## Sampling Techniques for Constraint Satisfaction and Beyond

Kuldeep S Meel<sup>2</sup>

(Joint work with Supratik Chakraborty<sup>1</sup>, Moshe Y Vardi<sup>2</sup>)

Part of this work has been published in CAV 2013 and CP 2013

<sup>1</sup>Indian Institute of Technology Bombay, India <sup>2</sup>Department of Computer Science, Rice University

Jan 8, 2014



## Life in The 21<sup>st</sup> Century!





#### How do we guarantee that the systems work <u>correctly</u>?



## Motivating Example



How do we verify that this circuit works?

- Try for all values of a and b
  - 2<sup>128</sup> possibilities (10<sup>22</sup> years)
  - Not scalable
- Randomly sample some a's and b's
  - Wait! None of the circuits in the past faulted when 10 < b < 40</li>
  - Finite resources!
- Let's sample from regions where it is likely to fault

## **Designing Verification Scenarios**



#### **Designing Constraints**

- Designers:
  - 1. 100 < b < 200
  - 2. 300 < a < 451
  - 3. 40 < a < 50 and 30 < b < 40
- Past Experience:
  - 1. 400 < a < 2000
  - 2. 120 < b < 230
- Users:
  - 1. 1000<a < 1100
  - 2. 20000 < b < a < 22000

Problem: How can we uniformly sample the values of a and b satisfying the above constraints?

#### **Problem Formulation**





#### Uniform Generation of SAT-witnesses

#### Approximate Model Counting

#### Future Directions



#### Uniform Generation of SAT-witnesses

#### Approximate Model Counting

#### Future Directions

### Prior Work

| BDD-based • Poor performance |  | <ul><li>SAT-based heuristics</li><li>No guarantees</li></ul> | INDUSTRY |
|------------------------------|--|--------------------------------------------------------------|----------|
|------------------------------|--|--------------------------------------------------------------|----------|

Theoretical Work

**Guarantees: strong** 

Performance: weak

Heuristic Work Guarantees: weak **Performance: strong** 

ACADEMIA

**BGP** Algorithm (Bellare, Goldreich & Petrank,98)

XORSample' (Gomes, Sabhrawal & Selman, 07)

### **Our Contribution**



**BGP** Algorithm (**B**ellare, **G**oldreich & **P**etrank,98)

XORSample' (Gomes, Sabhrawal & Selman, 07)

#### **Central Idea**

10



#### Partitioning into equal "small" cells



#### Partitioning into equal "small" cells



#### How to Partition?

## How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Universal Hashing [Carter-Wegman 1979, Sipser 1983]

## **Universal Hashing**

- □ Hash functions:  $\{0,1\}^n \rightarrow \{0,1\}^m$ 
  - 2<sup>n</sup> elements to 2<sup>m</sup> cells
- Random inputs All cells are roughly small
- Universal hash functions:
  - Arbitrary distribution on inputs All cells are roughly small
- Need stronger bounds on distribution of the size of cells

#### Universality v/s Complexity

15

- H(n,m,r): Family of r-universal hash functions mapping {0,1}<sup>n</sup> to {0,1}<sup>m</sup> (2<sup>n</sup> elements to 2<sup>m</sup> cells)

 $\Box$  Lower universality  $\rightarrow$  lower complexity

## Hashing-Based Approaches



All cells should be small

#### **Uniform Generation**

## Scaling to Thousands of Variables



All cells should be small

#### **Uniform Generation**

Only a randomly chosen cells needs to be "small"

#### **Near-Uniform Generation**

## Scaling to Thousands of Variables

18



**Uniform Generation** 

**Near-Uniform Generation** 

## Highlights

Employs XOR-based hash functions instead of computationally infeasible algebraic hash functions

 Uses off-the-shelf SAT solver CryptoMiniSAT (MiniSAT+XOR support)

### **Strong Theoretical Guarantees**

#### Uniformity

For every solution y of  $R_F$ **Pr [y is output]** =  $1/|R_F|$ 

## **Strong Theoretical Guarantees**

Near Uniformity

For every solution y of R<sub>F</sub> **Pr [y is output]** >= <sup>1</sup>/8 x 1/|R<sub>F</sub>|

Success Probability

Algorithm UniWit succeeds with probability at least 1/8

Polynomial calls to SAT Solver

## **Experimental Methodology**

#### Benchmarks (over 300)

- Bit-blasted versions of word-level constraints from VHDL designs, SMTLIB, ISCAS'85
- Bit-blasted versions from program synthesis
- Largest benchmark with 486,193 variables
- Objectives
  - Comparison with algorithms **BGP** & **XORSample**'
    - Uniformity
    - Performance

## **Results: Uniformity**



- Benchmark: case110.cnf; #var: 287; #clauses: 1263
- Total Runs: 4x10<sup>6</sup>; Total Solutions : 16384

#### **Results : Performance**



## 2-3 Orders of Magnitude Faster



## The Story So Far

- Theoretical guarantees of almost uniformity
- Major improvements in running time and uniformity compared to existing generators
- □ But.....

How many samples should I test my system to achieve desired coverage?

- □ Are 10<sup>5</sup> samples enough?
  - Case A: Total solutions -10<sup>6</sup>
  - Case B: Total solutions 10<sup>60</sup>

#### The missing link

# What is the total number of satisfying assignments to system of constraints?



#### Uniform Generation of SAT-witnesses

#### Approximate Model Counting

Future Directions

## What is Model Counting?

- Given a SAT formula F
- □ R<sub>F</sub>: Set of all solutions of F
- Problem (#SAT): Estimate the number of solutions of F (#F) i.e., what is the cardinality of R<sub>F</sub>?

$$\square R_{F} = \{(0,1), (1,0), (1,1)\}$$

 $\Box$  The number of solutions (#F) = 3

#P: The class of counting problems for decision problems in NP!

## **Practical Applications**

Exciting range of applications!

Probabilistic reasoning/Bayesian inference

Planning with uncertainty

Multi-agent/ adversarial reasoning
 [Roth 96, Sang 04, Bacchus 04, Domshlak 07]

#### But it is hard!

□ #SAT is #P-complete

Even for counting solutions of 2-CNF SAT

- □ #P is really hard!
  - Believed to be much harder than NP-complete problems
  - $\blacksquare \mathsf{PH} \boxdot \mathsf{P}^{\#\mathsf{P}}$

### Prior Work

#### Input Formula: F; Total Solutions: #F; Return Value: C

| Counters                                              | Guarantee   | Confidence | Remarks                 |
|-------------------------------------------------------|-------------|------------|-------------------------|
| Exact counter<br>(e.g. sharpSAT, Cachet)              | C = #F      | 1          | Poor Scalability        |
|                                                       |             |            |                         |
| Lower bound counters<br>(e.g. MBound,<br>SampleCount) | C ≤ #F      | δ          | Very weak<br>guarantees |
| Upper bound<br>counters(e.g.<br>MiniCount)            | $C \ge \#F$ | δ          | Very weak<br>guarantees |

## **Approximate Model Counting**

Design an approximate model counter G:

- inputs:
  - CNF formula F
  - tolerance &
  - **\square** confidence  $\delta$
- $\square$  the count returned by it is within  $\epsilon$  of the #F with confidence at least  $\delta$



## **Approximate Model Counting**

Design an approximate model counter G:

- inputs:
  - CNF formula F
  - tolerance &
  - **confidence**  $\delta$
- The count returned by it is within  $\varepsilon$  of the #F with confidence at least  $\delta$  and scales to real world problems

#### Scalable Approximate Model Counting

Lies in the 2<sup>nd</sup> level of Polynomial hierarchy:  $\Sigma_2^{P}$ 

## **Our Contribution**

#### Input Formula: F; Total Solutions: #F

| Counters                                 | Guarantee              | Confidence | Remarks                            |
|------------------------------------------|------------------------|------------|------------------------------------|
| Exact counter<br>(e.g. sharpSAT, Cachet) | C = #F                 | 1          | Poor Scalability                   |
| ApproxMC                                 | #F/(1+ε)δ C δ (1+ε) #F | δ          | Scalability +<br>Strong guarantees |

## The First Scalable Approximate Model Counter

#### How do we count?



#### Naïve Enumeration: Not Scalable



- Enumerate all solutions
- Exact Counting!
- Cachet, Relsat, sharpSAT

#### Not Scalable! (Think of enumerating 2<sup>100</sup> solutions)

#### **Counting through Partitioning**



#### **Counting through Partitioning**

39

Pick a random cell 0 0 Total # of solutions = #solutions in the cell \* total # of cells

#### Algorithm in Action



#### Algorithm in Action



#### Partitioning

# How to partition into roughly equal cells of solutions without knowing the distribution of solutions?

Linear hash functions (2-universal hash functions)

#### **Strong Theoretical Results**

ApproxMC (CNF: F, tolerance:  $\varepsilon$ , confidence: $\delta$ ) Suppose ApproxMC(F, $\varepsilon$ , $\delta$ ) returns C. Then,

## $\Pr\left[ \#F/(1+\varepsilon)\delta C \ \delta \ (1+\varepsilon) \#F \right] \geq \delta$

ApproxMC runs in time polynomial in log  $(1-\delta)^{-1}$ ,  $|F|, \varepsilon^{-1}$  relative to SAT oracle

## **Experimental Methodology**

- Benchmarks (over 200)
  - Grid networks, DQMR networks, Bayesian networks
  - Plan recognition, logistics problems
  - Circuit synthesis
- $\Box$  Tolerance:  $\epsilon = 0.75$ , Confidence:  $\delta = 0.9$
- Objectives
  - Comparison with exact counters (Cachet) & bounding counters (MiniCount, Hybrid-MBound, SampleCount)
    - Performance
    - Quality of bounds

#### **Results: Performance Comparison**



#### **Results: Performance Comparison**



## Can Solve a Large Class of Problems



#### Mean Error: Only 4% (allowed: 75%)



Mean error: 4% – much smaller than the theoretical guarantee of 75%

**48** 

#### Key Takeaways

- Prior work either offered no/weak guarantees or poor performance
- Limited independence hash functions for partitioning
- Our Technique provides
  - Scalability
  - Theoretical guarantees of almost uniformity (UniGen)
  - The first approximate model counter (ApproxMC)
- Tools are available online! Go and Try them out!

## Looking Forward

#### UniGen: Uniform generator for the next Generation

Efficient hash functions

With smaller XOR lengths

- Scales to hundreds of thousands of variables
- Stronger guarantees

For every solution y of  $R_F$ 1/(8) x 1/| $R_F$ | <= Pr [y is output]

## Looking Forward

#### UniGen: Uniform generator for the next Generation

- Efficient hash functions
  - With smaller XOR lengths
  - Scales to hundreds of thousands of variables
- Stronger guarantees

For every solution y of  $R_F$ 1/(2.7) x 1/ $|R_F| \le Pr$  [y is output]  $\le 2.7 \times 1/|R_F|$ 

- Extension to other domains: SMT
- Distribution-aware sampling and counting

#### Discussion

#### Acknowledgments

- NSF
- ExCAPE
- Intel
- BRNS, India
- Sun Microsystems
- Sigma Solutions,Inc

Thank You for your attention!

## **Results: Bounding Counters**

53

Range of count from bounding counters = C<sub>2</sub>-C<sub>1</sub>
 C<sub>1</sub>: From lower bound counters(MBound/SampleSAT)
 C<sub>2</sub>: From upper bound counters (MiniCount)

□ Range from ApproxMC:  $[C/(1+\epsilon), (1+\epsilon)C]$ 

□ Smaller the range, better the algorithm!

## **Better Bounds Than Existing Counters**



54