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Problem Setting

Input A data stream D =< a1, a2, . . . am > where ai ∈ [n]

Output Compute the number of Distinct elements in D. Formally, F0 = |
⋃

i{ai}|

Example: D =< 1, 1, 2, 1, 4, 1, 2, 1 > F0 = 3

• Our focus: (ε, δ)-approximation

Pr [(1− ε)F0 ≤ Est ≤ (1 + ε)F0] ≥ 1− δ

Naive Solution Maintain a large hash table: worst-case space complexity of O(n)

Objective Optimize space and update time complexity
Update Time: Time to process each element of the stream
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Rich History of work

• Flajolet and Martin (1985)

• Alon, Matias, and Szegedy (1996), Bar-Yossef, Jayram, Kumar, Sivakumar and
Trevisan (2001), . . ., Kane, Nelson, and Woodruff (2010), . . ., B lasiok (2019), . . .

Crowning Jewel Optimal (time and ) space complexity: O
(

log n + 1
ε2 · log 1/δ

)

Limitations Practically efficient algorithms are beyond graduate classroom
Theoretically efficient algorithms can be taught in graduate classroom but don’t work
in practice

Theorem (Primary Contribution)

A simple algorithm with time and space complexity of O( 1
ε2 · log n · (log m + log 1/δ)).

Remark: The description and algorithm requires only basic data structures and
knowledge of elementary probability theory (Chernoff Bound), and can be easily
taught in an undergraduate course, and the algorithm is practically efficient.

The paper is just five pages (including abstract and bibliographical remarks)
Knuth (May 23): “ Ever since I saw it, a few days ago, I’ve been unable to resist
trying to explain the ideas to just about everybody I meet.”

Core Idea If we pick every ball in a bin with probability p in our bucket and we end up
k balls in the bucket, then k

p
is a good estimate of the number of balls in the bin.
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Key Ingredients - I

Idea 1 Sample every element of
⋃i=m

i=1 {ai} identically and independently with prob. p

Algorithm NaiveSampler

Input Stream D = ⟨a1, a2, . . . , am⟩, p
1: Initialize B ← ∅;
2: for i = 1 to m do
3: With probability p, B ← B ∪ {ai}

Example: D =< 1, 1, 2, 1, 4, 1, 2, 1 >

Challenge Elements that repeat more often are more likely to be sampled

Solution Throw it Away is All You Need

Algorithm Sampler

Input Stream D = ⟨a1, a2, . . . , am⟩, p
1: Initialize B ← ∅;
2: for i = 1 to m do
3: B ← B \ {ai}
4: With probability p, B ← B ∪ {ai}

Observation Whether an element x ∈ B or not only depends on whether x was picked
with probability when it appeared last time
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Key Ingredients - II

Idea 1 Sample every element of
⋃i=m

i=1 {ai} identically and independently with prob. p

Idea 2 Determine just the right value of p?

• Too large p, |B| is too large

• Too small p, |B|
p

is not a good estimator

Algorithm Adaptive Estimator

Input Stream D = ⟨a1, a2, . . . , am⟩, ε, δ
1: Initialize B ← ∅; thresh← 12

ε2 log( 8m
δ

); p ← 1
2: for i = 1 to m do
3: B ← B \ {ai}
4: With probability p, B ← B ∪ {ai}
5: while |B| = thresh do
6: Throw away each element of B with probability 1

2
7: p ← p

2

8: Output |B|
p
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The Power of Adaptive Estimator

Algorithm Adaptive Estimator

1: Initialize B ← ∅; thresh← 12
ε2 log( 8m

δ
); p ← 1

2: for i = 1 to m do
3: B ← B \ {ai}
4: With probability p, B ← B ∪ {ai}
5: while |B| = thresh do
6: Throw away each element of B with probability 1

2
7: p ← p

2

8: Output |B|
p

Badi : The value of p after processing i elements is less than 1
ε2·F0

.

Claim 2 Pr[Badi ] ≤ δ
2·m

• For p to fall below 1
ε2·F0

, it should be the case that if every element is

sampled with p = 1
ε2·F0

, we would have |B| ≥ thresh

• Apply Chernoff bound on sum of i.i.d. indicator variables

Errori :
|B
p

/∈ [(1− ε)F0, (1 + ε)F0] after processing i elements.

Claim 3 Pr[Errori ∩ Bad] ≤ δ
2m

• Apply Chernoff bound on sum of i.i.d. indicator variables

Lemma 1 Pr[Error =
⋃

i Errori ] ≤ δ

Correct Estimate after processing every element
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Well, here we are

Algorithm F0-estimator

Input Stream D = ⟨a1, a2, . . . , am⟩, ε, δ
1: Initialize p ← 1; B ← ∅; thresh← 12

ε2 log( 8m
δ

)
2: for i = 1 to m do
3: B ← B \ {ai}
4: With probability p, B ← B ∪ {ai}
5: while |B| = thresh do
6: Throw away each element of B with probability 1

2
7: p ← p

2

8: Output |B|
p

Slide 7/ 16



The Power of Simplicity: Beyond the (Text) Book

• Naturally extends to setting where every element ai is replaced by Si ⊆ [n] and
we are interested in computing | ∪ Si |

• Delphic Family of Sets

• Representation Size: O(log n)
• Actions supported in O(log n) space and time:

Cardinality : Know the size of Si
Sample : Sample uniformly at random elements from Si
Membership : For an element x ∈ [n], check if x ∈ Si

• Importance of Delphic Sets in Practice

- Estimation of the number of solutions of a DNF Formulas
- Klee’s Measure Problem: Volume of d-dimensional rectangles
- Test Coverage Estimation Problem
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Delphic Sets In Practice: DNF Formulas

• Consider set of Boolean variables Y = {y1, y2, . . . yk}
• [n] = 2Y ; k = log n

• Every set Si is implicitly represented by a term Ti , which is conjunction of
variables (or their negations); e.g., ¬y1 ∧ y2 ∧ y3

• The corresponding Si is set of solutions of Ti

• Is it Delphic?

• Know the size of Si : O(k)
• Sample uniformly at random elements from Si : O(k)
• For an element x ∈ [n], check if x ∈ Si : O(k)
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Delphic Sets In Practice: Klee’s Measure Problem

• Estimate the union of axis-parallel rectangles in Rd ; (Discrete version: so count
the number of integer points)

• n = ∆d

• Every Si = [ai,1, bi,1]× [ai,2, bi,2] . . . [ai,d , bi,d ] where ai,j ≤ ∆; bi,j ≤ ∆

• Is it Delphic ?

• Know the size of Si : O(d log |∆|) = O(log n)
• Sample uniformly at random elements from Si : O(d log |∆|) = O(log n)
• For any element x ∈ [n], check if x ∈ Si : O(d log |∆|) = O(log n)

• Lot of work done, most recently by Tirthapura-Woodruff (2012), Vahrenhold
(2007), Indyk-Woodruff (2005)

• Open Problem: Solve Klee’s Measure Problem can be done with space and
update-time complexity Õ(poly(d , log |∆|)).
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Delphic Sets in Practice: Coverage Estimation

• Let Y = {y1, y2, . . . yk} be set of features

• Every test vector assigns a value of 0 or 1 to every feature.

• (y1 = 1, y2 = 0, y3 = 1, . . . yk = 1)

• Objectives:

• (Achieve) There is at least one test where yi is set to 1 and another where yi
is set to 0 (1-wise coverage)

• (Achieve) For every i , j , ensure there are four tests where (yi1 , yi2 ) are set to
(0, 0), (1, 0), (0, 1), (1, 1) (2-wise coverage)

• (Achieve) For every subsets of size t, ensure there are 2t tests where
(yi1 , yi2 , . . . yik ) are set to (0, 0, . . . 0), (1, 0, . . . 0), (1, 1, . . . 1) (t-wise
coverage)

• Problem Given constraints on what test vectors are allowed, generate a test suite
that maximizes t-wise coverage?

• Given set of tests, estimate the t-wise coverage.

• A test vector specifies the set and it again satisfies the Delphic set properties
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Delphic Sets in Practice: Coverage Estimation
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Prior Work: Streaming

• Could only handle when every Si is singleton

• Strong reliance on hash functions
• Previous attempts yielded update time complexity of O(n) (Tirthpura and

Woodruff 2012)
• Time complexity arises due to the typical need for the emptiness check of
{x : h(x) = 0, x ∈ Si}.
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Our Main Theorem

Theorem
There is a very simple algorithm that takes in input a stream of Delphic sets
S1, . . . , Sm, parameters ε and δ, and provides (ε, δ)-estimate of |

⋃M
i=1 Si |

• Update-time complexity : Õ(log2(m/δ) · ε−2 · log n)

• Space complexity : O(log(m/δ) · ε−2 · log n).
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Some implications of our result

• Klee’s Measure Problem Estimate the union of axis-parallel rectangles in Rd .
Our algorithm gives the first efficient algorithm with linear dependence on the
dimension, d , - a long standing open problem. (PODS-21, PODS-22)

• Model Counting for DNF Count the number of DNF solutions.
Our algorithm (nearly) matches the optimal bounds (in non-streaming setting!)
The practical implementation (after engineering improvements) achieves nearly
100× speed up over prior state of the art f (IJCAI-23)

• Coverage Estimation Problem A critical importance of software testing is to
estimate the amount of coverage that has been achieved with a certain set of
“test vectors”.
Our algorithm out-performs all the currently used techniques in practice.
(ICSE-22)
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Same Algorithm (nearly) works

Algorithm Delphic-Union

1: Initialize B ← ∅;p ← 1

2: thresh← 3 ·
(

log(2m/δ)

ε2

)
3: for i = 1 to m do
4: for all s ∈ B do
5: if s ∈ Si then remove s from B
6: Pick each element of Si with probability p add them to B.
7: while |B| ≥ thresh do
8: Update p = p/2
9: Throw away each element of B with probability 1/2

10: Output |B|
p

Challenge Pick each element of Si with probability p add them to B.
• Ni ← Bin(|Si |, p)

• Draw Ni distinct elements from Si by drawing Ni log Ni log( 2m
δ

) samples

One Last thing: What if Ni is too large? (Update time complexity)

• Well, just update p to p/2 and resample Ni ← Bin(Ni , 1/2) until Ni < thresh
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Here we are

Algorithm Final Algorithm

1: Initialize B ← ∅; p ← 1; thresh← 3 ·
(

log(2m/δ)

ε2

)
2: for i = 1 to m do
3: for all s ∈ B do
4: if s ∈ Si then remove s from B
5: Ni ← Bin(|Si |, p)
6: while |B|+ Ni ≥ thresh do
7: Ni ← Bin(Ni , 1/2) and p ← p/2
8: Throw away each element of B with probability 1/2

9: Pick Ni distinct elements of Si randomly and add them to B.

10: Output |B|
p

Conclusion A simple algorithm that generalizes and is practically efficient

Further Work Algorithm for Delphic sets without dependence on stream size (m)

Open Problem Optimal algorithm for Delphic sets

These slides are available at https://www.cs.toronto.edu/~meel/talks.html

Knuth’s Note: https://cs.stanford.edu/~knuth/papers/cvm-note.pdf
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