Sampling from combinatorial spaces: Achieving the fine balancing act between independence and scalability

> Kuldeep Meel Rice University

Joint work with Supratik Chakraborty, Daniel J. Fremont, Sanjit A. Seshia, Moshe Y. Vardi

May 20, 2015

IIT Bombay

1

### How do we guarantee that systems work <u>correctly</u>?





### **Functional Verification**

- Formal verification
  - Challenges: formal requirements, scalability
  - ~10-15% of verification effort
- Dynamic verification: *dominant approach*

## Dynamic Verification

- Design is simulated with test vectors
- Test vectors represent different verification scenarios
- Results from simulation compared to intended results
- Challenge: Exceedingly large test space!

## Motivating Example



How do we test the circuit works?

- Try for all values of a and b
  - 2<sup>128</sup> possibilities
  - Sun will go nova before done!
  - Not scalable

### **Constrained-Random Simulation**



#### **Sources for Constraints**

• Designers:

- 1.  $a +_{64} 11 *_{32} b = 12$ 2.  $a <_{64} (b >> 4)$
- Past Experience:
  1. 40 <<sub>64</sub> 34 + a <<sub>64</sub> 5050
  - 2.  $120 <_{64} b <_{64} 230$

• Users:

- 1.  $232 *_{32} a + b != 1100$
- 2.  $1020 <_{64} (b /_{64} 2) +_{64} a <_{64} 2200$

Test vectors: solutions of constraints

Proposed by Lichtenstein, Malka, Aharon (IA<sup>5</sup>AI 94)

### Constrained-Random Simulation



**Sources for Constraints** • Designers: 1.  $a +_{64} 11 *_{32} b = 12$ 2.  $a <_{64} (b >> 4)$ • Past Experience: 1.  $40 <_{64} 34 + a <_{64} 5050$ 2. 120 <<sub>64</sub> b <<sub>64</sub> 230 • Users: 1.  $232 *_{32}a + b! = 1100$ 2.  $1020 <_{64} (b /_{64} 2) +_{64} a <_{64} 2200$ 

Problem: How can we *uniformly* sample the values of a and b satisfying the above constraints? 6

### Problem Formulation



Set of Constraints

SAT Formula

Sample satisfying assignments uniformly at random

Scalable Uniform Generation of SAT Witnesses



### EDA Industry's Desired Performance

| Generator                       | Relative Runtime |
|---------------------------------|------------------|
| XORSample' (weak<br>guarantees) | ~50000           |
| Desired Uniform Generator*      | 10               |
| Simple SAT solver               | 1                |

### Our Contribution



Performance

## Outline

Losing Independence of hashing functions

Losing Independence among samples

 Parallelization of Constrained Random Simulation

Conclusion

# Main Idea





Cells should be roughly equal in size and small enough to enumerate completely

- Too large => Hard to enumerate
- Too small => Variance can be very high
- hiThresh: upper bound on size of cell
- IoThresh: lower bound on size of cell
  - E.g., 10Thresh = 11, hiThresh = 60



15

### Pick a random cell

### Pick a solution randomly from this cell

How can we partition into roughly equal small cells without knowing the distribution of solutions?

### Universal Hashing (Carter-Wegman 1979)

## Universal Hashing

- Hash functions: mapping  $\{0,1\}^n$  to  $\{0,1\}^m$ 
  - (2<sup>n</sup> elements to 2<sup>m</sup> cells)
- Random inputs => All cells are roughly equal (in <u>expectation</u>)

- Universal family of hash functions:
  - Choose hash function randomly from family
  - For *arbitrary* distribution on inputs => All cells are *roughly equal* (in <u>expectation</u>)

## r-Universal Hashing

- Each solution is hashed uniformly
- Every r-subset of solutions is hashed independently
- For r=2,

 $\forall \text{ distinct } y_1, y_2 \text{ and } \forall \alpha_1, \alpha_2$  $Pr[h(y_1) = \alpha_1 \land h(y_2) = \alpha_2] = Pr[h(y_1) = \alpha_1]Pr[h(y_2) = \alpha_2]$ 

 r-wise universal hash function => polynomial of degree r-1

## Why Independence matters?

We pick a random cell and define following random variables

 $I_k = 1$  if  $y_k$  is in the cell

Let  $I_1, I_2, I_3, \dots I_n$  be r-wise independent variables in [0, 1], then for  $I = \sum I_k$ 

 $\Pr[|I - \mu| < \delta \mu] \ge c^{-r}$ 

Number of solutions in a – randomly picked cell

Deviation

### Tradeoff

### Higher universality => Stronger Guarantees

# Higher universality => Polynomials of higher degree



### Prior Work



Choose n-wise universal hash functions and all cells are guaranteed to be small with high probability
Theoretical guarantee of uniformity

### What if we lower the hashing to 3-universal



All cells are not guaranteed to be small anymore with high probability

### What if we lower the hashing to 3-universal



But a randomly picked cell is guaranteed to be small with high probability Guarantees of almost-uniformity

## Strong Theoretical Guarantees

• Uniformity (BGP with n-universal)  $\Pr[y \text{ is output}] = \frac{1}{|R_F|}$ 

Almost- Uniformity (UniGen with 3-universal)

 $\forall y \in R_F, \frac{1}{(1+\varepsilon)|R_F|} \le \Pr[y \text{ is output}] \le (1+\varepsilon)\frac{1}{|R_F|}$ 

Polynomial number of SAT calls

## Enumerating cell solutions

• A cell can be represented as the conjunction of:

- Input formula F
- *m* random XOR constraints
- 2<sup>m</sup> is the number of cells desired

Use CryptoMiniSAT for CNF + XOR formulas

### 2-3 Orders of Magnitude Faster



### Runtime Performance

Experiments over 200+ benchmarks

| Generator                  | <b>Relative Runtime</b> |
|----------------------------|-------------------------|
| XORSample' (weak           | ~50000                  |
| guarantees)                |                         |
| UniGen                     | 470                     |
| Desired Uniform Generator* | 10                      |
| Simple SAT solver          | 1                       |

\*: Based on EDA Industry

## Outline

Losing Independence of hashing functions

### Losing Independence among samples

 Parallelization of Constrained Random Simulation

Conclusion

### How many solutions are generated per sample?

# >LoThresh

### UniGen

### Pick a random cell and check if its small

Pick a solution randomly from this cell

# of solutions in a small cell is between loThresh and hiThresh

### UniGen

### Pick a random cell and check if its small

Pick a loThresh solutions randomly from this cell

# of solutions in a small cell is between loThresh and hiThresh

## 3-Universal and Independence of Samples

3-Universal hash functions:

- Choose hash function randomly
- For arbitrary distribution on solutions=> All cells are roughly equal in <u>expectation</u>

### ■ <u>But:</u>

- While each input is hashed uniformly
- And each 3-solutions set is hashed independently
- A 4-solutions set *might not* be hashed **independently**

## 3-Universal and Independence of samples

- Choosing up to 3 samples => Full Independence between samples
- Independence provides coverage guarantees.



## 3-Universal and Independence of samples

- Choosing up to 3 samples => Full Independence between samples
- Choosing loThresh (> 3) samples => Loss of full independence among samples
  - "Almost-Independence"
  - Still provides theoretical guarantees of coverage



### Strong Guarantees

# $L = \# \text{ of samples} < |R_F|$ $\forall y \in R_F,$ $\frac{L}{(1+\varepsilon)|R_F|} \le \Pr[\text{y is output}] \le 1.02(1+\varepsilon)\frac{L}{|R_F|}$

 Polynomial Constant number of SAT calls per sample

# Bug-finding effectiveness

### bug frequency $f = B/R_F$



Simply put, #of SAT calls for UniGen2 << # of SAT calls for UniGen

# Bug-finding effectiveness

### bug frequency $f = 1/10^4$ find bug with probability $\geq 1/2$

|                                 | UniGen               | UniGen2              |
|---------------------------------|----------------------|----------------------|
| Expected number<br>of SAT calls | $4.35 \times 10^{7}$ | $3.38 \times 10^{6}$ |

### An order of magnitude difference!

### ~20 times faster than UniGen



# Runtime Performance

Experiments over 200+ benchmarks

| Generator                  | <b>Relative Runtime</b> |
|----------------------------|-------------------------|
| XORSample' (weak           | ~50000                  |
| guarantees)                |                         |
| UniGen                     | 470                     |
| UniGen2                    | 21                      |
| Desired Uniform Generator* | 10                      |
| Simple SAT solver          | 1                       |

\*: Based on EDA Industry

# Outline

Losing Independence of hashing functions

Losing Independence among samples

 <u>Parallelization of Constrained Random</u> <u>Simulation</u>

Conclusion

# Current Paradigm of Simulationbased Verification



 Can not be parallelized since test generators maintain "global state"

 Loses theoretical guarantees (if any) of uniformity

# New Paradigm of Simulationbased Verification

Simulator



- Preprocessing needs to be done only once
- No communication required between different copies of the test generator
- Scales linearly with number of cores in practice





# Desired Performance with 2 cores

| Generator                  | <b>Relative Runtime</b> |
|----------------------------|-------------------------|
| UniGen                     | 470                     |
| UniGen2                    | 21                      |
| Parallel UniGen2 (2 cores) | ~10                     |
| Desired Uniform Generator* | 10                      |
| Simple SAT solver          | 1                       |

\*: Based on EDA Industry

# Uniformity Comparison

- Benchmark with 16,384 solutions
- Ideal Generator: Enumerate all solutions and pick one randomly
- Generated 4M samples for Ideal, UniGen2 & parallel (on 12 cores) UniGen2
- Group solutions according to their frequency
- Plot # of solutions vs Frequency
  - (200,250): 250 solutions appeared 200 times each
- In theory, we expect a Poisson distribution





# Outline

Losing Independence of hashing functions

Losing Independence among samples

 Parallelization of Constrained Random Simulation

Conclusion

## How well did we tradeoff Independence?

| Relaxation<br>Independence | Loss                                  | Gain                                                                                                                                                |
|----------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Hashing                    | Uniformity to<br>Almost<br>Uniformity | <ul> <li>2-3 orders of<br/>magnitude<br/>performance<br/>improvement</li> </ul>                                                                     |
| Sample                     | Weakened Almost<br>Uniformity         | <ul> <li>Still provides coverage guarantees</li> <li>20 x improvement</li> <li>Parallelization</li> <li>Achieved desired performance (1)</li> </ul> |

# Takeaways

- Uniform generation has diverse applications
- Proposed the first scalable parallel approach that provides strong guarantees
- Requires polynomial constant number of SAT calls per sample
- Scales linearly with number of cores
- Achieves desired performance by EDA Industry

# New Paradigm of Simulationbased Verification

Simulator

Test Generator

Simulator

Test Generator

Preprocessing

#### Test Generator

Simulator

Test Generator



# And one more thing!

 Tool (along with source code) is available online:

http://tinyurl.com/unigen2

Visit <u>www.kuldeepmeel.com</u> for papers/reports