
Sampling from combinatorial spaces:

Achieving the fine balancing act between

independence and scalability

May 20, 2015 IIT Bombay 1

Kuldeep Meel
Rice University

Joint work with Supratik Chakraborty, Daniel J. Fremont, Sanjit A. Seshia, Moshe Y. Vardi

How do we guarantee that systems work

correctly ?

Functional Verification

▪ Formal verification

▪ Challenges: formal requirements, scalability

▪ ~10-15% of verification effort

▪ Dynamic verification: dominant approach

2

Dynamic Verification

▪ Design is simulated with test vectors

▪ Test vectors represent different

verification scenarios

▪ Results from simulation compared to

intended results

▪ Challenge: Exceedingly large test space!

3

Motivating Example

a b

c

64 bit 64 bit

64 bit

c = f(a,b)

How do we test the circuit works ?

• Try for all values of a and b

• 2128 possibilities

• Sun will go nova before done!

• Not scalable

4

Constrained-Random Simulation

▪ Test vectors: solutions of constraints

▪ Proposed by Lichtenstein, Malka, Aharon (IAAI 94)
5

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints

• Designers:

1. a +64 11 *32 b = 12

2. a <64 (b >> 4)

• Past Experience:

1. 40 <64 34 + a <64 5050

2. 120 <64 b <64 230

• Users:

1. 232 *32 a + b != 1100

2. 1020 <64 (b /64 2) +64 a <64 2200

Constrained-Random

Simulation

Problem: How can we uniformly sample the values of a and

b satisfying the above constraints? 6

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints

• Designers:

1. a +64 11 *32 b = 12

2. a <64 (b >> 4)

• Past Experience:

1. 40 <64 34 + a <64 5050

2. 120 <64 b <64 230

• Users:

1. 232 *32 a + b != 1100

2. 1020 <64 (b /64 2) +64 a <64 2200

Problem Formulation

Set of Constraints

Sample satisfying assignments

uniformly at random

SAT Formula

Scalable Uniform Generation of SAT Witnesses
7

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Prior Work

8Performance

G
u

a
ra

n
te

es

MCMC

SAT-Based

BGP BDD

EDA Industry’s Desired

Performance

9

Generator Relative Runtime

XORSample’ (weak

guarantees)

~50000

Desired Uniform Generator* 10

Simple SAT solver 1

Our Contribution

10Performance

G
u

a
ra

n
te

es

MCMC

SAT-Based

BGP BDD

UniWit

UniGen

CAV 13

DAC 14

UniGen2
TACAS 15

Outline

▪ Losing Independence of hashing functions

▪ Losing Independence among samples

▪ Parallelization of Constrained Random
Simulation

▪ Conclusion
11

12

Main Idea

13

Cells should be roughly equal in size and small

enough to enumerate completely

Partitioning into cells

Partitioning into cells

▪ Too large => Hard to enumerate

▪ Too small => Variance can be very high

▪ hiThresh: upper bound on size of cell

▪ loThresh: lower bound on size of cell

▪ E.g., loThresh = 11, hiThresh = 60

14

15

Partitioning into cells

16

Pick a random cell

Pick a solution randomly from this cell

Partitioning into cells

Partitioning into cells

How can we partition into roughly

equal small cells without knowing the

distribution of solutions?

Universal Hashing
(Carter-Wegman 1979)

17

Universal Hashing

18

▪ Hash functions: mapping {0,1}n to {0,1}m

▪ (2n elements to 2m cells)

▪ Random inputs => All cells are roughly equal (in expectation)

▪ Universal family of hash functions:

▪ Choose hash function randomly from family

▪ For arbitrary distribution on inputs => All cells are roughly
equal (in expectation)

r-Universal Hashing

▪ Each solution is hashed uniformly

▪ Every r-subset of solutions is hashed
independently

▪ For r=2,

▪ r-wise universal hash function => polynomial
of degree r-1

19

Why Independence matters?

20

We pick a random cell and define following

random variables

Number of solutions in a

randomly picked cell Deviation

Tradeoff

Higher universality => Stronger Guarantees

Higher universality => Polynomials of higher

degree

21

22

• Choose n-wise universal hash functions and all cells

are guaranteed to be small with high probability

• Theoretical guarantee of uniformity

Prior Work

What if we lower the hashing to

3-universal

23

All cells are not guaranteed to be small anymore

with high probability

What if we lower the hashing to

3-universal

24

But a randomly picked cell is guaranteed to be

small with high probability

Guarantees of almost-uniformity

▪ Uniformity (BGP with n-universal)

▪ Almost- Uniformity (UniGen with 3-universal)

▪ Polynomial number of SAT calls

Strong Theoretical Guarantees

25

Enumerating cell solutions

▪ A cell can be represented as the conjunction of:

▪ Input formula F

▪ m random XOR constraints

▪ 2m is the number of cells desired

▪ Use CryptoMiniSAT for CNF + XOR formulas

26

2-3 Orders of Magnitude Faster

27

0.18

1.8

18

180

1800

18000

ca
se

4
7

ca
se

_
3

_
b1

4
_

3

ca
se

1
0
5

ca
se

8

ca
se

2
0
3

ca
se

1
4
5

ca
se

6
1

ca
se

9

ca
se

1
5

ca
se

1
4
0

ca
se

_
2

_
b1

4
_

1

ca
se

_
3

_
b1

4
_

1

sq
u

a
ri

n
g1

4

sq
u

a
ri

n
g7

ca
se

_
2

_
p

tb
_

1

ca
se

_
1

_
p

tb
_

1

ca
se

_
2

_
b1

4
_

2

ca
se

_
3

_
b1

4
_

2

Time(s)

Benchmarks

UniGen

XORSample'

Timeout: 18000 seconds

Runtime Performance

28

Generator Relative Runtime

XORSample’ (weak

guarantees)

~50000

UniGen 470

Desired Uniform Generator* 10

Simple SAT solver 1

*: Based on EDA Industry

Experiments over 200+ benchmarks

Outline

▪ Losing Independence of hashing functions

▪ Losing Independence among samples

▪ Parallelization of Constrained Random
Simulation

▪ Conclusion
29

How many solutions are generated per sample?

>LoThresh

30

31

Pick a random cell and check if its small

Pick a solution randomly from this cell

UniGen

of solutions in a small cell is between loThresh and hiThresh

32

Pick a random cell and check if its small

Pick a loThresh solutions randomly from this cell

UniGen

of solutions in a small cell is between loThresh and hiThresh

33

3-Universal hash functions:

▪ Choose hash function randomly

▪ For arbitrary distribution on solutions=> All cells are

roughly equal in expectation

▪ But:

▪ While each input is hashed uniformly

▪ And each 3-solutions set is hashed independently

▪ A 4-solutions set might not be hashed independently

3-Universal and Independence

of Samples

▪ Choosing up to 3 samples => Full

Independence between samples

34

3-Universal and
Independence of samples

▪ Independence provides coverage

guarantees.

▪ Choosing up to 3 samples => Full

Independence between samples

▪ Choosing loThresh (> 3) samples => Loss of

full independence among samples

▪ “Almost-Independence”

▪ Still provides theoretical guarantees of coverage

35

3-Universal and
Independence of samples

Strong Guarantees

▪

▪ Polynomial Constant number of

SAT calls per sample

36

Bug-finding effectiveness

37

bug frequency f = B/RF

Simply put,

#of SAT calls for UniGen2 << # of SAT calls for UniGen

Bug-finding effectiveness

UniGen UniGen2

Expected number

of SAT calls

4.35 × 107 3.38 × 106

38

bug frequency f = 1/104

find bug with probability ≥ 1/2

An order of magnitude difference!

~20 times faster than UniGen

0.01

0.1

1

10

100

1000
s1

2
3
8
a

_
3
_

2

s1
1
9
6
a

_
3
_

2

s8
3
2
a

_
1
5
_

7

ca
se

_
1

_
b1

2
_

2

sq
u

a
ri

n
g1

6

sq
u

a
ri

n
g7

d
ou

bl
yL

in
ke

d
L

is
t

L
og

in
S

er
vi

ce
2

S
or

t

2
0
.s

k

en
qu

eu
e

K
a

ra
ts

u
ba

ll
tr

a
ve

rs
a

l

ll
re

ve
rs

e

d
ia

gS
te

n
ci

l_
n

ew

tu
to

ri
a

l3

d
em

o2
_

n
ew

Time

per

sample

(s)

Benchmarks

UniGen2

UniGen

39

Runtime Performance

40

Generator Relative Runtime

XORSample’ (weak

guarantees)

~50000

UniGen 470

UniGen2 21

Desired Uniform Generator* 10

Simple SAT solver 1

*: Based on EDA Industry

Experiments over 200+ benchmarks

Outline

▪ Losing Independence of hashing functions

▪ Losing Independence among samples

▪ Parallelization of Constrained Random
Simulation

▪ Conclusion
41

42

Current Paradigm of Simulation-

based Verification

Test 2 Test 3

Test 4Test 1

Test Generator

Simulator

Simulator
Simulator

Simulator

• Can not be

parallelized since test

generators maintain

“global state”

• Loses theoretical

guarantees (if any) of

uniformity

Test Generator

New Paradigm of Simulation-

based Verification
Simulator

Simulator

Simulator

Simulator

Test Generator

Test Generator

Test Generator

Preprocessing

• Preprocessing needs to be done only once

• No communication required between different

copies of the test generator

• Scales linearly with number of cores in

practice

44

Generator Relative Runtime

UniGen 470

UniGen2 21

Parallel UniGen2 (2 cores) ~10

Desired Uniform Generator* 10

Simple SAT solver 1

Desired Performance with 2 cores

*: Based on EDA Industry

Uniformity Comparison

▪ Benchmark with 16,384 solutions

▪ Ideal Generator: Enumerate all solutions and pick
one randomly

▪ Generated 4M samples for Ideal, UniGen2 &
parallel (on 12 cores) UniGen2

▪ Group solutions according to their frequency

▪ Plot # of solutions vs Frequency

▪ (200,250): 250 solutions appeared 200 times each

▪ In theory, we expect a Poisson distribution

45

Uniformity Comparison

46

0

200

400

600

800

1000

168 189 209 229 249 269 290

#
S

o
lu

ti
o

n
s

Frequency

Uniformity Comparison

47

0

200

400

600

800

1000

168 189 209 229 249 269 290

#
S

o
lu

ti
o

n
s

Frequency

Ideal Sampler

UniGen2

Parallel UniGen2

Outline

▪ Losing Independence of hashing functions

▪ Losing Independence among samples

▪ Parallelization of Constrained Random
Simulation

▪ Conclusion
48

How well did we tradeoff Independence?

Relaxation

Independence
Loss Gain

Hashing Uniformity to

Almost

Uniformity

• 2-3 orders of

magnitude

performance

improvement

Sample Weakened Almost

Uniformity

• Still provides coverage

guarantees

• 20 x improvement

• Parallelization

• Achieved desired

performance 49

Takeaways

▪ Uniform generation has diverse applications

▪ Proposed the first scalable parallel approach

that provides strong guarantees

▪ Requires polynomial constant number of SAT

calls per sample

▪ Scales linearly with number of cores

▪ Achieves desired performance by EDA Industry

50

Test Generator

New Paradigm of Simulation-

based Verification
Simulator

Simulator

Simulator

Simulator

Test Generator

Test Generator

Test Generator

Preprocessing

And one more thing!

▪ Tool (along with source code) is available

online:

http://tinyurl.com/unigen2

▪ Visit www.kuldeepmeel.com for papers/reports

52

http://tinyurl.com/unigen2
http://www.kuldeepmeel.com

	Default Section
	Slide 1: Sampling from combinatorial spaces: Achieving the fine balancing act between independence and scalability
	Slide 2: How do we guarantee that systems work correctly ?
	Slide 3: Dynamic Verification
	Slide 4: Motivating Example
	Slide 5: Constrained-Random Simulation
	Slide 6: Constrained-Random Simulation
	Slide 7: Problem Formulation
	Slide 8: Prior Work
	Slide 9: EDA Industry’s Desired Performance
	Slide 10: Our Contribution
	Slide 11: Outline
	Slide 12: Main Idea
	Slide 13: Partitioning into cells
	Slide 14: Partitioning into cells
	Slide 15: Partitioning into cells
	Slide 16: Partitioning into cells
	Slide 17: Partitioning into cells
	Slide 18: Universal Hashing
	Slide 19: r-Universal Hashing
	Slide 20: Why Independence matters?
	Slide 21: Tradeoff
	Slide 22: Prior Work
	Slide 23: What if we lower the hashing to 3-universal
	Slide 24: What if we lower the hashing to 3-universal
	Slide 25: Strong Theoretical Guarantees
	Slide 26: Enumerating cell solutions
	Slide 27: 2-3 Orders of Magnitude Faster
	Slide 28: Runtime Performance
	Slide 29: Outline
	Slide 30
	Slide 31: UniGen
	Slide 32: UniGen
	Slide 33: 3-Universal and Independence of Samples
	Slide 34
	Slide 35
	Slide 36: Strong Guarantees
	Slide 37: Bug-finding effectiveness
	Slide 38: Bug-finding effectiveness
	Slide 39: ~20 times faster than UniGen
	Slide 40: Runtime Performance
	Slide 41: Outline
	Slide 42: Current Paradigm of Simulation-based Verification
	Slide 43: New Paradigm of Simulation-based Verification
	Slide 44: Desired Performance with 2 cores
	Slide 45: Uniformity Comparison
	Slide 46: Uniformity Comparison
	Slide 47: Uniformity Comparison
	Slide 48: Outline
	Slide 49: How well did we tradeoff Independence?
	Slide 50: Takeaways
	Slide 51: New Paradigm of Simulation-based Verification
	Slide 52: And one more thing!

