
The Secrets of GANAK: Designing Scalable Exact
Model Counter

Kuldeep S. Meel1

Joint work with Shubham Sharma2, Mate Soos1, and Subhajit Roy2

1National University of Singapore
2Indian Institute of Technology Kanpur, India

Ganak+ApproxMC won two out of three tracks at Model Counting
Competition. Related Paper: IJCAI 2019

1/24

Propositional Model Counting

• Given:

– Propositional formula F (CNF) over a set of variables X

• Propositional Model Counting (#SAT):

– Compute the number of satisfying assignments of F

• #SAT is #P complete problem

2/24

Propositional Model Counting

• Probabilistic Exact Model Counting

– Given a propositional formula F (CNF) and confidence δ ∈ (0, 1],
counter returns count such that:

Pr
[
|Solutions of F| = count

]
≥ 1− δ

• Probabilistic Exact Model Counting is almost as hard as Exact
Model Counting1

3/24

Propositional Model Counting

• Probabilistic Exact Model Counting

– Given a propositional formula F (CNF) and confidence δ ∈ (0, 1],
counter returns count such that:

Pr
[
|Solutions of F| = count

]
≥ 1− δ

• Probabilistic Exact Model Counting is almost as hard as Exact
Model Counting1

3/24

Applications across Computer Science

Counting
Network

Reliability

Computational
Biology

Explainable
AI

Neural
Network

Robustness

Quantified
Information

Flow

4/24

Long Line of Work

Knowledge Compilation c2d [Darwiche, 2004], D4[Lagniez and
Marquis, 2017]

Search-based Counters Cachet[Sang et al, 2004; 2005], sharpSAT
[Thurley 2006]

Hashing-based Counting Stockmeyer 1983, Gomes et al. 2006,
Chakraborty et al. 2013-,

5/24

Main Ingredients of Search-Based Counters

• Decision Process:

– (F ∧ l) ∨ (F ∧ ¬l) mutually inconsistent
– #(F) = #(F ∧ l) + #(F ∧ ¬l)

• Component Decomposition:

– F = ∆1 ∧∆2 · · ·∆n ∆1 · · ·∆n does not share any variables
– #(F) = #(∆1)×#(∆2) · · · ×#(∆n) mutually disjoint

• Conflict Driven Clause Learning

• Component Caching:

Key Value

∆1 #(∆1)

∆2 #(∆2)

6/24

Main Ingredients of Search-Based Counters

• Decision Process:

– (F ∧ l) ∨ (F ∧ ¬l) mutually inconsistent
– #(F) = #(F ∧ l) + #(F ∧ ¬l)

• Component Decomposition:

– F = ∆1 ∧∆2 · · ·∆n ∆1 · · ·∆n does not share any variables
– #(F) = #(∆1)×#(∆2) · · · ×#(∆n) mutually disjoint

• Conflict Driven Clause Learning

• Component Caching:

Key Value

∆1 #(∆1)

∆2 #(∆2)

6/24

Main Ingredients of Search-Based Counters

• Decision Process:

– (F ∧ l) ∨ (F ∧ ¬l) mutually inconsistent
– #(F) = #(F ∧ l) + #(F ∧ ¬l)

• Component Decomposition:

– F = ∆1 ∧∆2 · · ·∆n ∆1 · · ·∆n does not share any variables
– #(F) = #(∆1)×#(∆2) · · · ×#(∆n) mutually disjoint

• Conflict Driven Clause Learning

• Component Caching:

Key Value

∆1 #(∆1)

∆2 #(∆2)

6/24

Main Ingredients of Search-Based Counters

• Decision Process:

– (F ∧ l) ∨ (F ∧ ¬l) mutually inconsistent
– #(F) = #(F ∧ l) + #(F ∧ ¬l)

• Component Decomposition:

– F = ∆1 ∧∆2 · · ·∆n ∆1 · · ·∆n does not share any variables
– #(F) = #(∆1)×#(∆2) · · · ×#(∆n) mutually disjoint

• Conflict Driven Clause Learning

• Component Caching:

Key Value

∆1 #(∆1)

∆2 #(∆2)

6/24

Model Counting Algorithm

1: l ←DecideLiteral(F)
2: for lit ← {l ,¬l} do
3: F|lit ← UnitPropagation(F , lit)
4: if F|lit contains an empty clause then
5: count[lit]← 0
6: else
7: count[lit]← 1
8: Comps ← DisjointComponents(F|lit) . Decomposition
9: for C ← Comps do

10: count ← GetCache(C)
11: if count = NOT FOUND then
12: count ← Counter(C)

13: count[lit] = count[lit]× count
14: if count = 0 then
15: break
16: CacheStore(F , count[l] + count[¬l])
17: return count[l] + count[¬l]

7/24

Example

F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5) ∧ (¬x1 ∨ x2 ∨ x3)

8/24

Example

F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5) ∧ (¬x1 ∨ x2 ∨ x3)

(x2 ∨ x3){x4, x5}

x1

Key Value

(x2 ∨ x3) 3

(x2 ∨ x3){x4, x5} 12

9/24

Example

F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5) ∧ (¬x1 ∨ x2 ∨ x3)

(x2 ∨ x3){x4, x5}

x1

∧

(x2 ∨ x3) (x4 ∨ x5)

¬x1

Key Value

(x2 ∨ x3) 3

(x2 ∨ x3){x4, x5} 12

10/24

Example

F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5) ∧ (¬x1 ∨ x2 ∨ x3)

(x2 ∨ x3){x4, x5}

x1

∧

(x2 ∨ x3) (x4 ∨ x5)

¬x1

Key Value

(x2 ∨ x3) 3

(x2 ∨ x3){x4, x5} 12

(x4 ∨ x5) 3

11/24

Example

F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5) ∧ (¬x1 ∨ x2 ∨ x3)

(x2 ∨ x3){x4, x5}

x1

∧

(x2 ∨ x3) (x4 ∨ x5)

¬x1

Key Value

(x2 ∨ x3) 3

(x2 ∨ x3){x4, x5} 12

(x4 ∨ x5) 3

(x2 ∨ x3) ∧ (x4 ∨ x5) 9

12/24

Example

F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5) ∧ (¬x1 ∨ x2 ∨ x3)

(x2 ∨ x3){x4, x5}

x1

∧

(x2 ∨ x3) (x4 ∨ x5)

¬x1

Key Value

(x2 ∨ x3) 3

(x2 ∨ x3){x4, x5} 12

(x4 ∨ x5) 3

(x2 ∨ x3) ∧ (x4 ∨ x5) 9

F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5) ∧ (¬x1 ∨ x2 ∨ x3) 21
13/24

Our Contribution

1 Probabilistic Component Caching (PCC)

2 Variable Branching Heuristic (CSVSADS)

3 Phase Selection Heuristic (PC)

4 Independent Support (IS)

5 Learn and Start Over (LSO)

14/24

Probabilistic Component Caching (PCC)

F = (¬x3 ∨ ¬x5 ∨ x6) ∧ (¬x1 ∨ x4 ∨ ¬x6) ∧ (x2 ∨ x3 ∨ x6)

Schema Key Value

STD2 -3, -5, 6, 0, -1, 4, -6, 0, 2, 3, 6, 0 #(F)

HC3 1, 2, 3, 4, 5, 6, 1, 2, 3 #(F)

GANAK
m bit hash of HC/STD

clhash: universal hash functions #(F)

15/24

Variable Branching Heuristic (CSVSADS)

• Score(VSADS)4 = p × Score(VSIDS) + q × Score(DLCS)

– VSIDS: Prioritize variables present in recently generated conflict
clauses

– Dynamic Largest Com-bined Sum(DLCS): Prioritize the highest
occurring variable in the residual formula

• Score(CSVSADS) = α × CacheScore + β × Score(VSADS)

16/24

Variable Branching Heuristic (CSVSADS)

• Score(VSADS)4 = p × Score(VSIDS) + q × Score(DLCS)

– VSIDS: Prioritize variables present in recently generated conflict
clauses

– Dynamic Largest Com-bined Sum(DLCS): Prioritize the highest
occurring variable in the residual formula

• Score(CSVSADS) = α × CacheScore + β × Score(VSADS)

16/24

Phase Selection Heuristic (PC)

•
DLIS =

{
l |l | ≥ |¬l |
¬l otherwise

• We reduce our trust on DLIS by adding randomness in DLIS if the
difference in |l | and |¬l | is not overwhelmingly high

17/24

Phase Selection Heuristic (PC)

•
DLIS =

{
l |l | ≥ |¬l |
¬l otherwise

• We reduce our trust on DLIS by adding randomness in DLIS if the
difference in |l | and |¬l | is not overwhelmingly high

17/24

Independent Support (IS)

• An independent support, I ⊆ Vars(F), is a subset of the support
such that if two satisfying assignments σ1 and σ2 agree on I, then
σ1 = σ2

• Example: (x ∨ ¬y) ∧ (¬x ∨ y) I = {x}
• We use the MIS5 algorithm for computing the minimal I for hard

instances
• Perform decision process on variables from I

1 If residual formula is SAT – model count equal to 1
2 If residual formula is UNSAT – model count equal to 0

18/24

Independent Support (IS)

• An independent support, I ⊆ Vars(F), is a subset of the support
such that if two satisfying assignments σ1 and σ2 agree on I, then
σ1 = σ2

• Example: (x ∨ ¬y) ∧ (¬x ∨ y) I = {x}

• We use the MIS5 algorithm for computing the minimal I for hard
instances
• Perform decision process on variables from I

1 If residual formula is SAT – model count equal to 1
2 If residual formula is UNSAT – model count equal to 0

18/24

Independent Support (IS)

• An independent support, I ⊆ Vars(F), is a subset of the support
such that if two satisfying assignments σ1 and σ2 agree on I, then
σ1 = σ2

• Example: (x ∨ ¬y) ∧ (¬x ∨ y) I = {x}
• We use the MIS5 algorithm for computing the minimal I for hard

instances

• Perform decision process on variables from I
1 If residual formula is SAT – model count equal to 1
2 If residual formula is UNSAT – model count equal to 0

18/24

Independent Support (IS)

• An independent support, I ⊆ Vars(F), is a subset of the support
such that if two satisfying assignments σ1 and σ2 agree on I, then
σ1 = σ2

• Example: (x ∨ ¬y) ∧ (¬x ∨ y) I = {x}
• We use the MIS5 algorithm for computing the minimal I for hard

instances
• Perform decision process on variables from I

1 If residual formula is SAT – model count equal to 1
2 If residual formula is UNSAT – model count equal to 0

18/24

Learn and Start Over (LSO)

• Modern SAT solvers use random restarts aggressively in search of a
good variable ordering that can quickly lead to a satisfiable
assignment6

• Restart solver after the first 5000 decisions

• Learn from the previous invocation by maintaining all the scores
obtained in the previous run to explore different and better
ordering of decision variables

19/24

Learn and Start Over (LSO)

• Modern SAT solvers use random restarts aggressively in search of a
good variable ordering that can quickly lead to a satisfiable
assignment6

• Restart solver after the first 5000 decisions

• Learn from the previous invocation by maintaining all the scores
obtained in the previous run to explore different and better
ordering of decision variables

19/24

Tool

• GANAK7: First Scalable Probabilistic Exact Model Counter

• Given a propositional formula F (CNF) and confidence δ ∈ (0, 1]
GANAK(F , δ) returns count such that

Pr [|Sol(F)| = count] ≥ 1− δ

• Tool is available at: https://github.com/meelgroup/ganak

20/24

https://github.com/meelgroup/ganak

Experimental Evaluation

• Benchmarks arising from probabilistic reasoning, plan recognition,
DQMR networks, ISCAS89 combinatorial circuits, quantified
information flow, etc

• Objectives:

1 Study the impact of different configurations of heuristics Shubham’s
Talk

2 Study the performance of GANAK with respect to the
state-of-the-art model counters

21/24

Experimental Evaluation

• Benchmarks arising from probabilistic reasoning, plan recognition,
DQMR networks, ISCAS89 combinatorial circuits, quantified
information flow, etc

• Objectives:

1 Study the impact of different configurations of heuristics Shubham’s
Talk

2 Study the performance of GANAK with respect to the
state-of-the-art model counters

21/24

Experimental Evaluation: Comparison with other tools

1400 1425 1450 1475 1500 1525 1550 1575 1600
instances

0

1000

2000

3000

4000

5000

C
PU

tim
e

(s
)

GANAK
SharpSAT

• In our experiments, the model count returned by GANAK was
equal to the exact model count for all benchmarks

22/24

Experimental Evaluation: Individual Analysis

3020

3025

2495

2491

3015

3020

2462

2463

3008

3006

2474

2480

3009

3004

2453

2474

3008

3009

2382

2406

3004

2998

2367

2379

2989

2990

2368

2379

2989

2996

2359

2359

00

01

10

11

000 001 010 011 100 101 110 111
PCC−CSVSADS−PC

IS
−

LS
O

2400
2600
2800
3000

PAR2

• GANAK performed best when all the heuristics are turned on

23/24

Conclusion

• GANAK demostrates that #SAT solvers can significantly benefit
from probabibistic component caches, especially when ably
supported by heuristics like IS, CSVSADS, PC and LSO

• We believe that the heuristics proposed in this work will also
significantly benefit exhaustive DPLL-based knowledge compilation
frameworks and related tools (like c2d [Darwiche, 2004], D4
[Lagniez and Marquis, 2017], DSHARP [Muise et al., 2012])

• Tool is available at: https://github.com/meelgroup/ganak

24/24

https://github.com/meelgroup/ganak

