
Approximating Probabilistic Inference
without Losing Guarantees:

Combining Hashing and Feasibility

Kuldeep S. Meel

 

PhD Student

CAVR Group

Joint work with Supratik Chakraborty, Daniel J. Fremont, Sanjit A. Seshia,
Moshe Y. Vardi

1

IoT: Internet of Things

2

The Era of Data

• How to make sense of data?

• Modeling the events

• Infer likelihood from data

3

Probabilistic Inference
Given that a Rice CS grad student queried “music”
on google, what is the probability they will click on
“The best of Justin Beiber” ?

Pr [event|evid]

4

Probabilistic Inference
Given that a Rice CS grad student queried “music”
on google, what is the probability they will click on
“The best of Justin Beiber” ?

Pr [event|evid]

5

Probabilistic Inference
Given that a Rice CS grad student queried “music”
on google, what is the probability they will click on
“The best of Justin Beiber” ?

Pr [event|evid]

6

Graphical Models

Bayesian Networks

7

B E

A

M P

C

Burglary Earthquake

Alarm

PhoneWorkingMaryWakes

Call

T 0.05
F 0.95

T 0.01
F 0.99

T 0.8
F 0.2

M P C Pr

T T T 0.99
T T F 0.01
T F T 0
T F F 1
F T T 0
F T F 1
F F T 0.1
F F F 0.9

A M Pr
T T 0.7
T F 0.3
F T 0.1
F F 0.9

B E A Pr

T T T 0.88
T T F 0.12
T F T 0.91
T F F 0.09
F T T 0.97
F T F 0.03
F F T 0.02
F F F 0.98What is Pr [Burglary | Call] ?

8

Bayes’ Rule to the Rescue

Pr[Burglary \ Call] = Pr[B,E,A,M,P,C] + Pr[B, Ē, A,M,P,C] + · · ·

Pr[Burglary|Call] =
Pr[Burglary \ Call]

Pr[Call]

9

B E

A

M P

C

Burglary Earthquake

Alarm

PhoneWorkingMaryWakes

Call

Pr [B,E,A,M,P,C]
 = Pr[B]*Pr[E]*Pr [A |B,E]*Pr[M|A]*Pr[C|M,P]

B E A Pr

T T T 0.88
T T F 0.12
T F T 0.91
T F F 0.09
F T T 0.97
F T F 0.03
F F T 0.02
F F F 0.98

T 0.01
F 0.99

T 0.05
F 0.95

A M Pr
T T 0.7
T F 0.3
F T 0.1
F F 0.9

T 0.8
F 0.2

M P C Pr

T T T 0.99
T T F 0.01
T F T 0
T F F 1
F T T 0
F T F 1
F F T 0.1
F F F 0.9

10

B E

A

M P

C

Burglary Earthquake

Alarm

PhoneWorkingMaryWakes

Call

Pr [B, ,A,M,P,C]Ē

T 0.01
F 0.99

T 0.8
F 0.2

B E A Pr

T T T 0.88
T T F 0.12
T F T 0.91
T F F 0.09
F T T 0.97
F T F 0.03
F F T 0.02
F F F 0.98

A M Pr
T T 0.7
T F 0.3
F T 0.1
F F 0.9

T 0.05
F 0.95

M P C Pr

T T T 0.99
T T F 0.01
T F T 0
T F F 1
F T T 0
F T F 1
F F T 0.1
F F F 0.9

11

Prior Work

Guarantees

Sc
al

ab
ilit

y
BP, MCMC

Exact Methods

12

Our Contribution

Guarantees

Sc
al

ab
ilit

y
BP, MCMC Approximation Guarantees

WeightMC

Exact Methods

13

A wild Idea for a new
paradigm?

• Partition the space of paths into “small” “equal
weighted” cells

• “Small”: # of paths in a cell is not large
(bounded by a constant)

• “equal weighted”: All the cells have equal
weight

14

Outline

• Reduction to SAT

• Partition-based techniques via (unweighted) model counting

• Extension to Weighted Model Counting

• Looking forward

15

Boolean Satisfiability
• SAT: Given a Boolean formula F over variables V,

determine if F is true for some assignment to V

• F = (a ⋁ b)

• RF = {(0,1),(1,0),(1,1)}

• SAT is NP-Complete (Cook 1971)

• One of the million dollar problems

16

 Model Counting

Given:
▪ CNF Formula F, Solution Space: RF

Problem (MC):
What is the total number of satisfying assignments (models) i.e. |
RF|?

Example
F = (a ⋁ b); RF = {[0,1], [1,0], [1,1]}

|RF| = 3

17

Weighted Model Counting

Given:
▪ CNF Formula F, Solution Space: RF
▪ Weight Function W(.) over assignments
▪ W(σ)

Problem (WMC):
What is the sum of weights of satisfying assignments i.e. W(RF) ?

Example
F = (a ⋁ b); RF = {[0,1], [1,0], [1,1]}
W([0,1]) = W([1,0]) = 1/3 W([1,1]) = W([0,0]) = 1/6

W(RF) = 1/3+1/3+1/6 = 5/6

18

Weighted SAT
• Boolean formula F

• Weight function over variables (literals)

• Weight of assignment = product of wt of literals

• F = (a ⋁ b); W(a=0) = 0.4; W(a = 1) = 1-0.4 = 0.6
W(b=0) = 0.3; W(b = 1) = 0.7

• W[(0,1)] = W(a = 0) X W(b = 1) = 0.4x0.7 = 0.28

19

Reduction to W-SAT

Bayesian Network SAT Formula

Nodes Variables

Rows of CPT Variables

Probabilities in CPT Weights

Event and Evidence Constraints

20

Reduction to W-SAT
• Every satisfying assignment = A valid path in the

network

• Satisfies the constraint (evidence)

• Probability of path = Weight of satisfying
assignment = Product of weight of literals =
Product of conditional probabilities

• Sum of probabilities = Weighted Sum

21

Why SAT?
• SAT stopped being NP-complete in practice!

• zchaff (Malik, 2001) started the SAT revolution

• SAT solvers follow Moore’s law

22

23

Why SAT?
• SAT stopped being NP-complete in practice!

• zchaff (Malik, 2001) started the SAT revolution

• SAT solvers follow Moore’s law

• “Symbolic Model Checking without BDDs”: most
influential paper in the first 20 years of TACAS

• A simple input/output interface

24

Outline

• Reduction to SAT

• Partition-based techniques via (unweighted) model counting

• Extension to Weighted Model Counting

• Looking forward

25

Counting through Partitioning

26

Counting through Partitioning

27

Counting through Partitioning

28

Pick a random cell

Estimated Total # of solutions= #solutions in the cell
* total # of cells

How to Partition?

How to partition into roughly equal
small cells of solutions without
knowing the distribution of
solutions?

Universal Hashing
[Carter-Wegman 1979, Sipser 1983] 29

Universal Hashing

30

▪ Hash functions from mapping {0,1}n to {0,1}m

▪ (2n elements to 2m cells)

▪ Random inputs => All cells are roughly equal in expectation

▪ Universal hash functions:
▪ For any distribution) inputs => All cells are roughly equal in expectation

O

RF

RF
O

Universal Hashing

31

▪ Hash functions from mapping {0,1}n to {0,1}m

▪ (2n elements to 2m cells)

▪ Random inputs => All cells are roughly equal in expectation

▪ Universal hash functions:
▪ For any distribution) inputs => All cells are roughly equal in expectation

▪ Need stronger bounds on range of the size of cells

Lower Universality Lower
Complexity

▪ H(n,m,r): Family of r-universal hash functions
mapping {0,1}n to {0,1}m (2n elements to 2m cells)

▪ Higher the r => Stronger guarantees on variance
of size of cells

▪ r-wise universality => Polynomials of degree r-1

▪ Lower universality => lower complexity
32

XOR-Based Hashing

▪ 3-universal hashing
▪ Partition 2n space into 2m cells
▪ Variables: X1, X2, X3,….., Xn

▪ Pick every variable with prob. ½ ,XOR them and
equate to 0/1 with prob. ½

▪ X1+X3+X6+…. Xn-1 = 0
▪ m XOR equations -> 2m cells

33

Counting through Partitioning

34

Partitioning

▪How large should the cells
be?

▪How many cells? 35

Size of cell
▪ Too large => Hard to enumerate
▪ Too small => Variance can be very high
▪ More tight bounds => larger cell

36

pivot = 5(1 + 1/")2

ApproxMC
RF

37

#of sols
< pivot

RF

NO

38

ApproxMC

?

39

ApproxMC

F ⋀ XOR1

? NO
of

sols <
pivot

40

ApproxMC

?

??

???

of sols
< pivot

YES

41

ApproxMC
F ⋀ XOR1 F ⋀ XOR1 ⋀ XOR2

F ⋀ XOR1 ⋀ XOR2 ……..⋀ XORm

of
sols

<pivot

YES Estimated Count =
 # of solution in the cell X
2m

42

ApproxMC

F ⋀ XOR1 ⋀ XOR2 ……..⋀ XORm

ApproxMC

43

………….…

t

Partitioning

690 710 730 730 731 834831

44

Algorithm

690 710 730 730 731 834………….…

t

Median

ApproxMC in Action

831

Strong Theoretical Results

45

ApproxMC (CNF: F, tolerance: ε, confidence:δ)
Suppose ApproxMC(F,ε,δ) returns C. Then,

Pr [#F/(1+ε) <= C <= (1+ ε) #F] ≥ δ

ApproxMC runs in time polynomial in log (1-δ)−1,
|F|, ε-1 relative to SAT oracle

Key Idea behind the Proof

46

Ik = 1 if yk is in the cell

µ =
RF

2mPr[] = 1/2m Ik = 1 if yk is in the cell

Pr [#F/(1+ε) <= C <= (1+ ε) #F] ≥ 0.7

Let I1, I2, I3, · · · In be 3� wise independent variables in [0, 1],

then for I =
X

Ik, µ = E[I]

Pr[|I � µ| < �µ] � 0.7

Can Solve a Large Class of Problems

47

Large class of problems that lie beyond the
exact counters but can be computed by
ApproxMC

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

T
im

e
(s

ec
on

ds
)

Benchmarks

ApproxMC

Cachet

Outline

• Reduction to SAT

• Partition-based techniques via (unweighted) model counting

• Extension to Weighted Model Counting

• Looking forward

48

49

Partitioning into equal (weighted) “small” cells

50

Pick a random cell

Estimated Weighted Count = Weighted Count of cell
X # of cells

Partitioning into equal (weighted) “small” cells

Key Modifications

51

Pr[] = 1/2m Ik = 1 if yk is in the cell

µ =
W (RF)

2m
of solutions in a cell <

Ik =
w(yk)

wmax
if yk is in the cell

wmax

wmin
pivot

⇢ =
wmax

wmin

Let I1, I2, I3, · · · In be 3� wise independent variables in [0, 1],

then for I =
X

Ik, µ = E[I]

Pr[|I � µ| < �µ] � 0.7

▪ Approximation: WeightMC(), returns C
s.t.

▪ Complexity: # of calls to SAT solver is linear in
 and polynomial in

Strong Theoretical Guarantees

52

⇢, log ��1, |F |, 1/", 1/⇢

Pr[
f

1 + ✏
 C  f(1 + ✏)] � 1� �

B, ✏, �

Handling Large Tilt

53

Tilt: 992

.992

.001

.002

.001

.001
.002

.001 .001

.002

Handling Large Tilt

54

Tilt: 992
Tilt for each region: 2

.992

.001
.002 .001

.001 .002

.001

.001

.002 .001 ≤ wt < .002

.50 ≤ wt < 1 Requires Pseudo-Boolean solver:
Still a SAT problem not Optimization

Main Contributions

▪ Novel parameter, tilt (ρ), to characterize complexity
▪ ρ = Wmax / Wmin over satisfying assignments

▪ Small Tilt (ρ)
▪ Efficient hashing-based technique requires only SAT

solver

▪ Large Tilt (ρ)
▪ Divide-and-conquer using Pseudo-Boolean solver

55

▪ Approximation: WeightMC(), returns C
s.t.

▪ Complexity: # of calls to SAT solver is linear in
 and polynomial in

Strong Theoretical Guarantees

56

⇢, log ��1, |F |, 1/", 1/

Pr[
f

1 + ✏
 C  f(1 + ✏)] � 1� �

B, ✏, �

log ⇢

Significantly Faster than
SDD

57

0.25

1

4

16

64

256

1024

4096

16384

65536

or-5
0

or-6
0

s5
26

a3
2

s5
26

15
7

s9
53

a3
2

s1
19

6a
15

7

s1
23

8a
74

Squ
ar

in
g1

Squ
ar

in
g7

Login
Ser

vic
e2

Sort

Kar
ats

uba

Enqu
eu

eS
eq

Tre
eM

ax

LLRev
er

se

R
un

 T
im

e
(s

ec
on

ds
)

Benchmarks

WeightMC

SDD

of variables ——>

Mean Error: 4% (Allowed:
80%)

58

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20

#
 o

f S
ol

ut
io

ns

Count

WeightMC
SDD*1.8
SDD/1.8

Outline

• Reduction to SAT

• Partition-based techniques via (unweighted) model counting

• Extension to Weighted Model Counting

• Looking forward

59

Distribution-Aware Sampling

Given:
▪ CNF Formula F, Solution Space: RF
▪ Weight Function W(.) over assignments
▪ W(σ)

Problem (Sampling):
Pr (Solution y is generated) = W(y)/W(RF)

Example:
F = (a ⋁ b); RF = {[0,1], [1,0], [1,1]}
W([0,1]) = W([1,0]) = 1/3 W([1,1]) = W([0,0]) = 1/6
Pr ([0,1] is generated] = (1/3) / (5/6) = 2/5

60

61

Partitioning into equal (weighted) “small” cells

62

Pick a random cell

Pick a solution according to its weight

Partitioning into equal (weighted) “small” cells

Sampling Distribution

63

•  Benchmark: case110.cnf; #var: 287; #clauses: 1263
•  Total Runs: 4x106; Total Solutions : 16384

0

20

40

60

80

100

120

140

160

180

247 271 291 311 331 351 371 391 411 431 451 471 491 512

F
re

qu
en

cy

#Solutions

WtGen

IdealGen

Tackling Tilt

• What kind of problems have low tilt?

• How to handle CNF+PBO+XOR

• Current PBO solvers can’t handle XOR

• CMS can’t handle PBO queries

Extension to More Expressive
Domains (SMT, CSP)

▪ Efficient 3-independent hashing schemes
▪ Extending bit-wise XOR to SMT provides

guarantees but no advantage of SMT progress

▪ Solvers to handle F + Hash efficiently
▪ CryptoMiniSAT has fueled progress for SAT

domain
▪ Similar solvers for other domains?

65

Collaborators

66

67

EXTRA SLIDES

Complexity

• Tilt captures the ability of hiding a large weight
solution.

• Is it possible to remove tilt from complexity?

68

Exploring CNF+XOR

▪ Very little understanding as of now

▪ Can we observe phase transition?

▪ Eager/Lazy approach for XORs?

▪ How to reduce size of XORs further?

69

Outline

• Reduction to SAT

• Partition-based techniques via (unweighted) model counting

• Extension to Weighted Model Counting

• Discussion on hashing

• Looking forward

70

XOR-Based Hashing

▪ 3-universal hashing
▪ Partition 2n space into 2m cells
▪ Variables: X1, X2, X3,….., Xn

▪ Pick every variable with prob. ½ ,XOR them and
equate to 0/1 with prob. ½

▪ X1+X3+X6+…. Xn-1 = 0 (Cell ID: 0/1)
▪ m XOR equations -> 2m cells
▪ The cell: F && XOR (CNF+XOR)

71

XOR-Based Hashing

▪ CryptoMiniSAT: Efficient for CNF+XOR
▪ Avg Length : n/2
▪ Smaller the XORs, better the performance

How to shorten XOR clauses?

72

Independent Variables

▪ Set of variables such that assignments to these
uniquely determine assignments to rest of
variables for formula to be true

▪ (a V b = c) ➔ Independent Support: {a, b}
▪ # of auxiliary variables introduced: 2-3 orders of

magnitude
▪ Hash only on the independent variables (huge

speedup)

73

