Sampling Techniques for Constraint Satisfaction and Beyond

Kuldeep S Meel2

(Joint work with Supratik Chakraborty1, Moshe Y Vardi2)

Part of this work has been published in CAV 2013 and CP 2013

1Indian Institute of Technology Bombay, India
2Department of Computer Science, Rice University
Life in The 21st Century!

How do we guarantee that the systems work correctly?
Motivating Example

How do we verify that this circuit works?

• Try for all values of a and b
 • \(2^{128}\) possibilities (\(10^{22}\) years)
 • Not scalable

• Randomly sample some a’s and b’s
 • Wait! None of the circuits in the past faulted when \(10 < b < 40\)
 • Finite resources!

• Let’s sample from regions where it is likely to fault
Designing Verification Scenarios

Designing Constraints

- Designers:
 1. $100 < b < 200$
 2. $300 < a < 451$
 3. $40 < a < 50$ and $30 < b < 40$

- Past Experience:
 1. $400 < a < 2000$
 2. $120 < b < 230$

- Users:
 1. $1000 < a < 1100$
 2. $20000 < b < a < 22000$

Problem: How can we uniformly sample the values of a and b satisfying the above constraints?
Problem Formulation

Given a SAT formula, can one uniformly sample solutions without enumerating all solutions while scaling to real world problems?

Scalable Uniform Generation of SAT-Witnesses
Outline

- Uniform Generation of SAT-witnesses
- Approximate Model Counting
- Future Directions
Outline

- Uniform Generation of SAT-witnesses
- Approximate Model Counting
- Future Directions
Prior Work

Theoretical Work
- **Guarantees**: strong
- **Performance**: weak

 BGP Algorithm
 (Bellare, Goldreich & Petrank, 98)

Heuristic Work
- **Guarantees**: weak
- **Performance**: strong

XORSample'
 (Gomes, Sabhrawal & Selman, 07)

Prior Work
- **Guarantees**: weak
- **Performance**: strong

Heuristic Work
Bellare, Goldreich & Petrank, 98

Prior Work
- **Guarantees**: strong
- **Performance**: weak

Theoretical Work

INDUSTRY
- BDD-based
 - Poor performance

ACADEMIA
- SAT-based heuristics
 - No guarantees
Our Contribution

BGP Algorithm
(Bellare, Goldreich & Petrank, 98)

XORSample’
(Gomes, Sabhrawal & Selman, 07)

Theoretical Work

- **Guarantees:** strong
- **Performance:** weak

Heuristic Work

- **Guarantees:** weak
- **Performance:** strong

UniGen

- **Guarantees:** strong
- **Performance:** strong

INDUSTRY

- **BDD-based**
 - Poor performance

ACADEMIA

- **SAT-based heuristics**
 - No guarantees
Central Idea
Partitioning into equal “small” cells
Partitioning into equal “small” cells

Pick a random cell

Pick a random solution from this cell
How to Partition?

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Universal Hashing

[Carter-Wegman 1979, Sipser 1983]
Universal Hashing

- Hash functions: \(\{0,1\}^n \rightarrow \{0,1\}^m \)
 - \(2^n \) elements to \(2^m \) cells

- Random inputs \(\rightarrow \) All cells are *roughly* small

- Universal hash functions:
 - Arbitrary distribution on inputs \(\rightarrow \) All cells are *roughly* small

- Need stronger bounds on distribution of the size of cells
Universality v/s Complexity

- $H(n,m,r)$: Family of r-universal hash functions mapping $\{0,1\}^n$ to $\{0,1\}^m$ (2^n elements to 2^m cells).

- Higher the r \Rightarrow Stronger guarantees on distribution of size of cells

- r-wise universality \Rightarrow Polynomials of degree $r-1$

- Lower universality \Rightarrow lower complexity
Hashing-Based Approaches

n-universal hashing

BGP Algorithm

All cells should be small

Uniform Generation
Scaling to Thousands of Variables

n-universal hashing

BGP Algorithm

All cells should be small

Uniform Generation

Solution space

2-universal hashing

Random

RF : Solution space

Our Approach

Small :

uniGen

Only a randomly chosen cells needs to be “small”

Near-Uniform Generation
Scaling to Thousands of Variables

From tens of variables to thousands of variables!

BGP Algorithm

Universe

Solution space

Uniform Generation

UniGen

All cells should be small

Only a randomly chosen cells needs to be “small”

Near-Uniform Generation
Employs XOR-based hash functions instead of computationally infeasible algebraic hash functions

Uses off-the-shelf SAT solver CryptoMiniSAT (MiniSAT+XOR support)
Strong Theoretical Guarantees

- Uniformity

For every solution y of R_F

$$\Pr [y \text{ is output}] = \frac{1}{|R_F|}$$
Strong Theoretical Guarantees

- Near Uniformity

 For every solution y of R_F
 \[\Pr [y \text{ is output}] \geq \frac{1}{8} \times \frac{1}{|R_F|} \]

- Success Probability

 Algorithm UniWit succeeds with probability at least $1/8$

- Polynomial calls to SAT Solver
Experimental Methodology

- Benchmarks (over 300)
 - Bit-blasted versions of word-level constraints from VHDL designs, SMTLIB, ISCAS’85
 - Bit-blasted versions from program synthesis
 - Largest benchmark with 486,193 variables

- Objectives
 - Comparison with algorithms BGP & XORSample’
 - Uniformity
 - Performance
Results: Uniformity

- Benchmark: case110.cnf;
 #var: 287;
 #clauses: 1263
- Total Runs: 4×10^6;
 Total Solutions: 16384
Results: Performance

![Bar chart showing performance results for UniGen and XORSample'](image-url)
2-3 Orders of Magnitude Faster

- UniWit is 2-3 orders of magnitude faster than XORSample.
- Observed success probability = 0.6 (> theoretical guarantee of 0.125)
The Story So Far

- Theoretical guarantees of almost uniformity
- Major improvements in running time and uniformity compared to existing generators
- But
 How many samples should I test my system to achieve desired coverage?
- Are 10^5 samples enough?
 - Case A: Total solutions - 10^6
 - Case B: Total solutions - 10^{60}
What is the total number of satisfying assignments to system of constraints?
Outline

- Uniform Generation of SAT-witnesses
- Approximate Model Counting
- Future Directions
What is Model Counting?

- Given a SAT formula F
- R_F: Set of all solutions of F
- Problem ($\#SAT$): Estimate the number of solutions of F ($\#F$) i.e., what is the cardinality of R_F?
- E.g., $F = (a \lor b)$
- $R_F = \{(0,1), (1,0), (1,1)\}$
- The number of solutions ($\#F$) = 3

$\#P$: The class of counting problems for decision problems in NP!
Practical Applications

Exciting range of applications!

- Probabilistic reasoning/Bayesian inference
- Planning with uncertainty
- Multi-agent/ adversarial reasoning
 [Roth 96, Sang 04, Bacchus 04, Domshlak 07]
But it is hard!

- #SAT is #P-complete
 - Even for counting solutions of 2-CNF SAT

- #P is really hard!
 - Believed to be much harder than NP-complete problems
 - $\text{PH} \subseteq \text{P}^\#P$
Prior Work

Input Formula: F; **Total Solutions:** $\#F$; **Return Value:** C

<table>
<thead>
<tr>
<th>Counters</th>
<th>Guarantee</th>
<th>Confidence</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact counter (e.g. sharpSAT, Cachet)</td>
<td>$C = #F$</td>
<td>1</td>
<td>Poor Scalability</td>
</tr>
<tr>
<td>Lower bound counters (e.g. MBound, SampleCount)</td>
<td>$C \leq #F$</td>
<td>δ</td>
<td>Very weak guarantees</td>
</tr>
<tr>
<td>Upper bound counters (e.g. MiniCount)</td>
<td>$C \geq #F$</td>
<td>δ</td>
<td>Very weak guarantees</td>
</tr>
</tbody>
</table>
Design an approximate model counter G:

- **inputs:**
 - CNF formula F
 - tolerance ε
 - confidence δ

- the count returned by it is within ε of the $\#F$ with confidence at least δ
Approximate Model Counting

Design an approximate model counter G:

- inputs:
 - CNF formula F
 - tolerance ε
 - confidence δ

- the count returned by it is within ε of the $\#F$ with confidence at least δ and scales to real world problems

Scalable Approximate Model Counting

Lies in the 2nd level of Polynomial hierarchy: Σ_2^P
Our Contribution

Input Formula: F; Total Solutions: $\#F$

<table>
<thead>
<tr>
<th>Counters</th>
<th>Guarantee</th>
<th>Confidence</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact counter (e.g. sharpSAT, Cachet)</td>
<td>$C = #F$</td>
<td>1</td>
<td>Poor Scalability</td>
</tr>
<tr>
<td>ApproxMC</td>
<td>$\frac{#F}{(1+\varepsilon)\delta} \leq C \leq (1+\varepsilon)#F$</td>
<td>δ</td>
<td>Scalability + Strong guarantees</td>
</tr>
</tbody>
</table>

The First Scalable Approximate Model Counter
How do we count?
Naïve Enumeration: Not Scalable

- Enumerate all solutions
- Exact Counting!
- Cachet, Relsat, sharpSAT

Not Scalable! (Think of enumerating 2^{100} solutions)
Counting through Partitioning
Counting through Partitioning

Pick a random cell

Total # of solutions = #solutions in the cell * total # of cells
Algorithm in Action
Algorithm in Action

Algorithm

Median

690 710 730 730 731 831

834

\[\hat{t} \]
Partitioning

How to partition into roughly equal cells of solutions without knowing the distribution of solutions?

Linear hash functions (2-universal hash functions)
Strong Theoretical Results

ApproxMC (CNF: F, tolerance: ε, confidence: δ)

Suppose $\text{ApproxMC}(F, \varepsilon, \delta)$ returns C. Then,

$$\Pr \left[\frac{\#F}{(1+\varepsilon)\delta} \leq C \leq (1+\varepsilon)\#F \right] \geq \delta$$

ApproxMC runs in time polynomial in $\log (1-\delta)^{-1}$, $|F|$, ε^{-1} relative to SAT oracle
Experimental Methodology

- **Benchmarks (over 200)**
 - Grid networks, DQMR networks, Bayesian networks
 - Plan recognition, logistics problems
 - Circuit synthesis

- **Tolerance:** \(\varepsilon = 0.75 \), **Confidence:** \(\delta = 0.9 \)

- **Objectives**
 - Comparison with exact counters (Cachet) & bounding counters (MiniCount, Hybrid-MBound, SampleCount)
 - Performance
 - Quality of bounds
Results: Performance Comparison

- ApproxMC
- Cachet
Results: Performance Comparison

The graph compares the performance of ApproxMC and Cachet. The x-axis represents the time in steps, while the y-axis shows the performance metric. ApproxMC shows a more volatile performance with frequent spikes, whereas Cachet maintains a more stable path towards higher performance values.
Can Solve a Large Class of Problems

Large class of problems that lie beyond the exact counters but can be computed by ApproxMC
Mean Error: Only 4% (allowed: 75%)

Mean error: 4% — much smaller than the theoretical guarantee of 75%
Key Takeaways

- Prior work either offered no/weak guarantees or poor performance
- Limited independence hash functions for partitioning

- Our Technique provides
 - Scalability
 - Theoretical guarantees of almost uniformity (UniGen)
 - The first approximate model counter (ApproxMC)

- Tools are available online! Go and Try them out!
UniGen: Uniform generator for the next Generation

- Efficient hash functions
 - With smaller XOR lengths
 - Scales to hundreds of thousands of variables
- Stronger guarantees

For every solution y of R_F

$$\frac{1}{8} \times \frac{1}{|R_F|} \leq \Pr[y \text{ is output}]$$
Looking Forward

- **UniGen**: Uniform generator for the next Generation
 - Efficient hash functions
 - With smaller XOR lengths
 - Scales to hundreds of thousands of variables
 - Stronger guarantees

For every solution y of R_F

$$\frac{1}{(2.7) \times 1/|R_F|} \leq \Pr[y \text{ is output}] \leq 2.7 \times \frac{1}{|R_F|}$$

- Extension to other domains: SMT
- Distribution-aware sampling and counting
Discussion

Acknowledgments

• NSF
• ExCAPE
• Intel
• BRNS, India
• Sun Microsystems
• Sigma Solutions, Inc

Thank You for your attention!
Range of count from bounding counters = $C_2 - C_1$
- C_1: From lower bound counters (MBound/SampleSAT)
- C_2: From upper bound counters (MiniCount)

Range from ApproxMC: $[C/(1+\varepsilon), (1+\varepsilon)C]$

Smaller the range, better the algorithm!
ApproxMC improved the upper bounds significantly while also improving the lower bounds.