
Scalable Techniques for
Constrained Sampling
and Counting

Kuldeep S. Meel
Rice University

Joint work with Supratik Chakraborty (IITB), Daniel J. Fremont(UCB), Alexander Ivrii
(IBM), Sharad Malik (Princeton), Sanjit A. Seshia (UCB), Moshe Y. Vardi (Rice)

How do we guarantee that systems work
correctly ?

Functional Verification
• Formal verification
�Challenges: formal requirements, scalability
�~10-15% of verification effort

• Dynamic verification: dominant approach

2

📱

Dynamic Verification
§Design is simulated with test vectors
• Test vectors represent different verification
scenarios

§Results from simulation compared to intended
results

§Challenge: Exceedingly large test space!

3

Motivating Example

4

a b

c

64 bit 64 bit

64 bit

c = f(a,b)

How do we test the circuit works ?

• Try for all values of a and b
• 2128 possibilities
• Sun will go nova before done!
• Not scalable

Constrained-Random Simulation

5
§ Test vectors: solutions of constraints

§ Proposed by Lichtenstein, Malka, Aharon (IAAI 94)

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints
• Designers:

1. a +64 11 *32 b = 12
2. a <64 (b >> 4)

• Past Experience:
1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200

Constrained-Random Simulation

6

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints
• Designers:

1. a +64 11 *32 b = 12
2. a <64 (b >> 4)

• Past Experience:
1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200

Problem: How can we uniformly sample the values of a and b
satisfying the above constraints?

Problem Formulation

7

Set of
Constraints

Sample satisfying assignments
uniformly at random

SAT Formula

Scalable Uniform Generation of SAT Witnesses

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

IBM Labs in Haifa © 2006 IBM Corporation

Constraint satisfaction for random stimuli generation

Yehuda Naveh
IBM Haifa Research Lab

Search-
based

Synthesis

Constrained
Random

Simulation

SAT Sampling

9

Automatic
Problem

Generatio
n

Diverse Applications

Probabilist
ic

Inference

Planning
under

uncertainit
y

Search-Based Synthesis

§Goal: synthesize from under-constrained
specifications (“sketch”)

§Large space of programs that satisfy
correctness conditions

§Task: Find “optimal” program (wrt running
time, memory, …)

§Method: Uniformly sample from the space
of programs

10

Constrained Counting

• Given a SAT formula F
• RF: Set of all solutions of F
• Problem (#SAT): Estimate the number of solutions of F
(#F) i.e., what is the cardinality of RF?

• E.g., F = (a v b)
• RF = {(0,1), (1,0), (1,1)}
• The number of solutions (#F) = 3

#P: The class of counting problems for
decision problems in NP! 11

Practical Applications

12

Wide range of applications!
• Probabilistic reasoning/Bayesian inference
• Dynamic Verification
• Planning with uncertainty
• Multi-agent/ adversarial reasoning

[Roth 96, Sang 04, Bacchus 04, Domshlak 07]

Agenda

Design Scalable Techniques for
Uniform Generation and

Model Counting
with Strong Theoretical Guarantees

13

Agenda

Design Scalable Techniques for
Almost-Uniform Generation and

Approximate-Model Counting
with Strong Theoretical Guarantees

14

Prior Work

15Performance

G
ua

ra
nt

ee
s

MCMC

SAT-
Based

BGP BDD

Desires

Generator Relative runtime
State-of-the-art:
XORSample’

50000

Ideal Uniform
Generator*

10

SAT Solver 1

Experiments over 200+ benchmarks
*: According to EDA experts

16

Our Contribution

17Performance

G
ua

ra
nt

ee
s

MCMC

SAT-
Based

BGP BDD

UniGen

18

Partitioning into equal “small” cells

19

Partitioning into equal “small” cells

20

Partitioning into equal “small” cells

Pick a random cell

Pick a random solution from this cell

How to Partition?

How to partition into roughly equal
small cells of solutions without
knowing the distribution of solutions?

Universal Hashing
[Carter-Wegman 1979] (IBM Research) 21

Universal Hashing

22

• Hash functions: mapping {0,1}n to {0,1}m

� (2n elements to 2m cells)

• Random inputs => All cells are roughly equal (in
expectation)

• Universal family of hash functions:
� Choose hash function randomly from family
� For arbitrary distribution on inputs => All cells are roughly

equal (in expectation)

Universal Hashing and Independence

23

• Hash functions from mapping {0,1}n to {0,1}m

� (2n elements to 2m cells)

• Universal hash functions:
� Choose hash function randomly
� For arbitrary distribution on inputs => All cells are roughly equal

in expectation
� But:
� While each input is hashed uniformly
� Different inputs might not be hashed independently

Strong Universality

• H(n,m,r): Family of r-universal hash functions
mapping {0,1}n to {0,1}m (2n elements to 2m cells)
� r: degree of independence of hashed inputs

• Higher r => Stronger guarantee on range of size of
cells

• r-wise universality => Polynomials of degree r-1

• Higher universality => Higher complexity 24

Partitioning
•How large should the cells be?

•How many cells?

25

Size of cell

• Too large => Hard to enumerate
• Too small => Variance can be very high

pivot = 5(1 + 1/")2

26

How many cells?
• Our desire: 2" = 	 |&'|

()*+,
� But determining 𝑅. is expensive (#P complete)

• How about approximation?
� 𝐴𝑝𝑝𝑟𝑜𝑥𝑀𝐶 𝐹, 𝜀, 𝛿 returns C:

Pr[&'=>? ≤ 𝐶 ≤ 1 + 𝜀 |𝑅.|] ≥ 1 − 𝛿
� 𝑞 = log𝐶	 − log𝑝𝑖𝑣𝑜𝑡	

� Concentrate on 2M,	where m = q-1, q, q+1

27

ApproxMC(F,𝜀, 𝛿)	

Choose m

• For right choice of m, large number of cells are “small”
• “almost all” the cells are “roughly” equal

• Check if a randomly picked cell is “small”
• If yes, then estimate = # of solutions in cell * 2M

28

ApproxMC(F,𝜀, 𝛿)	

#sols <
pivot

NO

29

ApproxMC(F,𝜀, 𝛿)	

#sols <
pivot

NO

30

ApproxMC(F,𝜀, 𝛿)	

#sols <
pivot

YES

Estimate:
of sols * 2M

31

Runtime Performance
of ApproxMC

32

Can Solve a Large Class of Problems

33
Large class of problems that lie beyond the exact
counters but can be computed by ApproxMC

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Ti
m

e
(s

ec
on

ds
)

Benchmarks

ApproxMC
Cachet

Mean Error: Only 4% (allowed: 75%)

34
Mean error: 4% – much smaller than the
theoretical guarantee of 75%

1.0E+00

3.2E+01

1.0E+03

3.3E+04

1.0E+06

3.4E+07

1.1E+09

3.4E+10

1.1E+12

3.5E+13

1.1E+15

3.6E+16

0 10 20 30 40 50 60 70 80 90

C
ou

nt

Benchmarks

Cachet*1.75
Cachet/1.75
ApproxMC

Guarantees and
Runtime performance
of UniGen

35

Strong Theoretical Guarantees
• Almost-Uniformity

• Success Probability

� In practice, succ. Probability ~ 0.99

•Polynomial number of calls to SAT Solver

For every solution y of RF

1/(6.84+ε) x1/|RF| <= Pr [y is output] <= (6.84+ε) /|RF|

UniGen succeeds with probability at least 0.52

36

1-2 Orders of Magnitude Faster

0.1

1

10

100

1000

10000

100000

ca
se

47
ca

se
_3

_b
14

_3
ca

se
10

5
ca

se
8

ca
se

20
3

ca
se

14
5

ca
se

61
ca

se
9

ca
se

15
ca

se
14

0
ca

se
_2

_b
14

_1
ca

se
_3

_b
14

_1
sq

ua
ri

ng
14

sq
ua

ri
ng

7
ca

se
_2

_p
tb

_1
ca

se
_1

_p
tb

_1
ca

se
_2

_b
14

_2
ca

se
_3

_b
14

_2

Time(s)

Benchmarks

UniGen
XORSample'

37

Results: Uniformity

38• Benchmark: case110.cnf; #var: 287; #clauses: 1263
• Total Runs: 4x106; Total Solutions : 16384

0

50

100

150

200

250

300

350

400

450

500

184 208 228 248 268 288

Fr
eq

ue
nc

y

#Solutions

Results: Uniformity

39• Benchmark: case110.cnf; #var: 287; #clauses: 1263
• Total Runs: 4x106; Total Solutions : 16384

0

50

100

150

200

250

300

350

400

450

500

184 208 228 248 268 288

Fr
eq

ue
nc

y

#Solutions

US

UniGen

So far
• The first scalable approximate model counter
• The first scalable uniform generator
• Outperforms state-of-the-art generators/counters

Are we done?

40

Where are we?

Generator Relative runtime
State-of-the-art:
XORSample’

50000

UniGen ~5000

Ideal Uniform
Generator*

10

SAT Solver 1

Experiments over 200+ benchmarks
*: According to EDA experts 41

XOR-Based Hashing
• Partition 2n space into 2m cells
• Variables: X1, X2, X3,….., Xn

• Pick every variable with prob. ½ ,XOR them and add 0/1
with prob. ½

• X1+X3+X6+…. Xn-1 + 0
• To construct h: 0,1 P → 0,1 M, choose m random XORs
• 𝛼	 ∈ 0,1 M →	Set every XOR equation to 0 or 1 randomly
• The cell: F ∧ XOR (CNF+XOR)

42

XOR-Based Hashing
• CryptoMiniSAT: Efficient for CNF+XOR

• Avg Length : n/2

• Smaller XORs è better performance

How to shorten XOR clauses? 43

Independent Support
• Set I of variables such that assignments to these uniquely
determine assignments to rest of variables (for satisfying
assignments)

• If agree on I then
• c ⟷ (a V b) ; Independent Support I: {a, b}
• Key Idea: Hash only on the independent variables
• Average size of XOR: n/2 to |I|/2

44

!!σ1!and!σ2 !!σ1!!=!σ2

Key Idea

45

Minimal
Independent
Support (MIS)

Minimal
Unsatisfiable
Subset (MUS)

Minimal Unsatisfiable Subset
• Given	Ψ = 𝐻= ∧ 𝐻[⋯𝐻M		

� Find subset {𝐻)=, 𝐻)[,⋯𝐻)^} of {𝐻=, 𝐻[,⋯𝐻M} such that
𝐻)= ∧ 𝐻)[⋯𝐻)^ ∧ Ω	is UNSAT

Unsatisfiable subset

� Find minimal subset {𝐻)=, 𝐻)[,⋯𝐻)^} of {𝐻=, 𝐻[,⋯𝐻M} such that
𝐻)= ∧ 𝐻)[⋯𝐻)^	is UNSAT

Minimal Unsatisfiable subset

46

Impact on Sampling and Counting
Techniques

47

MIS

Sampling
Tools

Counting
Tools

F
I

What about complexity

• Computation of MUS: 𝐹𝑃bc

• Why solve a 𝐹𝑃bc for almost-uniform
generation/approximate counter (PTIME PTM with NP
Oracle)

Settling the debate through practice!

48

Performance Impact on Uniform Sampling

49

0.018

0.18

1.8

18

180

1800

18000
UniGen UniGen1

Where are we?

Generator Relative runtime
State-of-the-art:
XORSample’

50000

UniGen 5000

UniGen1 470

Ideal Uniform Generator* 10

SAT Solver 1
50

Back to basics

51

of solutions in “small” cell ∈ 𝑙𝑜𝑇ℎ𝑟𝑒𝑠ℎ, ℎ𝑖𝑇ℎ𝑟𝑒𝑠ℎ
We pick one solution
“Wastage” of loThresh solutions

Pick 𝑙𝑜𝑇ℎ𝑟𝑒𝑠ℎ samples!

Balancing Independence

For ℎ ∈ 𝐻 𝑛, 𝑚, 3

• Choosing up to 3 samples => Full independence among
samples

• Choosing loThresh (>> 3) samples => Loss of independence

52

Why care about Independence

53

🕷🕷

If every sample is independent => Faster convergence

Convergence
requires
multiplication of
probabilities

The principle of principled compromise!

• Choosing up to 3 samples => Full independence among
samples

• Choosing loThresh (>> 3) samples => Loss of independence
� “Almost-Independence” among samples
� Still provides strong theoretical guarantees of coverage

54

Strong Guarantees
•

•Polynomial Constant number of SAT
calls per sample
�After one call to ApproxMC

55

8y 2 RF ,

Bug-finding effectiveness

UniGen UniGen2

Expected
number of SAT
calls

4.35 × 107 3.38 × 106

56

bug frequency f = 1/104

find bug with probability ≥ 1/2

An order of magnitude difference!

~20 times faster than UniGen1

0.01

0.1

1

10

100

1000

s1
23

8a
_3

_2
s1

19
6a

_3
_2

s8
32

a_
15

_7
ca

se
_1

_b
12

_2
sq

ua
ri

ng
16

sq
ua

ri
ng

7
do

ub
ly

Li
nk

ed
Li

st
Lo

gi
nS

er
vi

ce
2

So
rt

20
.s

k
en

qu
eu

e
K

ar
at

su
ba

llt
ra

ve
rs

al
llr

ev
er

se
di

ag
St

en
ci

l_
ne

w
tu

to
ri

al
3

de
m

o2
_n

ew

Time
per

sample
(s)

Benchmarks

UniGen2
UniGen1

57

Where are we?
Generator Relative runtime
State-of-the-art:
XORSample’

50000

UniGen 5000

UniGen1 470

UniGen2 20

Ideal Uniform Generator* 10

SAT Solver 1
58

The Final Push….

• UniGen requires one time computation of
ApproxMC

• Generation of samples in fully distributed fashion
(Previous algorithms lacked the above property)

• New paradigms!

59

60

Current Paradigm of
Simulation-based Verification

Test 2 Test 3

Test 4Test 1

Test Generator

Simulator

Simulator
Simulator

Simulator

• Can not be
parallelized since
test generators
maintain “global
state”

• Loses theoretical
guarantees (if any)
of uniformity

Test Generator

New Paradigm of Simulation-
based Verification

Simulator

Simulator

Simulator

Simulator

Test Generator

Test Generator

Test Generator

Preprocessin
g

• Preprocessing needs to be done only once

• No communication required between
different copies of the test generator

• Fully distributed!

61

Closing in…
Generator Relative runtime
State-of-the-art:
XORSample’

50000

UniGen 5000

UniGen1 470

UniGen2 20

Multi-core UniGen2 10 (two cores)

Ideal Uniform Generator* 10

SAT Solver 1 62

So what happened….

63

Sampling and
Counting
Important

Applications

Beautiful Theory
But does not work in
practice

Theoretical
Contributions
(Practice drives

theory)

New Paradigms
(Theory drives
practice)

Future Directions

64

Extension to More Expressive domains

• Efficient hashing schemes
� Extending bit-wise XOR to richer constraint domains provides

guarantees but no advantage of SMT progress

• Solvers to handle F + Hash efficiently
� CryptoMiniSAT has fueled progress for SAT domain
� Similar solvers for other domains?

65

Handling Distributions
• Given: CNF formula F and Weight function W over
assignments

• Weighted Counting: sum the weight of solutions
• Weighted Sampling: Sample according to weight of
solution

• Wide range of applications in Machine Learning
• Extending universal hashing works only in theory so far

66

Thanks!

Questions?
www.kuldeepmeel.com

kuldeep@rice.edu 67

