
Designing Scalable Techniques for
Dynamic Verification and

Probabilistic Inference

Kuldeep S. Meel

Rice University

Joint work with Alexander Ivrii (IBM), Supratik Chakraborty (IITB), Daniel J.
Fremont(UCB), Sharad Malik (Princeton), Sanjit A. Seshia (UCB), Moshe Y. Vardi (Rice)

1

How do we guarantee that systems work
correctly ?

Functional Verification

▪ Formal verification

▪ Challenges: formal requirements, scalability

▪ 10-15% of verification effort (my estimate)

▪ Dynamic verification: dominant approach

2

Dynamic Verification

▪ Dominant approach!

▪ Design is simulated with test vectors

▪ Test vectors represent different verification
scenarios

▪ Results compared to intended results

▪ Challenge: Exceedingly large test space!

3

Motivating Example

a b

c

64 bit 64 bit

64 bit

c = f(a,b)

How do we verify that circuit works ?

• Try for all values of a and b
• 2128 possibilities
• Sun will go nova before done!
• Not scalable

4

Constrained-Random Simulation

▪ Test vectors: solutions of constraints

▪ Proposed by Lichtenstein, Malka, Aharon (IAAI 94) 5

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints
• Designers:

1. a +64 11 *32 b = 12
2. a <64 (b >> 4)

• Past Experience:
1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200

Constrained-Random Simulation

▪ Test vectors: solutions of constraints

▪ Proposed by Lichtenstein, Malka, Aharon (IAAI 94) 6

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints
• Designers:

1. a +64 11 *32 b = 12
2. a <64 (b >> 4)

• Past Experience:
1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200

IBM Labs in Haifa © 2006 IBM Corporation

Constraint satisfaction for random stimuli generation

Yehuda Naveh

IBM Haifa Research Lab

Constrained-Random Simulation

Problem: How can we uniformly sample the values of a and b
satisfying the above constraints? 8

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints
• Designers:

1. a +64 11 *32 b = 12
2. a <64 (b >> 4)

• Past Experience:
1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200

Problem Formulation

Set of Constraints

Given a SAT formula, sample solutions
uniformly, while scaling to real world
problems.

SAT Formula

Scalable Uniform Generation of SAT-Witnesses
9

a b

c

64 bit

64 bit

c = f(a,b)

64 bit

Search-
based

Synthesis

Constrained
Random

Simulation

SAT Sampling

10

Automatic
Problem

Generation

Diverse Applications

Probabilistic
Inference

Planning
under

uncertainity

Search-Based Synthesis

▪ Goal: synthesize from under-constrained
specifications (“sketch”)

▪ Large space of programs that satisfy correctness
conditions

▪ Task: Find “optimal” program (wrt running time,
memory, …)

▪ Method: Uniformly sample from the space of
programs

11

Outline

▪ Sampling Techniques for Dynamic Verification

▪ Extension to approximate probabilistic inference

▪ Construction of Efficient Hashing functions

▪ Future Directions

12

Uniform Generation

Ref: “A Scalable Near-Uniform Generator” (CAV 2013)

“Balancing Scalability and Uniformity in SAT-Witness Generator” (DAC 2014)

“On Parallel Scalable Generation of SAT-Witnesses” (TACAS 2015)

13

Prior Work

Heuristic Work
Guarantees: weak
Performance: strong

BGP Algorithm XORSample’

Theoretical Work
Guarantees: strong
Performance: weak

BDD-based
Guarantees: strong
Performance: weak

SAT-based heuristics
Guarantees: weak
Performance: strong

INDUSTRY

ACADEMIA

14

Our Contribution

Heuristic Work
Guarantees: weak
Performance: strong

BGP Algorithm XORSample’

Theoretical Work
Guarantees: strong
Performance: weak

BDD-based
Guarantees: strong
Performance: weak

SAT-based heuristics
Guarantees: weak
Performance: strong UniGen

Guarantees : strong
Performance: strong

15

INDUSTRY

ACADEMIA

16

Partitioning into equal “small” cells

17

Partitioning into equal “small” cells

18

Pick a random cell

Pick a random solution from this cell

Partitioning into equal “small” cells

How to Partition?

How to partition into roughly equal
small cells of solutions without
knowing the distribution of
solutions?

Universal Hashing
[Carter-Wegman 1979] (IBM Research)

19

Universal Hashing

20

▪ Hash functions: mapping {0,1}n to {0,1}m

▪ (2n elements to 2m cells)

▪ Random inputs => All cells are roughly equal (in expectation)

▪ Universal family of hash functions:
▪ Choose hash function randomly from family

▪ For arbitrary distribution on inputs => All cells are roughly equal
(in expectation)

Universal Hashing and Independence

21

▪ Hash functions from mapping {0,1}n to {0,1}m

▪ (2n elements to 2m cells)

▪ Universal hash functions:

▪ Choose hash function randomly

▪ For arbitrary distribution on inputs => All cells are roughly
equal in expectation

▪ But:

▪ While each input is hashed uniformly

▪ Different inputs might not be hashed independently

Strong Universality

▪ H(n,m,r): Family of r-universal hash functions mapping
{0,1}n to {0,1}m (2n elements to 2m cells)
▪ r: degree of independence of hashed inputs

▪ Higher r => Stronger guarantee on range of size of cells

▪ r-wise universality => Polynomials of degree r-1

▪ Higher universality => Higher complexity
22

Hashing-based Approaches

n-universal hashing

Uniform Generation

All cells are small

BGP Algorithm

23

Solution space

Scaling to Thousands of Variables

n-universal hashing 3-universal hashing

Uniform Generation

Random

All cells are small Only a randomly chosen
cell needs to be “small”

BGP Algorithm

Almost-Uniform Generation

UniGen

24

Solution space

Scaling to 100K Variables

n-universal hashing 3-universal hashing

Uniform Generation

Random

All cells should be small Only a randomly chosen
cells needs to be “small”

BGP Algorithm

Almost-Uniform Generation

UniGen

25

Solution space

From tens of variables to
100K variables!

Notions of Uniformity

▪ Uniformity

▪ Almost-Uniformity

For every solution y of RF

Pr [y is output] = 1/|RF|

For every solution y of RF

1/(1+e) x 1/|RF| <= Pr [y is output] <= (1+e) /|RF|

26

Partitioning

▪ How large should the cells be?

▪ How many cells?

27

Size of cell

▪ Too large => Hard to enumerate

▪ Too small => Variance can be very high

28

UniGen

of sols <
pivot?

RF

NO

29

UniGen

?

30

UniGen

? NO# of sols
< pivot?

31

UniGen

?

??

???

of sols <
pivot?

YES

32

UniGen

Select a solution
randomly from cell.

33

of sols
< pivot

Non-empty

FAIL

Empty

Strong Theoretical Guarantees

▪ Almost-Uniformity

▪ Success Probability

▪ In practice, succ. Probability ~ 0.99

▪ Polynomial number of calls to SAT Solver

For every solution y of RF

1/(6.84+e) x 1/|RF| <= Pr [y is output] <= (6.84+e) /|RF|

UniGen succeeds with probability at least 0.52

34

Results: Uniformity

• Benchmark: case110.cnf; #var: 287; #clauses: 1263
• Total Runs: 4x106; Total Solutions : 16384

35

0

50

100

150

200

250

300

350

400

450

500

184 208 228 248 268 288

F
re

q
u

e
n

cy

#Solutions

US

UniGen

2-3 Orders of Magnitude Faster

0.1

1

10

100

1000

10000

100000

ca
se

4
7

ca
se

_3
_b

14
_3

ca
se

10
5

ca
se

8

ca
se

2
0

3

ca
se

14
5

ca
se

6
1

ca
se

9

ca
se

15

ca
se

14
0

ca
se

_2
_b

14
_1

ca
se

_3
_b

14
_1

sq
ua

ri
n

g1
4

sq
ua

ri
n

g7

ca
se

_2
_p

tb
_1

ca
se

_1
_p

tb
_1

ca
se

_2
_b

14
_2

ca
se

_3
_b

14
_2

Time(s)

Benchmarks

UniGen

XORSample'

36

Outline

▪ Sampling Techniques for Dynamic Verification

▪ Extension to approximate probabilistic inference

▪ Construction of Efficient Hashing functions

▪ Future Directions

37

Extension to Approximate
Probabilistic Inference

Ref: “A Scalable Approximate Model Counter” (CP 2013)

38

Probabilistic Inference

39

Interest in
topic

Trust in
Speaker

Availability

Attend
Talk

Modeling Attendance for
Today’s Talk

Model
CountingRoth, 1996

How do we infer useful information from the data
filled with uncertainty?

+
Pr(Attending Talk
|Interest in topic = True)

Model Counting

▪ Model Counting: Given a Boolean Formula F, count
the number of models of F .

▪ #P-complete
▪ #P: Class of counting problem whose decision

problems lie in NP 40

	

F= (aÚb)

R
F
:= {(a= 0,b=1),(a=1,b= 0),(a=1,b=1)}

|R
F
|	= 3

Practical Applications

41

Wide range of applications!

▪ Estimating coverage achieved

▪ Probabilistic reasoning/Bayesian inference

▪ Planning with uncertainty

▪ Multi-agent/ adversarial reasoning

[Roth 96, Sang 04, Bacchus 04, Domshlak 07]

Counting through Partitioning

42

Counting through Partitioning

43

Pick a random cell

Total # of solutions= #solutions in the cell
* total # of cells

ApproxMC in Action

44

………….…

t

Algorithm

690 710 730 730 731 834831

45

Algorithm

690 710 730 730 731 834………….…

t

Median

ApproxMC in Action

831

Strong Theoretical Results

46

		

										ApproxMC(F,tolerance:e,confidence	parameter :d)

Suppose	ApproxMC(F,e,d)	returns	C.	Then

Pr[
|R

F
|

1+ e
	£ 	C	£ 	|R

F
|(1+	e)]³1-d

		

ApproxMC	runs	in	time	polynomial	in	F,e-1 ,log(1-d)	

relative	to	SAT	oracle

47

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

T
im

e
 (

se
co

n
d

s)

Benchmarks

ApproxMC

Cachet

Results: Performance
Comparison

Results: Performance
Comparison

48

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

ApproxMC

Cachet

Can Solve a Large Class of Problems

49

Large class of problems that lie beyond the exact
counters but can be computed by ApproxMC

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

T
im

e
 (

se
co

n
d

s)

Benchmarks

ApproxMC

Cachet

Mean Error: Only 4% (allowed:
75%)

50

Mean error: 4% – much smaller than the
theoretical guarantee of 75%

1.0E+00

3.2E+01

1.0E+03

3.3E+04

1.0E+06

3.4E+07

1.1E+09

3.4E+10

1.1E+12

3.5E+13

1.1E+15

3.6E+16

0 10 20 30 40 50 60 70 80 90

C
o

u
n

t

Benchmarks

Cachet*1.75

Cachet/1.75

ApproxMC

Approximate Weighted
Counting

Ref: “Distribution-Aware Sampling and Weighted Model Counting for
SAT” (In Proc. of AAAI 2014)

51

Weighted Counting

Given
▪ CNF Formula F

▪ Weight Function W over assignments

Problem
▪ What is the sum of weights of satisfying assignments?

Example
▪ F = (a ∨ b)

▪ W([0,1]) = W([1,0]) = 1/3 W([1,1]) = W([0,0]) = 1/6

▪ W(F) = 1/3 + 1/3 + 1/6 = 5/6

52

53

Partition into (weighted) equal
“small” cells

54

Pick a random cell

Weighted Count = Weight of random cell
* total # of cells

Partition into (weighted) equal
“small” cells

Can you always achieve
partitioning?

What if one solution dominates the entire solution
space

Tilt = wmax/wmin

Small tilt →All solutions contribute

55

.992

.001

.002

.001

.001

.002

.001 .001

.002

Tilt = 992

How to handle large tilt?

56

.992

.001

.002 .001

.001 .002

.001

.001

.002 .001 ≤ wt < .002

.50 ≤ wt < 1

Handling Large Tilt

Can be achieved with Pseudo-Boolean Solver
Still a SAT problem not Optimization

57

Outline

▪ Sampling Techniques for Dynamic Verification

▪ Extension to approximate probabilistic inference

▪ Construction of Efficient Hashing functions

▪ Future Directions

58

Construction of Efficient
Hash Functions

Ref: “On Computing Minimal Independent Support and Its Applications to
Sampling and Counting”

(In Proc. of CP 2015 and Invited to “Constraints” Journal)

59

Best Student Paper Award

XOR-Based Hashing

▪ 3-universal hashing

▪ Partition 2n space into 2m cells

▪ Variables: X1, X2, X3,….., Xn

▪ Pick every variable with prob. ½ ,XOR them and
equate to 0/1 with prob. ½

▪ X1+X3+X6+…. Xn-1 = 0 (splits solution space)

▪ m XOR equations -> 2m cells

▪ The cell: F XOR (CNF+XOR)

60

Ù

XOR-Based Hashing

▪ CryptoMiniSAT: Efficient for CNF+XOR

▪ Avg Length : n/2

▪ Smaller the XORs, better the performance

How to shorten XOR clauses?

61

Independent Support

▪ Set of variables such that assignments to these
uniquely determine assignments to rest of
variables for formula to be true

▪ c ⟷ (a V b) ; Independent Support (I): {a, b}

▪ If agree on I then

▪ Hash only on the independent variables

62

		s1	and	s2 		s1		=	s2

Computing Minimal Independent
Support

▪ Reduction to the problem of computing MUS
(Minimal Unsatisfiable Subset)

▪ Minimal Independent supports are 1/100 – 1/1000
of the size of X

▪ Provides 1-2 orders of magnitude

63

Future Directions

64

Extension to More Expressive
Domains (SMT, CSP)

▪ Efficient 3-independent hashing schemes

▪ Extending bit-wise XOR to SMT provides
guarantees but no advantage of SMT progress

▪ Solvers to handle F + Hash efficiently

▪ CryptoMiniSAT has fueled progress for SAT
domain

▪ Similar solvers for other domains?

65

Handling Distributions

▪ Design of Pseudo-Boolean solvers to handle tilt

▪ Classification of problems according to tilt

▪ Online estimation of tilt

▪ Other techniques for high-tilt distributions

66

Questions?

Papers and tools: http://www.kuldeepmeel.com

67

http://www.kuldeepmeel.com

	Default Section
	Slide 1: Designing Scalable Techniques for Dynamic Verification and Probabilistic Inference
	Slide 2: How do we guarantee that systems work correctly ?
	Slide 3: Dynamic Verification
	Slide 4: Motivating Example
	Slide 5: Constrained-Random Simulation
	Slide 6: Constrained-Random Simulation
	Slide 7: Constraint satisfaction for random stimuli generation
	Slide 8: Constrained-Random Simulation
	Slide 9: Problem Formulation
	Slide 10
	Slide 11: Search-Based Synthesis
	Slide 12: Outline
	Slide 13: Uniform Generation
	Slide 14: Prior Work
	Slide 15: Our Contribution
	Slide 16: Partitioning into equal “small” cells
	Slide 17: Partitioning into equal “small” cells
	Slide 18: Partitioning into equal “small” cells
	Slide 19: How to Partition?
	Slide 20: Universal Hashing
	Slide 21: Universal Hashing and Independence
	Slide 22: Strong Universality
	Slide 23: Hashing-based Approaches
	Slide 24: Scaling to Thousands of Variables
	Slide 25: Scaling to 100K Variables
	Slide 26: Notions of Uniformity
	Slide 27: Partitioning
	Slide 28: Size of cell
	Slide 29: UniGen
	Slide 30: UniGen
	Slide 31: UniGen
	Slide 32: UniGen
	Slide 33: UniGen
	Slide 34: Strong Theoretical Guarantees
	Slide 35: Results: Uniformity
	Slide 36: 2-3 Orders of Magnitude Faster
	Slide 37: Outline
	Slide 38: Extension to Approximate Probabilistic Inference
	Slide 39: Probabilistic Inference
	Slide 40: Model Counting
	Slide 41: Practical Applications
	Slide 42: Counting through Partitioning
	Slide 43: Counting through Partitioning
	Slide 44: ApproxMC in Action
	Slide 45: ApproxMC in Action
	Slide 46: Strong Theoretical Results
	Slide 47: Results: Performance Comparison
	Slide 48: Results: Performance Comparison
	Slide 49: Can Solve a Large Class of Problems
	Slide 50: Mean Error: Only 4% (allowed: 75%)
	Slide 51: Approximate Weighted Counting
	Slide 52: Weighted Counting
	Slide 53: Partition into (weighted) equal “small” cells
	Slide 54: Partition into (weighted) equal “small” cells
	Slide 55: Can you always achieve partitioning?
	Slide 56: How to handle large tilt?
	Slide 57: Handling Large Tilt
	Slide 58: Outline
	Slide 59: Construction of Efficient Hash Functions
	Slide 60: XOR-Based Hashing
	Slide 61: XOR-Based Hashing
	Slide 62: Independent Support
	Slide 63: Computing Minimal Independent Support
	Slide 64: Future Directions
	Slide 65: Extension to More Expressive Domains (SMT, CSP)
	Slide 66: Handling Distributions
	Slide 67: Questions?

