
Sampling Techniques for Constraint Satisfaction

and Beyond

Kuldeep S Meel2

(Joint work with Supratik Chakraborty1, Moshe Y Vardi2)

1Indian Institute of Technology Bombay, India
2Department of Computer Science, Rice University

Jan 8, 2014 IIT Bombay

1

Part of this work has been published in CAV 2013 and CP 2013

Life in The 21st Century!

How do we guarantee that the systems work correctly ?

2

Motivating Example

a b

c

64 bit 64 bit

64 bit

c = f(a,b)

How do we verify that this circuit works ?

• Try for all values of a and b

• 2128 possibilities (1022 years)

• Not scalable

• Randomly sample some a’s and b’s

• Wait! None of the circuits in the past

faulted when 10 < b < 40

• Finite resources!

• Let’s sample from regions where it is likely

to fault

3

Designing Verification Scenarios

Designing Constraints

• Designers:

1. 100 < b < 200

2. 300 < a < 451

3. 40 < a < 50 and 30 < b < 40

• Past Experience:

1. 400 < a < 2000

2. 120 < b < 230

• Users:

1. 1000<a < 1100

2. 20000 < b < a < 22000

Problem: How can we uniformly sample the values of a and b

satisfying the above constraints?

4

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Problem Formulation

Set of Constraints

Given a SAT formula, can one uniformly

sample solutions without enumerating all

solutions while scaling to real world

problems?

SAT Formula

Scalable Uniform Generation of SAT-Witnesses

5

a b

c

64 bit

64 bit

c = f(a,b)

64 bit

Outline
6

Uniform Generation of SAT-witnesses

Approximate Model Counting

 Future Directions

Outline
7

Uniform Generation of SAT-witnesses

Approximate Model Counting

 Future Directions

Prior Work

Heuristic Work

Guarantees: weak

Performance: strong

BGP Algorithm

(Bellare, Goldreich & Petrank,98)

XORSample’

(Gomes, Sabhrawal & Selman, 07)

Theoretical Work

Guarantees: strong

Performance: weak

BDD-based

• Poor performance

SAT-based heuristics

• No guarantees INDUSTRY

ACADEMIA

8

Our Contribution

Heuristic Work

Guarantees: weak

Performance: strong

BGP Algorithm

(Bellare, Goldreich & Petrank,98)

XORSample’

(Gomes, Sabhrawal & Selman, 07)

Theoretical Work

Guarantees: strong

Performance: weak

BDD-based

• Poor performance

SAT-based heuristics

• No guarantees INDUSTRY

ACADEMIA

UniGen

Guarantees : strong

Performance: strong

9

Central Idea
10

Partitioning into equal “small” cells
11

12

Pick a random cell

Pick a random solution from this cell

Partitioning into equal “small” cells

How to Partition?

How to partition into roughly equal

small cells of solutions without

knowing the distribution of solutions?

Universal Hashing

[Carter-Wegman 1979, Sipser 1983]

13

Universal Hashing
14

 Hash functions: {0,1}n
➔ {0,1}m

 2n elements to 2m cells

 Random inputs ➔ All cells are roughly small

 Universal hash functions:

 Arbitrary distribution on inputs ➔All cells are roughly small

 Need stronger bounds on distribution of the size of cells

Universality v/s Complexity

 H(n,m,r): Family of r-universal hash functions

mapping {0,1}n to {0,1}m (2n elements to 2m cells)

 Higher the r ➔ Stronger guarantees on distribution

of size of cells

 r-wise universality ➔ Polynomials of degree r-1

 Lower universality ➔lower complexity

15

Hashing-Based Approaches

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

n-universal hashing

Uniform Generation

All cells should be small

BGP Algorithm

16

Solution space

Scaling to Thousands of Variables

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :
n-universal hashing 2-universal hashing

Uniform Generation

Random

All cells should be small Only a randomly chosen

cells needs to be “small”

BGP Algorithm

Near-Uniform Generation

UniGen

17

Solution space

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :
n-universal hashing 2-independent hashing

Uniform Generation

Random

All cells should be small Only a randomly chosen

cells needs to be “small”

BGP Algorithm

Near-Uniform Generation

UniGen

18

Solution space

From tens of variables to

thousands of variables!

Scaling to Thousands of Variables

Highlights

 Employs XOR-based hash functions instead of

computationally infeasible algebraic hash functions

 Uses off-the-shelf SAT solver CryptoMiniSAT

(MiniSAT+XOR support)

19

Strong Theoretical Guarantees

 Uniformity

For every solution y of RF

Pr [y is output] = 1/|RF|

20

Strong Theoretical Guarantees

 Near Uniformity

 Success Probability

 Polynomial calls to SAT Solver

For every solution y of RF

Pr [y is output] >= 1/8 x 1/|RF|

Algorithm UniWit succeeds with probability at least 1/8

21

Experimental Methodology

 Benchmarks (over 300)

 Bit-blasted versions of word-level constraints from VHDL

designs, SMTLIB, ISCAS’85

 Bit-blasted versions from program synthesis

 Largest benchmark with 486,193 variables

 Objectives

 Comparison with algorithms BGP & XORSample’

◼ Uniformity

◼ Performance

22

Results: Uniformity

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4x106; Total Solutions : 16384

23

0

50

100

150

200

250

300

350

400

450

500

184 208 228 248 268 288

US

UniGen

of solutions

Freq

Results : Performance

0.1

1

10

100

1000

10000

100000

ca
se

4
7

ca
se

_
3
_
b
1
4
_
3

ca
se

1
0

5

ca
se

8

ca
se

2
0

3

ca
se

1
4

5

ca
se

6
1

ca
se

9

ca
se

1
5

ca
se

1
4

0

ca
se

_
2
_
b
1
4
_
1

ca
se

_
3
_
b
1
4
_
1

sq
ua

ri
ng

1
4

sq
ua

ri
ng

7

ca
se

_
2
_
p
tb

_
1

ca
se

_
1
_
p
tb

_
1

ca
se

_
2
_
b
1
4
_
2

ca
se

_
3
_
b
1
4
_
2

Time(s)

Benchmarks

UniGen

XORSample'

24

0.1

1

10

100

1000

10000

100000

ca
se

4
7

ca
se

_
3
_
b
1
4
_
3

ca
se

1
0

5

ca
se

8

ca
se

2
0

3

ca
se

1
4

5

ca
se

6
1

ca
se

9

ca
se

1
5

ca
se

1
4

0

ca
se

_
2
_
b
1
4
_
1

ca
se

_
3
_
b
1
4
_
1

sq
ua

ri
ng

1
4

sq
ua

ri
ng

7

ca
se

_
2
_
p
tb

_
1

ca
se

_
1
_
p
tb

_
1

ca
se

_
2
_
b
1
4
_
2

ca
se

_
3
_
b
1
4
_
2

Time(s)

Benchmarks

UniWit

XORSample'

• UniWit is is 2-3 orders of magnitude faster than XORSample’

• Observed success probability = 0.6 (>> theoretical guarantee of 0.125)

25

2-3 Orders of Magnitude Faster

The Story So Far
26

 Theoretical guarantees of almost uniformity

 Major improvements in running time and uniformity

compared to existing generators

 But……….

How many samples should I test my system to

achieve desired coverage?

 Are 105 samples enough?

 Case A: Total solutions -106

 Case B: Total solutions - 1060

The missing link
27

What is the total number of

satisfying assignments to

system of constraints?

Outline
28

Uniform Generation of SAT-witnesses

Approximate Model Counting

 Future Directions

What is Model Counting?

 Given a SAT formula F

 RF: Set of all solutions of F

 Problem (#SAT): Estimate the number of solutions of

F (#F) i.e., what is the cardinality of RF?

 E.g., F = (a v b)

 RF = {(0,1), (1,0), (1,1)}

 The number of solutions (#F) = 3

#P: The class of counting problems for decision

problems in NP!

29

Practical Applications
30

Exciting range of applications!

 Probabilistic reasoning/Bayesian inference

 Planning with uncertainty

 Multi-agent/ adversarial reasoning

[Roth 96, Sang 04, Bacchus 04, Domshlak 07]

But it is hard!
31

 #SAT is #P-complete

 Even for counting solutions of 2-CNF SAT

 #P is really hard!

 Believed to be much harder than NP-complete

problems

 PH P#P

Prior Work
32

Counters Guarantee Confidence Remarks

Exact counter

(e.g. sharpSAT, Cachet)

C = #F 1 Poor Scalability

Lower bound counters

(e.g. MBound,

SampleCount)

C ≤ #F d Very weak

guarantees

Upper bound

counters(e.g.

MiniCount)

C ≥ #F d Very weak

guarantees

Input Formula: F; Total Solutions: #F; Return Value: C

Approximate Model Counting
33

Design an approximate model counter G:

 inputs:

 CNF formula F

 tolerance e

 confidence d

 the count returned by it is within e of the #F with

confidence at least d

Approximate Model Counting

Approximate Model Counting
34

Design an approximate model counter G:

 inputs:

 CNF formula F

 tolerance e

 confidence d

 the count returned by it is within e of the #F with

confidence at least d and scales to real world problems

Scalable Approximate Model Counting

Lies in the 2nd level of Polynomial hierarchy: S2
P

Our Contribution
35

Input Formula: F; Total Solutions: #F

Counters Guarantee Confidence Remarks

Exact counter

(e.g. sharpSAT, Cachet)

C = #F 1 Poor Scalability

ApproxMC #F(+e)d C d (+ e) #F d Scalability +

Strong guarantees

Lower bound counters

(e.g. MBound,

SampleCount)

C ≤ #F d Very weak

guarantees

Upper bound

counters(e.g.

MiniCount

C ≥ #F d Very weak

guarantees

The First Scalable

Approximate Model Counter

How do we count?
36

Naïve Enumeration: Not Scalable
37

Not Scalable! (Think of enumerating 2100 solutions)

• Enumerate all solutions

• Exact Counting!

• Cachet, Relsat, sharpSAT

Counting through Partitioning
38

Counting through Partitioning
39

Pick a random cell

Total # of solutions= #solutions in the cell

* total # of cells

Algorithm in Action
40

690 710 730 730 731 831 834………….…

t

Algorithm

Algorithm in Action
41

Algorithm

690 710 730 730 731 831 834………….…

t

Median

Partitioning

Linear hash functions (2-universal hash functions)

42

How to partition into roughly equal

cells of solutions without knowing the

distribution of solutions?

Strong Theoretical Results
43

ApproxMC (CNF: F, tolerance: e,
confidence:d)
Suppose ApproxMC(F,e,d) returns C. Then,

Pr [#F(+e)d C d (+ e) #F] ≥ d

ApproxMC runs in time polynomial in log (1-d)-,
|F|, e-1 relative to SAT oracle

Experimental Methodology
44

 Benchmarks (over 200)

 Grid networks, DQMR networks, Bayesian networks

 Plan recognition, logistics problems

 Circuit synthesis

 Tolerance: e= 0.75, Confidence: d = 0.9

 Objectives

 Comparison with exact counters (Cachet) & bounding

counters (MiniCount, Hybrid-MBound, SampleCount)

◼ Performance

◼ Quality of bounds

Results: Performance Comparison
45

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

ApproxMC

Cachet

Results: Performance Comparison
46

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

ApproxMC

Cachet

Can Solve a Large Class of Problems
47

Large class of problems that lie beyond the exact

counters but can be computed by ApproxMC

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

ApproxMC

Cachet

Mean Error: Only 4% (allowed: 75%)
48

Mean error: 4% – much smaller than the

theoretical guarantee of 75%

1.0E+00

3.2E+01

1.0E+03

3.3E+04

1.0E+06

3.4E+07

1.1E+09

3.4E+10

1.1E+12

3.5E+13

1.1E+15

3.6E+16

0 10 20 30 40 50 60 70 80 90

Cachet*1.75

Cachet/1.75

ApproxMC

Key Takeaways
49

 Prior work either offered no/weak guarantees or poor
performance

 Limited independence hash functions for partitioning

 Our Technique provides

 Scalability

 Theoretical guarantees of almost uniformity (UniGen)

 The first approximate model counter (ApproxMC)

 Tools are available online! Go and Try them out!

Looking Forward
50

 UniGen: Uniform generator for the next Generation

 Efficient hash functions

◼ With smaller XOR lengths

◼ Scales to hundreds of thousands of variables

 Stronger guarantees

For every solution y of RF

1/(8) x 1/|RF|<= Pr [y is output]

Looking Forward
51

 UniGen: Uniform generator for the next Generation

 Efficient hash functions

◼ With smaller XOR lengths

◼ Scales to hundreds of thousands of variables

 Stronger guarantees

 Extension to other domains: SMT

 Distribution-aware sampling and counting

For every solution y of RF

1/(2.7) x 1/|RF|<= Pr [y is output] <= 2.7 x1/|RF|

Discussion
52

Thank You for your attention!

Acknowledgments

• NSF

• ExCAPE

• Intel

• BRNS, India

• Sun Microsystems

• Sigma Solutions,Inc

Results: Bounding Counters
53

 Range of count from bounding counters = C2-C1

 C1: From lower bound counters(MBound/SampleSAT)

 C2: From upper bound counters (MiniCount)

 Range from ApproxMC: [C/(1+e), (1+e)C]

 Smaller the range, better the algorithm!

Better Bounds Than Existing Counters
54

ApproxMC improved the upper bounds

significantly while also improving the lower bounds

2.6E+02

8.2E+03

2.6E+05

8.4E+06

2.7E+08

8.6E+09

2.7E+11

8.8E+12

2.8E+14

9.0E+15

0 5 10 15 20 25 30 35 40 45 50 55 60

ApproMC

MBound/SampleCount/MiniCount

	Slide 1: Sampling Techniques for Constraint Satisfaction and Beyond
	Slide 2: Life in The 21st Century!
	Slide 3: Motivating Example
	Slide 4: Designing Verification Scenarios
	Slide 5: Problem Formulation
	Slide 6: Outline
	Slide 7: Outline
	Slide 8: Prior Work
	Slide 9: Our Contribution
	Slide 10: Central Idea
	Slide 11: Partitioning into equal “small” cells
	Slide 12: Partitioning into equal “small” cells
	Slide 13: How to Partition?
	Slide 14: Universal Hashing
	Slide 15: Universality v/s Complexity
	Slide 16: Hashing-Based Approaches
	Slide 17: Scaling to Thousands of Variables
	Slide 18: Scaling to Thousands of Variables
	Slide 19: Highlights
	Slide 20: Strong Theoretical Guarantees
	Slide 21: Strong Theoretical Guarantees
	Slide 22: Experimental Methodology
	Slide 23: Results: Uniformity
	Slide 24: Results : Performance
	Slide 25: 2-3 Orders of Magnitude Faster
	Slide 26: The Story So Far
	Slide 27: The missing link
	Slide 28: Outline
	Slide 29: What is Model Counting?
	Slide 30: Practical Applications
	Slide 31: But it is hard!
	Slide 32: Prior Work
	Slide 33: Approximate Model Counting
	Slide 34: Approximate Model Counting
	Slide 35: Our Contribution
	Slide 36: How do we count?
	Slide 37: Naïve Enumeration: Not Scalable
	Slide 38: Counting through Partitioning
	Slide 39: Counting through Partitioning
	Slide 40: Algorithm in Action
	Slide 41: Algorithm in Action
	Slide 42: Partitioning
	Slide 43: Strong Theoretical Results
	Slide 44: Experimental Methodology
	Slide 45: Results: Performance Comparison
	Slide 46: Results: Performance Comparison
	Slide 47: Can Solve a Large Class of Problems
	Slide 48: Mean Error: Only 4% (allowed: 75%)
	Slide 49: Key Takeaways
	Slide 50: Looking Forward
	Slide 51: Looking Forward
	Slide 52: Discussion
	Slide 53: Results: Bounding Counters
	Slide 54: Better Bounds Than Existing Counters

