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The Era of Data

e How to make sense of data”
 Modeling the events

e |nfer likelihood from data



Probabilistic Inference

Given that a Rice CS grad student queried “music”
on google, what is the probability they will click on
“The best of Justin Beiber” 7

Pr [event|evid]



Probabilistic Inference

Given that a Rice CS grad student queried “music”
on google, what Is the probability

Pr | levid]



Probabilistic Inference

Given that a Rice CS grad student gueried "music”
on google, what is the probabillity

Pr | levid]



Graphical Models

Bayesian Networks



Burglary

_|

0.056

T

0.95

ary\Wakes

A L m [
T T 0.7
T F 0.3
F T 0.1
F F 0.9

Earthquake

0.01

0.99

/

Call

INQ

0.8

T

O

0.99

0.01

— 1O |—=

al el e T B T B B B

el o T B N o o T B

il BT o N oI B b T B

(OR)




Bayes Rule to the Rescue

Pr|Burglary N Call]

Pr|Burglary|Call] = Pr(Calll

Pr|[Burglary N Call) = Pr|B,E,A,M,P,C] + Pr|[B,E,A,M,P,C] + - --
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Scalability

A

Prior Work

BP, MCMC

Exact Methods

Guarantees
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Scalability

A

Our Contribution

BP, MCMC Approximation Guarantees

WeightMC

Exact Methods

Guarantees
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A wild |dea for a new
paradigm?

e Partition the space of paths into “small” “equal
weighted” cells

e “Small”: # of paths in a cell is not large
(bounded by a constant)

* "equal weighted™: All the cells have equal
welight
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Outline

Reduction to SAT

Partition-based techniques via (unweighted) model counting

—xtension to Weighted Model Counting

Looking forward
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Boolean Satisfiabllity

SAT: Given a Boolean formula F over variables V,
determine if F Is true for some assignment to V

F=(aVDb)
RE = 1(0,1),(1,0),(1,1);

SAT is NP-Complete (Cook 1971)
* One of the million dollar problems

16



Model Counting

Given:
» CNF Formula F, Solution Space: Rg

Problem (MQ):

What is the total number of satisfying assignments (models) i.e. |
Rel?

Example

Fz(a\/b); RF={[O!1]! [150]5 [1!1]}

IR¢| = 3
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Weighted Model Counting

Given:
» CNF Formula F, Solution Space: Rg

= Weight Function W(.) over assignments
= W(o)

Problem (WMCQ):
What is the sum of weights of satisfying assignments i.e. W(Rg) ?

Example

F=(aVvDb); Re =1[0,1], [1,0], [1,1]}

W([0,1])=W([1,0]))=1/3 W([1,1]) = W([]0,0]) = 1/6
W(R{) = 1/3+1/3+1/6 = 5/6
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Weighted SAT

Boolean formula F

Weight function over variables (literals)
Weight of assignment = product of wt of literals

F=(avb)W@a=0)=04Wa=1)=1-04=0.6
W(b=0) =0.3; W(b =1) =0.7

WI(0,1)] =W(a=0) XW(b =1)=0.4x0.7 = 0.28
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Reduction to W-SAT

Nodes Variables
Rows of CPT Variables
Probabilities in CPT Weights

Event and Evidence Constraints
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Reduction to W-SAT

* Every satistying assignment = A valid path in the
network

o Satisfies the constraint (evidence)

* Probability of path = Weight of satisfying
assignment = Product of weight of literals =
Product of conditional probabilities

* Sum of probabilities = Weighted Sum
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Why SAT?

o SAT stopped being NP-complete in practice!
e zchaft (Malik, 2001) started the SAT revolution

e SAT solvers follow Moore’s law
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Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout
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Why SAT?

SAT stopped being NP-complete in practice!
zchaff (Malik, 2001) started the SAT revolution

SAT solvers follow Moore’s law

“Symbolic Model Checking without BDDs”: most
influential paper in the first 20 years of TACAS

A simple input/output interface
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Outline

Reduction to SAT

Partition-based technigues via (unweighted) model counting

—xtension to Weighted Model Counting

Looking forward
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Counting through Partitioning




Counting through Partitioning




Counting through Partitioning

Pick a random cell

Estimated Total # of solutions= #solutions in the cell
*total # of cells



How to Partition?

How to partition into roughly equal
small cells of solutions without
knowing the distribution of
solutions?

Universal Hashing
[Carter-Wegman 1979, Sipser 1983] .



Universal Hashing

» Hash functions from mapping {0,1}" to {0,1}m
= (2nelements to 2m cells)

» Random inputs => All cells are roughly equal in expectation

= Universal hash functions:
= For any distribution) inputs => All cells are roughly equal in expectatiol

F



Universal Hashing

Hash functions from mapping {0,1}" to {0,1}m
= (2nelements to 2m cells)

Random inputs => All cells are roughly equal in expectation

Universal hash functions:

= For any distribution) inputs => All cells are roughly equal in expectation

Need stronger bounds on range of the size of cells
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Lower Universality s Lower
Complexity

H(n,m,r): Family of r-universal hash functions
mapping {0,1}" to {0,1}m (2n elements to 2m cells)

Higher the r => Stronger guarantees on variance
of size of cells

r-wise universality => Polynomials of degree r-1

Lower universality => lower complexity
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XOR-Based Hashing

3-universal hashing
Partition 2n space into 2mcells
Variables: X, X5, Xj,....., X,

Pick every variable with prob. 2 ,XOR them and
equate to 0/1 with prob. 5

X+ X3+ Xg+.... X1 =0
m XOR equations -> 2m cells
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Counting through Partitioning




Partitioning

= How large should the cells
be?

= How many cells?



Size of cell

= oo large => Hard to enumerate
= Too small => Variance can be very high

= More tight bounds => larger cell

pivot = 5(1 + 1/¢)*
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ApproxMC
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ApproxMC

3 Partitioning
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ApproxMC in Action

Median



Strong Theoretical Results

ApproxMC (CNF: F, tolerance: ¢, confidence:d)
Suppose ApproxMC(F,¢,0) returns C. Then,

Pr | ;

#F/(1+e) <= C <= (1+¢) 4

‘F]=20

ApproxMC runs in time polynomial in log (1-8)-1,
IFI, &1 relative to SAT oracle
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Key ldea behind the Proof

Let Iy, I, I3, -1, be 3 — wise independent variables in |0, 1],
then for I = ka,,u = F|I]
Pr{|I —p| < Bp] > 0.7

]k =11t Yk is in the cell

Pri 1, = 1] = 1/2™ uz%
Pr| #F/(1+e) <=C <=(1+¢)#F ]1=0.7
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Can Solve a Large Class of Problems
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Outline

Reduction to SAT

Partition-based techniques via (unweighted) model counting

—xtension to Weighted Model Counting

Looking forward
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Partitioning into equal (weighted) “small” cells

49



Partitioning into equal (weighted) “small” cells

Pick a random cell

Estimated Weighted Count = Weighted Count of cell
X # of cells



Key Modifications

Let Iy, I, I3, -1, be 3 — wise independent variables in |0, 1],
then for I = ka,u = F|I]
Pr{|I —p| < Bp] > 0.7

I, = w (Y ) if y;. 1s in the cell Pr{ I, = 1] = 1/2M
meLCE
. . wmaa’; .
I = W(RF) # of solutions in a cell < pivot
om min

meLZIZ'

10:

Wmin
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Strong Theoretical Guarantees

= Approximation: WeightMCE, ¢, 0 ), returns C

A
Pr| f
1 4+ €

<C<Lf(l+¢]>1-9

. Compllgxﬂy:#of Calls.to S.Al\'(l)'gsg)l\ﬁe ﬁllh ar in
and polynomial in
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Handling Large Tilt

Tilt: 992



Handling Large Tilt

’—~
C

Requires Pseudo-Boolean solver:

Still a SAT problem not Optimization
/ 992 @

]
‘—————__

Tilt: 992
Tilt for each region: 2 *



Main Contributions

= Novel parameter, tilt ( p ), to characterize complexity
« p=W, ../ W, over satisfying assignments

« Small Tilt (p)

» Efficient hashing-based technique requires only SAT
solver

= Large Tilt (p)
» Divide-and-conquer using Pseudo-Boolean solver
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Strong Theoretical Guarantees

= Approximation: WeightMCE, ¢, 0 ), returns C

A
Pr| f
1 4+ €

<C<Lf(l+¢]>1-9

. CorpC%I_gxity:#of calls to SAIC(I)'gsS)Ivle ﬁllh ar in
and polynomial in
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Run Time (seconds)

Significantly Faster than

SDD
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# of Solutions

Mean Error: 4% (Allowed:

80%)
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Outline

Reduction to SAT

Partition-based techniques via (unweighted) model counting

—xtension to Weighted Model Counting

Looking forward
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Distribution-Aware Sampling

Given:
» CNF Formula F, Solution Space: Rg

= Weight Function W(.) over assignments
= W(o)

Problem (Sampling):
Pr (Solution y is generated) = W(y)/W(R)

Example:

F=(avVb); Rr ={[0,1], [1,0], [1,1];
W([0,1] ) =W([1,0]) =1/3 W([1,1]) = W([0,0]) = 1/6
Pr ([0,1] is generated] = (1/3) / (5/6) = 2/5




Partitioning into equal (weighted) “small” cells
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Partitioning into equal (weighted) “small” cells

Pick a random cell

Pick a solution according to its-weight



Frequency

Sampling Distribution
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 Benchmark: casel10.cnf; #var: 287; #clauses: 1263
» Total Runs: 4x10°; Total Solutions : 16384

63



Tackling Tilt

 \What kind of problems have low tilt”

e How to handle CNF+PBO+XOR

e Current PBO solvers can’t handle XOR

« CMS can’t handle PBO queries



Extension to More Expressive
Domains (SMT, CSP)

» Efficient 3-independent hashing schemes

» Extending bit-wise XOR to SMT provides
guarantees but no advantage of SMT progress

» Solvers to handle F + Hash efficiently

» CryptoMiniSAT has fueled progress for SAT
domain

= Similar solvers for other domains?
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Collaborators
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EXTRA SLIDES



Complexity

* Tilt captures the ability of hiding a large weight
solution.

e |s it possible to remove tilt from complexity”
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Exploring CNF+XOR

Very little understanding as of now
Can we observe phase transition?

Eager/Lazy approach for XORs?

How to reduce size of XORs further?
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Outline

Reduction to SA

Partition-based techniques via (unweighted) model counting

—xtension to Weighted Model Counting

Discussion on hashing

Looking forward
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XOR-Based Hashing

3-universal hashing
Partition 2nspace into 2mcells
Variables: X,, X5, Xj,....., X,

Pick every variable with prob. 72 ,XOR

equate to 0/1 with prob. %2

m XOR equations -> 2m cells
The cell: F && XOR (CNF+XOR

pi b

 them and
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XOR-Based Hashing

= CryptoMiniSAT: Efficient for CNF+XOR
» Avg Length : n/2
= Smaller the XORs, better the performance

How to shorten XOR clauses?
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Independent Variables

Set of variables such that assignments to these
uniquely determine assignments to rest of
variables for formula to be true

(@aVb=c)=> Independent Support: {a, b}

# of auxiliary variables introduced: 2-3 orders of
magnitude

Hash only on the independent variables (huge
speedup)
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