Sampling Techniques for Constraint Satisfaction and Beyond

Kuldeep S. Meel

Rice University

Joint work with Supratik Chakraborty (IITB), Daniel J. Fremont(UCB), Dror Fried (Rice), Sanjit A. Seshia (UCB), Moshe Y. Vardi (Rice)

@Princeton June-23-2014

Life in The 21st Century!

How do we guarantee that the systems work *correctly*?

Motivating Example

How do we verify that this circuit works?

• Try for all values of a and b

- 2¹²⁸ possibilities (10²² years)
- Not scalable

Simulation-Based Verification

Dominant paradigm in recent years

Hardware design is simulated with test vectors

Test vectors represent different verification scenarios

Constrained-Random Simulation

Sources for Constraints

- Designers:

 100 < b < 200
 300 < a < 451
 40 < a < 50 and 30 < b < 40

 Past Experience:

 400 < a < 2000
 120 < b < 230

 Users:

 1000
 1100
 - 2. 20000 < b < a < 22000

Problem: How can we uniformly sample the values of a and b satisfying the above constraints?

Problem Formulation

Set of Constraints

SAT Formula

Given a SAT formula, can one uniformly sample solutions without enumerating all solutions while scaling to real world problems?

Scalable Uniform Generation of SAT-Witnesses

Uniform Generation of SAT-Witnesses

Sketch-Based Synthesis

- Given: Sketch and correctness condition
- Large space of programs that satisfy the correctness conditions
- Goal: Get the optimal program (running time, memory)
- Uniformly sample from the space of programs

Outline

Sampling Techniques via Uniform Generation

Extension to model counting and biased sampling

Discussion on hashing

Future Directions

Uniform Generation

Ref: "A Scalable Near-Uniform Generator" (CAV 2013) "Balancing Scalability and Uniformity in SAT-Witness Generator" (DAC 2014)

Prior Work

BDD-based	SAT-based heuristics	
Guarantees: strong	Guarantees: weak	
Performance: weak	Performance: strong	

Theoretical Work **Guarantees: strong** Performance: weak

BGP Algorithm

Heuristic Work Guarantees: weak **Performance: strong**

ACADEMIA

XORSample'

Our Contribution

BGP Algorithm

XORSample'

Partitioning into equal "small" cells

13

Partitioning into equal "small" cells

Pick a random cell

Pick a random solution from this cell

How to Partition?

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Universal Hashing [Carter-Wegman 1979, Sipser 1983]

Universal Hashing

Hash functions from mapping {0,1}ⁿ to {0,1}^m
(2ⁿ elements to 2^m cells)

Random inputs => All cells are roughly equal

- Universal hash functions:
 - Adversarial (any distribution) inputs => All cells are *roughly* equal
- Need stronger bounds on range of the size of cells

Lower Universality > Lower Complexity

 H(n,m,r): Family of r-universal hash functions mapping {0,1}ⁿ to {0,1}^m (2ⁿ elements to 2^m cells)

Higher the r => Stronger guarantees on range of size of cells

r-wise universality => Polynomials of degree r-1

Lower universality => lower complexity

Hashing-based Approaches

Solution space

n-universal hashing

3GP Algorithm

All cells should be small **Uniform Generation**

Scaling to Thousands of Variables

Solution space

n-universal hashing

3GP Algorithm

All cells should be small **Uniform Generation** 2-universal hashing

Random

UniGen

19

Only a randomly chosen cells needs to be "small"

Near-Uniform Generation

Scaling to Thousands of Variables

From tens of variables to thousands of variables!

3GP Algorithm

All cells should be small **Uniform Generation** Only a randomly chosen cells needs to be "small"

Near-Uniform Generation UniGen

20

UniGen

Strong Theoretical Guarantees

<u>Near-Uniformity</u>

For every solution y of $R_{\rm F}$

 $1/(6.84+\epsilon) \ge 1/|R_F| \le \Pr[y \text{ is output}] \le (6.84+\epsilon) / |R_F|$

<u>Success Probability</u>

UniGen succeeds with probability at least 0.52

- In practice, succ. probability > 0.9
- Polynomial calls to SAT Solver

Results: Uniformity

- Benchmark: case110.cnf; #var: 287; #clauses: 1263
- Total Runs: 4x10⁶; Total Solutions : 16384

Results: Uniformity

- Benchmark: case110.cnf; #var: 287; #clauses: 1263
- Total Runs: 4x10⁶; Total Solutions : 16384

29

2-3 Orders of Magnitude Faster

Outline

Sampling Techniques via Uniform Generation

Extension to model counting and biased sampling

Discussion on hashing

Future Directions

Approximate Model Counting

Ref: "A Scalable Approximate Model Counter" (CP 2013)

What is Model Counting?

- Given a SAT formula F
- R_F: Set of all solutions of F
- Problem (#SAT): Estimate the number of solutions of F (#F) i.e., what is the cardinality of R_F?
- E.g., F = (a v b)
- $R_F = \{(0,1), (1,0), (1,1)\}$
- The number of solutions (#F) = 3
 #P: The class of counting problems for decision problems in NP!

Practical Applications

Exciting range of applications!

Probabilistic reasoning/Bayesian inference

Planning with uncertainty

Multi-agent/ adversarial reasoning
 [Roth 96, Sang 04, Bacchus 04, Domshlak 07]

Counting through Partitioning

Counting through Partitioning

Pick a random cell

Total # of solutions= #solutions in the cell * total # of cells

ApproxMC in Action

ApproxMC in Action

Strong Theoretical Results ApproxMC (CNF: F, tolerance: ε, confidence:δ) Suppose ApproxMC(F,ε,δ) returns C. Then,

$\Pr\left[\#F/(1+\varepsilon) \le C \le (1+\varepsilon) \#F \right] \ge \delta$

ApproxMC runs in time polynomial in log $(1-\delta)^{-1}$, $|F|, \varepsilon^{-1}$ relative to SAT oracle

Can Solve a Large Class of Problems

Large class of problems that lie beyond the exact counters but can be computed by $ApproxMC_{40}$

Mean Error: Only 4% (allowed: 75%)

Mean error: 4% – much smaller than the theoretical guarantee of 75%

Weighted/Biased Sampling

Ref: "Distribution-Aware Sampling and Weighted Model Counting for SAT" (To Appear in AAAI 204)

Partition into (weighted) equal "small" cells

43

Partition into (weighted) equal "small" cells

Pick a random cell

Pick (by weight) a random solution from this cell

Projection Counting/Sampling

What if I care about only few variables?

• (a=0, b=0, c=1), (a=0, b=0, c=0), (a=0, b=1, c=0)

Partition only on the projected subspace

Outline

Sampling Techniques via Uniform Generation

Extension to model counting and biased sampling

Discussion on hashing

Future Directions

XOR-Based Hashing

- 3-universal hashing
- Partition 2ⁿ space into 2^m cells
- Variables: X₁, X₂, X₃,...., X_n
- Pick every variable with prob. ¹/₂, XOR them and equate to 0/1 with prob. ¹/₂
- $X_1 + X_3 + X_6 + \dots X_{n-1} = 0$ (Cell ID: 0/1)
- m XOR equations -> 2^m cells
- The cell: F && XOR (CNF+XOR)

XOR-Based Hashing

- CryptoMiniSAT: Efficient for CNF+XOR
- Avg Length : n/2
- Smaller the XORs, better the performance

How to shorten XOR clauses?

Independent Variables

- Set of variables such that assignments to these uniquely determine assignments to rest of variables for formula to be true
- (a V b = c) → Independent Support: {a, b}
- # of auxiliary variables introduced: 2-3 orders of magnitude
- Hash only on the independent variables (huge speedup)

Future Directions

Extension to More Expressive Domains (SMT, CSP)

Efficient 3-independent hashing schemes

 Extending bit-wise XOR to SMT provides guarantees but no advantage of SMT progress

- Solvers to handle F + Hash efficiently
 - CryptoMiniSAT has fueled progress for SAT domain
 - Similar solvers for other domains?

Exploring CNF+XOR

Very little understanding as of now

Can we observe phase transition?

Eager/Lazy approach for XORs?

How to reduce size of XORs further?

Potentially New Connections

Near-Uniformity

For every solution y of R_F

 $1/(6.84+\epsilon) \ge 1/|R_F| \le \Pr[y \text{ is output}] \le (6.84+\epsilon) / |R_F|$

Almost-Uniformity

For every solution y of R_F

 $1/(1+\varepsilon) \ge 1/|\mathbf{R}_{\mathrm{F}}| \le \Pr[\text{y is output}] \le (1+\varepsilon)/|\mathbf{R}_{\mathrm{F}}|$

Potentially New Connections

 Polynomial inter-reducibility of near-uniform generation and approximate model counting [Jerrum-Valiant-Vazirani, 1986]

Almost Uniforn Generator

Polynomial calls

Approximate Model Counter

Almost Uniform Generator Polynomial calls

Approximate Model Counter

Potentially New Connections

 Is there a similar relation between near-uniform generation (much weaker than almost uniform generation) and approximate model counting?

Near-Uniform Generator

Polynomial calls

Approximate Model Counter

Not entirely blackbox

Near-Uniform Generator Polynomial calls

Approximate Model Counter

Some Questions?

Publications

 S. Chakraborty, D. J. Fremont, K.S. Meel, S.A. Seshia, M.Y. Vardi "Distribution-Aware Sampling and Weighted Model Counting for SAT "In Proc. of AAAI 2014

 S. Chakraborty, K.S. Meel, M.Y. Vardi "Balancing Scalability and Uniformity in SAT Witness Generation" In Proc. of DAC 2014

 S. Chakraborty, K.S. Meel, M.Y. Vardi "A Scalable and Nearly-Uniform Generator of SAT-Witnesses" In Proc. of CAV 2013

 S. Chakraborty, K.S. Meel, M.Y. Vardi "A Scalable Approximate Model Counter" In Proc. of CP 2013

Collaborators

- Prof. Supratik Chakraborty (IITB)
- Daniel J. Fremont (UCB)
- Dr. Dror Fried (Rice)
- Prof. Sanjit A. Seshia (UCB)
- Prof. Moshe Vardi (Rice)

Impact of Independent Variables

