
Approximating Probabilistic Inference 
without Losing Guarantees: 

Combining Hashing and Feasibility

Kuldeep S. Meel

 

PhD Student

CAVR Group

Joint work with Supratik Chakraborty, Daniel J. Fremont, Sanjit A. Seshia, 
Moshe Y. Vardi

1



IoT: Internet of Things
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The Era of Data

• How to make sense of data?


• Modeling the events


• Infer likelihood from data
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Probabilistic Inference 
Given that a Rice CS grad student queried “music” 
on google, what is the probability they will click on 
“The best of Justin Beiber” ?

Pr [event|evid]
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Graphical Models


Bayesian Networks
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Bayes’ Rule to the Rescue 

Pr[Burglary \ Call] = Pr[B,E,A,M,P,C] + Pr[B, Ē, A,M,P,C] + · · ·

Pr[Burglary|Call] =
Pr[Burglary \ Call]

Pr[Call]
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Prior Work

Guarantees
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A wild Idea for a new 
paradigm?

• Partition the space of paths into “small” “equal 
weighted” cells


• “Small”: # of paths in a cell is not large 
(bounded by a constant)


• “equal weighted”: All the cells have equal 
weight
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Outline

• Reduction to SAT


• Partition-based techniques via (unweighted) model counting


• Extension to Weighted Model Counting


• Looking forward
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Boolean Satisfiability
• SAT: Given a Boolean formula F over variables V, 

determine if F  is true for some assignment to V 


• F = (a ⋁ b)


• RF = {(0,1),(1,0),(1,1)}


• SAT is NP-Complete (Cook 1971)


• One of the million dollar problems
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       Model Counting

Given:
▪ CNF Formula F, Solution Space: RF

Problem (MC):
What is the total number of satisfying assignments (models) i.e. |
RF|?

Example
F = (a ⋁ b);   RF = {[0,1], [1,0], [1,1]}

|RF| = 3
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Weighted Model Counting

Given:
▪ CNF Formula F, Solution Space: RF
▪ Weight Function W(.) over assignments
▪ W(σ)

Problem (WMC):
What is the sum of weights of satisfying assignments i.e. W(RF) ?

Example
F = (a ⋁ b);   RF = {[0,1], [1,0], [1,1]}
W( [0,1] ) = W([1,0]) = 1/3     W([1,1]) = W([0,0]) = 1/6

W(RF) = 1/3+1/3+1/6 = 5/6
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Weighted SAT
• Boolean formula F


• Weight function over variables (literals)


• Weight of assignment = product of wt of literals


• F = (a ⋁ b); W(a=0) = 0.4; W(a = 1) = 1-0.4 = 0.6 
W(b=0) = 0.3; W(b = 1) = 0.7


• W[(0,1)] = W(a = 0) X W(b = 1) = 0.4x0.7 = 0.28
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Reduction to W-SAT

Bayesian Network SAT Formula

Nodes Variables

Rows of CPT Variables

Probabilities in CPT Weights

Event and Evidence Constraints
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Reduction to W-SAT
• Every satisfying assignment = A valid path in the 

network


• Satisfies the constraint (evidence)


• Probability of path = Weight of satisfying 
assignment = Product of weight of literals = 
Product of conditional probabilities


• Sum of probabilities = Weighted Sum
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Why SAT?
• SAT stopped being NP-complete in practice!


• zchaff (Malik, 2001) started the SAT revolution


• SAT solvers follow Moore’s law
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Why SAT?
• SAT stopped being NP-complete in practice!


• zchaff (Malik, 2001) started the SAT revolution


• SAT solvers follow Moore’s law


• “Symbolic Model Checking without BDDs”: most 
influential paper in the first 20 years of TACAS


• A simple input/output interface
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Outline

• Reduction to SAT


• Partition-based techniques via (unweighted) model counting


• Extension to Weighted Model Counting


• Looking forward
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Counting through Partitioning
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Counting through Partitioning
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Counting through Partitioning 

28

Pick a random cell

Estimated Total # of solutions= #solutions in the cell
* total # of cells



How to Partition?

How to partition into roughly equal 
small cells of solutions without 
knowing the distribution of 
solutions? 

Universal Hashing
[Carter-Wegman 1979, Sipser 1983] 29



Universal Hashing

30

▪ Hash functions from mapping {0,1}n  to {0,1}m  

▪ (2n elements to 2m cells)

▪ Random inputs => All cells are roughly equal in expectation

▪ Universal hash functions:
▪ For any distribution) inputs => All cells are roughly equal in expectation

  
O

RF

RF
O



Universal Hashing
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▪ Hash functions from mapping {0,1}n  to {0,1}m  

▪ (2n elements to 2m cells)

▪ Random inputs => All cells are roughly equal in expectation

▪ Universal hash functions:
▪ For any distribution) inputs => All cells are roughly equal in expectation

▪ Need stronger bounds on range of the size of cells



Lower Universality      Lower 
Complexity

▪ H(n,m,r): Family of r-universal hash functions 
mapping {0,1}n  to {0,1}m  (2n elements to 2m cells)

▪ Higher the r =>  Stronger guarantees on variance 
of size of cells

▪ r-wise universality => Polynomials of degree r-1

▪ Lower universality => lower complexity
32



XOR-Based Hashing

▪ 3-universal hashing
▪ Partition 2n space into  2m cells
▪ Variables: X1, X2, X3,….., Xn

▪ Pick every variable with prob. ½ ,XOR them and 
equate to 0/1 with prob. ½ 

▪ X1+X3+X6+…. Xn-1 = 0 
▪ m XOR equations -> 2m cells
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Counting through Partitioning
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Partitioning 

▪How large should the cells 
be?

 
▪How many cells? 35



Size of cell
▪ Too large => Hard to enumerate
▪ Too small => Variance can be very high
▪ More tight bounds => larger cell
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pivot = 5(1 + 1/")2



ApproxMC
RF
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< pivot
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ApproxMC
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ApproxMC

F ⋀ XOR1 ⋀ XOR2 ……..⋀ XORm



ApproxMC
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Algorithm
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Strong Theoretical Results
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ApproxMC (CNF: F, tolerance: ε, confidence:δ)
Suppose ApproxMC(F,ε,δ) returns C. Then,

Pr [ #F/(1+ε) <= C  <= (1+ ε) #F ] ≥ δ

ApproxMC runs in time polynomial in log (1-δ)−1,
|F|, ε-1 relative to SAT oracle



Key Idea behind the Proof
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Ik = 1 if yk is in the cell

µ =
RF

2mPr[           ] = 1/2m  Ik = 1 if yk is in the cell

Pr [ #F/(1+ε) <= C  <= (1+ ε) #F ] ≥ 0.7

Let I1, I2, I3, · · · In be 3� wise independent variables in [0, 1],

then for I =
X

Ik, µ = E[I]

Pr[|I � µ| < �µ] � 0.7



Can Solve a Large Class of Problems
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Large class of problems that lie beyond the 
exact counters but can be computed by 
ApproxMC
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Outline

• Reduction to SAT


• Partition-based techniques via (unweighted) model counting


• Extension to Weighted Model Counting


• Looking forward
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Partitioning into equal (weighted) “small” cells
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Pick a random cell

Estimated Weighted Count = Weighted Count of cell 
X   # of cells

Partitioning into equal (weighted) “small” cells



Key Modifications
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Pr[           ] = 1/2m  Ik = 1 if yk is in the cell

µ =
W (RF )

2m
# of solutions in a cell < 

Ik =
w(yk)

wmax
if yk is in the cell

wmax

wmin
pivot

⇢ =
wmax

wmin

Let I1, I2, I3, · · · In be 3� wise independent variables in [0, 1],

then for I =
X

Ik, µ = E[I]

Pr[|I � µ| < �µ] � 0.7



▪ Approximation: WeightMC(         ), returns C 
s.t.

      

   
▪ Complexity: # of calls to SAT solver is linear in
                   and polynomial  in 

Strong Theoretical Guarantees
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⇢, log ��1, |F |, 1/", 1/⇢

Pr[
f

1 + ✏
 C  f(1 + ✏)] � 1� �

B, ✏, �



Handling Large Tilt
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Tilt:  992
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Handling Large Tilt
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Tilt:  992
Tilt for each region: 2

.992 

.001 
.002 .001 

.001 .002 

.001 

.001 

.002 .001 ≤ wt < .002 

.50 ≤ wt < 1 Requires Pseudo-Boolean solver: 
Still a SAT problem not Optimization



Main Contributions

▪ Novel parameter, tilt ( ρ ), to characterize complexity
▪ ρ = Wmax / Wmin over satisfying assignments

▪ Small Tilt ( ρ ) 
▪ Efficient hashing-based technique requires only SAT 

solver

▪ Large Tilt ( ρ ) 
▪ Divide-and-conquer using Pseudo-Boolean solver
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▪ Approximation: WeightMC(         ), returns C 
s.t.

      

   
▪ Complexity: # of calls to SAT solver is linear in
                   and polynomial  in 

Strong Theoretical Guarantees
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⇢, log ��1, |F |, 1/", 1/

Pr[
f

1 + ✏
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Significantly Faster than 
SDD
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Mean Error: 4% (Allowed: 
80%)
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Outline

• Reduction to SAT


• Partition-based techniques via (unweighted) model counting


• Extension to Weighted Model Counting


• Looking forward
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Distribution-Aware Sampling

Given:
▪ CNF Formula F, Solution Space: RF
▪ Weight Function W(.) over assignments
▪ W(σ)

Problem (Sampling):
Pr (Solution y is generated) = W(y)/W(RF)

Example:
F = (a ⋁ b);   RF = {[0,1], [1,0], [1,1]}
W( [0,1] ) = W([1,0]) = 1/3     W([1,1]) = W([0,0]) = 1/6
Pr ([0,1] is generated] = (1/3) / (5/6)  = 2/5
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Partitioning into equal (weighted) “small” cells
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Pick a random cell

Pick a solution according to its weight

Partitioning into equal (weighted) “small” cells



Sampling Distribution
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•  Benchmark: case110.cnf;   #var: 287;  #clauses: 1263 
•  Total Runs: 4x106;   Total Solutions : 16384 
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Tackling Tilt

• What kind of problems have low tilt?


• How to handle CNF+PBO+XOR


• Current PBO solvers can’t handle XOR


• CMS can’t handle PBO queries



Extension to More Expressive 
Domains (SMT, CSP)

▪ Efficient 3-independent hashing schemes 
▪ Extending bit-wise XOR to SMT provides 

guarantees but no advantage of SMT progress

▪ Solvers to handle F + Hash efficiently
▪ CryptoMiniSAT has fueled progress for SAT 

domain
▪ Similar solvers for other domains? 
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Collaborators 
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EXTRA SLIDES



Complexity

• Tilt captures the ability of hiding a large weight 
solution.


• Is it possible to remove tilt from complexity? 
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Exploring CNF+XOR

▪ Very little understanding as of now

▪ Can we observe phase transition? 

▪ Eager/Lazy approach for XORs? 

▪ How to reduce size of XORs further?
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Outline

• Reduction to SAT


• Partition-based techniques via (unweighted) model counting


• Extension to Weighted Model Counting


• Discussion on hashing


• Looking forward
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XOR-Based Hashing

▪ 3-universal hashing
▪ Partition 2n space into  2m cells
▪ Variables: X1, X2, X3,….., Xn

▪ Pick every variable with prob. ½ ,XOR them and 
equate to 0/1 with prob. ½ 

▪ X1+X3+X6+…. Xn-1 = 0   (Cell ID: 0/1)
▪ m XOR equations -> 2m cells
▪ The cell:  F && XOR (CNF+XOR)
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XOR-Based Hashing

▪ CryptoMiniSAT: Efficient for CNF+XOR
▪ Avg Length : n/2 
▪ Smaller the XORs, better the performance

How to shorten XOR clauses? 
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Independent Variables

▪ Set of variables such that assignments to these 
uniquely determine assignments to rest of 
variables for formula to be true

▪ (a V b = c) ➔ Independent Support: {a, b}
▪ # of auxiliary variables introduced: 2-3 orders of 

magnitude
▪ Hash only on the independent variables (huge 

speedup)
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