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How do we guarantee that systems work 

correctly ?

Functional Verification

▪ Formal verification

▪ Challenges: formal requirements, scalability

▪ ~10-15% of  verification effort 

▪ Dynamic verification: dominant approach
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Dynamic Verification

▪ Design is simulated with test vectors

▪ Test vectors represent different 

verification scenarios 

▪ Results from simulation compared to 

intended results

▪ Challenge: Exceedingly large test space!
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Motivating Example

a b

c

64 bit 64 bit

64 bit

c = f(a,b)

How do we test the circuit works ?

• Try for all values of  a and b

• 2128 possibilities 

• Sun will go nova before done!

• Not scalable
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Constrained-Random Simulation

▪ Test vectors: solutions of  constraints

▪ Proposed by Lichtenstein, Malka, Aharon (IAAI 94) 
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a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints

• Designers: 

1. a +64 11 *32 b = 12

2. a <64 (b >> 4)

• Past Experience: 

1. 40 <64 34 + a <64 5050

2. 120 <64 b <64 230

• Users:

1. 232 *32 a + b != 1100

2. 1020 <64 (b /64 2) +64 a <64 2200



Constrained-Random 

Simulation

Problem: How can we uniformly sample the values of a and 

b satisfying the above constraints? 6

a b
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64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints

• Designers: 

1. a +64 11 *32 b = 12

2. a <64 (b >> 4)

• Past Experience: 

1. 40 <64 34 + a <64 5050

2. 120 <64 b <64 230

• Users:

1. 232 *32 a + b != 1100

2. 1020 <64 (b /64 2) +64 a <64 2200



Problem Formulation

Set of  Constraints

Sample satisfying assignments 

uniformly at random

SAT Formula

Scalable Uniform Generation of SAT Witnesses
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Prior Work
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EDA Industry’s Desired 

Performance 
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Generator Relative Runtime

XORSample’ (weak 

guarantees)

~50000

Desired Uniform Generator* 10

Simple SAT solver 1



Our Contribution
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Outline

▪ Losing Independence of  hashing functions

▪ Losing Independence among samples

▪ Parallelization of  Constrained Random 
Simulation

▪ Conclusion
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Main Idea
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Cells should be roughly equal in size and small 

enough to enumerate completely

Partitioning into cells



Partitioning into cells

▪ Too large => Hard to enumerate

▪ Too small => Variance can be very high

▪ hiThresh: upper bound on size of  cell

▪ loThresh: lower bound on size of  cell

▪ E.g.,  loThresh = 11, hiThresh = 60 

14



15

Partitioning into cells
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Pick a random cell

Pick a solution randomly from this cell 

Partitioning into cells



Partitioning into cells

How can we partition into roughly 

equal small cells without knowing the 

distribution of  solutions? 

Universal Hashing
(Carter-Wegman 1979) 

17



Universal Hashing
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▪ Hash functions: mapping {0,1}n to {0,1}m  

▪ (2n elements to 2m cells)

▪ Random inputs => All cells are roughly equal (in expectation)

▪ Universal family of  hash functions:

▪ Choose hash function randomly from family

▪ For arbitrary distribution on inputs => All cells are roughly 
equal (in expectation)



r-Universal Hashing

▪ Each solution is hashed uniformly

▪ Every r-subset of  solutions is hashed 
independently 

▪ For r=2, 

▪ r-wise universal hash function => polynomial 
of  degree r-1

19



Why Independence matters?
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We pick a random cell and define following 

random variables

Number of  solutions in a 

randomly picked cell Deviation



Tradeoff  

Higher universality => Stronger Guarantees

Higher universality => Polynomials of  higher 

degree
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• Choose n-wise universal hash functions and all cells 

are guaranteed to be small with high probability

• Theoretical guarantee of  uniformity

Prior Work



What if  we lower the hashing to 

3-universal
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All cells are not guaranteed to be small anymore 

with high probability



What if  we lower the hashing to 

3-universal
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But a randomly picked cell is guaranteed to be 

small with high probability

Guarantees of  almost-uniformity



▪ Uniformity (BGP with n-universal)

▪ Almost- Uniformity (UniGen with 3-universal)

▪ Polynomial number of  SAT calls

Strong Theoretical Guarantees
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Enumerating cell solutions

▪ A cell can be represented as the conjunction of: 

▪ Input formula F

▪ m random XOR constraints

▪ 2m is the number of  cells desired

▪ Use CryptoMiniSAT for CNF + XOR formulas
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2-3 Orders of  Magnitude Faster
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Runtime Performance
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Generator Relative Runtime

XORSample’ (weak 

guarantees)

~50000

UniGen 470

Desired Uniform Generator* 10

Simple SAT solver 1

*:  Based on EDA Industry

Experiments over 200+ benchmarks



Outline

▪ Losing Independence of  hashing functions

▪ Losing Independence among samples

▪ Parallelization of  Constrained Random 
Simulation

▪ Conclusion
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How many solutions are generated per sample?

>LoThresh
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Pick a random cell and check if  its small

Pick a solution randomly from this cell 

UniGen

# of  solutions in a small cell is between loThresh and hiThresh
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Pick a random cell and check if  its small

Pick a loThresh solutions randomly from this cell 

UniGen

# of  solutions in a small cell is between loThresh and hiThresh
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3-Universal hash functions:

▪ Choose hash function randomly

▪ For arbitrary distribution on solutions=> All cells are 

roughly equal in expectation

▪ But:

▪ While each input is hashed uniformly

▪ And each 3-solutions set is hashed independently

▪ A 4-solutions set might not be hashed independently

3-Universal and Independence 

of  Samples



▪ Choosing up to 3 samples => Full 

Independence between samples
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3-Universal and 
Independence of  samples

▪ Independence provides coverage 

guarantees. 



▪ Choosing up to 3 samples => Full 

Independence between samples

▪ Choosing loThresh (> 3) samples => Loss of  

full independence among samples

▪ “Almost-Independence”

▪ Still provides theoretical guarantees of  coverage
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3-Universal and 
Independence of  samples



Strong Guarantees

▪

▪ Polynomial Constant number of  

SAT calls per sample
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Bug-finding effectiveness
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bug frequency f  = B/RF

Simply put, 

#of  SAT calls for UniGen2 <<  # of  SAT calls for UniGen



Bug-finding effectiveness

UniGen UniGen2

Expected number 

of  SAT calls

4.35 × 107 3.38 × 106
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bug frequency f  = 1/104

find bug with probability ≥ 1/2

An order of  magnitude difference!



~20 times faster than UniGen
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Runtime Performance

40

Generator Relative Runtime

XORSample’ (weak 

guarantees)

~50000

UniGen 470

UniGen2 21

Desired Uniform Generator* 10

Simple SAT solver 1

*:  Based on EDA Industry

Experiments over 200+ benchmarks



Outline

▪ Losing Independence of  hashing functions

▪ Losing Independence among samples

▪ Parallelization of Constrained Random 
Simulation

▪ Conclusion
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Current Paradigm of  Simulation-

based Verification

Test 2 Test 3

Test 4Test 1

Test Generator

Simulator

Simulator
Simulator

Simulator

• Can not be 

parallelized since test 

generators maintain 

“global state” 

• Loses theoretical 

guarantees (if  any) of  

uniformity



Test Generator

New Paradigm of  Simulation-

based Verification
Simulator

Simulator

Simulator

Simulator

Test Generator

Test Generator

Test Generator

Preprocessing

• Preprocessing needs to be done only once

• No communication required between different 

copies of  the test generator

• Scales linearly with number of  cores in 

practice
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Generator Relative Runtime

UniGen 470

UniGen2 21

Parallel UniGen2 (2 cores) ~10

Desired Uniform Generator* 10

Simple SAT solver 1

Desired Performance with 2 cores

*:  Based on EDA Industry



Uniformity Comparison

▪ Benchmark with 16,384 solutions

▪ Ideal Generator: Enumerate all solutions and pick 
one randomly

▪ Generated 4M samples for Ideal, UniGen2 & 
parallel (on 12 cores) UniGen2 

▪ Group solutions according to their frequency

▪ Plot # of  solutions vs Frequency 

▪ (200,250): 250 solutions appeared 200 times each

▪ In theory, we expect a Poisson distribution
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Uniformity Comparison
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Uniformity Comparison
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Outline

▪ Losing Independence of  hashing functions

▪ Losing Independence among samples

▪ Parallelization of  Constrained Random 
Simulation

▪ Conclusion
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How well did we tradeoff  Independence?

Relaxation 

Independence
Loss Gain

Hashing Uniformity to 

Almost 

Uniformity

• 2-3 orders of  

magnitude 

performance 

improvement

Sample Weakened Almost

Uniformity

• Still provides coverage 

guarantees

• 20 x improvement

• Parallelization

• Achieved desired 

performance 49



Takeaways 

▪ Uniform generation has diverse applications

▪ Proposed the first scalable parallel approach 

that provides strong guarantees

▪ Requires polynomial constant number of  SAT 

calls per sample

▪ Scales  linearly with number of  cores

▪ Achieves desired performance by EDA Industry
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Test Generator

New Paradigm of  Simulation-

based Verification
Simulator

Simulator

Simulator

Simulator

Test Generator

Test Generator

Test Generator

Preprocessing



And one more thing!

▪ Tool (along with source code) is available 

online: 

http://tinyurl.com/unigen2

▪ Visit www.kuldeepmeel.com for papers/reports
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http://tinyurl.com/unigen2
http://www.kuldeepmeel.com
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