Sampling from combinatorial spaces: Achieving the fine balancing act between independence and scalability

> Kuldeep Meel Rice University

Joint work with Supratik Chakraborty, Daniel J. Fremont, Sanjit A. Seshia, Moshe Y. Vardi

May 20, 2015

IIT Bombay

1

How do we guarantee that systems work <u>correctly</u>?

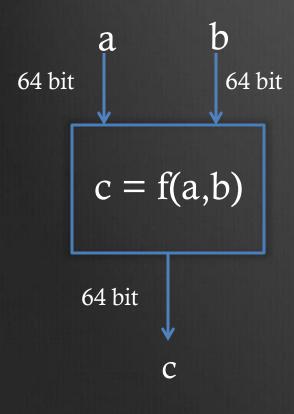
Functional Verification

- Formal verification
 - Challenges: formal requirements, scalability
 - ~10-15% of verification effort
- Dynamic verification: *dominant approach*

Dynamic Verification

- Design is simulated with test vectors
- Test vectors represent different verification scenarios
- Results from simulation compared to intended results
- Challenge: Exceedingly large test space!

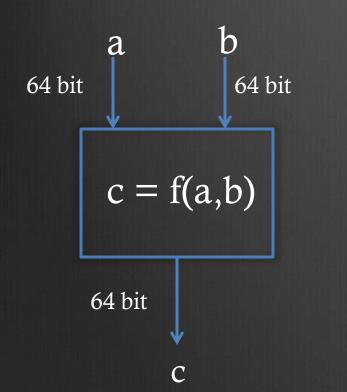
Motivating Example



How do we test the circuit works?

- Try for all values of a and b
 - 2¹²⁸ possibilities
 - Sun will go nova before done!
 - Not scalable

Constrained-Random Simulation



Sources for Constraints

• Designers:

- 1. $a +_{64} 11 *_{32} b = 12$ 2. $a <_{64} (b >> 4)$
- Past Experience:
 1. 40 <₆₄ 34 + a <₆₄ 5050
 - 2. $120 <_{64} b <_{64} 230$

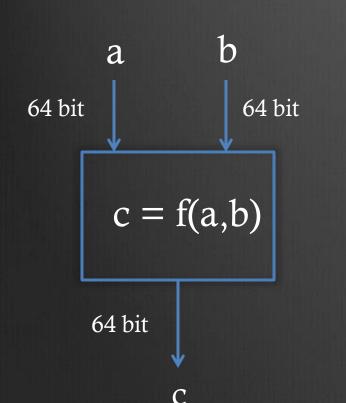
• Users:

- 1. $232 *_{32} a + b != 1100$
- 2. $1020 <_{64} (b /_{64} 2) +_{64} a <_{64} 2200$

Test vectors: solutions of constraints

Proposed by Lichtenstein, Malka, Aharon (IA⁵AI 94)

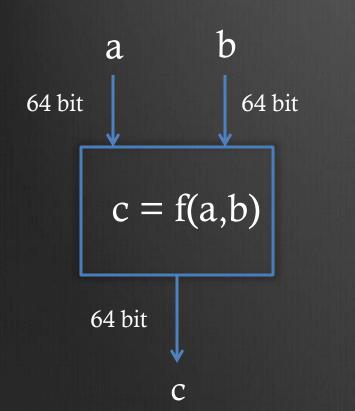
Constrained-Random Simulation



Sources for Constraints • Designers: 1. $a +_{64} 11 *_{32} b = 12$ 2. $a <_{64} (b >> 4)$ • Past Experience: 1. $40 <_{64} 34 + a <_{64} 5050$ 2. 120 <₆₄ b <₆₄ 230 • Users: 1. $232 *_{32}a + b! = 1100$ 2. $1020 <_{64} (b /_{64} 2) +_{64} a <_{64} 2200$

Problem: How can we *uniformly* sample the values of a and b satisfying the above constraints? 6

Problem Formulation

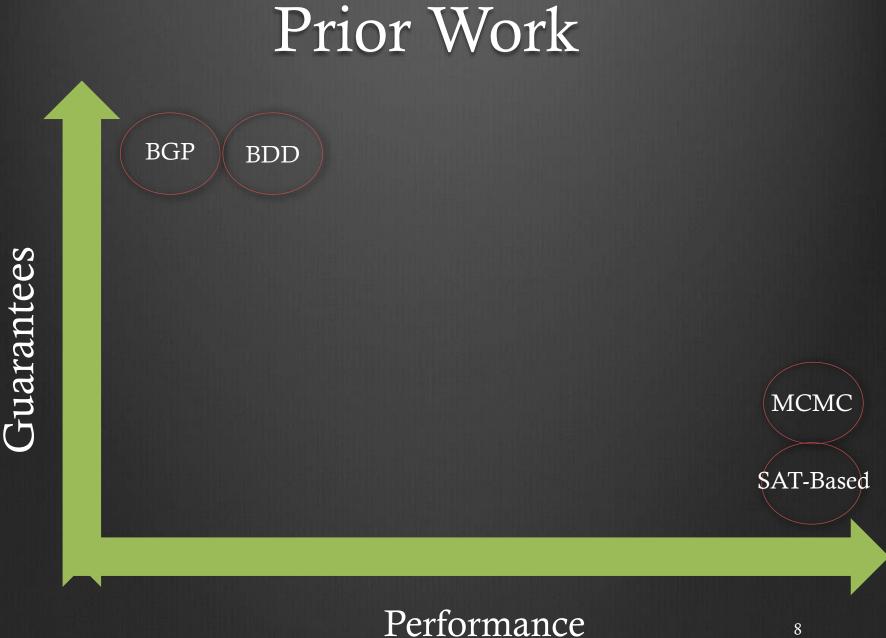


Set of Constraints

SAT Formula

Sample satisfying assignments uniformly at random

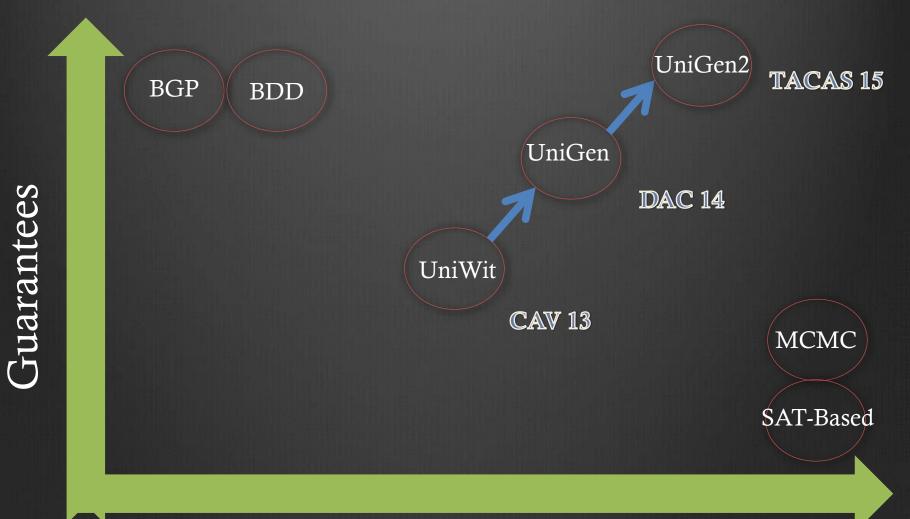
Scalable Uniform Generation of SAT Witnesses



EDA Industry's Desired Performance

Generator	Relative Runtime
XORSample' (weak guarantees)	~50000
Desired Uniform Generator*	10
Simple SAT solver	1

Our Contribution



Performance

Outline

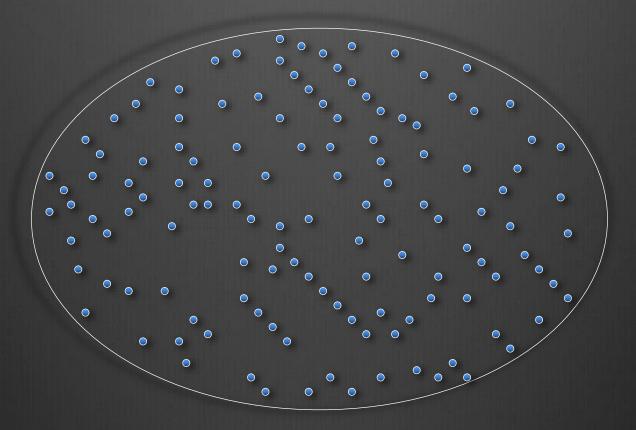
Losing Independence of hashing functions

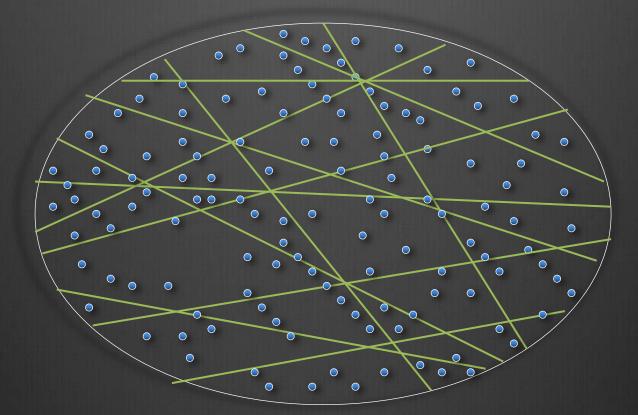
Losing Independence among samples

 Parallelization of Constrained Random Simulation

Conclusion

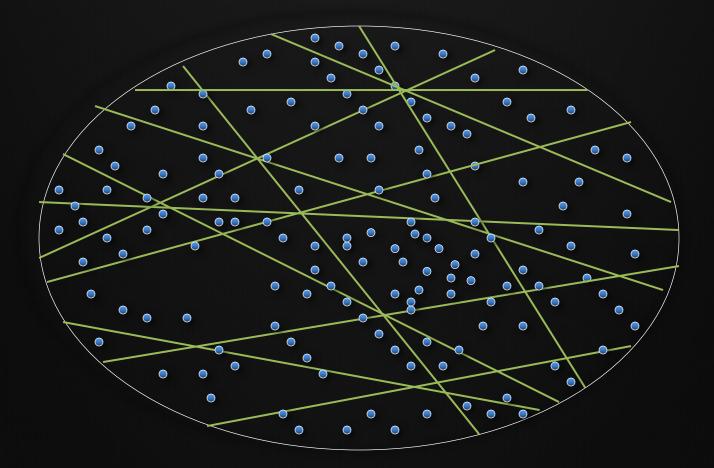
Main Idea





Cells should be roughly equal in size and small enough to enumerate completely

- Too large => Hard to enumerate
- Too small => Variance can be very high
- hiThresh: upper bound on size of cell
- IoThresh: lower bound on size of cell
 - E.g., 10Thresh = 11, hiThresh = 60



15

Pick a random cell

Pick a solution randomly from this cell

How can we partition into roughly equal small cells without knowing the distribution of solutions?

Universal Hashing (Carter-Wegman 1979)

Universal Hashing

- Hash functions: mapping $\{0,1\}^n$ to $\{0,1\}^m$
 - (2ⁿ elements to 2^m cells)
- Random inputs => All cells are roughly equal (in <u>expectation</u>)

- Universal family of hash functions:
 - Choose hash function randomly from family
 - For *arbitrary* distribution on inputs => All cells are *roughly equal* (in <u>expectation</u>)

r-Universal Hashing

- Each solution is hashed uniformly
- Every r-subset of solutions is hashed independently
- For r=2,

 $\forall \text{ distinct } y_1, y_2 \text{ and } \forall \alpha_1, \alpha_2$ $Pr[h(y_1) = \alpha_1 \land h(y_2) = \alpha_2] = Pr[h(y_1) = \alpha_1]Pr[h(y_2) = \alpha_2]$

 r-wise universal hash function => polynomial of degree r-1

Why Independence matters?

We pick a random cell and define following random variables

 $I_k = 1$ if y_k is in the cell

Let $I_1, I_2, I_3, \dots I_n$ be r-wise independent variables in [0, 1], then for $I = \sum I_k$

 $\Pr[|I - \mu| < \delta \mu] \ge c^{-r}$

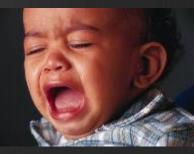
Number of solutions in a – randomly picked cell

Deviation

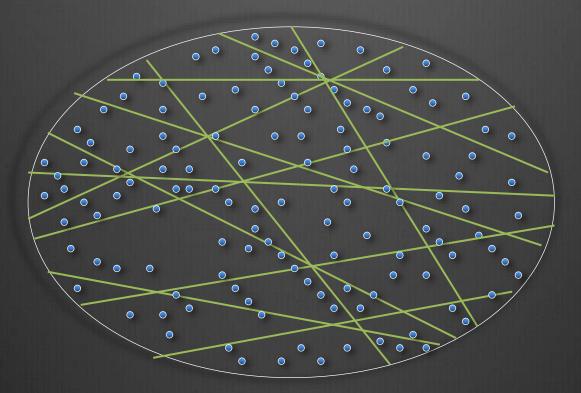
Tradeoff

Higher universality => Stronger Guarantees

Higher universality => Polynomials of higher degree

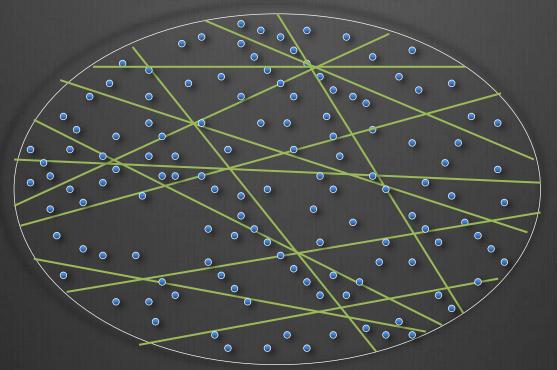


Prior Work



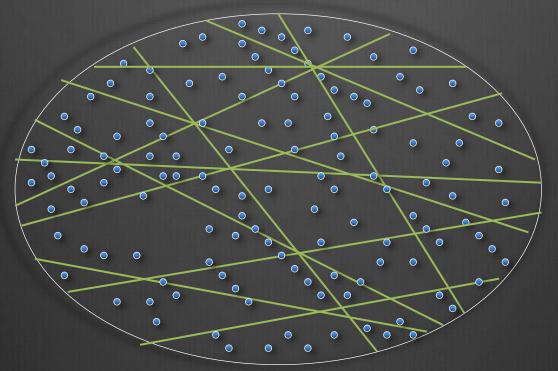
Choose n-wise universal hash functions and all cells are guaranteed to be small with high probability
Theoretical guarantee of uniformity

What if we lower the hashing to 3-universal



All cells are not guaranteed to be small anymore with high probability

What if we lower the hashing to 3-universal



But a randomly picked cell is guaranteed to be small with high probability Guarantees of almost-uniformity

Strong Theoretical Guarantees

• Uniformity (BGP with n-universal) $\Pr[y \text{ is output}] = \frac{1}{|R_F|}$

Almost- Uniformity (UniGen with 3-universal)

 $\forall y \in R_F, \frac{1}{(1+\varepsilon)|R_F|} \le \Pr[y \text{ is output}] \le (1+\varepsilon)\frac{1}{|R_F|}$

Polynomial number of SAT calls

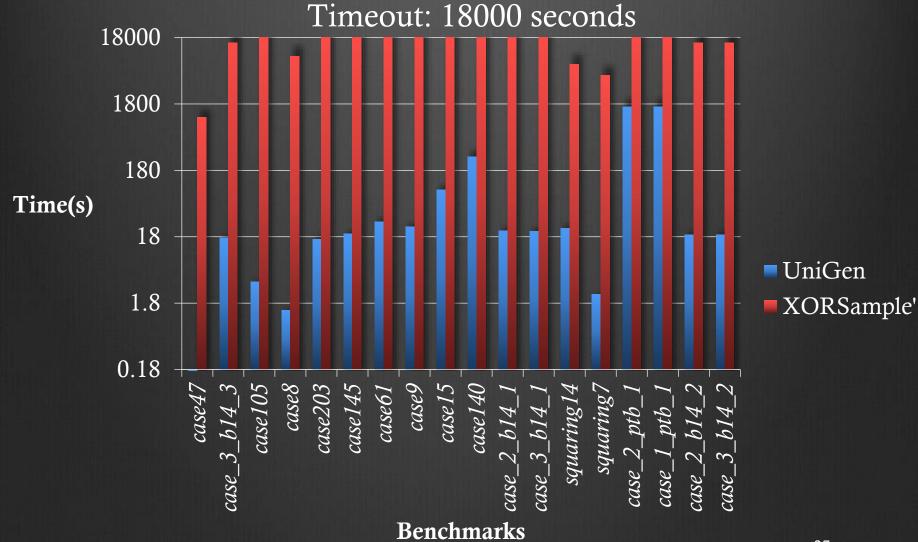
Enumerating cell solutions

• A cell can be represented as the conjunction of:

- Input formula F
- *m* random XOR constraints
- 2^m is the number of cells desired

Use CryptoMiniSAT for CNF + XOR formulas

2-3 Orders of Magnitude Faster



Runtime Performance

Experiments over 200+ benchmarks

Generator	Relative Runtime
XORSample' (weak	~50000
guarantees)	
UniGen	470
Desired Uniform Generator*	10
Simple SAT solver	1

*: Based on EDA Industry

Outline

Losing Independence of hashing functions

Losing Independence among samples

 Parallelization of Constrained Random Simulation

Conclusion

How many solutions are generated per sample?

>LoThresh

UniGen

Pick a random cell and check if its small

Pick a solution randomly from this cell

of solutions in a small cell is between loThresh and hiThresh

UniGen

Pick a random cell and check if its small

Pick a loThresh solutions randomly from this cell

of solutions in a small cell is between loThresh and hiThresh

3-Universal and Independence of Samples

3-Universal hash functions:

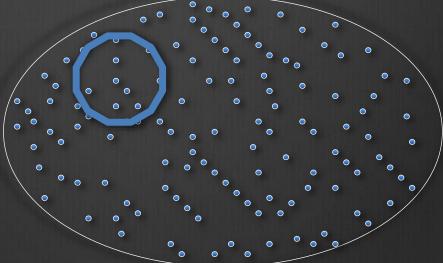
- Choose hash function randomly
- For arbitrary distribution on solutions=> All cells are roughly equal in <u>expectation</u>

■ <u>But:</u>

- While each input is hashed uniformly
- And each 3-solutions set is hashed independently
- A 4-solutions set *might not* be hashed **independently**

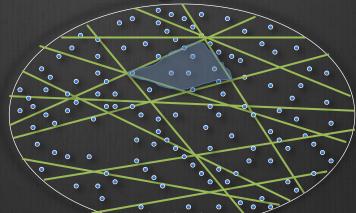
3-Universal and Independence of samples

- Choosing up to 3 samples => Full Independence between samples
- Independence provides coverage guarantees.



3-Universal and Independence of samples

- Choosing up to 3 samples => Full Independence between samples
- Choosing loThresh (> 3) samples => Loss of full independence among samples
 - "Almost-Independence"
 - Still provides theoretical guarantees of coverage



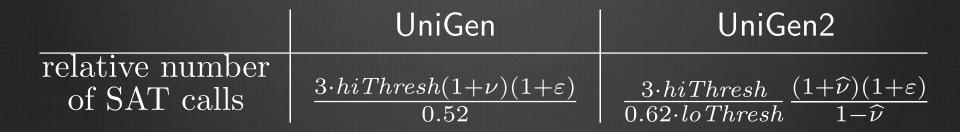
Strong Guarantees

$L = \# \text{ of samples} < |R_F|$ $\forall y \in R_F,$ $\frac{L}{(1+\varepsilon)|R_F|} \le \Pr[\text{y is output}] \le 1.02(1+\varepsilon)\frac{L}{|R_F|}$

 Polynomial Constant number of SAT calls per sample

Bug-finding effectiveness

bug frequency $f = B/R_F$



Simply put, #of SAT calls for UniGen2 << # of SAT calls for UniGen

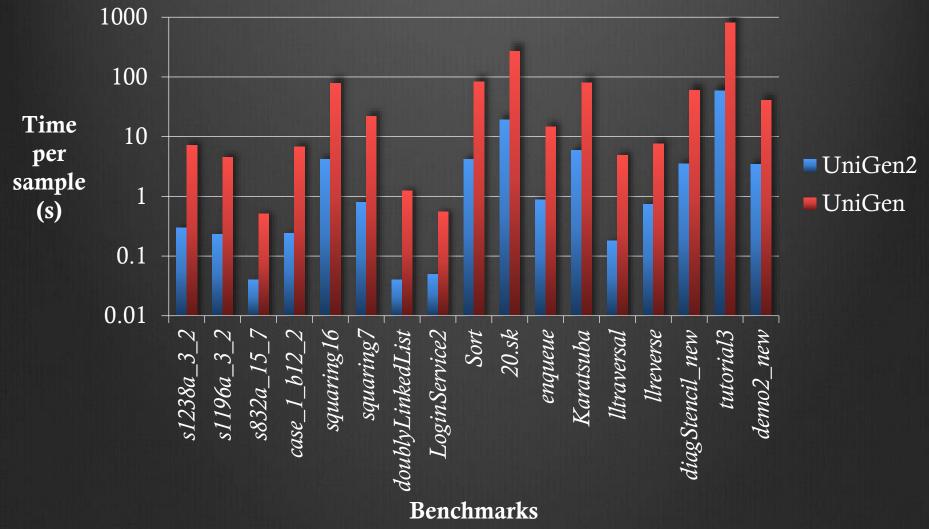
Bug-finding effectiveness

bug frequency $f = 1/10^4$ find bug with probability $\geq 1/2$

	UniGen	UniGen2
Expected number of SAT calls	4.35×10^{7}	3.38×10^{6}

An order of magnitude difference!

~20 times faster than UniGen



Runtime Performance

Experiments over 200+ benchmarks

Generator	Relative Runtime
XORSample' (weak	~50000
guarantees)	
UniGen	470
UniGen2	21
Desired Uniform Generator*	10
Simple SAT solver	1

*: Based on EDA Industry

Outline

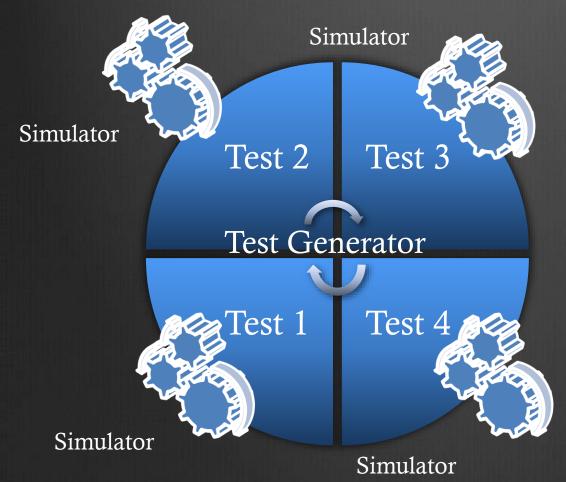
Losing Independence of hashing functions

Losing Independence among samples

 <u>Parallelization of Constrained Random</u> <u>Simulation</u>

Conclusion

Current Paradigm of Simulationbased Verification



 Can not be parallelized since test generators maintain "global state"

 Loses theoretical guarantees (if any) of uniformity

New Paradigm of Simulationbased Verification

Simulator

- Preprocessing needs to be done only once
- No communication required between different copies of the test generator
- Scales linearly with number of cores in practice

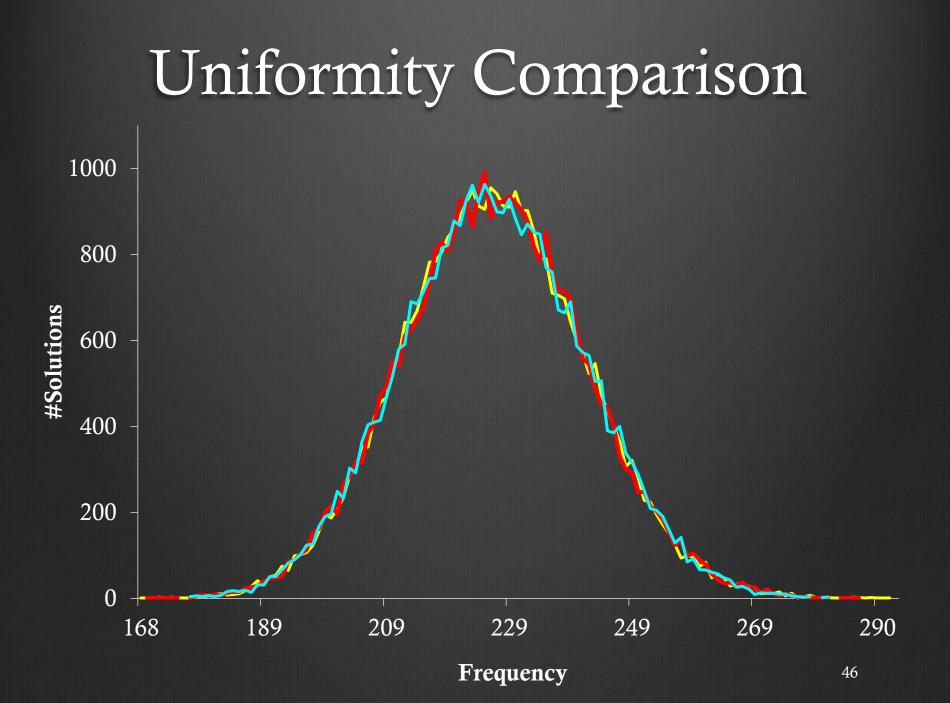
Desired Performance with 2 cores

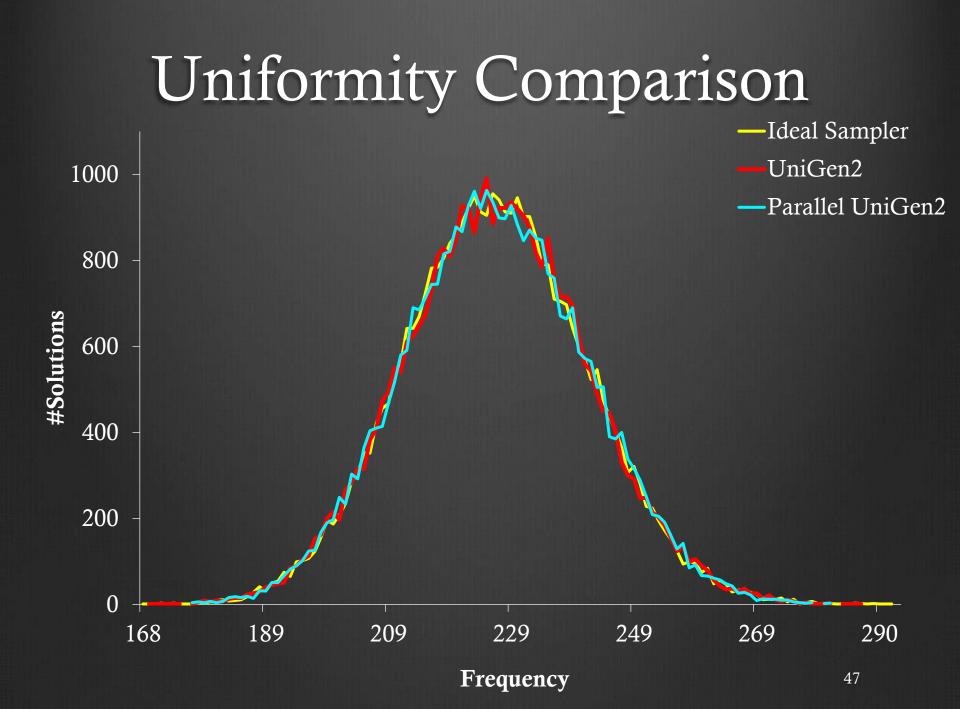
Generator	Relative Runtime
UniGen	470
UniGen2	21
Parallel UniGen2 (2 cores)	~10
Desired Uniform Generator*	10
Simple SAT solver	1

*: Based on EDA Industry

Uniformity Comparison

- Benchmark with 16,384 solutions
- Ideal Generator: Enumerate all solutions and pick one randomly
- Generated 4M samples for Ideal, UniGen2 & parallel (on 12 cores) UniGen2
- Group solutions according to their frequency
- Plot # of solutions vs Frequency
 - (200,250): 250 solutions appeared 200 times each
- In theory, we expect a Poisson distribution





Outline

Losing Independence of hashing functions

Losing Independence among samples

 Parallelization of Constrained Random Simulation

Conclusion

How well did we tradeoff Independence?

Relaxation Independence	Loss	Gain
Hashing	Uniformity to Almost Uniformity	 2-3 orders of magnitude performance improvement
Sample	Weakened Almost Uniformity	 Still provides coverage guarantees 20 x improvement Parallelization Achieved desired performance (1)

Takeaways

- Uniform generation has diverse applications
- Proposed the first scalable parallel approach that provides strong guarantees
- Requires polynomial constant number of SAT calls per sample
- Scales linearly with number of cores
- Achieves desired performance by EDA Industry

New Paradigm of Simulationbased Verification

Simulator

Test Generator

Simulator

Test Generator

Preprocessing

Test Generator

Simulator

Test Generator

And one more thing!

 Tool (along with source code) is available online:

http://tinyurl.com/unigen2

Visit <u>www.kuldeepmeel.com</u> for papers/reports