

The Secrets of GANAK: Designing Scalable Exact Model Counter

Kuldeep S. Meel¹

Joint work with Shubham Sharma², Mate Soos¹, and Subhajit Roy²

¹National University of Singapore ²Indian Institute of Technology Kanpur, India Ganak+ApproxMC won two out of three tracks at Model Counting Competition. Related Paper: IJCAI 2019

- Given:
 - Propositional formula F (CNF) over a set of variables X
- Propositional Model Counting (#SAT):
 - Compute the number of satisfying assignments of F
- #SAT is #P complete problem

- Probabilistic Exact Model Counting
 - Given a propositional formula F (CNF) and confidence $\delta \in (0, 1]$, counter returns count such that:

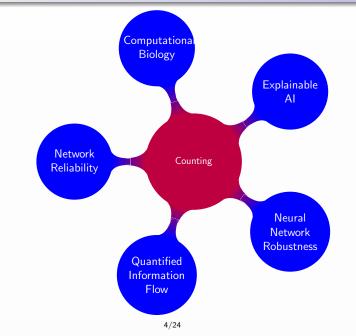
 $\Pr[|\text{Solutions of F}| = \text{count}] \ge 1 - \delta$

- Probabilistic Exact Model Counting
 - Given a propositional formula F (CNF) and confidence $\delta \in (0, 1]$, counter returns count such that:

 $\Pr[|\text{Solutions of }\mathsf{F}| = \texttt{count}] \geq 1 - \delta$

 Probabilistic Exact Model Counting is almost as hard as Exact Model Counting¹

Applications across Computer Science



Knowledge Compilation c2d [Darwiche, 2004], D4[Lagniez and Marquis, 2017]
Search-based Counters Cachet[Sang et al, 2004; 2005], sharpSAT [Thurley 2006]
Hashing-based Counting Stockmeyer 1983, Gomes et al. 2006, Chakraborty et al. 2013-,

- Decision Process:
 - $-(F \wedge I) \vee (F \wedge \neg I)$
 - $#(F) = #(F \land I) + #(F \land \neg I)$

mutually inconsistent

- Decision Process:
 - $-(F \wedge I) \vee (F \wedge \neg I)$

mutually inconsistent

- #(F) = #(F ∧ I) + #(F ∧ ¬I)
 Component Decomposition:
 - $-F = \Delta_1 \land \Delta_2 \cdots \Delta_n \quad \Delta_1 \cdots \Delta_n \text{ does not share any variables} \\ -\#(F) = \#(\Delta_1) \times \#(\Delta_2) \cdots \times \#(\Delta_n) \quad \text{mutually disjoint}$

- Decision Process:
 - $-(F \wedge I) \vee (F \wedge \neg I)$

mutually inconsistent

• Component Decomposition:

 $- #(F) = #(F \land I) + #(F \land \neg I)$

- $F = \Delta_1 \wedge \Delta_2 \cdots \Delta_n \quad \Delta_1 \cdots \Delta_n \text{ does not share any variables}$
- $#(F) = #(\Delta_1) \times #(\Delta_2) \cdots \times #(\Delta_n)$ mutually disjoint
- Conflict Driven Clause Learning

- Decision Process:
 - $-(F \wedge I) \vee (F \wedge \neg I)$

- mutually inconsistent
- $#(F) = #(F \land I) + #(F \land \neg I)$
- Component Decomposition:
 - $\ \textit{\textit{F}} = \Delta_1 \wedge \Delta_2 \cdots \Delta_n \quad \Delta_1 \cdots \Delta_n \text{ does not share any variables}$
 - $#(F) = #(\Delta_1) \times #(\Delta_2) \cdots \times #(\Delta_n)$ mutually disjoint
- Conflict Driven Clause Learning
- Component Caching:

Key	Value
Δ_1	$\#(\Delta_1)$
Δ_2	$\#(\Delta_2)$

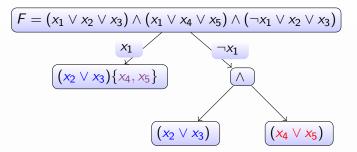
Model Counting Algorithm

1: $I \leftarrow \text{DecideLiteral}(F)$
2: for $lit \leftarrow \{l, \neg l\}$ do
3: $F_{ lit} \leftarrow \text{UnitPropagation}(F, lit)$
4: if <i>F</i> _{<i>lit</i>} contains an empty clause then
5: $count[lit] \leftarrow 0$
6: else
7: $count[lit] \leftarrow 1$
8: $Comps \leftarrow DisjointComponents(F_{ lit}) \triangleright Decomposition$
9: for $C \leftarrow Comps$ do
10: $count \leftarrow GetCache(C)$
11: if $count = NOT FOUND$ then
12: $count \leftarrow Counter(C)$
13: $count[lit] = count[lit] \times count$
14: if $count = 0$ then
15: break
16: CacheStore(F , count[I] + count[$\neg I$])
17: return $count[l] + count[\neg l]_{7/24}$

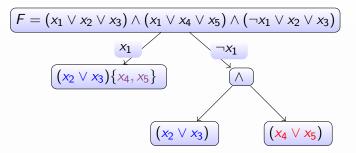
$$\left(\mathsf{F} = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_4 \lor x_5) \land (\neg x_1 \lor x_2 \lor x_3) \right)$$

$$\overbrace{F = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_4 \lor x_5) \land (\neg x_1 \lor x_2 \lor x_3)}^{X_1} \overbrace{(x_2 \lor x_3) \{x_4, x_5\}}^{X_1}$$

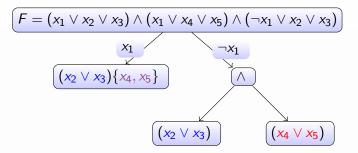
Key	Value
$(x_2 \lor x_3)$	3
$(x_2 \lor x_3)\{x_4, x_5\}$	12



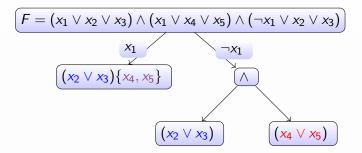
Кеу	Value
$(x_2 \lor x_3)$	3
$(x_2 \lor x_3)\{x_4, x_5\}$	12



Кеу	Value	
$(x_2 \lor x_3)$	3	
$(x_2 \lor x_3)\{x_4, x_5\}$	12	
$(x_4 \lor x_5)$	3	



Key	Value
$(x_2 \lor x_3)$	3
$(x_2 \lor x_3)\{x_4, x_5\}$	12
$(x_4 \lor x_5)$	3
$(x_2 \lor x_3) \land (x_4 \lor x_5)$	9



Кеу	
$(x_2 \lor x_3)$	3
$(x_2 \lor x_3)\{x_4, x_5\}$	12
$(x_4 \lor x_5)$	3
$(x_2 \lor x_3) \land (x_4 \lor x_5)$	
$F = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_4 \lor x_5) \land (\neg x_1 \lor x_2 \lor x_3)$	21

- 1 Probabilistic Component Caching (PCC)
- 2 Variable Branching Heuristic (CSVSADS)
- 3 Phase Selection Heuristic (PC)
- 4 Independent Support (IS)
- **5** Learn and Start Over (LSO)

$F = (\neg x_3 \lor \neg x_5 \lor x_6) \land (\neg x_1 \lor x_4 \lor \neg x_6) \land (x_2 \lor x_3 \lor x_6)$

Schema	Кеу	Value
STD ²	-3, -5, 6, 0, -1, 4, -6, 0, 2, 3, 6, 0	#(F)
HC ³	1, 2, 3, 4, 5, 6, 1, 2, 3	#(F)
	m bit hash of HC/STD	
GANAK	clhash: universal hash functions	#(F)

Variable Branching Heuristic (CSVSADS)

- Score(VSADS)⁴ = $p \times$ Score(VSIDS) + $q \times$ Score(DLCS)
 - VSIDS: Prioritize variables present in recently generated conflict clauses
 - Dynamic Largest Com-bined Sum(DLCS): Prioritize the highest occurring variable in the residual formula

Variable Branching Heuristic (CSVSADS)

- Score(VSADS)⁴ = $p \times$ Score(VSIDS) + $q \times$ Score(DLCS)
 - VSIDS: Prioritize variables present in recently generated conflict clauses
 - Dynamic Largest Com-bined Sum(DLCS): Prioritize the highest occurring variable in the residual formula
- Score(CSVSADS) = $\underline{\alpha \times CacheScore} + \beta \times Score(VSADS)$

Phase Selection Heuristic (PC)

 $\mathsf{DLIS} = \left\{ \begin{array}{ll} I & |I| \ge |\neg I| \\ \neg I & otherwise \end{array} \right.$

$$\mathsf{DLIS} = \left\{ \begin{array}{ll} I & |I| \ge |\neg I| \\ \neg I & otherwise \end{array} \right.$$

 We reduce our trust on DLIS by adding randomness in DLIS if the difference in |*I*| and |¬*I*| is not overwhelmingly high An independent support, *I* ⊆ Vars(*F*), is a subset of the support such that if two satisfying assignments *σ*₁ and *σ*₂ agree on *I*, then *σ*₁ = *σ*₂

- An independent support, *I* ⊆ Vars(*F*), is a subset of the support such that if two satisfying assignments *σ*₁ and *σ*₂ agree on *I*, then *σ*₁ = *σ*₂
- Example: $(x \lor \neg y) \land (\neg x \lor y)$ $\mathcal{I} = \{x\}$

- An independent support, *I* ⊆ Vars(*F*), is a subset of the support such that if two satisfying assignments *σ*₁ and *σ*₂ agree on *I*, then *σ*₁ = *σ*₂
- Example: $(x \lor \neg y) \land (\neg x \lor y)$ $\mathcal{I} = \{x\}$
- We use the MIS^5 algorithm for computing the minimal $\mathcal I$ for hard instances

- An independent support, *I* ⊆ Vars(*F*), is a subset of the support such that if two satisfying assignments *σ*₁ and *σ*₂ agree on *I*, then *σ*₁ = *σ*₂
- Example: $(x \lor \neg y) \land (\neg x \lor y)$ $\mathcal{I} = \{x\}$
- We use the MIS⁵ algorithm for computing the minimal ${\mathcal I}$ for hard instances
- Perform decision process on variables from ${\cal I}$
 - 1 If residual formula is SAT model count equal to 1
 - 2 If residual formula is UNSAT model count equal to 0

 Modern SAT solvers use random restarts aggressively in search of a good variable ordering that can quickly lead to a satisfiable assignment⁶

- Modern SAT solvers use random restarts aggressively in search of a good variable ordering that can quickly lead to a satisfiable assignment⁶
- Restart solver after the first 5000 decisions
- Learn from the previous invocation by maintaining all the scores obtained in the previous run to explore different and better ordering of decision variables

- GANAK⁷: First Scalable Probabilistic Exact Model Counter
- Given a propositional formula F (CNF) and confidence $\delta \in (0, 1]$ GANAK (F, δ) returns count such that

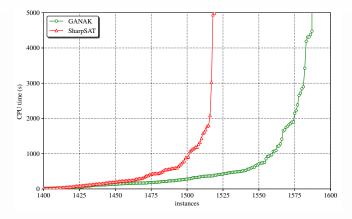
$$\Pr[|Sol(F)| = \texttt{count}] \ge 1 - \delta$$

• Tool is available at: https://github.com/meelgroup/ganak

 Benchmarks arising from probabilistic reasoning, plan recognition, DQMR networks, ISCAS89 combinatorial circuits, quantified information flow, etc

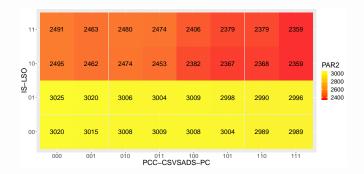
- Benchmarks arising from probabilistic reasoning, plan recognition, DQMR networks, ISCAS89 combinatorial circuits, quantified information flow, etc
- Objectives:
 - Study the impact of different configurations of heuristics Shubham's Talk
 - Study the performance of GANAK with respect to the state-of-the-art model counters

Experimental Evaluation: Comparison with other tools



 In our experiments, the model count returned by GANAK was equal to the exact model count for all benchmarks

Experimental Evaluation: Individual Analysis



GANAK performed best when all the heuristics are turned on

- GANAK demostrates that #SAT solvers can significantly benefit from probabibistic component caches, especially when ably supported by heuristics like IS, CSVSADS, PC and LSO
- We believe that the heuristics proposed in this work will also significantly benefit exhaustive DPLL-based knowledge compilation frameworks and related tools (like c2d [Darwiche, 2004], D4 [Lagniez and Marquis, 2017], DSHARP [Muise et al., 2012])
- Tool is available at: https://github.com/meelgroup/ganak