NP? No Problem! An Invitation to the World of Formal Methods

Kuldeep S. Meel

School of Computing
National University of Singapore

Ph.D. (2017), advised by Prof. Supratik Chakraborty (IIT Bombay) and Prof. Moshe Vardi (Rice University)

The Quest for Automated Formal Reasoning

Assign Symbols \& Use Algebra

$$
\begin{aligned}
& \mathrm{g} \rightarrow \mathrm{~h} \\
& \mathrm{~h} \rightarrow \mathrm{~m} \\
& \hline \mathrm{~g} \rightarrow \mathrm{~m}
\end{aligned}
$$

The Quest for Automated Formal Reasoning

$$
\begin{aligned}
& \mathrm{g} \rightarrow \mathrm{~h} \\
& \mathrm{~h} \rightarrow \mathrm{~m} \\
& \hline \mathrm{~g} \rightarrow \mathrm{~m}
\end{aligned}
$$

Central Equation: Is it always the case that $((g \rightarrow h) \wedge(h \rightarrow m)) \rightarrow(g \rightarrow m)$? Or Equivalently, can it be the case $((g \rightarrow h) \wedge(h \rightarrow m)) \rightarrow!(g \rightarrow m)$?

The Quest for Automated Formal Reasoning

Assign Symbols \& Use Algebra

$$
\begin{aligned}
& \mathrm{g} \rightarrow \mathrm{~h} \\
& \mathrm{~h} \rightarrow \mathrm{~m} \\
& \hline \mathrm{~g} \rightarrow \mathrm{~m}
\end{aligned}
$$

Central Equation: Is it always the case that $((g \rightarrow h) \wedge(h \rightarrow m)) \rightarrow(g \rightarrow m)$? Or Equivalently, can it be the case $((g \rightarrow h) \wedge(h \rightarrow m)) \rightarrow!(g \rightarrow m)$?

William Stanley Jevons, 1835-1882: "I have given much attention, therefore, to lessening both the manual and mental labour of the process, and I shall describe several devices which may be adopted for saving trouble and risk of mistake."

Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using "and" (\wedge) "or", (\vee) and "not" (\neg), is there a satisfying solution (an assignment of 0's and 1 's to the variables that makes the expression equal 1)?
Example:

$$
\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{1} \vee x_{4}\right)
$$

Solution: $x_{1}=0, x_{2}=0, x_{3}=1, x_{4}=1$

Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using "and" (\wedge) "or", (\vee) and "not" (\neg), is there a satisfying solution (an assignment of 0 's and 1 's to the variables that makes the expression equal 1)?
Example:

$$
\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{1} \vee x_{4}\right)
$$

Solution: $x_{1}=0, x_{2}=0, x_{3}=1, x_{4}=1$

- Ernst Schröder, 1841-1902: "Getting a handle on the consequences of any premises, or at least the fastest method for obtaining these consequences, seems to me to be one of the noblest, if not the ultimate goal of mathematics and logic."

Algorithmic Boolean Reasoning: Early History

- Davis and Putnam, 1958: "Computational Methods in The Propositional calculus", unpublished report to the NSA
- Davis and Putnam, JACM 1960: "A Computing procedure for quantification theory"
- Davis, Logemman, and Loveland, CACM 1962: "A machine program for theorem proving"

The DPLL algorithm

The DPLL algorithm

$$
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b})
$$

Level Dec. Unit Prop.

0	\emptyset
1	x
2	y
3	a

The DPLL algorithm

$$
\begin{array}{cc}
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b}) \\
\text { Level } & \text { Dec. } \quad \text { Unit Prop. } \\
0 & \square \\
1 &
\end{array}
$$

The DPLL algorithm

$$
\begin{array}{cc}
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b}) \\
\text { Level } \quad \text { Dec. } \quad \text { Unit Prop. } \\
0 &
\end{array}
$$

The DPLL algorithm

$$
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b})
$$

The DPLL algorithm

$$
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b})
$$

The DPLL algorithm

$$
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b})
$$

Level Dec. Unit Prop.

The DPLL algorithm

$$
\mathcal{F}=(x \vee y) \wedge(a \vee b) \wedge(\bar{a} \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee \bar{b})
$$

Level Dec. Unit Prop.

The Dreaded 70s

Hoare, 1969: Proving correctness of the programs can be reduced to theorem proving

- For a large interesting class of programs, proving correctness reduces to SAT

The Dreaded 70s

Hoare, 1969: Proving correctness of the programs can be reduced to theorem proving

- For a large interesting class of programs, proving correctness reduces to SAT

Cook, 1971, Levin, 1972: SAT is NP-complete

The Dreaded 70s

Hoare, 1969: Proving correctness of the programs can be reduced to theorem proving

- For a large interesting class of programs, proving correctness reduces to SAT

Cook, 1971, Levin, 1972: SAT is NP-complete
Vardi: "When I was a graduate student in 1970's, SAT was a scary problem, not to be touched by a 10 foot pole"

The Dreaded 70s

Hoare, 1969: Proving correctness of the programs can be reduced to theorem proving

- For a large interesting class of programs, proving correctness reduces to SAT

Cook, 1971, Levin, 1972: SAT is NP-complete
Vardi: "When I was a graduate student in 1970's, SAT was a scary problem, not to be touched by a 10 foot pole"

"I can't find an efficient algorithm, but neither can all these famous people."
(Cartoon adapted from Gary Johnson)
De Millo, Lipton, Perlis, 1979: "formal verifications of programs, no matter how obtained, will not play the same key role in the development of computer science and software engineering as proofs do in mathematics."

The Cautious 80 's followed by the storm

Clark, Emerson, 1981: "We argue that proof construction is unnecessary in the case of finite state concurrent systems and can be replaced by a model-theoretic approach which will mechanically determine if the system meets a specification expressed in propositional temporal logic"

Burch, EM Clarke, KL McMillan, DL Dill, LJ Hwang, 1992: Symbolic model checking, restricted to Binary Decision Diagrams: formulas for which Satisfiability is PTIME

The Cautious 80 's followed by the storm

Clark, Emerson, 1981: "We argue that proof construction is unnecessary in the case of finite state concurrent systems and can be replaced by a model-theoretic approach which will mechanically determine if the system meets a specification expressed in propositional temporal logic"

Burch, EM Clarke, KL McMillan, DL Dill, LJ Hwang, 1992: Symbolic model checking, restricted to Binary Decision Diagrams: formulas for which Satisfiability is PTIME

Pentium FDIV Bug, 1994: : The recall due to floating point unit bug cost $\$ 500$ million
Ariane 5, 1996: The rocket exploded only after 40 seconds due to exception handling

The Cautious 80 's followed by the storm

Clark, Emerson, 1981: "We argue that proof construction is unnecessary in the case of finite state concurrent systems and can be replaced by a model-theoretic approach which will mechanically determine if the system meets a specification expressed in propositional temporal logic"

Burch, EM Clarke, KL McMillan, DL Dill, LJ Hwang, 1992: Symbolic model checking, restricted to Binary Decision Diagrams: formulas for which Satisfiability is PTIME

Pentium FDIV Bug, 1994: : The recall due to floating point unit bug cost $\$ 500$ million
Ariane 5, 1996: The rocket exploded only after 40 seconds due to exception handling
Marques-Silva and Sakallah, 1996: "GRASP is premised on the inevitability of conflicts during the search and its most distinguishing feature is the augmentation of basic backtracking search with a powerful conflict analysis procedure"

Clause learning

Clause learning

- Analyze conflict

Clause learning

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at decision levels less than current

Clause learning

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at decision levels less than current
- Create new clause: $(\bar{x} \vee \bar{z})$

Clause learning

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at decision levels less than current
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution

Clause learning

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at decision levels less than current
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution

Clause learning

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at decision levels less than current
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution

Clause learning

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at decision levels less than current
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution
- Learned clauses result from (selected) resolution operations

Clause learning - after backtracking

Clause learning - after backtracking

Level Dec. Unit Prop.

0

1

2

3

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1

Clause learning - after backtracking

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1

Clause learning - after backtracking

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1
- Backtracking differs from plain DPLL:
- Always bactrack after a conflict

The Roaring 2000s

- Clause learning \& non-chronological backtracking
- Exploit UIPs
[MSS96a,SSS12]
- Minimize learned clauses
- Opportunistically delete clauses
[MSS96a,MSS99,GN02]
- Search restarts

The Roaring 2000s

- Clause learning \& non-chronological backtracking
- Exploit UIPs
- Minimize learned clauses
- Opportunistically delete clauses
[MSS96a,MSS99,GN02]
- Search restarts
- Lazy data structures
- Watched literals
- Conflict-guided branching
- Lightweight branching heuristics
- Phase saving

The Roaring 2000s

- Clause learning \& non-chronological backtracking
- Exploit UIPs
- Minimize learned clauses
- Opportunistically delete clauses
- Search restarts
- Lazy data structures
- Watched literals
[MMZZM01]
- Conflict-guided branching
- Lightweight branching heuristics
- Phase saving

Biere, Cimatti, Clarke, Zhu, 1999: "We show how boolean decision procedures can replace BDDs. This new technique avoids the space blow up of BDDs, generates counterexamples much faster."

Clark, Emerson, Sifakis, 2007: Turing Award
Knuth, 2010s: SAT is far from an abstract exercise in understanding formal systems. These so-called "SAT solvers" can now routinely find solutions to practical problems that involve millions of variables and were thought until very recently to be hopelessly difficult.

Beyond NP

[Circa 2012 @IIT Bombay]: Now that NP is "No Problem", it is time to look beyond satisfiability

Fairness

Beyond NP

[Circa 2012 @IIT Bombay]: Now that NP is "No Problem", it is time to look beyond satisfiability

Fairness

Quantification: How often does \mathcal{M} satisfy \mathcal{P} ?

Counting

Can we predict the likelihood of a blackout due to natural disaster?

Can we predict the likelihood of a blackout due to natural disaster?

- $G=(V, E)$; set of source nodes S and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{t}$ is disconnected from $S]$?

Can we predict the likelihood of a blackout due to natural disaster?

- $G=(V, E)$; set of source nodes S and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{t}$ is disconnected from $S]$?

Counting

Key Idea: Encode disconnectedness using constraints

Impact: The first theoretically sound estimates of resilience in power transmission networks of ten medium sized cities in US

Quantitative Analysis of AI Systems

Robustness Quantification

$$
|\{x: \mathcal{N}(x+\varepsilon) \neq \mathcal{N}(x)\}|
$$

Quantitative Analysis of AI Systems

Robustness Quantification

$$
\{x: \mathcal{N}(x+\varepsilon) \neq \mathcal{N}(x)\}
$$

Encode Symbolically

Quantitative Analysis of AI Systems

Robustness Quantification

$$
\mid x: \mathcal{N}(x+\varepsilon) \neq \mathcal{N}(x)\} \mid
$$

$$
\{x: \mathcal{N}(x \wedge \text { BLACK }) \neq \mathcal{N}(x \wedge \text { White })\}
$$

Quantitative Analysis of AI Systems

Robustness Quantification

$$
\{x: \mathcal{N}(x+\varepsilon) \neq \mathcal{N}(x)\} \mid
$$

Encode Symbolically

Fairness Quantification

Counting

Impact: The first scalable technique for rigorous quantification of robustness and fairness of Binarized Neural Networks

Counting

- Given: A Boolean formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of F \}
- SAT: Determine if $\operatorname{Sol}(F)$ is non-empty
- Counting: Determine $|\operatorname{Sol}(F)|$

Counting

- Given: A Boolean formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of F \}
- SAT: Determine if $\operatorname{Sol}(F)$ is non-empty
- Counting: Determine $|\operatorname{Sol}(F)|$
- Example: $F:=\left(X_{1} \vee X_{2}\right)$
- $\operatorname{Sol}(F)=\{(0,1),(1,0),(1,1)\}$
- $|\operatorname{Sol}(F)|=3$

Valiant, 1979: Counting exactly is \#P-hard

Counting

- Given: A Boolean formula F over $X_{1}, X_{2}, \ldots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of F \}
- SAT: Determine if $\operatorname{Sol}(F)$ is non-empty
- Counting: Determine $|\operatorname{Sol}(F)|$
- Example: $F:=\left(X_{1} \vee X_{2}\right)$
- $\operatorname{Sol}(F)=\{(0,1),(1,0),(1,1)\}$
- $|\operatorname{Sol}(F)|=3$

Valiant, 1979: Counting exactly is \#P-hard
Stockmeyer, 1983: Probably Approximately Correct (PAC) aka (ε, δ)-guarantees

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxCount}(F, \varepsilon, \delta) \leq(1+\varepsilon)|\operatorname{Sol}(F)|\right] \geq 1-\delta
$$

Snapshot from 2012

Scalability

Theoretical Guarantees

Snapshot from 2012

Snapshot from 2012

State of the art tool in 2012 could handle one out of 1076 robustness instances Can we bridge the gap between theory and practice?

Theoretical Guarantees
State of the art tool in 2012 could handle one out of 1076 robustness instances
Can we bridge the gap between theory and practice?

Counting in Mumbai

How many people in Mumbai like coffee?

- Population of Mumbai $=12.5 \mathrm{M}$
- Assign every person a unique $(n=) 24$ bit identifier $\left(2^{n} \approx 12.5 \mathrm{M}\right)$

Counting in Mumbai

How many people in Mumbai like coffee?

- Population of Mumbai $=12.5 \mathrm{M}$
- Assign every person a unique $(n=) 24$ bit identifier $\left(2^{n} \approx 12.5 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiply by $12.5 \mathrm{M} / 50$

Counting in Mumbai

How many people in Mumbai like coffee?

- Population of Mumbai $=12.5 \mathrm{M}$
- Assign every person a unique $(n=) 24$ bit identifier $\left(2^{n} \approx 12.5 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiply by $12.5 \mathrm{M} / 50$
- If only 1000 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50

Counting in Mumbai

How many people in Mumbai like coffee?

- Population of Mumbai $=12.5 \mathrm{M}$
- Assign every person a unique $(n=) 24$ bit identifier $\left(2^{n} \approx 12.5 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiply by $12.5 \mathrm{M} / 50$
- If only 1000 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee

Counting in Mumbai

How many people in Mumbai like coffee?

- Population of Mumbai $=12.5 \mathrm{M}$
- Assign every person a unique $(n=) 24$ bit identifier $\left(2^{n} \approx 12.5 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiply by $12.5 \mathrm{M} / 50$
- If only 1000 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y

Counting in Mumbai

How many people in Mumbai like coffee?

- Population of Mumbai $=12.5 \mathrm{M}$
- Assign every person a unique $(n=) 24$ bit identifier $\left(2^{n} \approx 12.5 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiply by $12.5 \mathrm{M} / 50$
- If only 1000 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y
- Attempt \#2: Enumerate every person who likes coffee

Counting in Mumbai

How many people in Mumbai like coffee?

- Population of Mumbai $=12.5 \mathrm{M}$
- Assign every person a unique $(n=) 24$ bit identifier $\left(2^{n} \approx 12.5 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiply by $12.5 \mathrm{M} / 50$
- If only 1000 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y
- Attempt \#2: Enumerate every person who likes coffee
- Potentially 2^{n} queries

Can we do with lesser \# of SAT queries $-\mathcal{O}(n)$ or $\mathcal{O}(\log n)$?

As Simple as Counting Dots

As Simple as Counting Dots

As Simple as Counting Dots

Pick a random cell

Estimate $=$ Number of solutions in a cell \times Number of cells

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenge 2 How many cells?

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Deterministic h unlikely to work

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Deterministic h unlikely to work
- Choose h randomly from a large family H of hash functions

2-wise Independent Hashing

2-wise Independent Hash Functions

- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}$

2-wise Independent Hash Functions

- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}$
- To choose $\alpha \in\{0,1\}^{m}$, set every XOR equation to 0 or 1 randomly

$$
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
$$

- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?
Random XOR-based Hash Functions

Challenge 2 How many cells?

Challenge 2: How many cells?

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- Many solutions \Longrightarrow Many cells \& Fewer solutions \Longrightarrow Fewer cells
- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- Many solutions \Longrightarrow Many cells \& Fewer solutions \Longrightarrow Fewer cells

Challenge 2: How many cells?

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- Many solutions \Longrightarrow Many cells \& Fewer solutions \Longrightarrow Fewer cells

Challenge 2: How many cells?

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- Many solutions \Longrightarrow Many cells \& Fewer solutions \Longrightarrow Fewer cells

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- Many solutions \Longrightarrow Many cells \& Fewer solutions \Longrightarrow Fewer cells

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- Many solutions \Longrightarrow Many cells \& Fewer solutions \Longrightarrow Fewer cells

Challenge 2: How many cells?

- A cell is small if it has \approx thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- Many solutions \Longrightarrow Many cells \& Fewer solutions \Longrightarrow Fewer cells

Theorem: $\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$
ApproxMC makes $O\left(\frac{1}{\varepsilon^{2}} \cdot \log \frac{1}{\delta} \cdot \log n\right)$ SAT queries.

ApproxMC: Early Years (2013-17)

Handle reasonable formulas: reasonable grids, reasonable programs

ApproxMC: Early Years (2013-17)

Handle reasonable formulas: reasonable grids, reasonable programs
B. Cook: Virtuous cycle: application areas drives more investment in foundational tools, while improvements in the foundational tools drive further applications. Around and around.

In Pursuit of Scalability (2017-now)

Reliability of Critical Infrastructure Networks

Timeout $=1000$ seconds

Reliability of Critical Infrastructure Networks

Timeout $=1000$ seconds

Reliability of Critical Infrastructure Networks

Timeout $=1000$ seconds
Impact: The first theoretically sound estimates of resilience in power transmission networks of ten medium sized cities in US

Applications

```
approxmc
    Public
Approximate Model Counter
C++ び 51 ย゙ 18
```

SharpTNI：Counting and Sampling Parsimonious Transmission Networks under a Weak Bottleneck Palash Sashittal ${ }^{1}$ and Mohammed El－Kebir ${ }^{2 *}$

Static Evaluation of Noninterference using Approximate Model Counting

Ziqiao Zhou	Zhiyun Qian	Michael K．Reiter	Yinqian Zhang

Check before You Change：Preventing Correlated Failures in Service Updates
Ennan Zhai ${ }^{\dagger}$ ，Ang Chen ${ }^{\ddagger}$ ，Ruzica Piskac ${ }^{\circ}$ ，Mahesh Balakrishnan ${ }^{\S}{ }^{\AA}$＊
Bingchuan Tiant ${ }^{\text {n }}$ ，Bo Song＊${ }^{*}$ ，Haoliang Zhang＊

Automating the Development of

 Chosen Ciphertext Attacks
Gabrielle Beck，Maximilian Zinkus，and Matthew Green，

Johns Hopkins University

Quantifying the Efficacy of Logic Locking Methods
Joseph Sweeney，Deepali Garg，Lawrence Pileggi

A Study of the Learnability of Relational Properties
Model Counting Meets Machine Learning（MCML）

[^0]
Where do we go from here?

Where do we go from here?

B. Cook, 2022: Virtuous cycle: ...application areas drives more investment in foundational tools, while improvements in the foundational tools drive further applications. Around and around.

Where do we go from here?

B. Cook, 2022: Virtuous cycle: ...application areas drives more investment in foundational tools, while improvements in the foundational tools drive further applications. Around and around.

Today's Counters \approx SAT Solvers in early 2000s

Where do we go from here?

B. Cook, 2022: Virtuous cycle: ...application areas drives more investment in foundational tools, while improvements in the foundational tools drive further applications. Around and around.

Today's Counters \approx SAT Solvers in early 2000s
The storm is coming: Statistical systems are being integrated into our lives, the Pentium FDIV and Ariane 5 Rocket moments are inevitable if we do not act

Mission 2028: $100 \times$ Speedup for Counting to enable Quantitative Reasoning at Scale

Where do we go from here?

B. Cook, 2022: Virtuous cycle: ...application areas drives more investment in foundational tools, while improvements in the foundational tools drive further applications. Around and around.

Today's Counters \approx SAT Solvers in early 2000s
The storm is coming: Statistical systems are being integrated into our lives, the Pentium FDIV and Ariane 5 Rocket moments are inevitable if we do not act

Mission 2028: $100 \times$ Speedup for Counting to enable Quantitative Reasoning at Scale
Challenge Problems
Civil Engineering Rigorous resilience estimation for power grid of Los Angeles Neural Network Verification Neural networks with 1M neurons
Software Engineering Information Flow analysis of programs with 10K lines of code

Where do we go from here?

B. Cook, 2022: Virtuous cycle: ...application areas drives more investment in foundational tools, while improvements in the foundational tools drive further applications. Around and around.

Today's Counters \approx SAT Solvers in early 2000s
The storm is coming: Statistical systems are being integrated into our lives, the Pentium FDIV and Ariane 5 Rocket moments are inevitable if we do not act

Mission 2028: $100 \times$ Speedup for Counting to enable Quantitative Reasoning at Scale
Challenge Problems
Civil Engineering Rigorous resilience estimation for power grid of Los Angeles Neural Network Verification Neural networks with 1M neurons
Software Engineering Information Flow analysis of programs with 10K lines of code

The road to promised land: Theory + Algorithms + Software Development

Where do we go from here?

B. Cook, 2022: Virtuous cycle: ...application areas drives more investment in foundational tools, while improvements in the foundational tools drive further applications. Around and around.

Today's Counters \approx SAT Solvers in early 2000s
The storm is coming: Statistical systems are being integrated into our lives, the Pentium FDIV and Ariane 5 Rocket moments are inevitable if we do not act

Mission 2028: $100 \times$ Speedup for Counting to enable Quantitative Reasoning at Scale
Challenge Problems
Civil Engineering Rigorous resilience estimation for power grid of Los Angeles Neural Network Verification Neural networks with 1M neurons
Software Engineering Information Flow analysis of programs with 10K lines of code

The road to promised land: Theory + Algorithms + Software Development
Where to start?: Here! At IIT Bombay. IIT Bombay Formal Methods group is hiring!
These slides are available at tinyurl.com/meel-talk

[^0]: Muhammad Usman
 University of Texas al Austin，USA． nuhammadusmaneutexas．edu

 Kaiyuan Wang＇
 Wenxi Wang
 University of Texas at Austin，USA wenxiweutexasedu Haris Vikalo

 Quantifying Software Reliability via Model－Counting

 Sarmuel Teuber $\left.{ }^{(8)}\right)^{(6)}$ and Alexander Weigle

 In SEARCH FOR A SAT－FRIENDLy Binarized NEU－ RAL NETWORK ARCHITECTURE

 Nina Narodytska
 Hongce Zhang

