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The Quest for Automated Formal Reasoning

All Greeks are humans
All humans are mortal
All Greeks are mortal

Assign Symbols &
Use Algebra

g → h
h → m
g → m

Central Equation: Is it always the case that ((g → h) ∧ (h → m)) → (g → m)?
Or Equivalently, can it be the case ((g → h) ∧ (h → m)) →!(g → m)?

William Stanley Jevons, 1835-1882: “I have given much attention, therefore, to
lessening both the manual and mental labour of the process, and I shall describe
several devices which may be adopted for saving trouble and risk of mistake.”
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Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using “and” (∧) “or”, (∨)
and “not” (¬), is there a satisfying solution (an assignment of 0’s and 1’s to the
variables that makes the expression equal 1)?
Example:

(¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x3 ∨ x1 ∨ x4)

Solution: x1 = 0, x2 = 0, x3 = 1, x4 = 1

• Ernst Schröder, 1841-1902: “Getting a handle on the consequences of any
premises, or at least the fastest method for obtaining these consequences, seems
to me to be one of the noblest, if not the ultimate goal of mathematics and
logic.”
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Algorithmic Boolean Reasoning: Early History

• Davis and Putnam, 1958: “Computational Methods in The Propositional
calculus”, unpublished report to the NSA

• Davis and Putnam, JACM 1960: “A Computing procedure for quantification
theory”

• Davis, Logemman, and Loveland, CACM 1962: “A machine program for theorem
proving”
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The DPLL algorithm
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The DPLL algorithm

F = (x ∨ y) ∧ (a ∨ b) ∧ (ā ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ b̄)

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

a
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F = (x ∨ y) ∧ (a ∨ b) ∧ (ā ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ b̄)

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

a b ⊥

a ā
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The Dreaded 70s

Hoare, 1969: Proving correctness of the programs can be reduced to theorem proving

• For a large interesting class of programs, proving correctness reduces to SAT

Cook, 1971, Levin, 1972: SAT is NP-complete

Vardi: “When I was a graduate student in 1970’s, SAT was a scary problem, not to be
touched by a 10 foot pole”

(Cartoon adapted from Gary Johnson)

De Millo, Lipton, Perlis, 1979: “formal verifications of programs, no matter how
obtained, will not play the same key role in the development of computer science and
software engineering as proofs do in mathematics.”
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The Cautious 80’s followed by the storm

Clark, Emerson, 1981: “We argue that proof construction is unnecessary in the case of
finite state concurrent systems and can be replaced by a model-theoretic approach
which will mechanically determine if the system meets a specification expressed in
propositional temporal logic”

Burch, EM Clarke, KL McMillan, DL Dill, LJ Hwang , 1992: Symbolic model checking,
restricted to Binary Decision Diagrams: formulas for which Satisfiability is PTIME

Pentium FDIV Bug, 1994: : The recall due to floating point unit bug cost $500 million

Ariane 5, 1996: The rocket exploded only after 40 seconds due to exception handling

Marques-Silva and Sakallah, 1996: “GRASP is premised on the inevitability of
conflicts during the search and its most distinguishing feature is the augmentation of
basic backtracking search with a powerful conflict analysis procedure”
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Clause learning

(ā ∨ b̄) ∧ (z̄ ∨ b) ∧ (x̄ ∨ z̄ ∨ a) ∧ (y ∨ b)
Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

▶ Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

▶ Reasons: x and z

• Decision variable & literals assigned at decision levels less than current

▶ Create new clause: (x̄ ∨ z̄)

▶ Can relate clause learning with resolution

▶ Learned clauses result from (selected) resolution operations
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Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

▶ Clause (x̄ ∨ z̄) is asserting at decision level 1

▶ Backtracking differs from plain DPLL:

• Always bactrack after a conflict

Slide 9/ 26



Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

▶ Clause (x̄ ∨ z̄) is asserting at decision level 1

▶ Backtracking differs from plain DPLL:

• Always bactrack after a conflict

Slide 9/ 26



Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

Level Dec. Unit Prop.

0

1

∅

x z̄

▶ Clause (x̄ ∨ z̄) is asserting at decision level 1

▶ Backtracking differs from plain DPLL:

• Always bactrack after a conflict

Slide 9/ 26



Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

Level Dec. Unit Prop.

0

1

∅

x z̄

▶ Clause (x̄ ∨ z̄) is asserting at decision level 1

▶ Backtracking differs from plain DPLL:

• Always bactrack after a conflict

Slide 9/ 26



The Roaring 2000s

• Clause learning & non-chronological backtracking [MSS96a,MSS99,BS97,Z97]

▶ Exploit UIPs [MSS96a,SSS12]

▶ Minimize learned clauses [SB09,VG09]

▶ Opportunistically delete clauses [MSS96a,MSS99,GN02]

• Search restarts [GSK98,BMS00,H07,B08]

• Lazy data structures

▶ Watched literals [MMZZM01]

• Conflict-guided branching

▶ Lightweight branching heuristics [MMZZM01]

▶ Phase saving [S00,PD07]

Biere, Cimatti, Clarke, Zhu, 1999: “We show how boolean decision procedures can
replace BDDs. This new technique avoids the space blow up of BDDs, generates
counterexamples much faster.”

Clark, Emerson, Sifakis, 2007: Turing Award

Knuth, 2010s: SAT is far from an abstract exercise in understanding formal systems.
These so-called “SAT solvers” can now routinely find solutions to practical problems
that involve millions of variables and were thought until very recently to be hopelessly
difficult.
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Beyond NP

[Circa 2012 @IIT Bombay]: Now that NP is “No Problem”, it is time to look beyond
satisfiability

PC2 ( char [ ] SP , char [ ] UI ) {
match = t r u e ;
f o r ( i n t i =0; i<UI . l e n g t h ( ) ; i++) {

i f (SP [ i ] != UI [ i ] ) match=f a l s e ;
e l s e match = match ;

}
i f match r e t u r n Yes ;
e l s e r e tu rn No ;

}

Information Leakage Fairness

Robustness Critical Infrastructure

Quantification: How often does M satisfy P?

Counting
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Resilience of Critical Infrastructure Networks [DMPV17,PDMV19]

Can we predict the likelihood of a blackout due to natural disaster?

• G = (V ,E); set of source nodes S and terminal node t

• failure probability g : E → [0, 1]

• Compute Pr[ t is disconnected from S]?

Counting

Key Idea: Encode disconnectedness using constraints

Impact: The first theoretically sound estimates of resilience in power transmission
networks of ten medium sized cities in US
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Quantitative Analysis of AI Systems [BSSMS19,NSMIS19,NSMISV22]

Robustness Quantification

∣∣∣∣ {x : N (x + ε) ̸= N (x)}
∣∣∣∣

∣∣∣∣ {x : N (x + ε) ̸= N (x)}
∣∣∣∣︸ ︷︷ ︸

Encode Symbolically

Counting

Fairness Quantification

∣∣∣∣ {x : N (x ∧ Black) ̸= N (x ∧White)}
∣∣∣∣︸ ︷︷ ︸

Encode Symbolically

Impact: The first scalable technique for rigorous quantification of robustness and
fairness of Binarized Neural Networks
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Counting

• Given: A Boolean formula F over X1,X2, · · ·Xn

• Sol(F ) = { solutions of F }
• SAT: Determine if Sol(F ) is non-empty

• Counting: Determine |Sol(F )|

• Example: F := (X1 ∨ X2)

• Sol(F ) = {(0, 1), (1, 0), (1, 1)}
• |Sol(F )| = 3

Valiant, 1979: Counting exactly is #P-hard

Stockmeyer, 1983: Probably Approximately Correct (PAC) aka (ε, δ)-guarantees

Pr

[
|Sol(F )|
1 + ε

≤ ApproxCount(F, ε, δ) ≤ (1 + ε)|Sol(F )|
]
≥ 1− δ
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Snapshot from 2012

Theoretical Guarantees

Scalability

[GHSS07b]

[GHSS07a]

[KSB08]

[WS05]

[Sto83]

[GSS06]

[JVV86]

[SBK05]

[SBK05b]

[T06]

AAAI21:3×, CP21, KR21, PODS21: 2×, CAV21, AAAI22; LICS22

AAAI19, SAT19:2×, IJCAI19:2×, TACAS20,LICS20,CAV20:2×,
CP13,AAAI14,IJCAI15,AAAI16,IJCAI16:2×, IJCAI17,VMCAI18

State of the art tool in 2012 could handle one out of 1076 robustness instances

Can we bridge the gap between theory and practice?

Slide 15/ 26



Snapshot from 2012

Theoretical Guarantees

Scalability

[GHSS07b]

[GHSS07a]

[KSB08]

[WS05]

[Sto83]

[GSS06]

[JVV86]

[SBK05]

[SBK05b]

[T06]

AAAI21:3×, CP21, KR21, PODS21: 2×, CAV21, AAAI22; LICS22

AAAI19, SAT19:2×, IJCAI19:2×, TACAS20,LICS20,CAV20:2×,
CP13,AAAI14,IJCAI15,AAAI16,IJCAI16:2×, IJCAI17,VMCAI18

State of the art tool in 2012 could handle one out of 1076 robustness instances

Can we bridge the gap between theory and practice?

Slide 15/ 26



Snapshot from 2012

Theoretical Guarantees

Scalability

[GHSS07b]

[GHSS07a]

[KSB08]

[WS05]

[Sto83]

[GSS06]

[JVV86]

[SBK05]

[SBK05b]

[T06]

AAAI21:3×, CP21, KR21, PODS21: 2×, CAV21, AAAI22; LICS22

AAAI19, SAT19:2×, IJCAI19:2×, TACAS20,LICS20,CAV20:2×,
CP13,AAAI14,IJCAI15,AAAI16,IJCAI16:2×, IJCAI17,VMCAI18

State of the art tool in 2012 could handle one out of 1076 robustness instances

Can we bridge the gap between theory and practice?

Slide 15/ 26



Snapshot from 2012

Theoretical Guarantees

Scalability

[GHSS07b]

[GHSS07a]

[KSB08]

[WS05]

[Sto83]

[GSS06]

[JVV86]

[SBK05]

[SBK05b]

[T06]

AAAI21:3×, CP21, KR21, PODS21: 2×, CAV21, AAAI22; LICS22

AAAI19, SAT19:2×, IJCAI19:2×, TACAS20,LICS20,CAV20:2×,
CP13,AAAI14,IJCAI15,AAAI16,IJCAI16:2×, IJCAI17,VMCAI18

State of the art tool in 2012 could handle one out of 1076 robustness instances

Can we bridge the gap between theory and practice?

Slide 15/ 26



Counting in Mumbai

How many people in Mumbai like coffee?

• Population of Mumbai = 12.5M

• Assign every person a unique (n =) 24 bit identifier (2n ≈ 12.5M)

• Attempt #1: Pick 50 people and count how many of them like coffee and
multiply by 12.5M/50

• If only 1000 people like coffee, it is unlikely that we will find anyone who
likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee

• A SAT solver can answer queries like:

• Q1: Find a person who likes coffee
• Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

• Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?
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As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells
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Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without
knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)

• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash functions

2-wise Independent Hashing [CW77]

Challenge 2 How many cells?
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2-wise Independent Hash Functions

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2
and XOR them

▶ X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · · )
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm
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Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without
knowing the distribution of solutions?

Random XOR-based Hash Functions [CW77]

Challenge 2 How many cells?
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Challenge 2: How many cells? [CMV13,CMV16]

• A cell is small if it has ≈ thresh = 5(1 + 1
ε
)2 solutions

• Many solutions =⇒ Many cells & Fewer solutions =⇒ Fewer cells

# of sols
≤ thresh?

Theorem: Pr
[
|Sol(F )|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(F )|(1 + ε)
]
≥ 1− δ

ApproxMC makes O( 1
ε2

· log 1
δ
· log n) SAT queries.
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ApproxMC: Early Years (2013-17)

Handle reasonable formulas: reasonable grids, reasonable programs

B. Cook: Virtuous cycle: application areas drives more investment in foundational
tools, while improvements in the foundational tools drive further applications. Around
and around.
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In Pursuit of Scalability (2017-now)

LICS-20

SAT-20

Sparse hashing

CP-19

Duality

PODS-21,22

CP-18,IJCAI-19

DNF

CP-20

IJCAI-16,17,19

Phase Transition

ICCAD-22

Constraints-16

Indep Supp

NeurIPS-20

IJCAI-15

Chain Formulas

TACAS-20, AAAI-21

Symmetry

AAAI-23

IJCAI-19

Prob. Caching

AAAI-19, CAV-20

CNF-XOR

CP-21

Pseudo-Boolean

KR-21

MaxSAT-XOR

SAT-21

Hardware Accelerator

Theoretical
Advances

Algorithmic
Engineering

Software
Development
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Reliability of Critical Infrastructure Networks

Figure: Plantersville, SC
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Impact: The first theoretically sound estimates of resilience in power transmission
networks of ten medium sized cities in US
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Applications
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Where do we go from here?

B. Cook, 2022: Virtuous cycle: ...application areas drives more investment in
foundational tools, while improvements in the foundational tools drive further
applications. Around and around.

Today’s Counters ≈ SAT Solvers in early 2000s

The storm is coming: Statistical systems are being integrated into our lives, the
Pentium FDIV and Ariane 5 Rocket moments are inevitable if we do not act

Mission 2028: 100× Speedup for Counting to enable Quantitative Reasoning at Scale

Challenge Problems

Civil Engineering Rigorous resilience estimation for power grid of Los Angeles

Neural Network Verification Neural networks with 1M neurons

Software Engineering Information Flow analysis of programs with 10K lines of code

The road to promised land: Theory + Algorithms + Software Development

Where to start?: Here! At IIT Bombay. IIT Bombay Formal Methods group is hiring!

These slides are available at tinyurl.com/meel-talk
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