Sampling Techniques for Constraint Satisfaction and Beyond

Kuldeep S Meel²

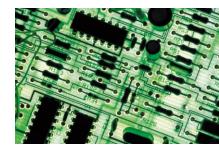
(Joint work with Supratik Chakraborty¹, Moshe Y Vardi²)

Part of this work has been published in CAV 2013 and CP 2013

¹Indian Institute of Technology Bombay, India ²Department of Computer Science, Rice University

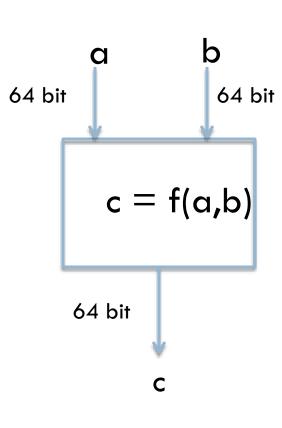
Jan 8, 2014

Life in The 21st Century!



How do we guarantee that the systems work <u>correctly</u>?

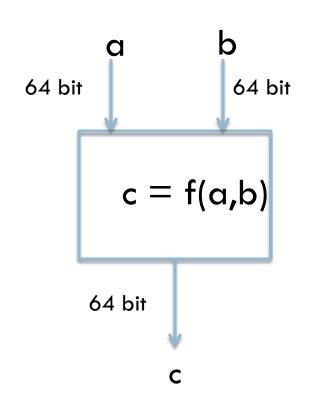
Motivating Example



How do we verify that this circuit works?

- Try for all values of a and b
 - 2¹²⁸ possibilities (10²² years)
 - Not scalable
- Randomly sample some a's and b's
 - Wait! None of the circuits in the past faulted when 10 < b < 40
 - Finite resources!
- Let's sample from regions where it is likely to fault

Designing Verification Scenarios

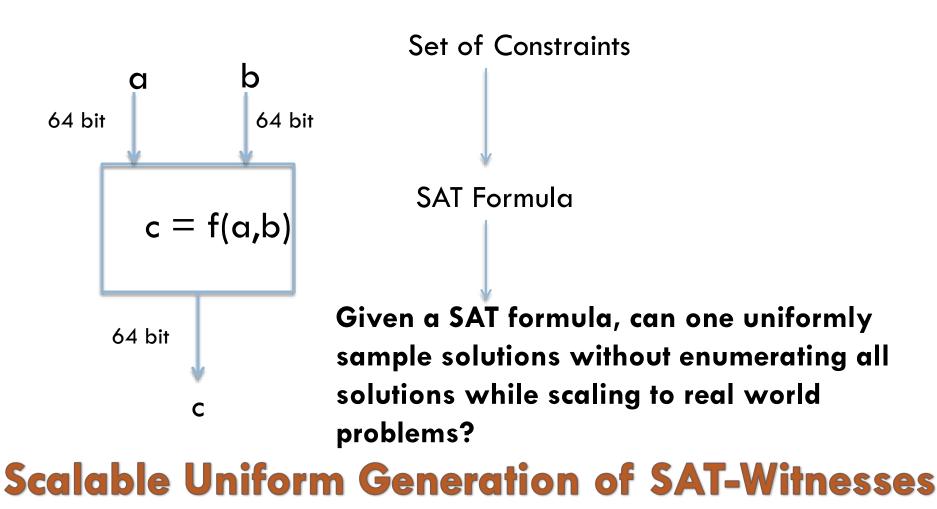


Designing Constraints

- Designers:
 - 1. 100 < b < 200
 - 2. 300 < a < 451
 - 3. 40 < a < 50 and 30 < b < 40
- Past Experience:
 - 1. 400 < a < 2000
 - 2. 120 < b < 230
- Users:
 - 1. 1000<a < 1100
 - 2. 20000 < b < a < 22000

Problem: How can we uniformly sample the values of a and b satisfying the above constraints?

Problem Formulation



Uniform Generation of SAT-witnesses

Approximate Model Counting

Future Directions

Uniform Generation of SAT-witnesses

Approximate Model Counting

Future Directions

Prior Work

BDD-based • Poor performance		SAT-based heuristicsNo guarantees	INDUSTRY
------------------------------	--	--	----------

Theoretical Work

Guarantees: strong

Performance: weak

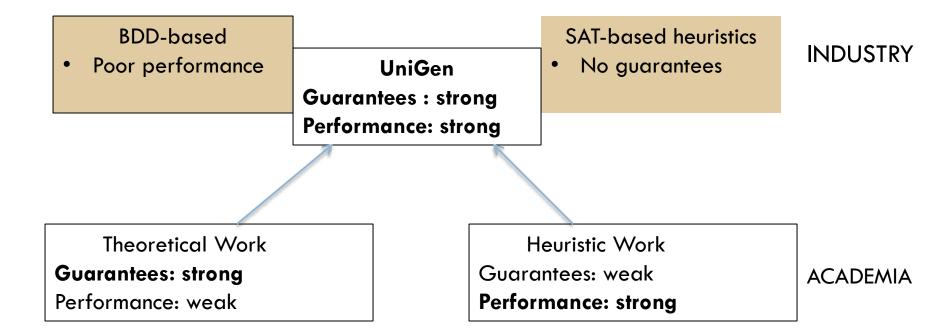
Heuristic Work Guarantees: weak **Performance: strong**

ACADEMIA

BGP Algorithm (Bellare, Goldreich & Petrank,98)

XORSample' (Gomes, Sabhrawal & Selman, 07)

Our Contribution

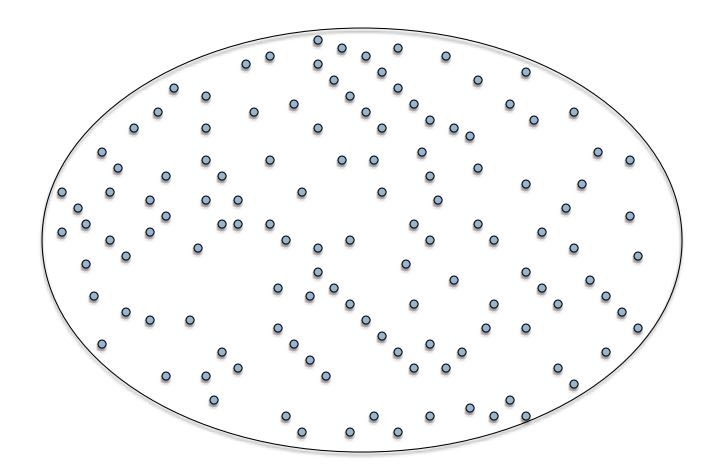


BGP Algorithm (**B**ellare, **G**oldreich & **P**etrank,98)

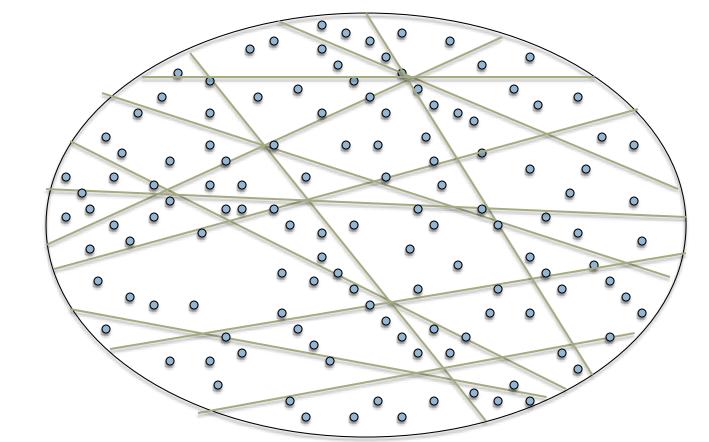
XORSample' (Gomes, Sabhrawal & Selman, 07)

Central Idea

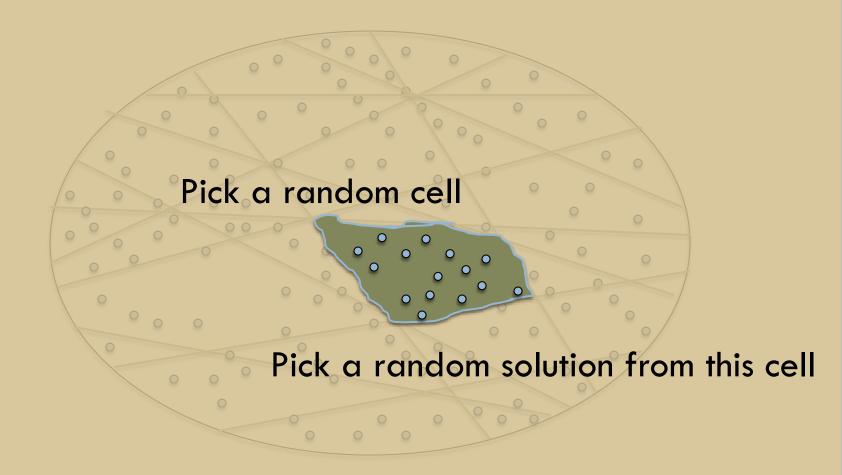
10



Partitioning into equal "small" cells



Partitioning into equal "small" cells



How to Partition?

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Universal Hashing [Carter-Wegman 1979, Sipser 1983]

Universal Hashing

- □ Hash functions: $\{0,1\}^n \rightarrow \{0,1\}^m$
 - 2ⁿ elements to 2^m cells
- Random inputs All cells are roughly small
- Universal hash functions:
 - Arbitrary distribution on inputs All cells are roughly small
- Need stronger bounds on distribution of the size of cells

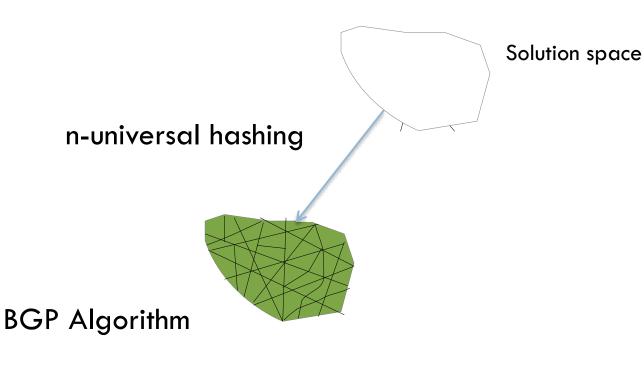
Universality v/s Complexity

15

- H(n,m,r): Family of r-universal hash functions mapping {0,1}ⁿ to {0,1}^m (2ⁿ elements to 2^m cells)

 \Box Lower universality \rightarrow lower complexity

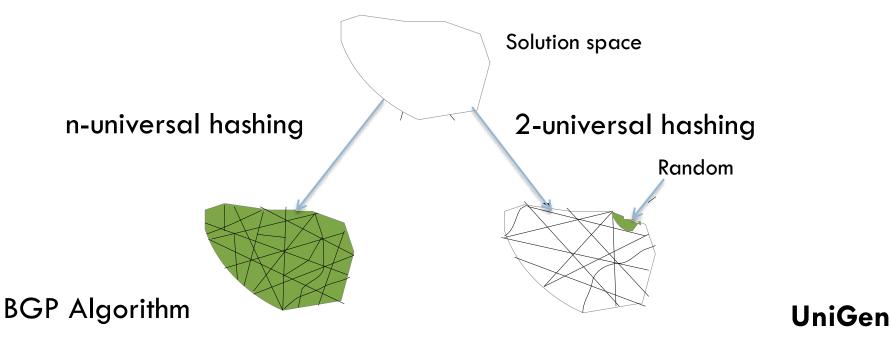
Hashing-Based Approaches



All cells should be small

Uniform Generation

Scaling to Thousands of Variables



All cells should be small

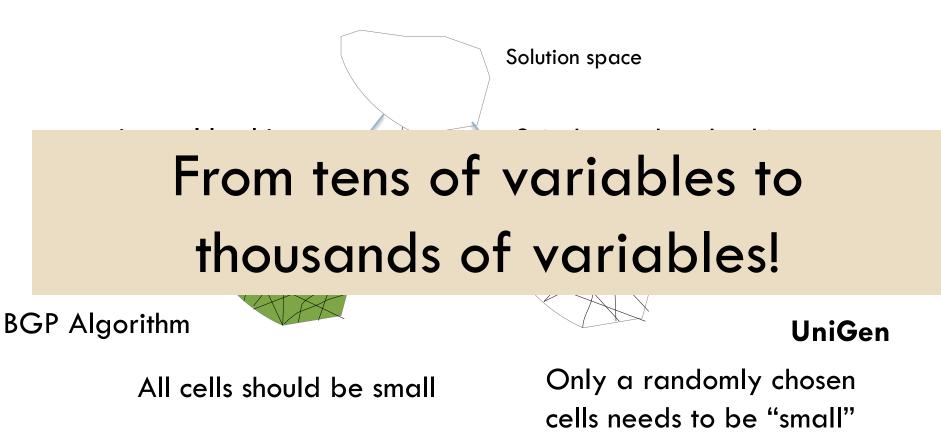
Uniform Generation

Only a randomly chosen cells needs to be "small"

Near-Uniform Generation

Scaling to Thousands of Variables

18



Uniform Generation

Near-Uniform Generation

Highlights

Employs XOR-based hash functions instead of computationally infeasible algebraic hash functions

 Uses off-the-shelf SAT solver CryptoMiniSAT (MiniSAT+XOR support)

Strong Theoretical Guarantees

Uniformity

For every solution y of R_F **Pr [y is output]** = $1/|R_F|$

Strong Theoretical Guarantees

Near Uniformity

For every solution y of R_F **Pr [y is output]** >= ¹/8 x 1/|R_F|

Success Probability

Algorithm UniWit succeeds with probability at least 1/8

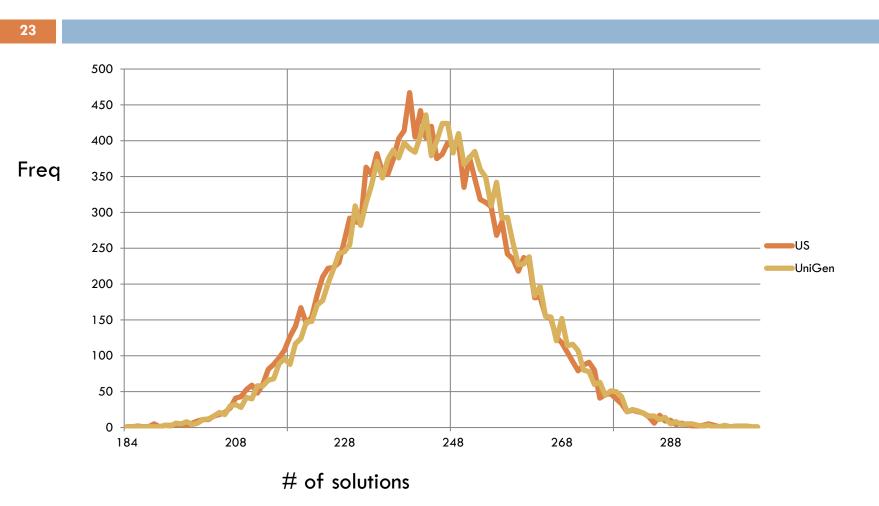
Polynomial calls to SAT Solver

Experimental Methodology

Benchmarks (over 300)

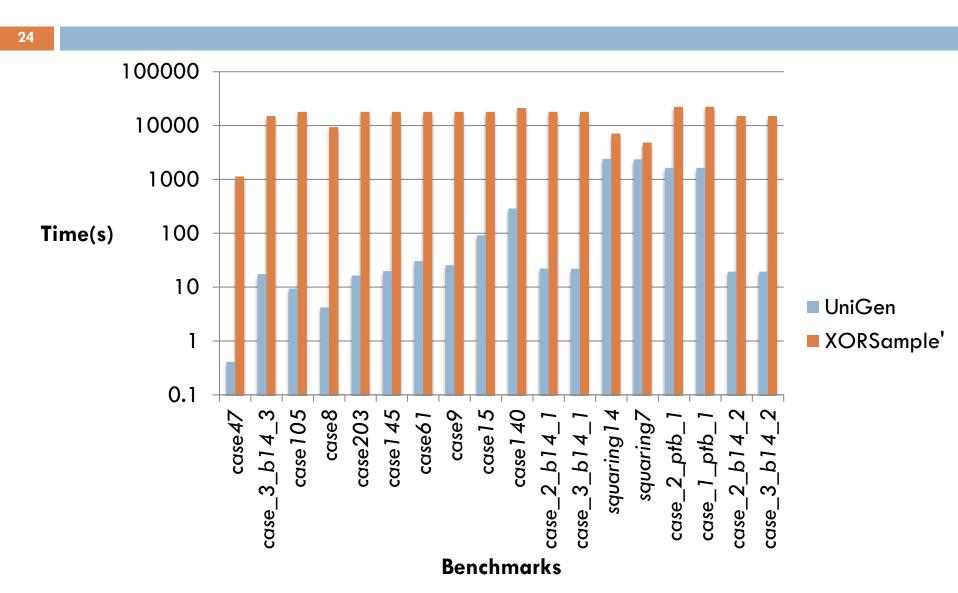
- Bit-blasted versions of word-level constraints from VHDL designs, SMTLIB, ISCAS'85
- Bit-blasted versions from program synthesis
- Largest benchmark with 486,193 variables
- Objectives
 - Comparison with algorithms **BGP** & **XORSample**'
 - Uniformity
 - Performance

Results: Uniformity

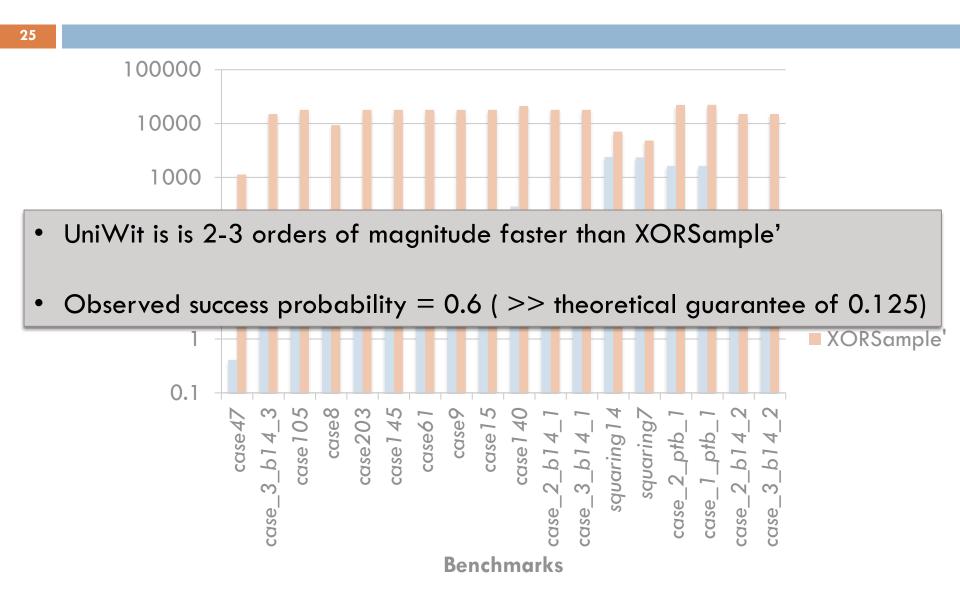


- Benchmark: case110.cnf; #var: 287; #clauses: 1263
- Total Runs: 4x10⁶; Total Solutions : 16384

Results : Performance



2-3 Orders of Magnitude Faster



The Story So Far

- Theoretical guarantees of almost uniformity
- Major improvements in running time and uniformity compared to existing generators
- □ But.....

How many samples should I test my system to achieve desired coverage?

- □ Are 10⁵ samples enough?
 - Case A: Total solutions -10⁶
 - Case B: Total solutions 10⁶⁰

The missing link

What is the total number of satisfying assignments to system of constraints?

Uniform Generation of SAT-witnesses

Approximate Model Counting

Future Directions

What is Model Counting?

- Given a SAT formula F
- □ R_F: Set of all solutions of F
- Problem (#SAT): Estimate the number of solutions of F (#F) i.e., what is the cardinality of R_F?

$$\square R_{F} = \{(0,1), (1,0), (1,1)\}$$

 \Box The number of solutions (#F) = 3

#P: The class of counting problems for decision problems in NP!

Practical Applications

Exciting range of applications!

Probabilistic reasoning/Bayesian inference

Planning with uncertainty

Multi-agent/ adversarial reasoning
 [Roth 96, Sang 04, Bacchus 04, Domshlak 07]

But it is hard!

□ #SAT is #P-complete

Even for counting solutions of 2-CNF SAT

- □ #P is really hard!
 - Believed to be much harder than NP-complete problems
 - $\blacksquare \mathsf{PH} \boxdot \mathsf{P}^{\#\mathsf{P}}$

Prior Work

Input Formula: F; Total Solutions: #F; Return Value: C

Counters	Guarantee	Confidence	Remarks
Exact counter (e.g. sharpSAT, Cachet)	C = #F	1	Poor Scalability
Lower bound counters (e.g. MBound, SampleCount)	C ≤ #F	δ	Very weak guarantees
Upper bound counters(e.g. MiniCount)	$C \ge \#F$	δ	Very weak guarantees

Approximate Model Counting

Design an approximate model counter G:

- inputs:
 - CNF formula F
 - tolerance &
 - **\square** confidence δ
- \square the count returned by it is within ϵ of the #F with confidence at least δ

Approximate Model Counting

Design an approximate model counter G:

- inputs:
 - CNF formula F
 - tolerance &
 - **confidence** δ
- The count returned by it is within ε of the #F with confidence at least δ and scales to real world problems

Scalable Approximate Model Counting

Lies in the 2nd level of Polynomial hierarchy: Σ_2^{P}

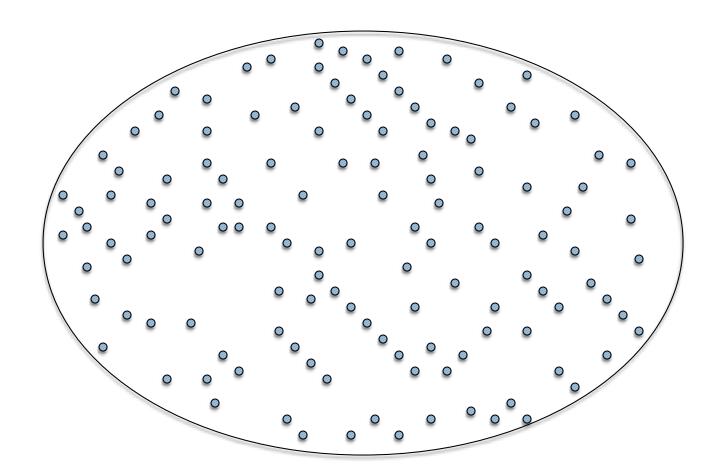
Our Contribution

Input Formula: F; Total Solutions: #F

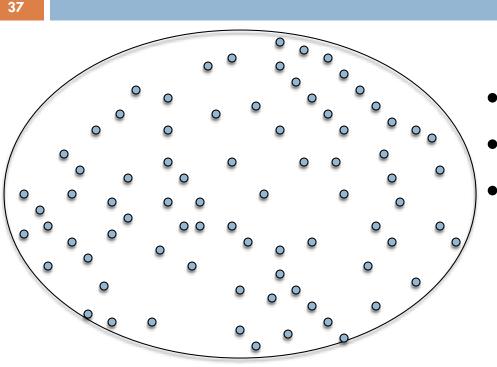
Counters	Guarantee	Confidence	Remarks
Exact counter (e.g. sharpSAT, Cachet)	C = #F	1	Poor Scalability
ApproxMC	#F/(1+ε)δ C δ (1+ε) #F	δ	Scalability + Strong guarantees

The First Scalable Approximate Model Counter

How do we count?



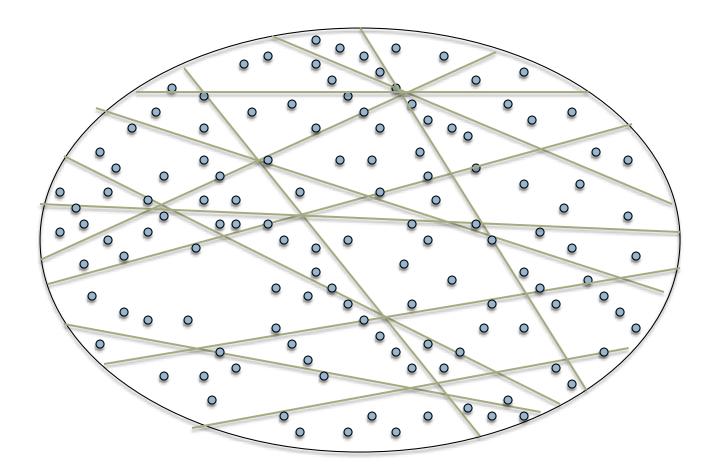
Naïve Enumeration: Not Scalable



- Enumerate all solutions
- Exact Counting!
- Cachet, Relsat, sharpSAT

Not Scalable! (Think of enumerating 2¹⁰⁰ solutions)

Counting through Partitioning

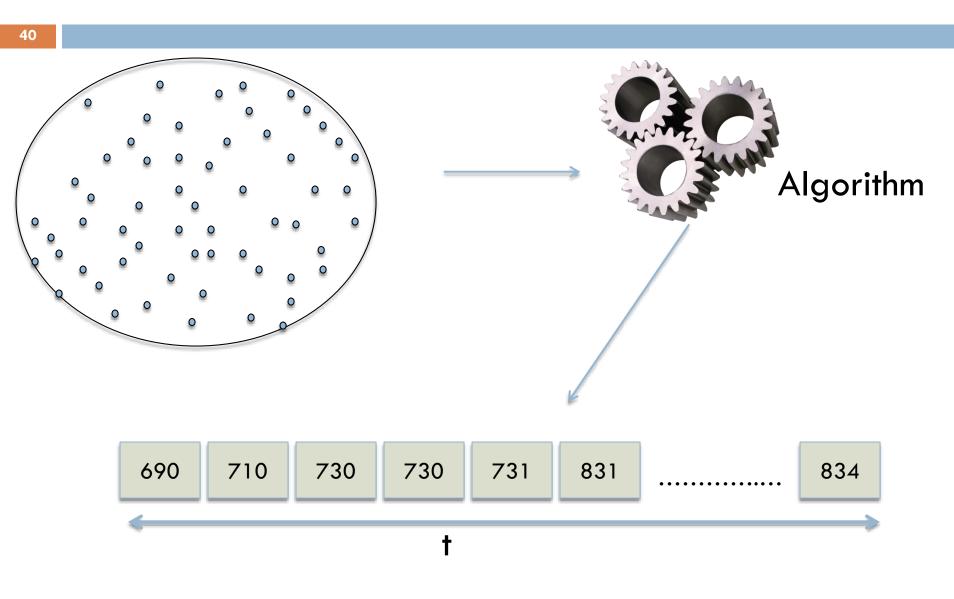


Counting through Partitioning

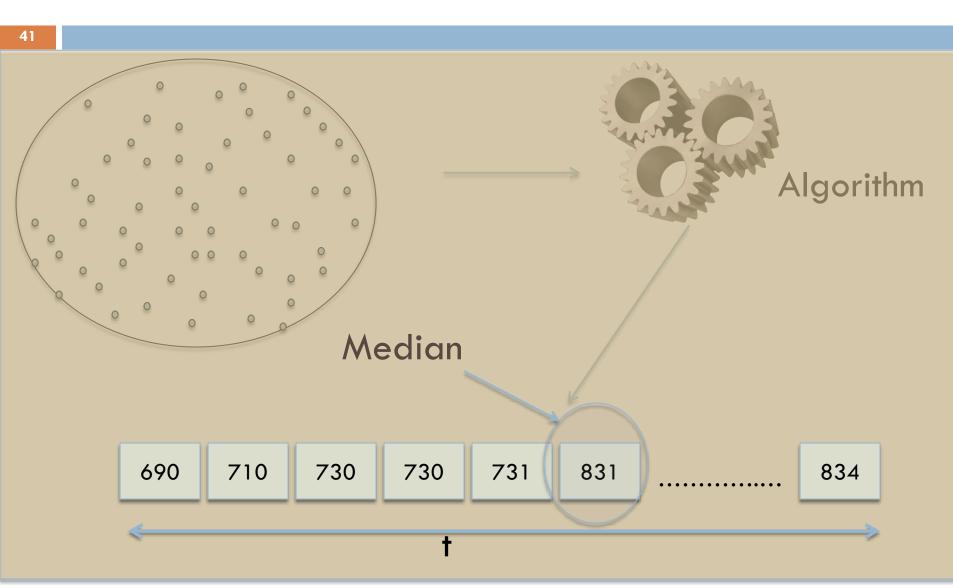
39

Pick a random cell 0 0 Total # of solutions = #solutions in the cell * total # of cells

Algorithm in Action



Algorithm in Action



Partitioning

How to partition into roughly equal cells of solutions without knowing the distribution of solutions?

Linear hash functions (2-universal hash functions)

Strong Theoretical Results

ApproxMC (CNF: F, tolerance: ε , confidence: δ) Suppose ApproxMC(F, ε , δ) returns C. Then,

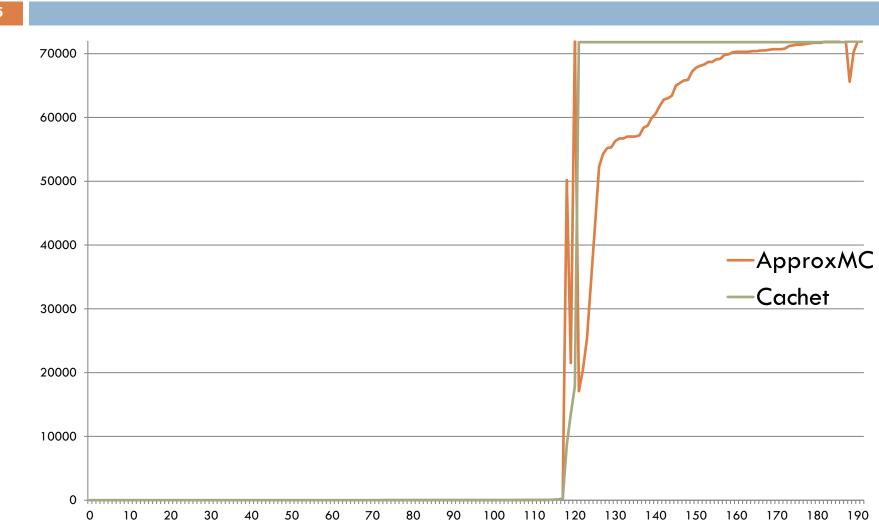
$\Pr\left[\#F/(1+\varepsilon)\delta C \ \delta \ (1+\varepsilon) \#F \right] \geq \delta$

ApproxMC runs in time polynomial in log $(1-\delta)^{-1}$, $|F|, \varepsilon^{-1}$ relative to SAT oracle

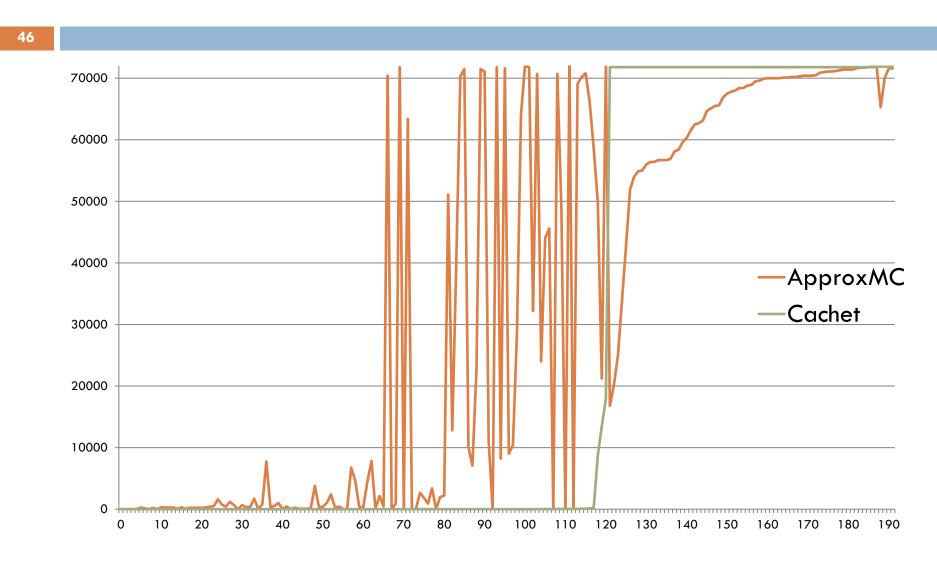
Experimental Methodology

- Benchmarks (over 200)
 - Grid networks, DQMR networks, Bayesian networks
 - Plan recognition, logistics problems
 - Circuit synthesis
- \Box Tolerance: $\epsilon = 0.75$, Confidence: $\delta = 0.9$
- Objectives
 - Comparison with exact counters (Cachet) & bounding counters (MiniCount, Hybrid-MBound, SampleCount)
 - Performance
 - Quality of bounds

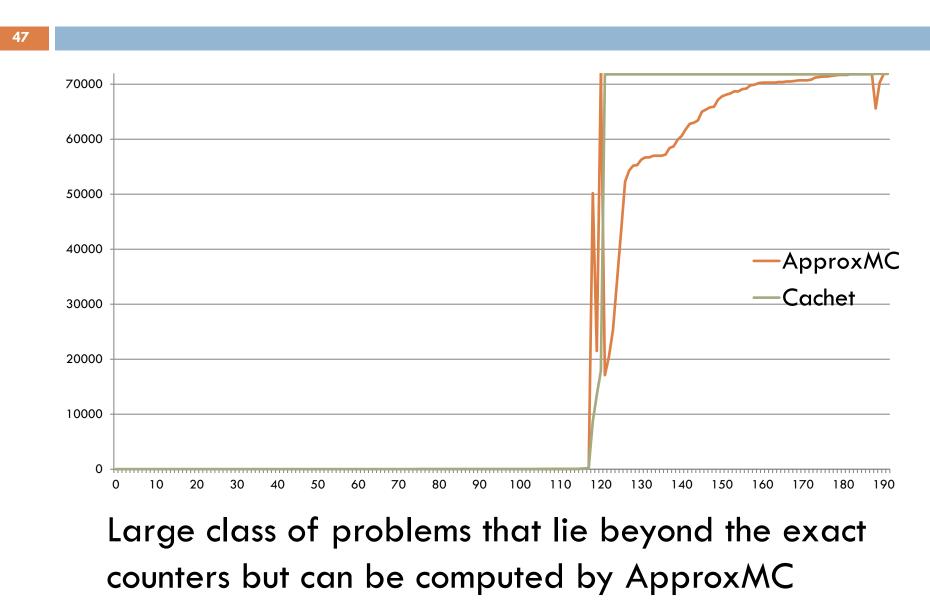
Results: Performance Comparison



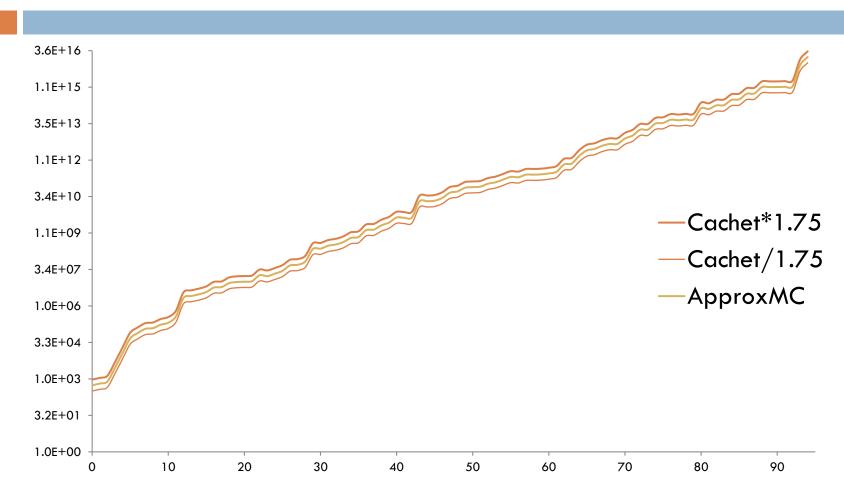
Results: Performance Comparison



Can Solve a Large Class of Problems



Mean Error: Only 4% (allowed: 75%)



Mean error: 4% – much smaller than the theoretical guarantee of 75%

48

Key Takeaways

- Prior work either offered no/weak guarantees or poor performance
- Limited independence hash functions for partitioning
- Our Technique provides
 - Scalability
 - Theoretical guarantees of almost uniformity (UniGen)
 - The first approximate model counter (ApproxMC)
- Tools are available online! Go and Try them out!

Looking Forward

UniGen: Uniform generator for the next Generation

Efficient hash functions

With smaller XOR lengths

- Scales to hundreds of thousands of variables
- Stronger guarantees

For every solution y of R_F 1/(8) x 1/| R_F | <= Pr [y is output]

Looking Forward

UniGen: Uniform generator for the next Generation

- Efficient hash functions
 - With smaller XOR lengths
 - Scales to hundreds of thousands of variables
- Stronger guarantees

For every solution y of R_F 1/(2.7) x 1/ $|R_F| \le Pr$ [y is output] $\le 2.7 \times 1/|R_F|$

- Extension to other domains: SMT
- Distribution-aware sampling and counting

Discussion

Acknowledgments

- NSF
- ExCAPE
- Intel
- BRNS, India
- Sun Microsystems
- Sigma Solutions,Inc

Thank You for your attention!

Results: Bounding Counters

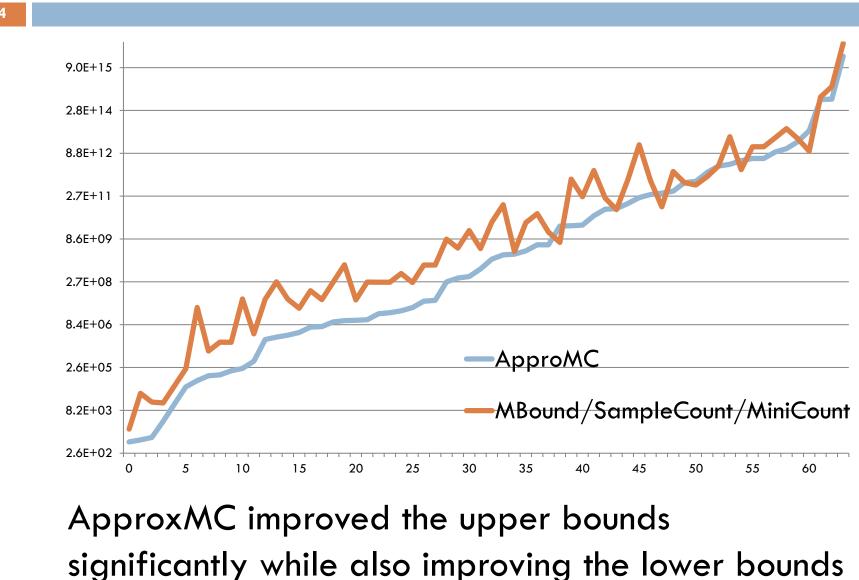
53

Range of count from bounding counters = C₂-C₁
 C₁: From lower bound counters(MBound/SampleSAT)
 C₂: From upper bound counters (MiniCount)

□ Range from ApproxMC: $[C/(1+\epsilon), (1+\epsilon)C]$

□ Smaller the range, better the algorithm!

Better Bounds Than Existing Counters



54