
Sampling Techniques for

Constraint Satisfaction

and Beyond

Kuldeep S. Meel

Rice University

Joint work with Supratik Chakraborty (IITB), Daniel J. Fremont(UCB), Dror

Fried (Rice), Sanjit A. Seshia (UCB), Moshe Y. Vardi (Rice)

@Princeton June-23-2014

Life in The 21st Century!

How do we guarantee that the systems work correctly ?

2

Motivating Example

a b

c

64 bit 64 bit

64 bit

c = f(a,b)

How do we verify that this circuit

works ?

• Try for all values of a and b

• 2128 possibilities (1022 years)

• Not scalable

3

Simulation-Based Verification

▪ Dominant paradigm in recent years

▪ Hardware design is simulated with test
vectors

▪ Test vectors represent different verification
scenarios

Constrained-Random Simulation

Sources for Constraints

• Designers:

1. 100 < b < 200

2. 300 < a < 451

3. 40 < a < 50 and 30 < b < 40

• Past Experience:

1. 400 < a < 2000

2. 120 < b < 230

• Users:

1. 1000<a < 1100

2. 20000 < b < a < 22000

Problem: How can we uniformly sample the values of a and

b satisfying the above constraints? 5

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Problem Formulation

Set of Constraints

Given a SAT formula, can one uniformly

sample solutions without enumerating all

solutions while scaling to real world

problems?

SAT Formula

Scalable Uniform Generation of SAT-Witnesses
6

a b

c

64 bit

64 bit

c = f(a,b)

64 bit

Constrained

Random

Simulation

Sketch based

Synthesis

Scalable Uniform

Generation

7

Automatic

Problem

Generation

Uniform Generation of SAT-Witnesses

Sketch-Based Synthesis

▪ Given: Sketch and correctness condition

▪ Large space of programs that satisfy the

correctness conditions

▪ Goal: Get the optimal program (running time,

memory)

▪ Uniformly sample from the space of programs

Outline

▪ Sampling Techniques via Uniform Generation

▪ Extension to model counting and biased sampling

▪ Discussion on hashing

▪ Future Directions

Uniform Generation

Ref: “A Scalable Near-Uniform Generator” (CAV 2013)

“Balancing Scalability and Uniformity in SAT-Witness Generator” (DAC 2014)

Prior Work

Heuristic Work

Guarantees: weak

Performance: strong

BGP Algorithm XORSample’

Theoretical Work

Guarantees: strong

Performance: weak

BDD-based

Guarantees: strong

Performance: weak

SAT-based heuristics

Guarantees: weak

Performance: strong

INDUSTRY

ACADEMIA

11

Our Contribution

Heuristic Work

Guarantees: weak

Performance: strong

BGP Algorithm XORSample’

Theoretical Work

Guarantees: strong

Performance: weak

BDD-based

Guarantees: strong

Performance: weak

SAT-based heuristics

Guarantees: weak

Performance: strong UniGen

Guarantees : strong

Performance: strong

12

INDUSTRY

ACADEMIA

13

Partitioning into equal “small”

cells

14

Pick a random cell

Pick a random solution from this cell

Partitioning into equal “small”

cells

How to Partition?

How to partition into roughly

equal small cells of solutions

without knowing the distribution

of solutions?

Universal Hashing

[Carter-Wegman 1979, Sipser 1983]
15

Universal Hashing

16

▪ Hash functions from mapping {0,1}n to {0,1}m

▪ (2n elements to 2m cells)

▪ Random inputs => All cells are roughly equal

▪ Universal hash functions:

▪ Adversarial (any distribution) inputs => All cells are roughly equal

▪ Need stronger bounds on range of the size of cells

Lower Universality Lower

Complexity

▪ H(n,m,r): Family of r-universal hash functions
mapping {0,1}n to {0,1}m (2n elements to 2m cells)

▪ Higher the r => Stronger guarantees on range of
size of cells

▪ r-wise universality => Polynomials of degree r-1

▪ Lower universality => lower complexity
17

Hashing-based Approaches

n-universal hashing

Uniform

Generation

All cells should be

small

BGP Algorithm

18

Solution space

Scaling to Thousands of

Variables

n-universal hashing 2-universal hashing

Uniform

Generation

Random

All cells should be

small

Only a randomly chosen

cells needs to be “small”

BGP Algorithm

Near-Uniform

Generation

UniGen

19

Solution space

Scaling to Thousands of

Variables

n-universal hashing 2-universal hashing

Uniform

Generation

Rando

m

All cells should be

small

Only a randomly chosen

cells needs to be “small”

BGP Algorithm

Near-Uniform

Generation

UniGen

20

Solution space

From tens of variables to

thousands of variables!

UniGen

RF

21

UniGen

IsSmall?

RF

NO

22

UniGen

?

23

UniGen

? NOIsSmall

?

24

UniGen

?

??

???

IsSmall?
YES

25

UniGen

IsSmall

?

YES Select a solution randomly

from the partition.

26

Strong Theoretical Guarantees

▪ Near-Uniformity

▪ Success Probability

▪ In practice, succ. probability > 0.9

▪ Polynomial calls to SAT Solver

For every solution y of RF

1/(6.84+e) x 1/|RF| <= Pr [y is output] <= (6.84+e) /|RF|

UniGen succeeds with probability at least 0.52

Results: Uniformity

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4x106; Total Solutions : 16384
28

0

50

100

150

200

250

300

350

400

450

500

184 208 228 248 268 288

F
re

q
u

e
n

c
y

#Solutions

Results: Uniformity

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4x106; Total Solutions : 16384
29

0

50

100

150

200

250

300

350

400

450

500

184 208 228 248 268 288

F
re

q
u

e
n

c
y

#Solutions

US UniGen

2-3 Orders of Magnitude Faster

0.1

1

10

100

1000

10000

100000

ca
se

4
7

ca
se

_
3

_
b1

4
_

3

ca
se

1
0
5

ca
se

8

ca
se

2
0
3

ca
se

1
4
5

ca
se

6
1

ca
se

9

ca
se

1
5

ca
se

1
4
0

ca
se

_
2

_
b1

4
_

1

ca
se

_
3

_
b1

4
_

1

sq
u

a
ri

n
g1

4

sq
u

a
ri

n
g7

ca
se

_
2

_
p

tb
_

1

ca
se

_
1

_
p

tb
_

1

ca
se

_
2

_
b1

4
_

2

ca
se

_
3

_
b1

4
_

2

Time(s)

Benchmarks

UniGen

XORSample'

30

Outline

▪ Sampling Techniques via Uniform Generation

▪ Extension to model counting and biased sampling

▪ Discussion on hashing

▪ Future Directions

Approximate Model

Counting

Ref: “A Scalable Approximate Model Counter” (CP 2013)

What is Model Counting?

▪ Given a SAT formula F

▪ RF: Set of all solutions of F

▪ Problem (#SAT): Estimate the number of solutions

of F (#F) i.e., what is the cardinality of RF?

▪ E.g., F = (a v b)

▪ RF = {(0,1), (1,0), (1,1)}

▪ The number of solutions (#F) = 3

#P: The class of counting problems for

decision problems in NP! 33

Practical Applications

34

Exciting range of applications!

▪ Probabilistic reasoning/Bayesian inference

▪ Planning with uncertainty

▪ Multi-agent/ adversarial reasoning

[Roth 96, Sang 04, Bacchus 04, Domshlak 07]

Counting through Partitioning

35

Counting through Partitioning

36

Pick a random cell

Total # of solutions= #solutions in the cell

* total # of cells

ApproxMC in Action

37

………….…

t

Algorithm

690 710 730 730 731 834831

38

Algorithm

690 710 730 730 731 834………….…

t

Median

ApproxMC in Action

831

Strong Theoretical Results

39

ApproxMC (CNF: F, tolerance: e, confidence:d)

Suppose ApproxMC(F,e,d) returns C. Then,

Pr [#F/(1+e) <= C <= (1+ e) #F] ≥ d

ApproxMC runs in time polynomial in log (1-d)-1,
|F|, e-1 relative to SAT oracle

Can Solve a Large Class of

Problems

40

Large class of problems that lie beyond the exact

counters but can be computed by ApproxMC

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

T
im

e
 (

se
co

n
d

s)

Benchmarks

ApproxMC

Cachet

Mean Error: Only 4% (allowed:

75%)

41

Mean error: 4% – much smaller than the

theoretical guarantee of 75%

1.0E+00

3.2E+01

1.0E+03

3.3E+04

1.0E+06

3.4E+07

1.1E+09

3.4E+10

1.1E+12

3.5E+13

1.1E+15

3.6E+16

0 10 20 30 40 50 60 70 80 90

C
o

u
n

t

Benchmarks

Cachet*1.75

Cachet/1.75

ApproxMC

Weighted/Biased

Sampling

Ref: “Distribution-Aware Sampling and Weighted Model Counting for

SAT” (To Appear in AAAI 204)

43

Partition into (weighted) equal

“small” cells

44

Pick a random cell

Pick (by weight) a random solution from this cell

Partition into (weighted) equal

“small” cells

Projection Counting/Sampling

▪ What if I care about only few variables?

▪ (a=0, b = 0, c = 1), (a = 0, b = 0, c=0), (a = 0, b

= 1, c=0)

▪ Partition only on the projected subspace

Outline

▪ Sampling Techniques via Uniform Generation

▪ Extension to model counting and biased sampling

▪ Discussion on hashing

▪ Future Directions

XOR-Based Hashing

▪ 3-universal hashing

▪ Partition 2n space into 2m cells

▪ Variables: X1, X2, X3,….., Xn

▪ Pick every variable with prob. ½ ,XOR them and
equate to 0/1 with prob. ½

▪ X1+X3+X6+…. Xn-1 = 0 (Cell ID: 0/1)

▪ m XOR equations -> 2m cells

▪ The cell: F && XOR (CNF+XOR)

XOR-Based Hashing

▪ CryptoMiniSAT: Efficient for CNF+XOR

▪ Avg Length : n/2

▪ Smaller the XORs, better the performance

How to shorten XOR clauses?

Independent Variables

▪ Set of variables such that assignments to these
uniquely determine assignments to rest of
variables for formula to be true

▪ (a V b = c) ➔ Independent Support: {a, b}

▪ # of auxiliary variables introduced: 2-3 orders
of magnitude

▪ Hash only on the independent variables (huge
speedup)

Future Directions

Extension to More Expressive

Domains (SMT, CSP)

▪ Efficient 3-independent hashing schemes

▪ Extending bit-wise XOR to SMT provides

guarantees but no advantage of SMT progress

▪ Solvers to handle F + Hash efficiently

▪ CryptoMiniSAT has fueled progress for SAT

domain

▪ Similar solvers for other domains?

Exploring CNF+XOR

▪ Very little understanding as of now

▪ Can we observe phase transition?

▪ Eager/Lazy approach for XORs?

▪ How to reduce size of XORs further?

Potentially New Connections

▪ Near-Uniformity

▪ Almost-Uniformity

For every solution y of RF

1/(6.84+e) x 1/|RF| <= Pr [y is output] <= (6.84+e) /|RF|

For every solution y of RF

1/(1+e) x 1/|RF| <= Pr [y is output] <= (1+e) /|RF|

Potentially New Connections

54

▪ Polynomial inter-reducibility of near-uniform

generation and approximate model counting

[Jerrum-Valiant-Vazirani, 1986]

Polynomial calls

Approximate

Model Counter
Almost Uniform

Generator

Sat assignmentsF, e

Almost

Uniform

Generator

Polynomial calls
Approximate

Model Counter

F, e,d Model Count

Potentially New Connections

55

▪ Is there a similar relation between near-uniform

generation (much weaker than almost uniform

generation) and approximate model counting?

Polynomial calls

Approximate

Model Counter
Near-Uniform

Generator

Sat assignmentsF, e

Near-Uniform

Generator

Polynomial calls
Approximate

Model Counter

F, e,d Model Count
Not entirely blackbox

√

Some Questions?

56

Approximate

Model

Counting

Near-

Uniform

Generation

Almost

Uniform

Generation

Publications

57

▪ S. Chakraborty, D. J. Fremont, K.S. Meel, S.A. Seshia, M.Y. Vardi
“Distribution-Aware Sampling and Weighted Model Counting for SAT
” In Proc. of AAAI 2014

▪ S. Chakraborty, K.S. Meel, M.Y. Vardi “Balancing Scalability and
Uniformity in SAT Witness Generation” In Proc. of DAC 2014

▪ S. Chakraborty, K.S. Meel, M.Y. Vardi “A Scalable and Nearly-
Uniform Generator of SAT-Witnesses” In Proc. of CAV 2013

▪ S. Chakraborty, K.S. Meel, M.Y. Vardi “A Scalable Approximate
Model Counter” In Proc. of CP 2013

Collaborators

▪ Prof. Supratik Chakraborty (IITB)

▪ Daniel J. Fremont (UCB)

▪ Dr. Dror Fried (Rice)

▪ Prof. Sanjit A. Seshia (UCB)

▪ Prof. Moshe Vardi (Rice)

Impact of Independent Variables

0.1

1

10

100

1000

10000

100000

C
a

se
1
2
1

C
a

se
1
_

b1
1
_

1

S
qu

a
ri

n
g1

S
qu

a
ri

n
g1

0

C
a

se
3
5

S
qu

a
ri

n
g1

2

S
qu

a
ri

n
g1

4

s5
2
6
_

1
5
_

7

s1
2

3
8
a

_
7
_

4

s9
5

3
a

_
3
_

2

sq
u

a
ri

n
g7

s1
1
9
6
a

_
1
5
_

7

L
og

in
S

er
vi

ce
2

L
L

R
ev

er
se

T
re

eM
a

x

E
n

qu
eu

eS
eq

S
K

P
ro

ce
ss

B
ea

n

Time(s)

Benchmarks

Independent

All

59

	Default Section
	Slide 1: Sampling Techniques for Constraint Satisfaction and Beyond
	Slide 2: Life in The 21st Century!
	Slide 3: Motivating Example
	Slide 4: Simulation-Based Verification
	Slide 5: Constrained-Random Simulation
	Slide 6: Problem Formulation
	Slide 7
	Slide 8: Sketch-Based Synthesis
	Slide 9: Outline
	Slide 10: Uniform Generation
	Slide 11: Prior Work
	Slide 12: Our Contribution
	Slide 13: Partitioning into equal “small” cells
	Slide 14: Partitioning into equal “small” cells
	Slide 15: How to Partition?
	Slide 16: Universal Hashing
	Slide 17: Lower Universality Lower Complexity
	Slide 18: Hashing-based Approaches
	Slide 19: Scaling to Thousands of Variables
	Slide 20: Scaling to Thousands of Variables
	Slide 21: UniGen
	Slide 22: UniGen
	Slide 23: UniGen
	Slide 24: UniGen
	Slide 25: UniGen
	Slide 26: UniGen
	Slide 27: Strong Theoretical Guarantees
	Slide 28: Results: Uniformity
	Slide 29: Results: Uniformity
	Slide 30: 2-3 Orders of Magnitude Faster
	Slide 31: Outline
	Slide 32: Approximate Model Counting
	Slide 33: What is Model Counting?
	Slide 34: Practical Applications
	Slide 35: Counting through Partitioning
	Slide 36: Counting through Partitioning
	Slide 37: ApproxMC in Action
	Slide 38: ApproxMC in Action
	Slide 39: Strong Theoretical Results
	Slide 40: Can Solve a Large Class of Problems
	Slide 41: Mean Error: Only 4% (allowed: 75%)
	Slide 42: Weighted/Biased Sampling
	Slide 43: Partition into (weighted) equal “small” cells
	Slide 44: Partition into (weighted) equal “small” cells
	Slide 45: Projection Counting/Sampling
	Slide 46: Outline
	Slide 47: XOR-Based Hashing
	Slide 48: XOR-Based Hashing
	Slide 49: Independent Variables
	Slide 50: Future Directions
	Slide 51: Extension to More Expressive Domains (SMT, CSP)
	Slide 52: Exploring CNF+XOR
	Slide 53: Potentially New Connections
	Slide 54: Potentially New Connections
	Slide 55: Potentially New Connections
	Slide 56: Some Questions?
	Slide 57: Publications
	Slide 58: Collaborators
	Slide 59: Impact of Independent Variables

