Designing Scalable Techniques for Dynamic Verification and Probabilistic Inference

Kuldeep S. Meel

Rice University

Joint work with Alexander Ivrii (IBM), Supratik Chakraborty (IITB), Daniel J. Fremont(UCB), Sharad Malik (Princeton), Sanjit A. Seshia (UCB), Moshe Y. Vardi (Rice)

How do we guarantee that systems work <u>correctly</u>?

Functional Verification

- Formal verification
 - Challenges: formal requirements, scalability
 - 10-15% of verification effort (my estimate)
- Dynamic verification: *dominant approach*

Dynamic Verification

- Dominant approach!
- Design is simulated with test vectors
- Test vectors represent different verification scenarios
- Results compared to intended results
- Challenge: Exceedingly large test space!

Motivating Example

How do we verify that circuit works?

- Try for all values of a and b
 - 2¹²⁸ possibilities
 - Sun will go nova before done!
 - Not scalable

Constrained-Random Simulation

Sources for Constraints

- Designers:
-) 1. $a +_{64} 11 *_{32} b = 12$ 64 bit 2. $a <_{64} (b >> 4)$
 - Past Experience:
 - 1. 40 <₆₄ 34 + a <₆₄ 5050
 - 2. 120 <₆₄ b <₆₄ 230
 - Users:
 - 1. 232 *₃₂ a + b != 1100
 - 2. 1020 <₆₄ (b /₆₄ 2) +₆₄ a <₆₄ 2200
- Test vectors: solutions of constraints

Constrained-Random Simulation

Sources for Constraints

- Designers:
- **1.** $a +_{64} 11 *_{32} b = 12$ 64 bit **2.** $a <_{64} (b >> 4)$
 - Past Experience:
 - 1. 40 <₆₄ 34 + a <₆₄ 5050
 - 2. 120 <₆₄ b <₆₄ 230
 - Users:
 - 1. 232 * a + b != 1100
 - 2. 1020 < (b /₆₄ 2) +₆₄ a < 64 2200
- Test vectors: solutions of constraints
 - Proposed by Lichtenstein, Malka, Aharon (IAAI 94)

6

Constraint satisfaction for random stimuli generation

Yehuda Naveh IBM Haifa Research Lab

IBM Labs in Haifa

© 2006 IBM Corporation

Constrained-Random Simulation

Sources for Constraints

- Designers:
 - a +₆₄ 11 *₃₂ b = 12
 a <₆₄ (b >> 4)
- Past Experience:
 - 1. 40 <₆₄ 34 + a <₆₄ 5050
 - 2. 120 <₆₄ b <₆₄ 230
- Users:

2. $1020 <_{64} (b/_{64} 2) +_{64} a <_{64} 2200$

Problem: How can we <u>uniformly</u> sample the values of a and b satisfying the above constraints?

Problem Formulation

Scalable Uniform Generation of SAT-Witnesses

Diverse Applications

Search-Based Synthesis

- Goal: synthesize from under-constrained specifications ("sketch")
- Large space of programs that satisfy correctness conditions
- Task: Find "optimal" program (wrt running time, memory, ...)
- Method: Uniformly sample from the space of programs

Outline

Sampling Techniques for Dynamic Verification

Extension to approximate probabilistic inference

Construction of Efficient Hashing functions

Future Directions

Uniform Generation

Ref: "A Scalable Near-Uniform Generator" (CAV 2013) "Balancing Scalability and Uniformity in SAT-Witness Generator" (DAC 2014) "On Parallel Scalable Generation of SAT-Witnesses" (TACAS 2015)

Prior Work

BDD-based Guarantees: strong	SAT-based heuristics Guarantees: weak	INDUSTRY
Performance: weak	Performance: strong	

Theoretical Work **Guarantees: strong** Performance: weak

BGP Algorithm

Heuristic Work Guarantees: weak **Performance: strong**

ACADEMIA

XORSample'

Our Contribution

BGP Algorithm

XORSample'

Partitioning into equal "small" cells

Partitioning into equal "small" cells

Partitioning into equal "small" cells

How to Partition?

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Universal Hashing [Carter-Wegman 1979] (IBM Research)

Universal Hashing

- Hash functions: mapping {0,1}ⁿ to {0,1}^m
 - (2ⁿ elements to 2^m cells)
- Random inputs => All cells are roughly equal (in <u>expectation</u>)

- Universal family of hash functions:
 - Choose hash function randomly from family
 - For *arbitrary* distribution on inputs => All cells are *roughly equal* (in <u>expectation</u>)

Universal Hashing and Independence

- Hash functions from mapping {0,1}ⁿ to {0,1}^m
 - (2ⁿ elements to 2^m cells)
- Universal hash functions:
 - Choose hash function randomly
 - For arbitrary distribution on inputs => All cells are roughly equal in <u>expectation</u>
 - But:
 - While each input is hashed uniformly
 - Different inputs *might not* be hashed independently

Strong Universality

- H(n,m,r): Family of r-universal hash functions mapping {0,1}ⁿ to {0,1}^m (2ⁿ elements to 2^m cells)
 - r: degree of independence of hashed inputs

Higher r => Stronger guarantee on range of size of cells

r-wise universality => Polynomials of degree r-1

Higher universality => Higher complexity

Uniform Generation

Scaling to Thousands of Variables

All cells are small

Uniform Generation

Only a randomly chosen cell needs to be "small"

Almost-Uniform Generation

Scaling to 100K Variables

Solution space

From tens of variables to 100K variables!

BGP Algorithm

All cells should be small

Uniform Generation

Only a randomly chosen cells needs to be "small"

Almost-Uniform Generation

Notions of Uniformity

Uniformity

For every solution y of R_F

 $Pr[y is output] = 1/|R_F|$

Almost-Uniformity

For every solution y of R_F

 $1/(1+\varepsilon) \times 1/|R_F| \le \Pr[y \text{ is output}] \le (1+\varepsilon)/|R_F|$

Partitioning

How large should the cells be?

How many cells?

Size of cell

- Too large => Hard to enumerate
- Too small => Variance can be very high

pivot = $5(1 + 1/\varepsilon)^2$

Strong Theoretical Guarantees

Almost-Uniformity

For every solution y of R_F

 $1/(6.84+\epsilon) \times 1/|R_F| \le \Pr[y \text{ is output}] \le (6.84+\epsilon)/|R_F|$

Success Probability

UniGen succeeds with probability at least 0.52

- In practice, succ. Probability ~ 0.99
- Polynomial number of calls to SAT Solver

Results: Uniformity

- Benchmark: case110.cnf; #var: 287; #clauses: 1263
- Total Runs: 4x10⁶; Total Solutions : 16384

2-3 Orders of Magnitude Faster

Outline

Sampling Techniques for Dynamic Verification

Extension to approximate probabilistic inference

Construction of Efficient Hashing functions

Future Directions

Extension to Approximate Probabilistic Inference

Ref: "A Scalable Approximate Model Counter" (CP 2013)

Probabilistic Inference

How do we infer useful information from the data filled with uncertainty?

Model Counting

 Model Counting: Given a Boolean Formula F, count the number of models of F.

- #P-complete
 - #P: Class of counting problem whose decision problems lie in NP

Practical Applications

Wide range of applications!

- Estimating coverage achieved
- Probabilistic reasoning/Bayesian inference
- Planning with uncertainty
- Multi-agent/ adversarial reasoning

[Roth 96, Sang o4, Bacchus o4, Domshlak o7]

Counting through Partitioning

Counting through Partitioning

ApproxMC in Action

ApproxMC in Action

Strong Theoretical Results

ApproxMC(F,tolerance:e,confidence parameter:d) Suppose ApproxMC(F,e,d) returns C. Then

$$\Pr[\frac{|R_{F}|}{1+e} \in C \in |R_{F}|(1+e)]^{3}1 - d$$

ApproxMC runs in time polynomial in F, e^{-1} , log(1 – d) relative to SAT oracle

Results: Performance Comparison

47

Results: Performance Comparison

Can Solve a Large Class of Problems

Large class of problems that lie beyond the exact counters but can be computed by ApproxMC

Mean Error: Only 4% (allowed: 75%)

Mean error: 4% – much smaller than the theoretical guarantee of 75%

Approximate Weighted Counting

Ref: "Distribution-Aware Sampling and Weighted Model Counting for SAT" (In Proc. of AAAI 2014)

Weighted Counting

<u>Given</u>

- CNF Formula F
- Weight Function W over assignments

<u>Problem</u>

What is the sum of weights of *satisfying* assignments?

<u>Example</u>

- F = (a V b)
- W([0,1]) = W([1,0]) = 1/3 W([1,1]) = W([0,0]) = 1/6
- W(F) = 1/3 + 1/3 + 1/6 = 5/6

Partition into (weighted) equal "small" cells

Partition into (weighted) equal "small" cells

Can you always achieve partitioning?

What if one solution dominates the entire solution space

$$Tilt = w_{max}/w_{min}$$

Small tilt \rightarrow All solutions contribute

Handling Large Tilt

Can be achieved with Pseudo-Boolean Solver Still a SAT problem <u>not</u> Optimization

Outline

Sampling Techniques for Dynamic Verification

Extension to approximate probabilistic inference

Construction of Efficient Hashing functions

Future Directions

Construction of Efficient Hash Functions

Ref: "On Computing Minimal Independent Support and Its Applications to Sampling and Counting" (In Proc. of CP 2015 and Invited to "Constraints" Journal)

Best Student Paper Award

XOR-Based Hashing

- 3-universal hashing
- Partition 2ⁿ space into 2^m cells
- Variables: X₁, X₂, X₃,, X_n
- Pick every variable with prob. ½, XOR them and equate to 0/1 with prob. ½
- $X_1 + X_3 + X_6 + \dots + X_{n-1} = 0$ (splits solution space)
- m XOR equations -> 2^m cells
- The cell: FU XOR (CNF+XOR)

XOR-Based Hashing

- CryptoMiniSAT: Efficient for CNF+XOR
- Avg Length : n/2
- Smaller the XORs, better the performance

How to shorten XOR clauses?

Independent Support

- Set of variables such that assignments to these uniquely determine assignments to rest of variables for formula to be true
- $c \leftrightarrow (a \lor b)$; Independent Support (I): {a, b}
- If S_1 and S_2 agree on I then $S_1 = S_2$
- Hash only on the independent variables

Computing Minimal Independent Support

 Reduction to the problem of computing MUS (Minimal Unsatisfiable Subset)

 Minimal Independent supports are 1/100 – 1/1000 of the size of X

Provides 1-2 orders of magnitude

Future Directions

Extension to More Expressive Domains (SMT, CSP)

- Efficient 3-independent hashing schemes
 - Extending bit-wise XOR to SMT provides guarantees but no advantage of SMT progress

- Solvers to handle F + Hash efficiently
 - CryptoMiniSAT has fueled progress for SAT domain
 - Similar solvers for other domains?

Handling Distributions

- Design of Pseudo-Boolean solvers to handle tilt
- Classification of problems according to tilt
- Online estimation of tilt
- Other techniques for high-tilt distributions

Questions?

Papers and tools: http://www.kuldeepmeel.com