
Democratizing SAT Solving

Mate Soos and Kuldeep S. Meel

School of Computing, National University of Singapore

Collaborators (“Citizen” Participation): Raghav Kulkarni and Adam Chai
First Paper: In Proc. of SAT-19

Second Paper: 2021, 2022, 2023(?)

Code: https://meelgroup.github.io/crystalball/
All the code (including based on unpublished work) is available publicly.

1 / 23

https://meelgroup.github.io/crystalball/


The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical
problems that involve many thousands of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Industrial usage of SAT Solvers: hardware verification, planning,
Genome Rearrangement, Telecom Feature Subscription, Resource
Constrained Scheduling, Noise Analysis, Games, · · ·

The story of CDCL Solvers!

2 / 23



The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical
problems that involve many thousands of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Industrial usage of SAT Solvers: hardware verification, planning,
Genome Rearrangement, Telecom Feature Subscription, Resource
Constrained Scheduling, Noise Analysis, Games, · · ·

The story of CDCL Solvers!

2 / 23



The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical
problems that involve many thousands of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Industrial usage of SAT Solvers: hardware verification, planning,
Genome Rearrangement, Telecom Feature Subscription, Resource
Constrained Scheduling, Noise Analysis, Games, · · ·

The story of CDCL Solvers!

2 / 23



Clause learning
Slide credit: J. Marques-Silva

(ā∨ b̄)∧(z̄∨b)∧(x̄ ∨ z̄∨a)∧(y ∨b)
Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

3 / 23



Clause learning
Slide credit: J. Marques-Silva

(ā∨ b̄)∧(z̄∨b)∧(x̄ ∨ z̄∨a)∧(y ∨b)
Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

3 / 23



Clause learning
Slide credit: J. Marques-Silva

(ā∨ b̄)∧(z̄∨b)∧(x̄ ∨ z̄∨a)∧(y ∨b)
Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

3 / 23



Clause learning
Slide credit: J. Marques-Silva

(ā∨ b̄)∧(z̄∨b)∧(x̄ ∨ z̄∨a)∧(y ∨b)
Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

3 / 23



Clause learning
Slide credit: J. Marques-Silva

(ā∨ b̄)∧(z̄∨b)∧(x̄ ∨ z̄∨a)∧(y ∨b)
Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

3 / 23



Clause learning
Slide credit: J. Marques-Silva

(ā∨ b̄)∧(z̄∨b)∧(x̄ ∨ z̄∨a)∧(y ∨b)
Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

3 / 23



Clause learning
Slide credit: J. Marques-Silva

(ā∨ b̄)∧(z̄∨b)∧(x̄ ∨ z̄∨a)∧(y ∨b)
Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

3 / 23



The World of SAT Solving

• The Paradox: SAT is NP-complete yet solvers can solve problems
involving millions of variables

• Designing solvers is very hard

– And it demands hundreds of hours (per expert) every year

– Analyze problems, find patterns, and improve heuristics

• Democratize the design of solvers; allows people without expertise
in SAT solving to test out their ideas

• CrystalBall

– Do not intend to replace experts
– We envision a expert in loop framework

A project born in 2018 with a 10 year horizon
Funding acknowledgment: Defense Service Organization

4 / 23



The World of SAT Solving

• The Paradox: SAT is NP-complete yet solvers can solve problems
involving millions of variables

• Designing solvers is very hard

– And it demands hundreds of hours (per expert) every year
– Analyze problems, find patterns, and improve heuristics

• Democratize the design of solvers; allows people without expertise
in SAT solving to test out their ideas

• CrystalBall

– Do not intend to replace experts
– We envision a expert in loop framework

A project born in 2018 with a 10 year horizon
Funding acknowledgment: Defense Service Organization

4 / 23



The World of SAT Solving

• The Paradox: SAT is NP-complete yet solvers can solve problems
involving millions of variables

• Designing solvers is very hard

– And it demands hundreds of hours (per expert) every year
– Analyze problems, find patterns, and improve heuristics

• Democratize the design of solvers; allows people without expertise
in SAT solving to test out their ideas

• CrystalBall

– Do not intend to replace experts
– We envision a expert in loop framework

A project born in 2018 with a 10 year horizon
Funding acknowledgment: Defense Service Organization

4 / 23



The World of SAT Solving

• The Paradox: SAT is NP-complete yet solvers can solve problems
involving millions of variables

• Designing solvers is very hard

– And it demands hundreds of hours (per expert) every year
– Analyze problems, find patterns, and improve heuristics

• Democratize the design of solvers; allows people without expertise
in SAT solving to test out their ideas

• CrystalBall

– Do not intend to replace experts
– We envision a expert in loop framework

A project born in 2018 with a 10 year horizon
Funding acknowledgment: Defense Service Organization

4 / 23



Data-Driven Approach to SAT Solver Design

• View SAT solvers as composition of prediction engines

– Branching
– Clause learning
– Memory management
– Restarts

• Involve ML experts to optimize behavior of prediction engines

• The first step: memory management aka learnt clause deletion

5 / 23



Data-Driven Approach to SAT Solver Design

• View SAT solvers as composition of prediction engines

– Branching
– Clause learning
– Memory management
– Restarts

• Involve ML experts to optimize behavior of prediction engines

• The first step: memory management aka learnt clause deletion

5 / 23



The curse of learnt clauses

• Learnt clauses are very useful

• But consume memory and can slowdown other components

• Delete larger clauses [E.g. MSS96a,MSS99]

• Delete less used clauses [E.g. GN02,ES03]

• Delete clauses based on Literal block distance [AS09]

Three tiered model
• Tier 0

– Stores learnt clauses with LBD ≤ 4
– No cleaning is performed

• Tier 1

– A new clause is put in Tier 1
– if a clause C has not been used in the past 30K conflicts then the

clause is moved to Tier 2

• Tier 2

– Every 10K conflict, half of the clauses are cleaned.

6 / 23



The curse of learnt clauses

• Learnt clauses are very useful

• But consume memory and can slowdown other components

• Delete larger clauses [E.g. MSS96a,MSS99]

• Delete less used clauses [E.g. GN02,ES03]

• Delete clauses based on Literal block distance [AS09]

Three tiered model
• Tier 0

– Stores learnt clauses with LBD ≤ 4
– No cleaning is performed

• Tier 1

– A new clause is put in Tier 1
– if a clause C has not been used in the past 30K conflicts then the

clause is moved to Tier 2

• Tier 2

– Every 10K conflict, half of the clauses are cleaned.

6 / 23



The curse of learnt clauses

• Learnt clauses are very useful

• But consume memory and can slowdown other components

• Delete larger clauses [E.g. MSS96a,MSS99]

• Delete less used clauses [E.g. GN02,ES03]

• Delete clauses based on Literal block distance [AS09]

Three tiered model
• Tier 0

– Stores learnt clauses with LBD ≤ 4
– No cleaning is performed

• Tier 1

– A new clause is put in Tier 1
– if a clause C has not been used in the past 30K conflicts then the

clause is moved to Tier 2

• Tier 2

– Every 10K conflict, half of the clauses are cleaned.

6 / 23



CrystalBall Architecture

7 / 23



Architecture

• For inference, we want to do supervised learning

• For every clause, we need values of different features and a label

• The inference engine should learn the model to predict the label

Components of CrystalBall

1 Feature Engineering

2 Labeling

3 Data collection

4 Inference Engine

8 / 23



Architecture

• For inference, we want to do supervised learning

• For every clause, we need values of different features and a label

• The inference engine should learn the model to predict the label

Components of CrystalBall

1 Feature Engineering

2 Labeling

3 Data collection

4 Inference Engine

8 / 23



Architecture

• For inference, we want to do supervised learning

• For every clause, we need values of different features and a label

• The inference engine should learn the model to predict the label

Components of CrystalBall

1 Feature Engineering

2 Labeling

3 Data collection

4 Inference Engine

8 / 23



Architecture

• For inference, we want to do supervised learning

• For every clause, we need values of different features and a label

• The inference engine should learn the model to predict the label

Components of CrystalBall

1 Feature Engineering

2 Labeling

3 Data collection

4 Inference Engine

8 / 23



Architecture

• For inference, we want to do supervised learning

• For every clause, we need values of different features and a label

• The inference engine should learn the model to predict the label

Components of CrystalBall

1 Feature Engineering

2 Labeling

3 Data collection

4 Inference Engine

8 / 23



Part 1: Feature Engineering

• Global features: property of the CNF formula at the time of genesis

• Contextual features: computed at the time of generation of the
clause and relate to the generated clause, e.g. LBD score

• Restart features: correspond to statistics (average and variance)
on the size and LBD of clauses, branch depth, trail depth during
the current and previous restart.

• Performance features: performance parameters of the learnt clause
such as the number of times the solver played part of a 1stUIP
conflict clause generation

Total # of features: 127

9 / 23



Part2: Labeling

• Attempt #1: For a learnt clause C in memory, can we predict
every 10K conflicts if C will be used in future?

– But not every learnt clause is useful eventually!

– What if C is used in future to derive clause D, which is never used
in future.

• Attempt #2: For a learnt clause C in memory, can we predict
every 10K conflicts if C will be used in future for derivation of a
useful clause?

– How do we define a useful clause?

10 / 23



Part2: Labeling

• Attempt #1: For a learnt clause C in memory, can we predict
every 10K conflicts if C will be used in future?

– But not every learnt clause is useful eventually!
– What if C is used in future to derive clause D, which is never used

in future.

• Attempt #2: For a learnt clause C in memory, can we predict
every 10K conflicts if C will be used in future for derivation of a
useful clause?

– How do we define a useful clause?

10 / 23



Part2: Labeling
Useful Clauses

• We focus on UNSAT formulas

– SAT solver can be viewed as trying to find the proof of
unsatisfiability. When the formula is satisfiable, it discovers
satisfiable assignments.

• A clause is useful if it is involved in the final UNSAT proof.

• For some cases, more than > 50% clauses are useful

• But we can only keep less than 5% of clauses in memory
Need to consider temporal aspect of usefulness

• We associate a counter with execution of SAT solver: incremented
with every conflict

• expiry (C): The value of counter when C was last used in the
UNSAT proof

• A clause is useful in future at t if expiry(C) > t.

11 / 23



Part2: Labeling
Useful Clauses

• We focus on UNSAT formulas

– SAT solver can be viewed as trying to find the proof of
unsatisfiability. When the formula is satisfiable, it discovers
satisfiable assignments.

• A clause is useful if it is involved in the final UNSAT proof.

• For some cases, more than > 50% clauses are useful

• But we can only keep less than 5% of clauses in memory
Need to consider temporal aspect of usefulness

• We associate a counter with execution of SAT solver: incremented
with every conflict

• expiry (C): The value of counter when C was last used in the
UNSAT proof

• A clause is useful in future at t if expiry(C) > t.

11 / 23



Part2: Labeling
Useful Clauses

• We focus on UNSAT formulas

– SAT solver can be viewed as trying to find the proof of
unsatisfiability. When the formula is satisfiable, it discovers
satisfiable assignments.

• A clause is useful if it is involved in the final UNSAT proof.

• For some cases, more than > 50% clauses are useful

• But we can only keep less than 5% of clauses in memory
Need to consider temporal aspect of usefulness

• We associate a counter with execution of SAT solver: incremented
with every conflict

• expiry (C): The value of counter when C was last used in the
UNSAT proof

• A clause is useful in future at t if expiry(C) > t.

11 / 23



Part2: Labeling
Useful Clauses

• We focus on UNSAT formulas

– SAT solver can be viewed as trying to find the proof of
unsatisfiability. When the formula is satisfiable, it discovers
satisfiable assignments.

• A clause is useful if it is involved in the final UNSAT proof.

• For some cases, more than > 50% clauses are useful

• But we can only keep less than 5% of clauses in memory

Need to consider temporal aspect of usefulness

• We associate a counter with execution of SAT solver: incremented
with every conflict

• expiry (C): The value of counter when C was last used in the
UNSAT proof

• A clause is useful in future at t if expiry(C) > t.

11 / 23



Part2: Labeling
Useful Clauses

• We focus on UNSAT formulas

– SAT solver can be viewed as trying to find the proof of
unsatisfiability. When the formula is satisfiable, it discovers
satisfiable assignments.

• A clause is useful if it is involved in the final UNSAT proof.

• For some cases, more than > 50% clauses are useful

• But we can only keep less than 5% of clauses in memory
Need to consider temporal aspect of usefulness

• We associate a counter with execution of SAT solver: incremented
with every conflict

• expiry (C): The value of counter when C was last used in the
UNSAT proof

• A clause is useful in future at t if expiry(C) > t.

11 / 23



Part2: Labeling
Useful Clauses

• We focus on UNSAT formulas

– SAT solver can be viewed as trying to find the proof of
unsatisfiability. When the formula is satisfiable, it discovers
satisfiable assignments.

• A clause is useful if it is involved in the final UNSAT proof.

• For some cases, more than > 50% clauses are useful

• But we can only keep less than 5% of clauses in memory
Need to consider temporal aspect of usefulness

• We associate a counter with execution of SAT solver: incremented
with every conflict

• expiry (C): The value of counter when C was last used in the
UNSAT proof

• A clause is useful in future at t if expiry(C) > t.

11 / 23



Part 3: Data Collection

• Just record the trace of the solver

• Works well for toy benchmarks.

• We are interested in understanding performance for competition
benchmarks – large benchmarks

• Need to reconstruct approximate/inexact trace drat-trim.

12 / 23



Part 3: Data Collection

• Just record the trace of the solver

• Works well for toy benchmarks.

• We are interested in understanding performance for competition
benchmarks – large benchmarks

• Need to reconstruct approximate/inexact trace drat-trim.

12 / 23



Part 3: Data Collection

• Just record the trace of the solver

• Works well for toy benchmarks.

• We are interested in understanding performance for competition
benchmarks – large benchmarks

• Need to reconstruct approximate/inexact trace drat-trim.

12 / 23



Part 3: Data Collection

• Just record the trace of the solver

• Works well for toy benchmarks.

• We are interested in understanding performance for competition
benchmarks – large benchmarks

• Need to reconstruct approximate/inexact trace

drat-trim.

12 / 23



Part 3: Data Collection

• Just record the trace of the solver

• Works well for toy benchmarks.

• We are interested in understanding performance for competition
benchmarks – large benchmarks

• Need to reconstruct approximate/inexact trace drat-trim.

12 / 23



Part 3: Data Collection

• Forward pass

– The solver keeps track of features of each clause and dumps all the
learnt clauses after we reach UNSAT.

– genesis(C): The value of counter when C was learnt
– expiry (C): The value of counter when C was last used in the

UNSAT proof

• Backward pass

– DRAT-trim is used to reconstruct the proof while satisfying the
constraint while satisfying the constraint expiry(C) > genesis(C).

13 / 23



Part 3: Data Collection

• Forward pass

– The solver keeps track of features of each clause and dumps all the
learnt clauses after we reach UNSAT.

– genesis(C): The value of counter when C was learnt
– expiry (C): The value of counter when C was last used in the

UNSAT proof

• Backward pass

– DRAT-trim is used to reconstruct the proof while satisfying the
constraint while satisfying the constraint expiry(C) > genesis(C).

13 / 23



Proof Generation via DRAT

• Consider an UNSAT formula φ defined as:

φ := (¬d ∨ ¬g ∨ f ) ∧ (¬d ∨ ¬g ∨ ¬f ) ∧ (¬d ∨ g) ∧ (a ∨ ¬c ∨ d)

∧(¬a ∨ ¬c ∨ d) ∧ (g) ∧ (c ∨ d ∨ ¬g)

• One possible execution of the solver can produce the following
learnt clauses
{(¬d∨¬g), (c∨¬g), (c), (¬d), (a∨¬c), (¬c∨d), (¬c∨¬g), (¬c)}.

14 / 23



DRAT-based Labeling

The clause of φ as ”red”.

-d V -g V f

-d V -g

-d V -g V -f

c V -g -d

-c V -g

g

c

EMPTY

-d V g

a V -c

-c

a V -c V d

-c V d

-a V -c V d

c V d V -g

Figure: Proof Generated by DRAT-Trim

15 / 23



Part 3: Data Collection
The Tradeoffs

• Why not keep track of the proof during forward pass?

– We want to handle SAT competition benchmarks for a state of the
art solver (CryptoMiniSAT) and keeping track of full trace is
infeasible

– There is no reason to believe that we should try to optimize clause
deletion for the proof generated by solver.

– Game-theoretic view A better clause deletion may lead to a better
proof, so using an external optimized proof generator may be a
better idea.

16 / 23



Part 4: Training and Testing
How to use predictions

• XGBoost for final working model

• 400 unsatisfiable instances from the SAT Competitions (2014-20)

• Trained on 216 files that were solved with CryptoMiniSat

• Usage of multi-tiered structure in modern SAT solvers

17 / 23



Preliminary Insights

18 / 23



Testing on SAT instances

• 400 instances from SAT competition

Solved Instances PAR-2 Score
Time spent in
Clause cleaning

cms-default 255 4502 0.3%
cms-crystalball 256 4512 7.5%

• cms-crystalball uses 34% less clauses in-memory on average

19 / 23



Benchmark Generation (Grain Cipher)

• randomly generated key, plaintext, and correct ciphertext

• CNF formula over ciphertext and the plaintext so that satisfying
assignment is key

• Set N ∈ [94, 99] bits randomly, therefore, unsatisfiable with high
probability

20 / 23



Runtime Performance: Grain

Solver Solved PAR-2 Clause deletion
score time

cms-default 25 5226.6 0.4%
cms-crystalball 66 4920.4 10.4%

Table: The default and the crystalball-based CryptoMiniSat solving 120
randomly generated Grain cipher benchmarks

21 / 23



The power of interpretable classifiers: Feature Ranking

1 Used during UIP1 generation per round (i.e. per 10k/15k/25k),
and total/time-in-solver

2 Used for propagating per round (i.e. per 10k/15k/25k), and
total/time-in-solver

3 LBD

4 Relative decile of clause since last restart with respect to
propagation usage

5 Relative decile clause this round with respect to 1-UIP

22 / 23



The power of interpretable classifiers: Feature Ranking

1 Used during UIP1 generation per round (i.e. per 10k/15k/25k),
and total/time-in-solver

2 Used for propagating per round (i.e. per 10k/15k/25k), and
total/time-in-solver

3 LBD

4 Relative decile of clause since last restart with respect to
propagation usage

5 Relative decile clause this round with respect to 1-UIP

22 / 23



Summary

• Data-driven insights for SAT solving

• Allows us to handle competition benchmarks

• Preliminary results demonstrate the power of data-driven approach

More Open Questions than Answers
• Democratize the design of solvers; allows people without expertise
in SAT solving to test out their ideas

– Working on setting up a NeurIPS challenge
– Python module release

• Interface for other solvers

• Extend CrystalBall for branching, clause learning, and restarts

Join us: https://meelgroup.github.io/crystalball/
All the code (including based on unpublished work) is available publicly.
These slides are available at: https://tinyurl.com/meel-talk

23 / 23

https://meelgroup.github.io/crystalball/
https://tinyurl.com/meel-talk

	CrystalBall Architecture
	Preliminary Insights

