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How do we guarantee that systems work  
correctly ?

Functional Verification
• Formal verification
�Challenges: formal requirements, scalability
�~10-15% of verification effort 

• Dynamic verification: dominant approach
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Dynamic Verification
§Design is simulated with test vectors
• Test vectors represent different verification 
scenarios 

§Results from simulation compared to intended 
results

§Challenge: Exceedingly large test space!
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Motivating Example
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a b

c

64 bit 64 bit

64 bit

c = f(a,b)

How do we test the circuit works ?

• Try for all values of a and b
• 2128 possibilities 
• Sun will go nova before done!
• Not scalable



Constrained-Random Simulation
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§ Test vectors: solutions of constraints

§ Proposed by Lichtenstein, Malka, Aharon (IAAI 94) 

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints
• Designers: 

1. a +64 11 *32 b = 12
2. a <64 (b >> 4)

• Past Experience: 
1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200



Constrained-Random Simulation
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a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints
• Designers: 

1. a +64 11 *32 b = 12
2. a <64 (b >> 4)

• Past Experience: 
1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200

Problem: How can we uniformly sample the values of a and b 
satisfying the above constraints?



Problem Formulation
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Set of 
Constraints

Sample satisfying assignments 
uniformly at random

SAT Formula

Scalable Uniform Generation of SAT Witnesses

a b

c

64 bit

64 bit

64 bit

c = f(a,b)



IBM Labs in Haifa © 2006 IBM Corporation

Constraint satisfaction for random stimuli generation

Yehuda Naveh
IBM Haifa Research Lab



Search-
based 

Synthesis

Constrained 
Random 

Simulation

SAT Sampling
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Search-Based Synthesis

§Goal: synthesize from under-constrained 
specifications (“sketch”)

§Large space of programs that satisfy 
correctness conditions

§Task: Find  “optimal” program (wrt running 
time, memory, …)

§Method: Uniformly sample from the space 
of programs
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Constrained Counting

• Given a SAT formula F
• RF: Set of all solutions of F
• Problem (#SAT): Estimate the number of solutions of F 
(#F) i.e., what is the cardinality of RF?

• E.g., F = (a v b)
• RF = {(0,1), (1,0), (1,1)}
• The number of solutions (#F) = 3

#P: The class of counting problems for 
decision problems in NP! 11



Practical Applications
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Wide range of applications!
• Probabilistic reasoning/Bayesian inference 
• Dynamic Verification 
• Planning with uncertainty
• Multi-agent/ adversarial reasoning 

[Roth 96, Sang 04, Bacchus 04, Domshlak 07]



Agenda

Design Scalable Techniques for 
Uniform Generation and 

Model Counting 
with Strong Theoretical Guarantees 
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Agenda

Design Scalable Techniques for 
Almost-Uniform Generation and 

Approximate-Model Counting 
with Strong Theoretical Guarantees 
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Prior Work
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Desires

Generator Relative runtime
State-of-the-art: 
XORSample’

50000

Ideal Uniform 
Generator*
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SAT Solver 1

Experiments over 200+ benchmarks
*: According to EDA experts
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Our Contribution
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Partitioning into equal “small” cells
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Partitioning into equal “small” cells
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Partitioning into equal “small” cells

Pick a random cell

Pick a random solution from this cell 



How to Partition?

How to partition into roughly equal 
small cells of solutions without 
knowing the distribution of solutions? 

Universal Hashing
[Carter-Wegman 1979] (IBM Research) 21



Universal Hashing
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• Hash functions: mapping {0,1}n to {0,1}m  

� (2n elements to 2m cells)

• Random inputs => All cells are roughly equal (in 
expectation)

• Universal family of hash functions:
� Choose hash function randomly from family
� For arbitrary distribution on inputs => All cells are roughly 

equal (in expectation)



Universal Hashing and Independence
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• Hash functions from mapping {0,1}n to {0,1}m  

� (2n elements to 2m cells)

• Universal hash functions:
� Choose hash function randomly
� For arbitrary distribution on inputs => All cells are roughly equal 

in expectation
� But:
� While each input is hashed uniformly
� Different inputs might not be hashed independently



Strong Universality

• H(n,m,r): Family of r-universal hash functions
mapping {0,1}n to {0,1}m  (2n elements to 2m cells)
� r: degree of independence of hashed inputs

• Higher r =>  Stronger guarantee on range of size of 
cells

• r-wise universality => Polynomials of degree r-1

• Higher universality => Higher complexity 24



Partitioning
•How large should the cells be? 

•How many cells?
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Size of cell

• Too large => Hard to enumerate
• Too small => Variance can be very high

pivot = 5(1 + 1/")2
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How many cells? 
• Our desire:  2" = 	 |&'|

()*+,
� But determining 𝑅. is expensive (#P complete)

• How about approximation?
� 𝐴𝑝𝑝𝑟𝑜𝑥𝑀𝐶 𝐹, 𝜀, 𝛿 returns C:

Pr[	 &'=>? ≤ 𝐶 ≤ 1 + 𝜀 |𝑅.|] ≥ 1 − 𝛿
� 𝑞 = log𝐶	 − log𝑝𝑖𝑣𝑜𝑡	

� Concentrate on 2M,	where m = q-1, q, q+1 
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ApproxMC(F,𝜀, 𝛿)	

Choose m

• For right choice of m, large number of cells are “small”
• “almost all” the cells are “roughly” equal

• Check if a randomly picked cell is “small” 
• If yes, then estimate = # of solutions in cell * 2M
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ApproxMC(F,𝜀, 𝛿)	

#sols < 
pivot

NO
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ApproxMC(F,𝜀, 𝛿)	

#sols < 
pivot

NO
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ApproxMC(F,𝜀, 𝛿)	

#sols < 
pivot

YES

Estimate: 
# of sols * 2M
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Runtime Performance 
of ApproxMC
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Can Solve a Large Class of Problems
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Large class of problems that lie beyond the exact 
counters but can be computed by ApproxMC
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Mean Error: Only 4% (allowed: 75%)
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Mean error: 4% – much smaller than the 
theoretical guarantee of 75%
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Guarantees and 
Runtime performance 
of UniGen
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Strong Theoretical Guarantees
• Almost-Uniformity

• Success Probability

� In practice, succ. Probability ~ 0.99

•Polynomial number of calls to SAT Solver

For every solution y of RF

1/(6.84+ε) x1/|RF| <= Pr [y is output] <= (6.84+ε) /|RF|

UniGen succeeds with probability at least 0.52
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1-2 Orders of Magnitude Faster
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Results: Uniformity

38• Benchmark: case110.cnf;   #var: 287;  #clauses: 1263
• Total Runs: 4x106; Total Solutions : 16384
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Results: Uniformity

39• Benchmark: case110.cnf;   #var: 287;  #clauses: 1263
• Total Runs: 4x106; Total Solutions : 16384
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So far
• The first scalable approximate model counter
• The first scalable uniform generator
• Outperforms state-of-the-art generators/counters

Are we done? 
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Where are we?

Generator Relative runtime
State-of-the-art: 
XORSample’

50000

UniGen ~5000

Ideal Uniform 
Generator*

10

SAT Solver 1

Experiments over 200+ benchmarks
*: According to EDA experts 41



XOR-Based Hashing
• Partition 2n space into  2m cells
• Variables: X1, X2, X3,….., Xn

• Pick every variable with prob. ½ ,XOR them and add  0/1 
with prob. ½ 

• X1+X3+X6+…. Xn-1 + 0
• To construct h: 0,1 P → 0,1 M, choose m random XORs
• 𝛼	 ∈ 0,1 M →	Set every XOR equation to 0 or 1 randomly
• The cell:  F ∧ XOR (CNF+XOR)

42



XOR-Based Hashing
• CryptoMiniSAT: Efficient for CNF+XOR

• Avg Length : n/2 

• Smaller XORs è better performance

How to shorten XOR clauses? 43



Independent Support
• Set I of variables such that assignments to these uniquely 
determine assignments to rest of variables (for satisfying 
assignments)

• If                    agree on I then 
• c ⟷ (a V b) ; Independent Support I: {a, b}
• Key Idea: Hash only on the independent variables
• Average size of XOR: n/2 to |I|/2

44

!!σ1!and!σ2 !!σ1!!=!σ2



Key Idea
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Minimal 
Independent 
Support (MIS) 

Minimal 
Unsatisfiable
Subset (MUS)



Minimal Unsatisfiable Subset
• Given	Ψ = 𝐻= ∧ 𝐻[ ⋯𝐻M		

� Find subset {𝐻)=, 𝐻)[,⋯𝐻)^} of {𝐻=, 𝐻[,⋯𝐻M} such that                
𝐻)= ∧ 𝐻)[⋯𝐻)^ ∧ Ω	is UNSAT

Unsatisfiable subset

� Find minimal subset {𝐻)=, 𝐻)[,⋯𝐻)^} of {𝐻=, 𝐻[,⋯𝐻M} such that 
𝐻)= ∧ 𝐻)[⋯𝐻)^	is UNSAT

Minimal Unsatisfiable subset

46



Impact on Sampling and Counting 
Techniques

47

MIS

Sampling
Tools

Counting 
Tools

F
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What about complexity

• Computation of MUS: 𝐹𝑃bc

• Why solve a 𝐹𝑃bc for almost-uniform 
generation/approximate counter (PTIME PTM with NP 
Oracle) 

Settling the debate through practice!

48



Performance Impact on Uniform Sampling
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Where are we?

Generator Relative runtime
State-of-the-art: 
XORSample’

50000

UniGen 5000

UniGen1 470

Ideal Uniform Generator* 10

SAT Solver 1
50



Back to basics

51

# of solutions in “small” cell ∈ 𝑙𝑜𝑇ℎ𝑟𝑒𝑠ℎ, ℎ𝑖𝑇ℎ𝑟𝑒𝑠ℎ
We pick one solution 
“Wastage” of loThresh solutions

Pick 𝑙𝑜𝑇ℎ𝑟𝑒𝑠ℎ samples!



Balancing Independence

For ℎ ∈ 𝐻 𝑛, 𝑚, 3

• Choosing up to 3 samples => Full independence among 
samples

• Choosing loThresh (>> 3) samples => Loss of independence 

52



Why care about Independence

53

🕷🕷

If every sample is independent => Faster convergence

Convergence 
requires 
multiplication of 
probabilities 



The principle of principled compromise!

• Choosing up to 3 samples => Full independence among 
samples

• Choosing loThresh (>> 3) samples => Loss of independence
� “Almost-Independence” among samples
� Still provides strong theoretical guarantees of coverage

54



Strong Guarantees
•

•Polynomial Constant number of SAT 
calls per sample
�After one call to ApproxMC

55

8y 2 RF ,



Bug-finding effectiveness

UniGen UniGen2

Expected 
number of SAT 
calls

4.35 × 107 3.38 × 106

56

bug frequency f = 1/104

find bug with probability ≥ 1/2

An order of magnitude difference!



~20 times faster than UniGen1
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Where are we?
Generator Relative runtime
State-of-the-art: 
XORSample’

50000

UniGen 5000

UniGen1 470

UniGen2 20

Ideal Uniform Generator* 10

SAT Solver 1
58



The Final Push….

• UniGen requires one time computation of 
ApproxMC

• Generation of samples in fully distributed fashion
(Previous algorithms lacked the above property)

• New paradigms! 
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Current Paradigm of 
Simulation-based Verification

Test 2 Test 3

Test 4Test 1

Test Generator

Simulator

Simulator
Simulator

Simulator

• Can not be 
parallelized since 
test generators 
maintain “global 
state” 

• Loses theoretical 
guarantees (if any) 
of uniformity



Test Generator

New Paradigm of Simulation-
based Verification

Simulator

Simulator

Simulator

Simulator

Test Generator

Test Generator

Test Generator

Preprocessin
g

• Preprocessing needs to be done only once

• No communication required between 
different copies of the test generator

• Fully distributed!
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Closing in…
Generator Relative runtime
State-of-the-art: 
XORSample’

50000

UniGen 5000

UniGen1 470

UniGen2 20

Multi-core UniGen2 10 (two cores)

Ideal Uniform Generator* 10

SAT Solver 1 62



So what happened….
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Sampling and 
Counting 
Important 

Applications

Beautiful Theory
But does not work in 
practice    

Theoretical 
Contributions
(Practice drives 

theory)

New Paradigms 
(Theory drives 
practice)



Future Directions
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Extension to More Expressive domains

• Efficient hashing schemes 
� Extending bit-wise XOR to richer constraint domains provides 

guarantees but no advantage of SMT progress

• Solvers to handle F + Hash efficiently
� CryptoMiniSAT has fueled progress for SAT domain
� Similar solvers for other domains? 
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Handling Distributions
• Given: CNF formula F and Weight function W over 
assignments

• Weighted Counting: sum the weight of solutions
• Weighted Sampling: Sample according to weight of 
solution

• Wide range of applications in Machine Learning
• Extending universal hashing works only in theory so far
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Thanks! 

Questions?
www.kuldeepmeel.com

kuldeep@rice.edu 67


