Approximating Probabilistic Inference without Losing Guarantees:
 Combining Hashing and Feasibility

Kuldeep S. Meel

PhD Student
CAVR Group

Joint work with Supratik Chakraborty, Daniel J. Fremont, Sanjit A. Seshia, Moshe Y. Vardi

loT: Internet of Things

The Era of Data

- How to make sense of data?
- Modeling the events
- Infer likelihood from data

Probabilistic Inference

Given that a Rice CS grad student queried "music" on google, what is the probability they will click on "The best of Justin Beiber"?

> Pr [eventlevid]

Probabilistic Inference

Given that a Rice CS grad student queried "music" on google, what is the probability they will click on "The best of Justin Beiber" ?
Pr [eventlevid]

Probabilistic Inference

Given that a Rice CS grad student queried "music" on google, what is the probability they will click on "The best of Justin Beiber"?
Pr [event|evid]

Graphical Models

Bayesian Networks

Burglary

Earthquake

What is $\operatorname{Pr}[$ Burglary | Call]?

Marywakes 】 moncoming

A	M	Pr
T	T	0.7
T	F	0.3
F	T	0.1
F	F	0.9

Bayes' Rule to the Rescue

$$
\operatorname{Pr}[\text { Burglary } \mid \text { Call }]=\frac{\operatorname{Pr}[\text { Burglary } \cap \text { Call }]}{\operatorname{Pr}[\text { Call }]}
$$

$\operatorname{Pr}[$ Burglary $\cap C a l l]=\operatorname{Pr}[B, E, A, M, P, C]+\operatorname{Pr}[B, \bar{E}, A, M, P, C]+\cdots$

Burglary

Earthquake

$$
=\operatorname{Pr}[\mathrm{B}]^{*} \operatorname{Pr}[\mathrm{E}]^{*} \operatorname{Pr}[\mathrm{~A} \mid \mathrm{B}, \mathrm{E}]^{*} \operatorname{Pr}[\mathrm{M} \mid \mathrm{A}]^{*} \operatorname{Pr}[\mathrm{C} \mid \mathrm{M}, \mathrm{P}] \text { orking }
$$

A	M	Pr
T	T	0.7
T	F	0.3
F	T	0.1
F	F	0.9

Burglary

Earthquake

Prior Work

Guarantees

Our Contribution

Guarantees

A wild Idea for a new paradigm?

- Partition the space of paths into "small" "equal weighted" cells
- "Small": \# of paths in a cell is not large (bounded by a constant)
- "equal weighted": All the cells have equal weight

Outline

- Reduction to SAT
- Partition-based techniques via (unweighted) model counting
- Extension to Weighted Model Counting
- Looking forward

Boolean Satisfiability

- SAT: Given a Boolean formula F over variables V, determine if F is true for some assignment to V
- $F=(a \vee b)$
- $R_{F}=\{(0,1),(1,0),(1,1)\}$
- SAT is NP-Complete (Cook 1971)
- One of the million dollar problems

Model Counting

Given:

- CNF Formula F, Solution Space: R_{F}

Problem (MC):
What is the total number of satisfying assignments (models) i.e. I $R_{F} l$?

Example

$$
F=(a \vee b) ; \quad R_{F}=\{[0,1],[1,0],[1,1]\}
$$

$$
\left|R_{F}\right|=3
$$

Weighted Model Counting

Given:

- CNF Formula F, Solution Space: R_{F}
- Weight Function W(.) over assignments
- W(o)

Problem (WMC):
What is the sum of weights of satisfying assignments i.e. $\mathrm{W}\left(\mathrm{R}_{\mathrm{F}}\right)$?
Example

$$
\begin{aligned}
& \mathrm{F}=(\mathrm{a} \vee \mathrm{~b}) ; \quad \mathrm{R}_{\mathrm{F}}=\{[0,1],[1,0],[1,1]\} \\
& \mathrm{W}([0,1])=\mathrm{W}([1,0])=1 / 3 \quad \mathrm{~W}([1,1])=\mathrm{W}([0,0])=1 / 6 \\
& \mathbf{W}\left(\mathbf{R}_{\mathbf{F}}\right)=\mathbf{1 / 3 + 1 / 3 + 1 / 6 = 5 / 6}
\end{aligned}
$$

Weighted SAT

- Boolean formula F
- Weight function over variables (literals)
- Weight of assignment = product of wt of literals
- $F=(a \vee b) ; W(a=0)=0.4 ; W(a=1)=1-0.4=0.6$ $W(b=0)=0.3 ; W(b=1)=0.7$
- $W[(0,1)]=W(a=0) \times W(b=1)=0.4 \times 0.7=0.28$

Reduction to W-SAT

Bayesian Network	SAT Formula
Nodes	Variables
Rows of CPT	Variables
Probabilities in CPT	Weights
Event and Evidence	Constraints

Reduction to W-SAT

- Every satisfying assignment = A valid path in the network
- Satisfies the constraint (evidence)
- Probability of path = Weight of satisfying assignment = Product of weight of literals = Product of conditional probabilities
- Sum of probabilities = Weighted Sum

Why SAT?

- SAT stopped being NP-complete in practice!
- zchaff (Malik, 2001) started the SAT revolution
- SAT solvers follow Moore's law

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Why SAT?

- SAT stopped being NP-complete in practice!
- zchaff (Malik, 2001) started the SAT revolution
- SAT solvers follow Moore's law
- "Symbolic Model Checking without BDDs": most influential paper in the first 20 years of TACAS
- A simple input/output interface

Outline

- Reduction to SAT
- Partition-based techniques via (unweighted) model counting
- Extension to Weighted Model Counting
- Looking forward

Counting through Partitioning

Counting through Partitioning

Counting through Partitioning

Estimated Total \# of solutions= \#solutions in the cell * total \# of cells

How to Partition?

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Universal Hashing
[Carter-Wegman 1979, Sipser 1983]

Universal Hashing

- Hash functions from mapping $\{0,1\} \mathrm{n}$ to $\{0,1\} \mathrm{m}$
- (2^{n} elements to 2^{m} cells)
- Random inputs => All cells are roughly equal in expectation
- Universal hash functions:
- For any distribution) inputs => All cells are roughly equal in expectatio

Universal Hashing

- Hash functions from mapping $\{0,1\}^{n}$ to $\{0,1\}^{m}$
- (2n elements to 2^{m} cells)
- Random inputs => All cells are roughly equal in expectation
- Universal hash functions:
- For any distribution) inputs => All cells are roughly equal in expectation
- Need stronger bounds on range of the size of cells

Lower Universality $\boldsymbol{\rightarrow}$ Lower Complexity

- H(n,m,r): Family of r-universal hash functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{m}$ (2^{n} elements to 2^{m} cells)
- Higher the $\mathrm{r}=>$ Stronger guarantees on variance of size of cells
- r-wise universality => Polynomials of degree r-1
- Lower universality => lower complexity

XOR-Based Hashing

- 3-universal hashing
- Partition 2^{n} space into 2^{m} cells
- Variables: $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots . ., \mathrm{X}_{\mathrm{n}}$
- Pick every variable with prob. $1 / 2$, XOR them and equate to $0 / 1$ with prob. $1 / 2$
- $\mathrm{X}_{1}+\mathrm{X}_{3}+\mathrm{X}_{6}+\ldots . \mathrm{X}_{\mathrm{n}-1}=0$
- m XOR equations -> 2^{m} cells

Counting through Partitioning

Partitioning

-How large should the cells be?

Size of cell

- Too large => Hard to enumerate
- Too small => Variance can be very high
- More tight bounds => larger cell

$$
\text { pivot }=5(1+1 / \varepsilon)^{2}
$$

ApproxMC

ApproxMC

ApproxMC

ApproxMC

ApproxMC

ApproxMC

$F \wedge X O R_{1} \wedge X O R_{2} \ldots \ldots . \wedge X O R_{m}$

ApproxMC

ApproxMC in Action

Strong Theoretical Results

ApproxMC (CNF: F, tolerance: ε, confidence: δ) Suppose ApproxMC(F,e, δ) returns C. Then,

$$
\operatorname{Pr}[\# F /(1+\varepsilon)<=\mathbf{C}<=(1+\varepsilon) \# F] \geq \delta
$$

ApproxMC runs in time polynomial in $\log (1-\delta)^{-1}$, IFI, ε^{-1} relative to SAT oracle

Key Idea behind the Proof

Let $I_{1}, I_{2}, I_{3}, \cdots I_{n}$ be $3-$ wise independent variables in $[0,1]$,

$$
\begin{array}{r}
\text { then for } I=\sum I_{k}, \mu=E[I] \\
\qquad \operatorname{Pr}[|I-\mu|<\beta \mu] \geq 0.7
\end{array}
$$

$I_{k}=1$ if y_{k} is in the cell

$$
\operatorname{Pr}\left[I_{k}=1\right]=1 / 2^{m} \quad \mu=\frac{R_{F}}{2^{m}}
$$

$\operatorname{Pr}[\# F /(1+\varepsilon)<=\mathbf{C}<=(1+\varepsilon) \# \mathbf{F}] \geq 0.7$

Can Solve a Large Class of Problems

Large class of problems that lie beyond the exact counters but can be computed by

Outline

- Reduction to SAT
- Partition-based techniques via (unweighted) model counting
- Extension to Weighted Model Counting
- Looking forward

Partitioning into equal (weighted) "small" cells

Partitioning into equal (weighted) "small" cells

Estimated Weighted Count = Weighted Count of cell X \# of cells

Key Modifications

Let $I_{1}, I_{2}, I_{3}, \cdots I_{n}$ be $3-$ wise independent variables in $[0,1]$,

$$
\begin{array}{r}
\text { then for } I=\sum I_{k}, \mu=E[I] \\
\operatorname{Pr}[|I-\mu|<\beta \mu] \geq 0.7 \\
I_{k}=\frac{w\left(y_{k}\right)}{w_{\max }} \text { if } y_{k} \text { is in the cell } \operatorname{Pr}\left[I_{k}=1\right]=1 / 2^{\mathrm{m}} \\
\mu=\frac{W\left(R_{F}\right)}{2^{m}} \quad \# \text { of solutions in a cell }<\frac{w_{\max }}{w_{\min }} \text { pivot }
\end{array}
$$

$$
\rho=\frac{w_{\max }}{w_{\min }}
$$

Strong Theoretical Guarantees

- Approximation: WeightMC $(\beta, \epsilon, \delta)$, returns C s.t.

$$
\operatorname{Pr}\left[\frac{f}{1+\epsilon} \leq C \leq f(1+\epsilon)\right] \geq 1-\delta
$$

- Complexity: \# of calls to SAT solver is linear in and polynomial in

Handling Large Tilt

Tilt: 992

Handling Large Tilt

Tilt: 992
Tilt for each region: 2

Main Contributions

- Novel parameter, tilt (ρ), to characterize complexity
- $\rho=\mathrm{W}_{\text {max }} / \mathrm{W}_{\text {min }}$ over satisfying assignments
- Small Tilt (ρ)
- Efficient hashing-based technique requires only SAT solver
- Large Tilt (ρ)
- Divide-and-conquer using Pseudo-Boolean solver

Strong Theoretical Guarantees

- Approximation: WeightMC $(\beta, \epsilon, \delta)$, returns C s.t.

$$
\operatorname{Pr}\left[\frac{f}{1+\epsilon} \leq C \leq f(1+\epsilon)\right] \geq 1-\delta
$$

- Complexity: \# of calls to SAT solver is linear in and polynomial in

Significantly Faster than SDD

Benchmarks
\# of variables

Mean Error: 4\% (Allowed: 80\%)

Outline

- Reduction to SAT
- Partition-based techniques via (unweighted) model counting
- Extension to Weighted Model Counting
- Looking forward

Distribution-Aware Sampling

Given:

- CNF Formula F, Solution Space: R_{F}
- Weight Function W(.) over assignments
- W(o)

Problem (Sampling):
$\operatorname{Pr}($ Solution y is generated $)=\mathrm{W}(\mathrm{y}) / \mathrm{W}\left(\mathrm{R}_{\mathrm{F}}\right)$
Example:

$$
\begin{aligned}
& F=(a \vee b) ; \quad R_{F}=\{[0,1],[1,0],[1,1]\} \\
& W([0,1])=W([1,0])=1 / 3 \quad W([1,1])=W([0,0])=1 / 6 \\
& \operatorname{Pr}([0,1] \text { is generated }]=(1 / 3) /(5 / 6)=2 / 5
\end{aligned}
$$

Partitioning into equal (weighted) "small" cells

Partitioning into equal (weighted) "small" cells

Sampling Distribution

- Benchmark: case110.cnf; \#var: 287; \#clauses: 1263
- Total Runs: 4x106; Total Solutions : 16384

Tackling Tilt

- What kind of problems have low tilt?
- How to handle CNF+PBO+XOR
- Current PBO solvers can't handle XOR
- CMS can't handle PBO queries

Extension to More Expressive Domains (SMT, CSP)

- Efficient 3-independent hashing schemes
- Extending bit-wise XOR to SMT provides guarantees but no advantage of SMT progress
- Solvers to handle F + Hash efficiently
- CryptoMiniSAT has fueled progress for SAT domain
- Similar solvers for other domains?

Collaborators

EXTRA SLIDES

Complexity

- Tilt captures the ability of hiding a large weight solution.
- Is it possible to remove tilt from complexity?

Exploring CNF+XOR

- Very little understanding as of now
- Can we observe phase transition?
- Eager/Lazy approach for XORs?
- How to reduce size of XORs further?

Outline

- Reduction to SAT
- Partition-based techniques via (unweighted) model counting
- Extension to Weighted Model Counting
- Discussion on hashing
- Looking forward

XOR-Based Hashing

- 3-universal hashing
- Partition 2^{n} space into 2^{m} cells
- Variables: $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots . ., \mathrm{X}_{\mathrm{n}}$
- Pick every variable with prob. $1 / 2, \mathrm{XOR}$ them and equate to $0 / 1$ with prob. $1 / 2$
- $X_{1}+X_{3}+X_{6}+\ldots X_{n-1}=0 \quad$ (Cell ID: 0/1)
- m XOR equations -> 2^{m} cells
- The cell: F \&\& XOR (CNF+XOR)

XOR-Based Hashing

- CryptoMiniSAT: Efficient for CNF+XOR
- Avg Length : n/2
- Smaller the XORs, better the performance

How to shorten XOR clauses?

Independent Variables

- Set of variables such that assignments to these uniquely determine assignments to rest of variables for formula to be true
- $(\mathrm{a} V \mathrm{~b}=\mathrm{c}) \rightarrow$ Independent Support: $\{\mathrm{a}, \mathrm{b}\}$
- \# of auxiliary variables introduced: 2-3 orders of magnitude
- Hash only on the independent variables (huge speedup)

