Model Counting meets Distinct Elements

Kuldeep S. Meel

School of Computing
National University of Singapore

Joint work with Arnab Bhattacharyya, A. Pavan, and N.V. Vinodchandran
Model Counting

- Given
 - Boolean variables $X_1, X_2, \cdots X_n$
 - Formula φ over $X_1, X_2, \cdots X_n$
- $\text{Sol}(\varphi) = \{ \text{satisfying assignments (aka models) of } \varphi \}$
Model Counting

- **Given**
 - Boolean variables X_1, X_2, \cdots, X_n
 - Formula φ over X_1, X_2, \cdots, X_n
- $\text{Sol}(\varphi) = \{ \text{satisfying assignments (aka models) of } \varphi \}$

- **Model Counting**: Determine $|\text{Sol}(\varphi)|$

Example $\varphi := (X_1 \lor X_2)$

- $\text{Sol}(\varphi) = \{(0, 1), (1, 0), (1, 1)\}$
- $|\text{Sol}(\varphi)| = 3$
Model Counting

• Given
 • Boolean variables $X_1, X_2, \cdots X_n$
 • Formula φ over $X_1, X_2, \cdots X_n$

• $\text{Sol}(\varphi) = \{\text{satisfying assignments (aka models) of } \varphi \}$

• **Model Counting**: Determine $|\text{Sol}(\varphi)|$

• Example $\varphi := (X_1 \lor X_2)$
Model Counting

- **Given**
 - Boolean variables $X_1, X_2, \cdots X_n$
 - Formula φ over $X_1, X_2, \cdots X_n$
- $\text{Sol}(\varphi) = \{ \text{satisfying assignments (aka models) of } \varphi \}$

- **Model Counting**: Determine $|\text{Sol}(\varphi)|$

- **Example** $\varphi := (X_1 \lor X_2)$
 - $\text{Sol}(\varphi) = \{(0, 1), (1, 0), (1, 1)\}$
Model Counting

• Given
 • Boolean variables $X_1, X_2, \cdots X_n$
 • Formula φ over $X_1, X_2, \cdots X_n$
 • $\text{Sol}(\varphi) = \{ \text{satisfying assignments (aka models) of } \varphi \}$

• Model Counting: Determine $|\text{Sol}(\varphi)|$

• Example $\varphi := (X_1 \lor X_2)$
 • $\text{Sol}(\varphi) = \{(0, 1), (1, 0), (1, 1)\}$
 • $|\text{Sol}(\varphi)| = 3$
Model Counting

- **Given**
 - Boolean variables X_1, X_2, \ldots, X_n
 - Formula φ over X_1, X_2, \ldots, X_n
- $\text{Sol}(\varphi) = \{\text{satisfying assignments (aka models) of } \varphi \}$

- **Model Counting**: Determine $|\text{Sol}(\varphi)|$

- **Example** $\varphi := (X_1 \lor X_2)$
 - $\text{Sol}(\varphi) = \{(0, 1), (1, 0), (1, 1)\}$
 - $|\text{Sol}(\varphi)| = 3$

Problem Compute (ε, δ) approximation of $|\text{Sol}(\varphi)|$

Concern Number of NP Queries
Applications across Computer Science

- Hardware Validation
- Computational Biology
- Network Reliability
- Neural Network Robustness
- Quantified Information Flow
Distinct Elements

- Given a stream $a = a_1, a_2, \ldots a_m$ where $a_i \in \{0, 1\}^n$
- $DE(a) = | \bigcup_i a_i |$
 - Also known as F_0 estimation
Distinct Elements

- Given a stream $a = a_1, a_2, \ldots a_m$ where $a_i \in \{0, 1\}^n$
- $\text{DE}(a) = | \bigcup_i a_i |$
 - Also known as F_0 estimation

- Example $a = 1, 2, 1, 1, 2, 1, 3, 5, 1, 2, 1, 3$
- $F_0(a) = | \bigcup_i a_i | = |\{1, 2, 3, 5\}| = 4$
Distinct Elements

- Given a stream \(a = a_1, a_2, \ldots a_m \) where \(a_i \in \{0, 1\}^n \)
- \(DE(a) = | \bigcup_i a_i | \)
 - Also known as \(F_0 \) estimation

- Example \(a = 1, 2, 1, 1, 2, 1, 3, 5, 1, 2, 1, 3 \)
- \(F_0(a) = | \bigcup_i a_i | = |\{1, 2, 3, 5\}| = 4 \)

- Fundamental problem in databases with a long history of work
Distinct Elements

- Given a stream $a = a_1, a_2, \ldots, a_m$ where $a_i \in \{0, 1\}^n$
- $\text{DE}(a) = |\bigcup_i a_i|$
 - Also known as F_0 estimation

- Example $a = 1, 2, 1, 1, 2, 1, 3, 5, 1, 2, 1, 3$
- $F_0(a) = |\bigcup_i a_i| = |\{1, 2, 3, 5\}| = 4$

- Fundamental problem in databases with a long history of work

 Problem Compute (ε, δ) approximation of F_0

 Concern Space Complexity
Hashing-Based Techniques

Model Counting
(S83, GSS06, GHSS07, CMV13b, EGSS13b, CMV14, CDR15, CMV16, ZCSE16, AD16, KM18, ATD18, SM19, ABM20, SGM20)

Distinct Elements
(FM85, AMS99, GT01, BKS02, BJKST02, CM03, CLKB04, PT07, TW12, SP09)
2-wise independent Hashing

- Let H be family of 2-wise independent hash functions mapping $\{0, 1\}^n$ to $\{0, 1\}^m$

\[
\forall y_1, y_2 \in \{0, 1\}^n, \alpha_1, \alpha_2 \in \{0, 1\}^m, h \leftarrow^R H
\]

\[
\Pr[h(y_1) = \alpha_1] = \Pr[h(y_2) = \alpha_2] = \left(\frac{1}{2^m}\right)
\]

\[
\Pr[h(y_1) = \alpha_1 \land h(y_2) = \alpha_2] = \left(\frac{1}{2^m}\right)^2
\]
2-wise independent Hash Functions

- Variables: $X_1, X_2, \cdots X_n$
- To construct $h : \{0, 1\}^n \rightarrow \{0, 1\}^m$, choose m random XORs
- Pick every X_i with prob. $\frac{1}{2}$ and XOR them
 - $X_1 \oplus X_3 \oplus X_6 \cdots \oplus X_{n-2}$
 - Expected size of each XOR: $\frac{n}{2}$
2-wise independent Hash Functions

- Variables: X_1, X_2, \ldots, X_n
- To construct $h : \{0, 1\}^n \rightarrow \{0, 1\}^m$, choose m random XORs
- Pick every X_i with prob. $\frac{1}{2}$ and XOR them
 - $X_1 \oplus X_3 \oplus X_6 \cdots \oplus X_{n-2}$
 - Expected size of each XOR: $\frac{n}{2}$
- To choose $\alpha \in \{0, 1\}^m$, set every XOR equation to 0 or 1 randomly

 \[
 \begin{array}{l}
 X_1 \oplus X_3 \oplus X_6 \cdots \oplus X_{n-2} = 0 \\
 X_2 \oplus X_5 \oplus X_6 \cdots \oplus X_{n-1} = 1 \\
 \quad \cdots \\
 X_1 \oplus X_2 \oplus X_5 \cdots \oplus X_{n-2} = 1 \\
 \end{array}
 \]
 \[(Q_1) \quad (Q_2) \quad (\cdots) \quad (Q_m) \]
- Therefore, $h(X) = \alpha$ can be represented as $AX = b$
As Simple as Counting Dots

Pick a random cell

Estimate = Number of models in a cell × Number of cells
As Simple as Counting Dots

Pick a random cell

Estimate = Number of models in a cell \times Number of cells
As Simple as Counting Dots

Pick a random cell

Estimate = Number of models in a cell × Number of cells
Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?
Challenges

Challenge 1 How to partition into *roughly equal small* cells of solutions without knowing the distribution of solutions?

Challenge 2 How many cells?
Challenges

Challenge 1 How to partition into *roughly equal small* cells of solutions without knowing the distribution of solutions?

2-wise independent hash functions
ApproxMC

of sols
\leq \text{thresh}?
ApproxMC

Estimate =
of sols ×
of cells

of sols ≤ thresh?

No

No

No

Yes

...
1: Choose $h : \{0, 1\}^n \mapsto \{0, 1\}^n$
2: $\text{minhash} \leftarrow 2^n$;
3: for $a_i \in a$ do
4: if $h(a_i) < \text{minhash}$ then
5: $\text{minhash} = h(a_i)$
6: end if
7: end for
8: return $\frac{2^n}{\text{minhash}}$
Is there more than meets the eyes?

• From Distinct Elements to Counting
• From Counting to Distinct Elements
Hashing-based Distinct Elements

1: $h \leftarrow \text{ChooseHashFunctions}$
2: $S \leftarrow \{\}$
3: for $a_i \in a$ do
4: \hspace{1em} \text{ProcessUpdate}(S, h, a_i)$
5: end for
6: Est $\leftarrow \text{ComputeEst}(S)$
7: Return Est
Hashing-based Distinct Elements

1. $h \leftarrow \text{ChooseHashFunctions}$
2. $S \leftarrow \{\}$
3. for $a_i \in a$ do
4. \hspace{1em} ProcessUpdate(S, h, a_i)
5. end for
6. Est $\leftarrow \text{ComputeEst}(S)$
7. Return Est

Different Algorithms based on ProcessUpdate

- Minimum: Keep track of minimum $h(a_i)$
- Bucketing
Hashing-based Distinct Elements

1: \(h \leftarrow \text{ChooseHashFunctions} \)
2: \(S \leftarrow \{\} \)
3: \textbf{for} \(a_i \in a \) \textbf{do}
4: \quad \text{ProcessUpdate}(S, h, a_i)
5: \textbf{end for}
6: \(\text{Est} \leftarrow \text{ComputeEst}(S) \)
7: \text{Return Est}

Different Algorithms based on ProcessUpdate

- Minimum: Keep track of minimum \(h(a_i) \)
- Bucketing
- ...
\(a_u\): set of all distinct elements of the stream \(a\).

Key Idea The formula \(\varphi\) can viewed as symbolic representation of some set \(a_u\) such that \(\text{Sol}(\varphi) = a_u\).

Step 1 Capture the relationship \(\mathcal{P}(S, h, a_u)\) between the sketch \(S\), \(h\), and the set \(a_u\) at the end of stream.

Step 2 Given a formula \(\varphi\) and hash function \(h\), design an algorithm to construct sketch \(S\) such that \(\mathcal{P}(S, h, \text{Sol}(\varphi))\) holds. And now, we can estimate \(|\text{Sol}(\varphi)|\) from \(S\).
Min-based Estimation

1: Choose $h : \{0, 1\}^n \rightarrow \{0, 1\}^n$
2: minhash ← 2^n;
3: for $a_i \in a$ do
4: \hspace{1em} if minhash $< h(a_i)$ then
5: \hspace{2em} minhash = $h(a_i)$
6: \hspace{1em} end if
7: end for
8: return $\frac{2^n}{\text{minhash}}$
Application I: Min-based Counting Algorithm

Step1 Capture the relationship $\mathcal{P}(S, h, a_u)$ between the sketch S, h, and the set a_u at the end of stream.
Application I: Min-based Counting Algorithm

Step1 Capture the relationship $\mathcal{P}(S, h, a_u)$ between the sketch S, h, and the set a_u at the end of stream.

$$\mathcal{P}(S, h, a_u) : S := \min_{y \in a_u} h(y)$$
Application I: Min-based Counting Algorithm

Step 1 Capture the relationship $\mathcal{P}(S, h, a_u)$ between the sketch S, h, and the set a_u at the end of stream.

$\mathcal{P}(S, h, a_u) : S := \min_{y \in a_u} h(y)$

$\mathcal{P}(S, h, \text{Sol}(\varphi)) : S := \min_{y \in \text{Sol}(\varphi)} h(y)$
Application I: Min-based Counting Algorithm

Step1 Capture the relationship $\mathcal{P}(S, h, a_u)$ between the sketch S, h, and the set a_u at the end of stream.

$\mathcal{P}(S, h, a_u) : S := \min_{y \in a_u} h(y)$

$\mathcal{P}(S, h, \text{Sol}(\varphi)) : S := \min_{y \in \text{Sol}(\varphi)} h(y)$

Step2 Given a formula φ and set of hash functions H, design an algorithm to construct sketch S such that $\mathcal{P}(S, h, \text{Sol}(\varphi))$ holds. And now, we can estimate $|\text{Sol}(\varphi)|$ from S.

- Use polynomially many calls to NP Oracle to determine S
Bucketing-based Streaming Algorithm

1: Choose $h : \{0, 1\}^n \mapsto \{0, 1\}^n$
2: $\ell \leftarrow 0; B \leftarrow \emptyset$
3: for $a_i \in a$ do
4: if $h(a_i) \mod 2^\ell = 0^\ell$ then
5: B.Append(a_i)
6: if $|B| \geq \text{thresh}$ then
7: $\ell++$
8: Filter(B, h, ℓ)
9: end if
10: end if
11: end for
12: return $|B| \times 2^\ell$
Bucketing-based Streaming Algorithm

1: Choose $h : \{0, 1\}^n \mapsto \{0, 1\}^n$
2: $\ell \leftarrow 0; \mathcal{B} \leftarrow \emptyset$
3: for $a_i \in a$ do
4: \hspace{1em} if $h(a_i) \mod 2^\ell = 0^\ell$ then
5: \hspace{2em} $\mathcal{B}.\text{Append}(a_i)$
6: \hspace{2em} if $|\mathcal{B}| \geq \text{thresh}$ then
7: \hspace{3em} $\ell++$
8: \hspace{3em} Filter(\mathcal{B}, h, ℓ)
9: \hspace{2em} end if
10: \hspace{1em} end if
11: end for
12: return $|\mathcal{B}| \times 2^\ell$

Elements that satisfy XOR

Add another XOR
Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship $P(S, h, a_u)$ between the sketch S, hash function h and set a_u at the end of stream.
Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship $\mathcal{P}(S, h, a_u)$ between the sketch S, hash function h and set a_u at the end of stream.

$$\mathcal{P}(S, h, a_u) : S = (\ell, B) \text{ such that } B = a_u \cap h^{-1}(0^\ell) \text{ and } \{|a_u \cap h^{-1}(0^{\ell-1})| > \text{thresh} \text{ and } |B| \leq \text{thresh}.$$
Step 1 Capture the relationship $\mathcal{P}(S, h, a_u)$ between the sketch S, hash function h and set a_u at the end of stream.

$\mathcal{P}(S, h, a_u) : S = (\ell, B)$ such that $B = a_u \cap h^{-1}(0^\ell)$ and $|\{a_u \cap h^{-1}(0^{\ell-1})\}| > \text{thresh}$ and $|B| \leq \text{thresh}$.

$\mathcal{P}(S, h, \text{Sol}(\varphi)) : S = (\ell, B)$ such that $B = \text{Sol}(\varphi) \cap h^{-1}(0^\ell)$ and $|\{\text{Sol}(\varphi) \cap h^{-1}(0^{\ell-1})\}| > \text{thresh}$ and $|B| \leq \text{thresh}$.
Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship $\mathcal{P}(S, h, a_u)$ between the sketch S, hash function h and set a_u at the end of stream.

\[
\mathcal{P}(S, h, a_u) : S = (\ell, B) \text{ such that } B = a_u \cap h^{-1}(0^\ell) \text{ and } |\{a_u \cap h^{-1}(0^{\ell-1})\}| > \text{thresh and } |B| \leq \text{thresh}.
\]

\[
\mathcal{P}(S, h, \text{Sol}(\varphi)) : S = (\ell, B) \text{ such that } B = \text{Sol}(\varphi) \cap h^{-1}(0^\ell) \text{ and } |\{\text{Sol}(\varphi) \cap h^{-1}(0^{\ell-1})\}| > \text{thresh and } |B| \leq \text{thresh}.
\]

Step 2 Given a formula φ and hash function h, design an algorithm to construct sketch S such that $\mathcal{P}(S, h, \text{Sol}(\varphi))$ holds. And now, we can estimate $|\text{Sol}(\varphi)|$ from S.
Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship $\mathcal{P}(S, h, a_u)$ between the sketch S, hash function h and set a_u at the end of stream.

$$\mathcal{P}(S, h, a_u) : S = (\ell, B) \text{ such that } B = a_u \cap h^{-1}(0^\ell) \text{ and } \left|\{a_u \cap h^{-1}(0^{\ell-1})\}\right| > \text{thresh} \text{ and } |B| \leq \text{thresh}.$$

$$\mathcal{P}(S, h, \text{Sol}(\varphi)) : S = (\ell, B) \text{ such that } B = \text{Sol}(\varphi) \cap h^{-1}(0^\ell) \text{ and } \left|\{\text{Sol}(\varphi) \cap h^{-1}(0^{\ell-1})\}\right| > \text{thresh} \text{ and } |B| \leq \text{thresh}.$$

Step 2 Given a formula φ and hash function h, design an algorithm to construct sketch S such that $\mathcal{P}(S, h, \text{Sol}(\varphi))$ holds. And now, we can estimate $|\text{Sol}(\varphi)|$ from S.

- Use polynomially many calls to NP Oracle to determine S.
Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship \(\mathcal{P}(S, h, a_u) \) between the sketch \(S \), hash function \(h \) and set \(a_u \) at the end of stream.

\[\mathcal{P}(S, h, a_u) : S = (\ell, B) \text{ such that } B = a_u \cap h^{-1}(0^\ell) \text{ and } |\{a_u \cap h^{-1}(0^\ell)\}| > \text{thresh} \text{ and } |B| \leq \text{thresh}. \]

\[\mathcal{P}(S, h, \text{Sol}(\varphi)) : S = (\ell, B) \text{ such that } B = \text{Sol}(\varphi) \cap h^{-1}(0^\ell) \text{ and } |\{\text{Sol}(\varphi) \cap h^{-1}(0^\ell)\}| > \text{thresh} \text{ and } |B| \leq \text{thresh}. \]

Step 2 Given a formula \(\varphi \) and hash function \(h \), design an algorithm to construct sketch \(S \) such that \(\mathcal{P}(S, h, \text{Sol}(\varphi)) \) holds. And now, we can estimate \(|\text{Sol}(\varphi)| \) from \(S \).

- Use polynomially many calls to NP Oracle to determine \(S \)

This is ApproxMC!
Given a formula φ and hash function h, design an algorithm to construct sketch S such that $\mathcal{P}(S, h, \text{Sol}(\varphi))$ holds.

Theorem (FPRAS)

If construction of sketch S is in PTIME for a class of formulas, then there is FPRAS for the corresponding class. E.g.: DNF, Union of XORs
Given a formula φ and hash function h, design an algorithm to construct sketch S such that $\mathcal{P}(S, h, \text{Sol}(\varphi))$ holds.

Theorem (FPRAS)

If construction of sketch S is in PTIME for a class of formulas, then there is FPRAS for the corresponding class. E.g.: DNF, Union of XORs

Theorem (Space and Query)

$p(n)$ space algorithms in streaming imply $(p(n))^2$ NP query complexity algorithms for model counting
Given a formula \(\varphi \) and hash function \(h \), design an algorithm to construct sketch \(S \) such that \(\mathcal{P}(S, h, \text{Sol}(\varphi)) \) holds.

Theorem (FPRAS)

If construction of sketch \(S \) is in PTIME for a class of formulas, then there is FPRAS for the corresponding class. E.g.: DNF, Union of XORs

Theorem (Space and Query)

\(p(n) \) space algorithms in streaming imply \((p(n))^2 \) NP query complexity algorithms for model counting

Theorem (Lower Bounds)

Lower bounds for Distributed Streaming translate to lower bounds for Distributed DNF counting
Is there more to it than meets the eyes?

• From Distinct Elements to Counting

• From Counting to Distinct Elements
From Counting to Distinct Elements

- ApproxMC is FPRAS for DNF formulas (CMV16, MSV17, MSV18)

A stream can be viewed as a DNF
\[a_1, a_2, a_3, \ldots, a_m \]
\[| \bigcup_i a_i | = | \text{Sol}(a_1 \lor a_2 \lor a_3 \lor \ldots \lor a_m) | \]

So hashing-based FPRAS for DNF = \(F_{\text{estimation}} \)

A general scheme for structured sets
Encompasses models such as ranges, affine spaces
Application: Distinct Elements over Range

Every item \([a_i, b_i]\) can be represented using a DNF formula.
So just apply FPRAS for DNF
• ApproxMC is FPRAS for DNF formulas (CMV16, MSV17, MSV18)

• A stream can be viewed as a DNF
 • \(a = a_1, a_2, a_3, \ldots a_m \)
From Counting to Distinct Elements

• ApproxMC is FPRAS for DNF formulas (CMV16, MSV17, MSV18)

• A stream can be viewed as a DNF
 • \(a = a_1, a_2, a_3, \ldots a_m \)
 • \(| \bigcup_i a_i | = | \text{Sol}(a_1 \lor a_2 \lor a_3 \lor a_m) | \)
 • \(a_i \) is represented by conjunction of \(n \) literals \(X_1, X_2, \ldots X_n \).
ApproxMC is FPRAS for DNF formulas \((CMV16,MSV17,MSV18)\)

A stream can be viewed as a DNF

- \(a = a_1, a_2, a_3, \ldots a_m\)
- \(| \bigcup_i a_i | = | \text{Sol}(a_1 \lor a_2 \lor a_3 \lor a_m) |\)
- \(a_i\) is represented by conjunction of \(n\) literals \(X_1, X_2, \ldots X_n\).

So hashing-based FPRAS for DNF \(\implies F_0\) estimation
• ApproxMC is FPRAS for DNF formulas \(\text{(CMV16,MSV17,MSV18)} \)

• A stream can be viewed as a DNF
 • \(a = a_1, a_2, a_3, \ldots a_m \)
 • \(| \bigcup_i a_i | = | \text{Sol}(a_1 \lor a_2 \lor a_3 \lor a_m) | \)
 • \(a_i \) is represented by conjunction of \(n \) literals \(X_1, X_2, \ldots X_n \).

• So hashing-based FPRAS for DNF \(\implies F_0 \) estimation

• A general scheme for structured sets
• ApproxMC is FPRAS for DNF formulas \((CMV16, MSV17, MSV18)\)

• A stream can be viewed as a DNF
 • \(a = a_1, a_2, a_3, \ldots a_m\)
 • \(|\bigcup_i a_i| = |\text{Sol}(a_1 \lor a_2 \lor a_3 \lor a_m)|\)
 • \(a_i\) is represented by conjunction of \(n\) literals \(X_1, X_2, \ldots X_n\).

• So hashing-based FPRAS for DNF \(\implies\) \(F_0\) estimation

• A general scheme for structured sets
• Encompasses models such as ranges, affine spaces
From Counting to Distinct Elements

• ApproxMC is FPRAS for DNF formulas (CMV16, MSV17, MSV18)

• A stream can be viewed as a DNF
 • $a = a_1, a_2, a_3, \ldots a_m$
 • $| \cup_i a_i | = | \text{Sol}(a_1 \lor a_2 \lor a_3 \lor a_m) |$
 • a_i is represented by conjunction of n literals $X_1, X_2, \ldots X_n$.

• So hashing-based FPRAS for DNF \Rightarrow F_0 estimation

• A general scheme for structured sets
• Encompasses models such as ranges, affine spaces

• Application: Distinct Elements over Range
 • Every item $[a_i, b_i]$ can be represented using a DNF formula.
 • So just apply FPRAS for DNF
Conclusion

Summary

• From Distinct Elements to Counting
• From Counting to Distinct Elements
Conclusion

Summary
- From Distinct Elements to Counting
- From Counting to Distinct Elements

Future Directions
- Practical scalability of newly devised counting techniques
- Lifting Sparse Hashing techniques to streaming
- What is the analogue for higher moments (F_k)