satisfy the 

correctness conditions

▪ Goal: Get the optimal program (running time, 

memory)

▪ Uniformly sample from the space of  programs



Outline

▪ Sampling Techniques via Uniform Generation

▪ Extension to model counting and biased sampling

▪ Discussion on hashing

▪ Future Directions



Uniform Generation

Ref: “A Scalable Near-Uniform Generator” (CAV 2013) 

“Balancing Scalability and Uniformity in SAT-Witness Generator” (DAC 2014)



Prior Work

Heuristic Work

Guarantees: weak

Performance: strong 

BGP Algorithm XORSample’

Theoretical Work

Guarantees: strong

Performance: weak

BDD-based

Guarantees: strong

Performance: weak

SAT-based heuristics

Guarantees: weak

Performance: strong 

INDUSTRY

ACADEMIA
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Our Contribution

Heuristic Work

Guarantees: weak

Performance: strong 

BGP Algorithm XORSample’

Theoretical Work

Guarantees: strong

Performance: weak

BDD-based

Guarantees: strong

Performance: weak

SAT-based heuristics

Guarantees: weak

Performance: strong UniGen

Guarantees : strong

Performance: strong

12

INDUSTRY

ACADEMIA



13

Partitioning into equal “small” 

cells
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Pick a random cell

Pick a random solution from this cell 

Partitioning into equal “small” 

cells



How to Partition?

How to partition into roughly 

equal small cells of  solutions 

without knowing the distribution 

of  solutions? 

Universal Hashing

[Carter-Wegman 1979, Sipser 1983] 
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Universal Hashing
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▪ Hash functions from mapping {0,1}n to {0,1}m  

▪ (2n elements to 2m cells)

▪ Random inputs => All cells are roughly equal

▪ Universal hash functions:

▪ Adversarial (any distribution) inputs => All cells are roughly equal

▪ Need stronger bounds on range of  the size of  cells



Lower Universality      Lower 

Complexity

▪ H(n,m,r): Family of  r-universal hash functions
mapping {0,1}n to {0,1}m  (2n elements to 2m cells)

▪ Higher the r =>  Stronger guarantees on range of  
size of  cells

▪ r-wise universality => Polynomials of  degree r-1

▪ Lower universality => lower complexity
17



Hashing-based Approaches

n-universal hashing

Uniform 

Generation

All cells should be 

small

BGP Algorithm
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Solution space



Scaling to Thousands of  

Variables

n-universal hashing 2-universal hashing

Uniform 

Generation

Random

All cells should be 

small

Only a randomly chosen 

cells needs to be “small”

BGP Algorithm

Near-Uniform 

Generation

UniGen

19

Solution space



Scaling to Thousands of  

Variables

n-universal hashing 2-universal hashing

Uniform 

Generation

Rando

m

All cells should be 

small

Only a randomly chosen 

cells needs to be “small”

BGP Algorithm

Near-Uniform 

Generation

UniGen
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Solution space

From tens of  variables to 

thousands of  variables! 



UniGen

RF
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UniGen

IsSmall?

RF

NO
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UniGen

?
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UniGen

? NOIsSmall

?
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UniGen

?

??

???

IsSmall?
YES
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UniGen

IsSmall

?

YES Select a solution randomly 

from the partition.
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Strong Theoretical Guarantees

▪ Near-Uniformity

▪ Success Probability

▪ In practice, succ. probability > 0.9

▪ Polynomial calls to SAT Solver

For every solution y of  RF

1/(6.84+e) x 1/|RF| <= Pr [y is output] <= (6.84+e) /|RF|

UniGen succeeds with probability at least 0.52



Results: Uniformity

• Benchmark: case110.cnf;   #var: 287;  #clauses: 1263

• Total Runs: 4x106; Total Solutions : 16384
28
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Results: Uniformity

• Benchmark: case110.cnf;   #var: 287;  #clauses: 1263

• Total Runs: 4x106; Total Solutions : 16384
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2-3 Orders of  Magnitude Faster
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Outline

▪ Sampling Techniques via Uniform Generation

▪ Extension to model counting and biased sampling

▪ Discussion on hashing

▪ Future Directions



Approximate Model 

Counting

Ref: “A Scalable Approximate Model Counter” (CP 2013)



What is Model Counting?

▪ Given a SAT formula F

▪ RF: Set of  all solutions of  F

▪ Problem (#SAT): Estimate the number of  solutions 

of  F (#F) i.e., what is the cardinality of  RF?

▪ E.g., F = (a v b)

▪ RF = {(0,1), (1,0), (1,1)}

▪ The number of  solutions (#F) = 3

#P: The class of  counting problems for 

decision problems in NP! 33



Practical Applications

34

Exciting range of  applications!

▪ Probabilistic reasoning/Bayesian inference 

▪ Planning with uncertainty

▪ Multi-agent/ adversarial reasoning 

[Roth 96, Sang 04, Bacchus 04, Domshlak 07]



Counting through Partitioning
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Counting through Partitioning 

36

Pick a random cell

Total # of  solutions= #solutions in the cell

* total # of  cells



ApproxMC in Action
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………….…

t

Algorithm

690 710 730 730 731 834831
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Algorithm

690 710 730 730 731 834………….…

t

Median

ApproxMC in Action

831



Strong Theoretical Results

39

ApproxMC (CNF: F, tolerance: e, confidence:d)

Suppose ApproxMC(F,e,d) returns C. Then,

Pr [ #F/(1+e) <= C <= (1+ e) #F ] ≥ d

ApproxMC runs in time polynomial in log (1-d)-1,
|F|, e-1 relative to SAT oracle



Can Solve a Large Class of  

Problems

40

Large class of  problems that lie beyond the exact 

counters but can be computed by ApproxMC
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Mean Error: Only 4% (allowed: 

75%)
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Mean error: 4% – much smaller than the 

theoretical guarantee of  75%
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Weighted/Biased 

Sampling

Ref: “Distribution-Aware Sampling and Weighted Model Counting for 

SAT” (To Appear in AAAI 204 )



43

Partition into (weighted) equal 

“small” cells
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Pick a random cell

Pick (by weight) a random solution from this cell 

Partition into (weighted) equal 

“small” cells



Projection Counting/Sampling

▪ What if  I care about only few variables?

▪ (a=0, b = 0, c = 1), (a = 0, b = 0, c=0), (a = 0, b 

= 1, c=0)

▪ Partition only on the projected subspace



Outline

▪ Sampling Techniques via Uniform Generation

▪ Extension to model counting and biased sampling

▪ Discussion on hashing

▪ Future Directions



XOR-Based Hashing

▪ 3-universal hashing

▪ Partition 2n space into  2m cells

▪ Variables: X1, X2, X3,….., Xn

▪ Pick every variable with prob. ½ ,XOR them and 
equate to 0/1 with prob. ½ 

▪ X1+X3+X6+…. Xn-1 = 0   (Cell ID: 0/1)

▪ m XOR equations -> 2m cells

▪ The cell:  F && XOR (CNF+XOR)



XOR-Based Hashing

▪ CryptoMiniSAT: Efficient for CNF+XOR

▪ Avg Length : n/2 

▪ Smaller the XORs, better the performance

How to shorten XOR clauses? 



Independent Variables

▪ Set of  variables such that assignments to these 
uniquely determine assignments to rest of  
variables for formula to be true

▪ (a V b = c) ➔ Independent Support: {a, b}

▪ # of  auxiliary variables introduced: 2-3 orders 
of  magnitude

▪ Hash only on the independent variables (huge 
speedup)



Future Directions



Extension to More Expressive 

Domains (SMT, CSP)

▪ Efficient 3-independent hashing schemes 

▪ Extending bit-wise XOR to SMT provides 

guarantees but no advantage of  SMT progress

▪ Solvers to handle F + Hash efficiently

▪ CryptoMiniSAT has fueled progress for SAT 

domain

▪ Similar solvers for other domains? 



Exploring CNF+XOR

▪ Very little understanding as of  now

▪ Can we observe phase transition? 

▪ Eager/Lazy approach for XORs? 

▪ How to reduce size of  XORs further?



Potentially New Connections 

▪ Near-Uniformity

▪ Almost-Uniformity

For every solution y of  RF

1/(6.84+e) x 1/|RF| <= Pr [y is output] <= (6.84+e) /|RF|

For every solution y of  RF

1/(1+e) x 1/|RF| <= Pr [y is output] <= (1+e) /|RF|



Potentially New Connections

54

▪ Polynomial inter-reducibility of  near-uniform 

generation and approximate model counting

[Jerrum-Valiant-Vazirani, 1986]

Polynomial calls

Approximate

Model Counter
Almost Uniform

Generator

Sat assignmentsF, e

Almost 

Uniform

Generator

Polynomial calls
Approximate

Model Counter

F, e,d Model Count



Potentially New Connections
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▪ Is there a similar relation between near-uniform 

generation (much weaker than almost uniform 

generation) and approximate model counting?

Polynomial calls

Approximate

Model Counter
Near-Uniform

Generator

Sat assignmentsF, e

Near-Uniform

Generator

Polynomial calls
Approximate

Model Counter

F, e,d Model Count
Not entirely blackbox

√



Some Questions?
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Approximate

Model 

Counting

Near-

Uniform 

Generation

Almost 

Uniform 

Generation



Publications
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▪ S. Chakraborty, D. J. Fremont, K.S. Meel, S.A. Seshia, M.Y. Vardi
“Distribution-Aware Sampling and Weighted Model Counting for SAT 
” In Proc. of  AAAI 2014

▪ S. Chakraborty, K.S. Meel, M.Y. Vardi “Balancing Scalability and 
Uniformity in SAT Witness Generation” In Proc. of  DAC 2014

▪ S. Chakraborty, K.S. Meel, M.Y. Vardi “A Scalable and Nearly-
Uniform Generator of  SAT-Witnesses” In Proc. of  CAV 2013

▪ S. Chakraborty, K.S. Meel, M.Y. Vardi “A Scalable Approximate 
Model Counter” In Proc. of  CP 2013



Collaborators 

▪ Prof. Supratik Chakraborty (IITB)

▪ Daniel J. Fremont (UCB)

▪ Dr. Dror Fried (Rice)

▪ Prof. Sanjit A. Seshia (UCB)

▪ Prof. Moshe Vardi (Rice)



Impact of  Independent Variables
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