Sampling from combinatorial spaces:
Achieving the fine balancing act between
independence and scalability

Kuldeep Meel

Rice University

Joint work with Supratik Chakraborty, Daniel J. Fremont, Sanjit A. Seshia, Moshe Y. Vardi

May 20, 2015 II'T Bombay .

How do we guarantee that systems work
correctly ?

&

‘?0

8

NS4
S 4

Functional Verification

= Formal verification

» Challenges: formal requirements, scalability
= ~10-15% of verification effort

» Dynamic verification: dominant approach

Dynamic Verification

* Design 1s simulated with test vectors

= Test vectors represent different
verification scenarios

» Results from simulation compared to
intended results

= Challenge: Exceedingly large test space!

Motivating Example

a b

64 bit 64 bit

How do we test the circuit works ?

* Try for all values of a and b
c = f(a,b) « 2128 ppssibilities
* Sun will go nova before done!

64 bit Not scalable

Constrained-Random Simulation

Sources for Constraints
* Designers:
a b [~ b = 12
64 bit 64 bit 2. a<gy(b>>4)
* Past Experience:
1. 40 <., 34 + a <, 5050

¢ = f(a,b) oM 0= b=, 230
e Users:
, 1. 232%,a+b!=1100
ol 2. 1020 <gy (b /ey 2) +¢4 a <, 2200
C

= Test vectors: solutions of constraints

* Proposed by Lichtenstein, Malka, Aharon (IAAI 94)

Constrained-Random
Simulation

Sources for Constraints
* Designers:
5 b 1. a+gy11*,b=12
64 bit 64 bit 2. a<gy(b>>4)
Past Experience:
1. 40 <., 34 + a <, 5050

¢ = f(a,b) PR b=, 230
e Users:
, 1. 232%,a+b!=1100
ol 2. 1020 <gy (b /ey 2) +¢4 a <, 2200
C

Problem: How can we uniformly sample the values of a and
b satisfying the above constraints? 6

Problem Formulation

Set of Constraints

a b
64 bit 64 bit
SAT Formula
¢ = f(a,b)
64 bit Sample satisfying assignments

uniformly at random
C

Scalable Uniform Generation of SAT Witnesses

GGuarantees

BGP

Prior Work

BDD

Performance

MCMC

SAT-Based

EDA Industry’s Desired
Performance

Generator Relative Runtime

XORSample’ (weak
guarantees)

Desired Uniform Generator®

Simple SAT solver

GGuarantees

Our Contribution

UniGen2

BGP BDD ﬂ TACAS 15
UniGen
ﬂ DAC 14
UniWit
CAV 13
MCMC

SAT-Based

Performance 10

Outline

Losing Independence of hashing functions
Losing Independence among samples

Parallelization of Constrained Random
Simulation

Conclusion

11

Main Idea

12

Partitioning into cells

Cells should be roughly equal 1n size and small
enough to enumerate completely

13

Partitioning into cells

Too large => Hard to enumerate
Too small => Variance can be very high

hiThresh: upper bound on size of cell

loThresh: lower bound on size of cell
» E.g., loThresh = 11, hiThresh = 60

14

16

Partitioning into cells

How can we partition into roughly
equal small cells without knowing the
distribution of solutions?

Universal Hashing
(Carter-Wegman 1979)

17

Universal Hashing

* Hash functions: mapping {0,1}? to {0,1}™
= (2" elements to 2™ cells)

» Random inputs => All cells are roughly equal (1n expectation)

» Universal family of hash functions:
* Choose hash function randomly from family

» For arbitrary distribution on inputs => All cells are roughly
equal (In expectation)

18

r-Universal Hashing

= Each solution is hashed uniformly

» Every r-subset of solutions is hashed
independently

* Forr=2,
V distinct y1,y2 and Vaq, as
Prih(y1) = a1 AN R(y2) = ag] = Prih(y1) = aa]Pr(h(y2) = a2

» r-wise universal hash function => polynomial
of degree r-1

19

Why Independence matters?

We pick a random cell and define following
random variables

Ik 3 11 Yk 1s in the cell

Let I, I, I3, ...I,,be r-wise independent variables in |0, 1],

then for I = Zlk
S < Op| > ¢

Number of solutions in a /

randomly picked cell Deviation
20

Tradeoff

Higher universality => Stronger Guarantees ¥ 4

Higher universality => Polynomaials of higher
degree

21

Prior Work

* Choose n-wise universal hash functions and all cells
are guaranteed to be small with high probability
* Theoretical guarantee of uniformity

22

What if we lower the hashing to
3-universal

All cells are not guaranteed to be small anymore
with high probability

23

What 1f we lower the hashing to
3-universal

But a randomly picked cell 1s guaranteed to be
small with high probability
Guarantees of almost-uniformity

24

Strong Theoretical Guarantees

» Uniformity (BGP with n-universal)

Prly is output]| = Rel
F

* Almost- Uniformity (UniGen with 3-universal)

1

1
Vy € Rp, < Prly is output] < (1 + ¢)

(1+¢e)|Rr| — Rp|

= Polynomial number of SAT calls

23

Enumerating cell solutions

= A cell can be represented as the conjunction of:

* Input formula F
= m random XOR constraints

= 2715 the number of cells desired

= Use CryptoMiniSAT for CNF + XOR formulas

26

2-3 Orders of Magnitude Faster

Timeout: 18000 seconds

UniGen

XORSample'

T pIq € s

P19 L o0
] qQid] asvo

[qid 7 asvo

-/ Surivnbs

| p]Sutivnbs

[PIq € o500

~
H
~
LN
QN

3

S

- 0B]9SDI
- CJaspo

WL
- [9aspo

| CpJasvo

- C07IsDI

| 9asvo

- ¢QJIsDI

CpIq € 5o
/FoSDI

Benchmarks

18000

fep—-+. » t & 3 1 1 1L 1 1 1 1 1L L R LIRLDE

0.18

27

Runtime Pertormance

Experiments over 200+ benchmarks

Generator Relative Runtime

XORSample’ (weak
guarantees)

UniGen
Desired Uniform Generator®

Simple SAT solver

*. Based on EDA Industry

28

Outline

Losing Independence of hashing functions

Losing Independence among samples

Parallelization of Constrained Random
Simulation

Conclusion

29

How many solutions are generated per sample?

>].,0Thresh

30

(@) (@)

/ cPlg;f(a rand@m cell a@nd check 1f 1ts small

of solutions in a small cell is between loThresh and hiThresh

O O
o o E 0 . OO o\
/o 6)

%O Pick a random cell and check if Asmall

(@) (ON©) O 5
O)

e (@)
o e o
o
(@) (@) o o

Pick & loThresh solutions Oraondomcly from this cell
k. o o e N o : o/
\oo—o//

of solutions in a small cell is between loThresh and hiThresh

O

3-Universal and Independence
of Samples

3-Universal hash functions:
» Choose hash function randomly

» For arbitrary distribution on solutions=> All cells are
roughly equal 1n expectation

= But:
» While each input 1s hashed uniformly

* And each 3-solutions set is hashed independently
* A 4-solutions set might not be hashed independently

33

3-Universal and
Independence of samples

* Choosing up to 3 samples => Full
Independence between samples

* Independence provides coverage
guarantees.

34

3-Universal and
Independence of samples

* Choosing up to 3 samples => Full
Independence between samples

* Choosing loThresh (> 3) samples => Loss of
full independence among samples

» “Almost-Independence”

= Still provides theoretical guarantees of coverage

o o\ ° o
o 9 3
°\o oU [
o g I\ . OO o
© o o~ o °
o
OO o 6} o o >
o

35

Strong (Guarantees

® [= # of samples < |Rp|

Vy € Rp,
i < Pr[y is output] < 1.02(1 + ¢) i
i 1S OU u . e ———
(1+)[R e S—_— Rp|

Constant number of
SAT calls per sample

36

Bug-finding effectiveness

bug frequency f = B/Rg

UniGen UniGen?2
relative number _ i
of SAT calls 3-hiThresh(1+v)(1+e) 3-hiThresh (14D)(1+e)
0.52 0.62-loThresh el

Simply put,
#Hof SAT calls for UniGen2 << # of SAT calls for UniGen

37

Bug-finding effectiveness

bug frequency f = 1/104
find bug with probability > 1/2

UniGen UniGen2

Expected number 4.35 x 107 3.38 x 10¢

of SAT calls

An order of magnitude difference!

38

~20 times faster than UniGen

UniGen2
UniGen

1000

100

10

Time

per
sample

0.01 -

MU~ ZOUIP
givLiong

MU~ J1OUIISSDIP
2SA2424]]
[0S424D43]]
DQnSIvADY
ananbua

450¢

408

701442 UISOT
ISUTpAurTAIgnop
/ Surivnbs

Benchmarks

9] 3urivnbs

c clq [oo
L ST DZESS

C € P96I]S

¢ € VLTS

39

Runtime Pertormance

Experiments over 200+ benchmarks

Generator Relative Runtime

XORSample’ (weak
guarantees)

UniGen

UniGen2
Desired Uniform Generator®

Simple SAT solver

*. Based on EDA Industry

40

Outline

Losing Independence of hashing functions
Losing Independence among samples

Parallelization of Constrained Random
Simulation

Conclusion

41

Current Paradigm of Simulation-
based Verification

Simulator

e Can not be

Test 2 Test 3 parallelized since test
B generators maintain
Test Generator “global state”
Ky

* Loses theoretical
guarantees (if any) of
uniformity

%Stl .

Simulator
Simulator

42

New Paradigm of Simulation-
based Verification

Simulator Simulator

Simulator

Simulator

Desired Performance with 2 cores

Generator Relative Runtime
UniGen
UniGen2

Parallel UniGen2 (2 cores)
Desired Uniform Generator®

Simple SAT solver

*. Based on EDA Industry

44

Uniformity Comparison

Benchmark with 16,384 solutions

Ideal Generator: Enumerate all solutions and pick
one randomly

Generated 4M samples for Ideal, UniGen2 &
parallel (on 12 cores) UniGen2

Group solutions according to their frequency

Plot # of solutions vs Frequency
= (200,250): 250 solutions appeared 200 times each

In theory, we expect a Poisson distribution

45

#Solutions

Uniformity Comparison

1000

300

600 -

400 -

200 -

O T I | | | | |
168 189 209 229 249 269

Frequency

= - —r_

290

46

#Solutions

Uniformity Comparison

—Ideal Sampler
1000 - UniGen2
—Parallel UniGen2
800 -
600 -
400 -
200 -
O T o T T T T T - T —— |
168 189 209 229 249 269 290

Frequency 47

Outline

Losing Independence of hashing functions
Losing Independence among samples

Parallelization of Constrained Random
Simulation

Conclusion

48

How well did we tradeoff Independence?

Relaxation Loss Gain
Independence

Hashing Uniformity to e 2-3 orders of
Almost magnitude
Uniformity performance
improvement
Weakened Almost Still provides coverage
Uniformity guarantees

20 x improvement

Parallelization
Achieved desired
performance

Takeaways

Uniform generation has diverse applications

Proposed the first scalable parallel approach
that provides strong guarantees

Requires constant number of SAT
calls per sample

Scales linearly with number of cores

Achieves desired performance by EDA Industry

50

New Paradigm of Simulation-
based Verification

Simulator % Simulator
Test Generator Test Generator
Preprocessing
Test Generator Test Generator

%

Simulator Simulator

And one more thing!

= Tool (along with source code) 1s available
online:

= Visit for papers/reports

D2

http://tinyurl.com/unigen2
http://www.kuldeepmeel.com

	Default Section
	Slide 1: Sampling from combinatorial spaces: Achieving the fine balancing act between independence and scalability
	Slide 2: How do we guarantee that systems work correctly ?
	Slide 3: Dynamic Verification
	Slide 4: Motivating Example
	Slide 5: Constrained-Random Simulation
	Slide 6: Constrained-Random Simulation
	Slide 7: Problem Formulation
	Slide 8: Prior Work
	Slide 9: EDA Industry’s Desired Performance
	Slide 10: Our Contribution
	Slide 11: Outline
	Slide 12: Main Idea
	Slide 13: Partitioning into cells
	Slide 14: Partitioning into cells
	Slide 15: Partitioning into cells
	Slide 16: Partitioning into cells
	Slide 17: Partitioning into cells
	Slide 18: Universal Hashing
	Slide 19: r-Universal Hashing
	Slide 20: Why Independence matters?
	Slide 21: Tradeoff
	Slide 22: Prior Work
	Slide 23: What if we lower the hashing to 3-universal
	Slide 24: What if we lower the hashing to 3-universal
	Slide 25: Strong Theoretical Guarantees
	Slide 26: Enumerating cell solutions
	Slide 27: 2-3 Orders of Magnitude Faster
	Slide 28: Runtime Performance
	Slide 29: Outline
	Slide 30
	Slide 31: UniGen
	Slide 32: UniGen
	Slide 33: 3-Universal and Independence of Samples
	Slide 34
	Slide 35
	Slide 36: Strong Guarantees
	Slide 37: Bug-finding effectiveness
	Slide 38: Bug-finding effectiveness
	Slide 39: ~20 times faster than UniGen
	Slide 40: Runtime Performance
	Slide 41: Outline
	Slide 42: Current Paradigm of Simulation-based Verification
	Slide 43: New Paradigm of Simulation-based Verification
	Slide 44: Desired Performance with 2 cores
	Slide 45: Uniformity Comparison
	Slide 46: Uniformity Comparison
	Slide 47: Uniformity Comparison
	Slide 48: Outline
	Slide 49: How well did we tradeoff Independence?
	Slide 50: Takeaways
	Slide 51: New Paradigm of Simulation-based Verification
	Slide 52: And one more thing!

