Model Counting meets Distinct Elements

Kuldeep S. Meel

School of Computing

National University of Singapore

Joint work with Arnab Bhattacharyya, A. Pavan, and N.V. Vinodchandran

- Given
 - Boolean variables X₁, X₂, · · · X_n
 - Formula φ over $X_1, X_2, \cdots X_n$
- Sol(φ) = { satisfying assignments (aka models) of φ }

- Given
 - Boolean variables X₁, X₂, · · · X_n
 - Formula φ over $X_1, X_2, \cdots X_n$
- Sol(φ) = { satisfying assignments (aka models) of φ }
- Model Counting: Determine $|Sol(\varphi)|$

- Given
 - Boolean variables X₁, X₂, · · · X_n
 - Formula φ over $X_1, X_2, \cdots X_n$
- Sol(φ) = { satisfying assignments (aka models) of φ }
- Model Counting: Determine $|Sol(\varphi)|$
- Example $\varphi := (X_1 \lor X_2)$

- Given
 - Boolean variables X₁, X₂, · · · X_n
 - Formula φ over $X_1, X_2, \cdots X_n$
- Sol(φ) = { satisfying assignments (aka models) of φ }
- Model Counting: Determine $|Sol(\varphi)|$
- Example $\varphi := (X_1 \lor X_2)$
- $Sol(\varphi) = \{(0,1), (1,0), (1,1)\}$

- Given
 - Boolean variables X₁, X₂, · · · X_n
 - Formula φ over $X_1, X_2, \cdots X_n$
- Sol(φ) = { satisfying assignments (aka models) of φ }
- Model Counting: Determine $|Sol(\varphi)|$
- Example $\varphi := (X_1 \lor X_2)$
- $Sol(\varphi) = \{(0,1), (1,0), (1,1)\}$
- $|Sol(\varphi)| = 3$

- Given
 - Boolean variables X₁, X₂, · · · X_n
 - Formula φ over $X_1, X_2, \cdots X_n$
- Sol(φ) = { satisfying assignments (aka models) of φ }
- Model Counting: Determine $|Sol(\varphi)|$
- Example $\varphi := (X_1 \lor X_2)$
- $Sol(\varphi) = \{(0,1), (1,0), (1,1)\}$
- $|Sol(\varphi)| = 3$

Problem Compute (ε, δ) approximation of $|Sol(\varphi)|$ Concern Number of NP Queries

Applications across Computer Science

- Given a stream $\mathbf{a} = a_1, a_2, \dots a_m$ where $a_i \in \{0, 1\}^n$
- $\mathsf{DE}(\mathbf{a}) = |\cup_i a_i|$
 - Also known as F_0 estimation

- Given a stream $\mathbf{a} = a_1, a_2, \dots a_m$ where $a_i \in \{0, 1\}^n$
- $\mathsf{DE}(\mathbf{a}) = |\cup_i a_i|$
 - Also known as F₀ estimation
- Example $\mathbf{a} = 1, 2, 1, 1, 2, 1, 3, 5, 1, 2, 1, 3$
- $F_0(a) = |\cup_i a_i| = |\{1, 2, 3, 5\}| = 4$

- Given a stream $\mathbf{a} = a_1, a_2, \dots a_m$ where $a_i \in \{0, 1\}^n$
- $\mathsf{DE}(\mathbf{a}) = |\cup_i a_i|$
 - Also known as F₀ estimation
- Example $\mathbf{a} = 1, 2, 1, 1, 2, 1, 3, 5, 1, 2, 1, 3$

•
$$F_0(a) = |\cup_i a_i| = |\{1, 2, 3, 5\}| = 4$$

· Fundamental problem in databases with a long history of work

- Given a stream $\mathbf{a} = a_1, a_2, \dots a_m$ where $a_i \in \{0, 1\}^n$
- $\mathsf{DE}(\mathbf{a}) = |\cup_i a_i|$
 - Also known as F₀ estimation
- Example $\mathbf{a} = 1, 2, 1, 1, 2, 1, 3, 5, 1, 2, 1, 3$

•
$$F_0(a) = |\cup_i a_i| = |\{1, 2, 3, 5\}| = 4$$

Fundamental problem in databases with a long history of work
 Problem Compute (ε, δ) approximation of F₀
 Concern Space Complexity

Hashing-Based Techniques

Model Counting (\$83,GS\$06,GH\$\$07,CMV13b,EG\$\$13b,CMV14,CDR15,CMV16,ZC\$E16,AD16 KM18,ATD18,SM19,ABM20,SGM20)

Distinct Elements (FM85,AMS99,GT01,

(FM85,AMS99,GT01,BKS02,BJKST02, CM03,CLKB04,PT07, TW12,SP09)

2-wise independent Hashing

• Let H be family of 2-wise independent hash functions mapping $\{0,1\}^n$ to $\{0,1\}^m$

$$\forall y_1, y_2 \in \{0, 1\}^n, \alpha_1, \alpha_2 \in \{0, 1\}^m, h \xleftarrow{R} H$$
$$\Pr[h(y_1) = \alpha_1] = \Pr[h(y_2) = \alpha_2] = \left(\frac{1}{2^m}\right)$$

$$\Pr[h(y_1) = \alpha_1 \wedge h(y_2) = \alpha_2] = \left(\frac{1}{2^m}\right)^2$$

2-wise independent Hash Functions

- Variables: $X_1, X_2, \cdots X_n$
- To construct $h: \{0,1\}^n \to \{0,1\}^m$, choose m random XORs
- Pick every X_i with prob. $\frac{1}{2}$ and XOR them
 - $X_1 \oplus X_3 \oplus X_6 \cdots \oplus X_{n-2}$
 - Expected size of each XOR: $\frac{n}{2}$

2-wise independent Hash Functions

• Variables: $X_1, X_2, \cdots X_n$

• To construct $h: \{0,1\}^n \to \{0,1\}^m$, choose m random XORs

- Pick every X_i with prob. $\frac{1}{2}$ and XOR them
 - $X_1 \oplus X_3 \oplus X_6 \cdots \oplus X_{n-2}$
 - Expected size of each XOR: ⁿ/₂
- To choose $\alpha \in \{0,1\}^m$, set every XOR equation to 0 or 1 randomly

 $X_1 \oplus X_3 \oplus X_6 \cdots \oplus X_{n-2} = 0 \tag{Q1}$

$$X_2 \oplus X_5 \oplus X_6 \cdots \oplus X_{n-1} = 1 \tag{Q_2}$$

$$X_1 \oplus X_2 \oplus X_5 \cdots \oplus X_{n-2} = 1 \tag{Q_m}$$

• Therefore, $h(X) = \alpha$ can be represented as AX = b

As Simple as Counting Dots

As Simple as Counting Dots

As Simple as Counting Dots

 $\mathsf{Estimate} = \mathsf{Number} \text{ of models in a cell } \times \mathsf{Number} \text{ of cells}$

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenge 2 How many cells?

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?
2-wise independent hash functions

1: Choose
$$h: \{0,1\}^n \mapsto \{0,1\}^n$$

2: minhash $\leftarrow 2^n$;
3: for $a_i \in a$ do
4: if $h(a_i) < minhash$ then
5: minhash $= h(a_i)$
6: end if
7: end for
8: return $\frac{2^n}{minhash}$

Is there more than meets the eyes?

- From Distinct Elements to Counting
- From Counting to Distinct Elements

Hashing-based Distinct Elements

- 1: $h \leftarrow ChooseHashFunctions$
- 2: $\mathcal{S} \leftarrow \{\}$
- 3: for $a_i \in a$ do
- 4: ProcessUpdate(*S*, *h*, *a_i*)
- 5: end for
- 6: Est \leftarrow ComputeEst(S)
- 7: Return Est

Hashing-based Distinct Elements

- 1: $h \leftarrow ChooseHashFunctions$
- 2: $\mathcal{S} \leftarrow \{\}$
- 3: for $a_i \in a$ do
- 4: ProcessUpdate(*S*, *h*, *a_i*)
- 5: end for
- 6: Est \leftarrow ComputeEst(S)
- 7: Return Est

Different Algorithms based on ProcessUpdate

- Minimum: Keep track of minimum $h(a_i)$
- Bucketing

Hashing-based Distinct Elements

- 1: $h \leftarrow ChooseHashFunctions$
- 2: $\mathcal{S} \leftarrow \{\}$
- 3: for $a_i \in a$ do
- 4: ProcessUpdate(*S*, *h*, *a_i*)
- 5: end for
- 6: Est \leftarrow ComputeEst(S)
- 7: Return Est

Different Algorithms based on ProcessUpdate

- Minimum: Keep track of minimum $h(a_i)$
- Bucketing
- ..

From Distinct Elements to Counting: A Two Step Recipe

 \mathbf{a}_u : set of all distinct elements of the stream \mathbf{a} .

Key Idea The formula φ can viewed as symbolic representation of some set \mathbf{a}_u such that $Sol(\varphi) = \mathbf{a}_u$.

- Step 1 Capture the relationship $\mathcal{P}(\mathcal{S}, h, a_u)$ between the sketch \mathcal{S} , h, and the set a_u at the end of stream.
- **Step 2** Given a formula φ and hash function h, design an algorithm to construct sketch S such that $\mathcal{P}(S, h, Sol(\varphi))$ holds. And now, we can estimate $|Sol(\varphi)|$ from S.

Min-based Estimation

1: Choose
$$h: \{0,1\}^n \mapsto \{0,1\}^n$$

2: minhash $\leftarrow 2^n$;
3: for $a_i \in a$ do
4: if minhash $< h(a_i)$ then
5: minhash $= h(a_i)$
6: end if
7: end for
8: return $\frac{2^n}{\min hash}$

Application I: Min-based Counting Algorithm

Step1 Capture the relationship $\mathcal{P}(S, h, \mathbf{a}_u)$ between the sketch S, h, and the set \mathbf{a}_u at the end of stream.

Application I: Min-based Counting Algorithm

Step1 Capture the relationship $\mathcal{P}(S, h, \mathbf{a}_u)$ between the sketch S, h, and the set \mathbf{a}_u at the end of stream.

 $\mathcal{P}(\mathcal{S}, h, \mathbf{a}_u) : \mathcal{S} := \min_{y \in a_u} h(y)$

Step1 Capture the relationship $\mathcal{P}(\mathcal{S}, h, \mathbf{a}_u)$ between the sketch \mathcal{S} , h, and the set \mathbf{a}_u at the end of stream.

$$\begin{split} \mathcal{P}(\mathcal{S},h,\mathbf{a}_u) \, : \, \mathcal{S} &:= \min_{y \in a_u} h(y) \\ \mathcal{P}(\mathcal{S},h,\operatorname{Sol}(\varphi)) \, \, \mathcal{S} &:= \min_{y \in \operatorname{Sol}(\varphi)} h(y) \end{split}$$

Step1 Capture the relationship $\mathcal{P}(\mathcal{S}, h, a_u)$ between the sketch \mathcal{S} , h, and the set a_u at the end of stream.

 $\begin{aligned} \mathcal{P}(\mathcal{S},h,\mathbf{a}_u) \, : \, \mathcal{S} &:= \min_{y \in \mathbf{a}_u} h(y) \\ \mathcal{P}(\mathcal{S},h,\operatorname{Sol}(\varphi)) \, \, \mathcal{S} &:= \min_{y \in \operatorname{Sol}(\varphi)} h(y) \end{aligned}$

Step2 Given a formula φ and set of hash functions H, design an algorithm to construct sketch S such that $\mathcal{P}(S, h, Sol(\varphi))$ holds. And now, we can estimate $|Sol(\varphi)|$ from S.

• Use polynomially many calls to NP Oracle to determine ${\cal S}$

Bucketing-based Streaming Algorithm

```
1: Choose h: \{0,1\}^n \mapsto \{0,1\}^n
 2: \ell \leftarrow 0; \mathcal{B} \leftarrow \emptyset
 3: for a_i \in a do
        if h(a_i) \mod 2^{\ell} = 0^{\ell} then
 4:
     \mathcal{B}.Append(a_i)
 5:
 6: if |\mathcal{B}| > thresh then
                  \ell + +
 7:
                    Filter(\mathcal{B}, h, \ell)
 8:
               end if
 9:
          end if
10:
11: end for
12: return |\mathcal{B}| \times 2^{\ell}
```

Bucketing-based Streaming Algorithm

```
1: Choose h: \{0,1\}^n \mapsto \{0,1\}^n
 2: \ell \leftarrow 0; \mathcal{B} \leftarrow \emptyset
 3: for a_i \in a do
         if h(a_i) \mod 2^{\ell} = 0^{\ell} then
 4:
               \mathcal{B}.Append(a_i)
 5:
     if |\mathcal{B}| > thresh then
 6:
                   \ell + +
 7:
                     Filter(\mathcal{B}, h, \ell)
 8:
               end if
 9:
          end if
10:
11: end for
12: return |\mathcal{B}| \times 2^{\ell}
```

Elements that satisfy XOR

Add another XOR

Step 1 Capture the relationship $\mathcal{P}(\mathcal{S}, h, \mathbf{a}_u)$ between the sketch \mathcal{S} , hash function h and set \mathbf{a}_u at the end of stream.

Step 1 Capture the relationship $\mathcal{P}(\mathcal{S}, h, \mathbf{a}_u)$ between the sketch \mathcal{S} , hash function h and set \mathbf{a}_u at the end of stream.

 $\begin{array}{l} \mathcal{P}(\mathcal{S},h,\mathbf{a}_u) \,:\, \mathcal{S} = (\ell,\mathcal{B}) \text{ such that } \mathcal{B} = \mathbf{a}_u \cap h^{-1}(0^\ell) \text{ and} \\ |\{\mathbf{a}_u \cap h^{-1}(0^{\ell-1})\}| > \text{thresh and } |\mathcal{B}| \leq \text{thresh.} \end{array}$

Step 1 Capture the relationship $\mathcal{P}(\mathcal{S}, h, \mathbf{a}_u)$ between the sketch \mathcal{S} , hash function h and set \mathbf{a}_u at the end of stream.

$$\begin{split} \mathcal{P}(\mathcal{S},h,\mathbf{a}_u) &: \mathcal{S} = (\ell,\mathcal{B}) \text{ such that } \mathcal{B} = \mathbf{a}_u \cap h^{-1}(0^\ell) \text{ and } \\ &|\{\mathbf{a}_u \cap h^{-1}(0^{\ell-1})\}| > \text{thresh and } |\mathcal{B}| \leq \text{thresh.} \end{split}$$
 $\begin{aligned} \mathcal{P}(\mathcal{S},h,\text{Sol}(\varphi)) &: \mathcal{S} = (\ell,\mathcal{B}) \text{ such that } \mathcal{B} = \text{Sol}(\varphi) \cap h^{-1}(0^\ell) \text{ and } \\ &|\{\text{Sol}(\varphi) \cap h^{-1}(0^{\ell-1})\}| > \text{thresh and } |\mathcal{B}| \leq \text{thresh} \end{split}$

Step 1 Capture the relationship $\mathcal{P}(\mathcal{S}, h, \mathbf{a}_u)$ between the sketch \mathcal{S} , hash function h and set \mathbf{a}_u at the end of stream.

$$\begin{split} \mathcal{P}(\mathcal{S},h,\mathbf{a}_u) &: \mathcal{S} = (\ell,\mathcal{B}) \text{ such that } \mathcal{B} = \mathbf{a}_u \cap h^{-1}(0^\ell) \text{ and } \\ &|\{\mathbf{a}_u \cap h^{-1}(0^{\ell-1})\}| > \text{thresh and } |\mathcal{B}| \leq \text{thresh.} \\ \mathcal{P}(\mathcal{S},h,\text{Sol}(\varphi)) &: \mathcal{S} = (\ell,\mathcal{B}) \text{ such that } \mathcal{B} = \text{Sol}(\varphi) \cap h^{-1}(0^\ell) \text{ and } \\ &|\{\text{Sol}(\varphi) \cap h^{-1}(0^{\ell-1})\}| > \text{thresh and } |\mathcal{B}| \leq \text{thresh} \end{split}$$

Step 2 Given a formula φ and hash function h, design an algorithm to construct sketch S such that $\mathcal{P}(S, h, Sol(\varphi))$ holds. And now, we can estimate $|Sol(\varphi)|$ from S.

Step 1 Capture the relationship $\mathcal{P}(\mathcal{S}, h, \mathbf{a}_u)$ between the sketch \mathcal{S} , hash function h and set \mathbf{a}_u at the end of stream.

$$\begin{split} \mathcal{P}(\mathcal{S},h,\mathbf{a}_u) &: \mathcal{S} = (\ell,\mathcal{B}) \text{ such that } \mathcal{B} = \mathbf{a}_u \cap h^{-1}(0^\ell) \text{ and } \\ &|\{\mathbf{a}_u \cap h^{-1}(0^{\ell-1})\}| > \text{thresh and } |\mathcal{B}| \leq \text{thresh.} \end{split}$$
 $\begin{aligned} \mathcal{P}(\mathcal{S},h,\text{Sol}(\varphi)) &: \mathcal{S} = (\ell,\mathcal{B}) \text{ such that } \mathcal{B} = \text{Sol}(\varphi) \cap h^{-1}(0^\ell) \text{ and } \\ &|\{\text{Sol}(\varphi) \cap h^{-1}(0^{\ell-1})\}| > \text{thresh and } |\mathcal{B}| \leq \text{thresh} \end{split}$

- Step 2 Given a formula φ and hash function h, design an algorithm to construct sketch S such that $\mathcal{P}(S, h, Sol(\varphi))$ holds. And now, we can estimate $|Sol(\varphi)|$ from S.
 - Use polynomially many calls to NP Oracle to determine ${\cal S}$

Step 1 Capture the relationship $\mathcal{P}(\mathcal{S}, h, \mathbf{a}_u)$ between the sketch \mathcal{S} , hash function h and set \mathbf{a}_u at the end of stream.

$$\begin{split} \mathcal{P}(\mathcal{S},h,\mathbf{a}_u) &: \mathcal{S} = (\ell,\mathcal{B}) \text{ such that } \mathcal{B} = \mathbf{a}_u \cap h^{-1}(0^\ell) \text{ and } \\ &|\{\mathbf{a}_u \cap h^{-1}(0^{\ell-1})\}| > \text{thresh and } |\mathcal{B}| \leq \text{thresh.} \end{split}$$
 $\begin{aligned} \mathcal{P}(\mathcal{S},h,\text{Sol}(\varphi)) &: \mathcal{S} = (\ell,\mathcal{B}) \text{ such that } \mathcal{B} = \text{Sol}(\varphi) \cap h^{-1}(0^\ell) \text{ and } \\ &|\{\text{Sol}(\varphi) \cap h^{-1}(0^{\ell-1})\}| > \text{thresh and } |\mathcal{B}| \leq \text{thresh} \end{split}$

- Step 2 Given a formula φ and hash function h, design an algorithm to construct sketch S such that $\mathcal{P}(S, h, Sol(\varphi))$ holds. And now, we can estimate $|Sol(\varphi)|$ from S.
 - Use polynomially many calls to NP Oracle to determine ${\cal S}$

This is ApproxMC!

From Distinct Elements to Counting: Implications

Given a formula φ and hash function *h*, design an algorithm to construct sketch S such that $\mathcal{P}(S, h, \text{Sol}(\varphi))$ holds.

Theorem (FPRAS)

If construction of sketch S is in PTIME for a class of formulas, then there is FPRAS for the corresponding class. E.g.: DNF, Union of XORs

From Distinct Elements to Counting: Implications

Given a formula φ and hash function *h*, design an algorithm to construct sketch S such that $\mathcal{P}(S, h, \text{Sol}(\varphi))$ holds.

Theorem (FPRAS)

If construction of sketch S is in PTIME for a class of formulas, then there is FPRAS for the corresponding class. E.g.: DNF, Union of XORs

Theorem (Space and Query)

p(n) space algorithms in streaming imply $(p(n))^2$ NP query complexity algorithms for model counting

From Distinct Elements to Counting: Implications

Given a formula φ and hash function *h*, design an algorithm to construct sketch S such that $\mathcal{P}(S, h, \text{Sol}(\varphi))$ holds.

Theorem (FPRAS)

If construction of sketch S is in PTIME for a class of formulas, then there is FPRAS for the corresponding class. E.g.: DNF, Union of XORs

Theorem (Space and Query)

p(n) space algorithms in streaming imply $(p(n))^2$ NP query complexity algorithms for model counting

Theorem (Lower Bounds)

Lower bounds for Distributed Streaming translate to lower bounds for Distributed DNF counting

Is there more to it than meets the eyes?

- From Distinct Elements to Counting
- From Counting to Distinct Elements

• ApproxMC is FPRAS for DNF formulas

(CMV16,MSV17,MSV18)

ApproxMC is FPRAS for DNF formulas

(CMV16, MSV17, MSV18)

- A stream can be viewed as a DNF
 - $a = a_1, a_2, a_3, \ldots a_m$

ApproxMC is FPRAS for DNF formulas

(CMV16, MSV17, MSV18)

• A stream can be viewed as a DNF

•
$$a = a_1, a_2, a_3, \ldots a_m$$

- $|\cup_i a_i| = |\mathsf{Sol}(a_1 \lor a_2 \lor a_3 \lor a_m)|$
- *a_i* is represented by conjunction of n literals *X*₁, *X*₂, ..., *X_n*.

ApproxMC is FPRAS for DNF formulas

(CMV16, MSV17, MSV18)

A stream can be viewed as a DNF

•
$$a = a_1, a_2, a_3, \dots a_m$$

- $|\cup_i a_i| = |\mathsf{Sol}(a_1 \lor a_2 \lor a_3 \lor a_m)|$
- *a_i* is represented by conjunction of n literals *X*₁, *X*₂, ..., *X_n*.

• So hashing-based FPRAS for DNF \implies F_0 estimation

ApproxMC is FPRAS for DNF formulas

(CMV16, MSV17, MSV18)

A stream can be viewed as a DNF

•
$$a = a_1, a_2, a_3, \dots a_m$$

- $|\cup_i a_i| = |\mathsf{Sol}(a_1 \lor a_2 \lor a_3 \lor a_m)|$
- *a_i* is represented by conjunction of n literals *X*₁, *X*₂, ... *X_n*.
- So hashing-based FPRAS for DNF \implies F_0 estimation
- A general scheme for structured sets

ApproxMC is FPRAS for DNF formulas

(CMV16, MSV17, MSV18)

• A stream can be viewed as a DNF

•
$$a = a_1, a_2, a_3, \dots a_m$$

- $|\cup_i a_i| = |\mathsf{Sol}(a_1 \lor a_2 \lor a_3 \lor a_m)|$
- *a_i* is represented by conjunction of n literals *X*₁, *X*₂, ... *X_n*.
- So hashing-based FPRAS for DNF \implies F₀ estimation

• A general scheme for structured sets

Encompasses models such as ranges, affine spaces

ApproxMC is FPRAS for DNF formulas

(CMV16, MSV17, MSV18)

- A stream can be viewed as a DNF
 - $a = a_1, a_2, a_3, \ldots a_m$
 - $|\cup_i a_i| = |\mathsf{Sol}(a_1 \lor a_2 \lor a_3 \lor a_m)|$
 - a_i is represented by conjunction of n literals $X_1, X_2, \ldots X_n$.
- So hashing-based FPRAS for DNF \implies F₀ estimation
- A general scheme for structured sets
- Encompasses models such as ranges, affine spaces
- Application: Distinct Elements over Range
 - Every item $[a_i, b_i]$ can be represented using a DNF formula.
 - So just apply FPRAS for DNF

Conclusion

Summary

- From Distinct Elements to Counting
- From Counting to Distinct Elements

Conclusion

Summary

- From Distinct Elements to Counting
- From Counting to Distinct Elements

Future Directions

- Practical scalability of newly devised counting techniques
- Lifting Sparse Hashing techniques to streaming
- What is the analogue for higher moments (F_k)