Distribution Testing: The New Frontier for Formal Methods

Kuldeep S. Meel

University of Toronto

Joint Adventure with Sourav Chakraborty, Priyanka Golia, Yash Pote, and Mate Soos

Relevant Papers: AAAI-19, FMCAD-21, CP-22, NeurIPS-22

Distribution Testing: The New Frontier for Formal Methods

Kuldeep S. Meel

University of Toronto

Joint Adventure with Sourav Chakraborty, Priyanka Golia, Yash Pote, and Mate Soos

Relevant Papers: AAAI-19, FMCAD-21, CP-22, NeurIPS-22

Summary: A new problem space with opportunities for exciting theory, algorithms, and systems with practical impact.

Church - Turing Thesis, 1930's: The notion of computability

von Neumann Architecture, 1945: Early hardware implementations

Church - Turing Thesis, 1930's: The notion of computability

von Neumann Architecture, 1945: Early hardware implementations

Scott-Rabin, 1958: Finite Automaton; the notion of non-determinism in automata

Floyd; Hoare, 1968-69 Assigning meanings to programs; $\{P\}C\{Q\}$

Church - Turing Thesis, 1930's: The notion of computability

von Neumann Architecture, 1945: Early hardware implementations

Scott-Rabin, 1958: Finite Automaton; the notion of non-determinism in automata

Floyd; Hoare, 1968-69 Assigning meanings to programs; $\{P\}C\{Q\}$

Pneulii, 1977: Introduction of Linear Temporal Logic to CS

Clarke-Emerson; Quielle and Sifakis, 1981: Birth of Model Checking

The Start of Automated Reasoning Revolution: BDDs, SAT, and Beyond SAT

Church - Turing Thesis, 1930's: The notion of computability

von Neumann Architecture, 1945: Early hardware implementations

Scott-Rabin, 1958: Finite Automaton; the notion of non-determinism in automata

Floyd; Hoare, 1968-69 Assigning meanings to programs; $\{P\}C\{Q\}$

Pneulii, 1977: Introduction of Linear Temporal Logic to CS

Clarke-Emerson; Quielle and Sifakis, 1981: Birth of Model Checking

The Start of Automated Reasoning Revolution: BDDs, SAT, and Beyond SAT

Fundamental Aspect: Every execution of the program must satisfy the specification

A single (or constantly many) execution suffices as witness for falsifiability

Beyond Non-determinism: Power of Randomization

Erdos, 1959: Probabilistic Method in Graph Theory

Solovay and Strassen; Rabin, 1976: Checking primality of a number

Gill, 1977: Computational Complexity of Probabilistic Turing Machines

Beyond Non-determinism: Power of Randomization

Erdos, 1959: Probabilistic Method in Graph Theory

Solovay and Strassen; Rabin, 1976: Checking primality of a number

Gill, 1977: Computational Complexity of Probabilistic Turing Machines

Carter-Wegman, 1977: Strongly Universal Hash Functions

Morris, 1978: Probabilistic Counting

Beyond Non-determinism: Power of Randomization

Erdos, 1959: Probabilistic Method in Graph Theory

Solovay and Strassen; Rabin, 1976: Checking primality of a number

Gill, 1977: Computational Complexity of Probabilistic Turing Machines

Carter-Wegman, 1977: Strongly Universal Hash Functions

Morris, 1978: Probabilistic Counting

And then everything changed in 1980's and world was never the same

Randomization as a Core Ingredient: Distributed Computing, Cryptography, Testing, Streaming, and Machine Learning

With Prevalence comes the opportunity for Formal Methods

How do we test and verify randomness?

- How do we know python's implementation of random is correct?
- How do we know constrained samplers used in testing are generating from desired distributions?

With Prevalence comes the opportunity for Formal Methods

How do we test and verify randomness?

- How do we know python's implementation of random is correct?
- How do we know constrained samplers used in testing are generating from desired distributions?

Challenge: Single (even, constants many) execution do not suffice as witness for falsifiability

 Simple verification problems for probabilistic systems are #P-hard, compared to NP-hardness for (non)-deterministic programs

Is there any hope?

With Prevalence comes the opportunity for Formal Methods

How do we test and verify randomness?

- How do we know python's implementation of random is correct?
- How do we know constrained samplers used in testing are generating from desired distributions?

Challenge: Single (even, constants many) execution do not suffice as witness for falsifiability

 Simple verification problems for probabilistic systems are #P-hard, compared to NP-hardness for (non)-deterministic programs

Is there any hope?

Yes; We can build on the progress in the subfield of distribution testing in theoretical CS community

Distribution Testing: A "subfield, at the junction of property testing and Statistics, is concerned with studying properties of probability distributions." [Canonne, 2020]

Outline

- Q1 What do distributions look like in the real world?
- Q2 What properties matter to the practitioners?
- Q3 How to develop practical scalable testers for distributions?
- Q4 Can distribution testing influence the design of systems?

Q1: Distributions in Real World

Constrained Random Simulation: Test Vector Generation

- Dominant methodology to test hardware systems
- ullet Use a formula arphi to encode the verification scenarios
- A Constrained Sampler $\mathcal A$ takes φ as input and returns $\sigma \in \operatorname{Sol}(\varphi)$, and ideally ensures

$$\Pr[\sigma \leftarrow \mathcal{A}(\varphi)] = \frac{1}{|\mathsf{Sol}(\varphi)|}$$

Q1: Distributions in Real World

Constrained Random Simulation: Test Vector Generation

- Dominant methodology to test hardware systems
- \bullet Use a formula φ to encode the verification scenarios
- A Constrained Sampler $\mathcal A$ takes φ as input and returns $\sigma \in \operatorname{Sol}(\varphi)$, and ideally ensures

$$\Pr[\sigma \leftarrow \mathcal{A}(\varphi)] = \frac{1}{|\mathsf{Sol}(\varphi)|}$$

Generative Probabilistic Models: Probabilistic Circuits

- A circuit $\varphi(X, Y)$ where X are input and Y are output
- The resulting distribution over 2^Y when X are assigned values according to prior distribution (say, uniform)

$$\Pr[\sigma \in 2^Y] \propto \#\varphi(X,\sigma)$$

where
$$\#\varphi(X,\sigma) := \left| \{ \rho \in 2^X \mid \{ \varphi(\rho,\sigma) = 1 \} \} \right|$$

Focus of today's talk: Constrained Samplers

Constrained Samplers

- Even finding just a single satisfying assignment is NP-hard
- A well-studied problem by theoreticians and practitioners alike for nearly 40 years
- Only in 2010's, we could have samplers with theoretical guarantees and "reasonable" performance
 - Well, not really reasonable from practical perspective
- Design of *practical* samplers based on MCMC, random walk, local search etc.

Constrained Samplers

- Even finding just a single satisfying assignment is NP-hard
- A well-studied problem by theoreticians and practitioners alike for nearly 40 years
- Only in 2010's, we could have samplers with theoretical guarantees and "reasonable" performance
 - Well, not really reasonable from practical perspective
- Design of practical samplers based on MCMC, random walk, local search etc.
- Three Samplers that we will consider in our talk
 - UniGen3: Theoretical Guarantees of almost-uniformity [CMV13; CMV14; SGM20]
 - SearchTreeSampler: Very weak guarantees [EGSS12]
 - QuickSampler: No Guarantees [DLBS18]
- The study (in 2018) that proposed Quicksampler could only perform unsound statistical tests, and therefore, could not distinguish the three samplers

Goal: Develop sound procedures to distinguish samplers (if possible).

Outline

- Q1 What do distributions look like in the real world?
- Q2 What properties matter to the practitioners?
- Q3 How to develop practical scalable testers for distributions?
- Q4 Can distribution testing influence the design of systems?

Q2: Properties that Matter

(Approximate) Equivalence Checking

- ullet (Fast) Sampler ${\mathcal A}$ and a reference (but, often slow) sampler ${\mathcal U}$
- ullet Reference sampler ${\cal U}$ is certified to produce samples according to desired distribution but is slow.
- Is the distribution generated by A, denoted by A_{φ} , close to that of \mathcal{U}_{φ} ?

Q2: Properties that Matter

(Approximate) Equivalence Checking

- ullet (Fast) Sampler ${\mathcal A}$ and a reference (but, often slow) sampler ${\mathcal U}$
- Reference sampler *U* is certified to produce samples according to desired distribution but is slow.
- ullet Is the distribution generated by \mathcal{A} , denoted by \mathcal{A}_{arphi} , close to that of \mathcal{U}_{arphi} ?

Support Size Estimation

• Given a Distribution \mathcal{P} , compute the size of $|\{\sigma \mid \mathcal{P}(\sigma) > 0\}|$

Q2: Properties that Matter

(Approximate) Equivalence Checking

- ullet (Fast) Sampler ${\mathcal A}$ and a reference (but, often slow) sampler ${\mathcal U}$
- Reference sampler *U* is certified to produce samples according to desired distribution but is slow.
- Is the distribution generated by A, denoted by A_{φ} , close to that of \mathcal{U}_{φ} ?

Support Size Estimation

• Given a Distribution \mathcal{P} , compute the size of $|\{\sigma \mid \mathcal{P}(\sigma) > 0\}|$

Quantified Information Flow

• Given a circuit $\varphi(X,Y)$ (where X are input and Y are output), compute the entropy of the output distribution:

This Talk's Focus: Equivalence

Consider two distribution \mathcal{P} and \mathcal{Q} over $\{0,1\}^n$.

Two Notions of Distance

- d_{∞} distance: $\max_{\sigma \in \{0,1\}^n} |\mathcal{P}(\sigma) \mathcal{Q}(\sigma)|$
 - \bullet The most commonly seen behavior where a developer wants to approximate ${\cal P}$ with another distribution ${\cal Q}$
 - Almost-uniform sampling in the context of constrained random simulation

This Talk's Focus: Equivalence

Consider two distribution \mathcal{P} and \mathcal{Q} over $\{0,1\}^n$.

Two Notions of Distance

- d_{∞} distance: $\max_{\sigma \in \{0,1\}^n} |\mathcal{P}(\sigma) \mathcal{Q}(\sigma)|$
 - \bullet The most commonly seen behavior where a developer wants to approximate ${\cal P}$ with another distribution ${\cal Q}$
 - Almost-uniform sampling in the context of constrained random simulation
- Total Variation Distance (d_{TV}) or L_1 distance: $\frac{1}{2}\sum_{\sigma\in\{0,1\}^n}|\mathcal{P}(\sigma)-\mathcal{Q}(\sigma)|$
 - Consider any arbitrary program $\mathcal A$ that uses samples from a distribution: there is a probability distribution over output of $\mathcal A$.
 - ullet Consider a Bad event over the output of \mathcal{A} : such as not catching a bug.
 - Let's say \mathcal{A} samples from \mathcal{P} .
 - Folklore: If we were to replace $\mathcal P$ with $\mathcal Q$ then the probability of Bad event would increase/decrease at most by $d_{TV}(P,Q)$.

This Talk's Focus: Equivalence

Consider two distribution \mathcal{P} and \mathcal{Q} over $\{0,1\}^n$.

Two Notions of Distance

- d_{∞} distance: $\max_{\sigma \in \{0,1\}^n} |\mathcal{P}(\sigma) \mathcal{Q}(\sigma)|$
 - \bullet The most commonly seen behavior where a developer wants to approximate ${\cal P}$ with another distribution ${\cal Q}$
 - Almost-uniform sampling in the context of constrained random simulation
- Total Variation Distance (d_{TV}) or L_1 distance: $\frac{1}{2}\sum_{\sigma\in\{0,1\}^n}|\mathcal{P}(\sigma)-\mathcal{Q}(\sigma)|$
 - ullet Consider any arbitrary program ${\mathcal A}$ that uses samples from a distribution: there is a probability distribution over output of ${\mathcal A}$.
 - ullet Consider a Bad event over the output of \mathcal{A} : such as not catching a bug.
 - Let's say \mathcal{A} samples from \mathcal{P} .
 - Folklore: If we were to replace $\mathcal P$ with $\mathcal Q$ then the probability of Bad event would increase/decrease at most by $d_{TV}(P,Q)$.

Therefore, measure closeness with respect to d_{∞} and farness with respect to d_{TV}

• Checker should return Accept if two distributions are close in d_{∞} -distance and return Reject if two distributions are far in d_{TV} .

Problem Setting

- ullet A Boolean formula arphi
- ullet Reference Sampler ${\cal U}$
 - With rigorous theoretical guarantees but often slower
- Sampler Under Test: A sampler A that claims to be close to uniform sampler for formulas in benchmark set
 - Superior runtime performance but often no theoretical analysis
- Closeness and farness parameters: ε and η

Task: Determine whether distributions \mathcal{A}_{φ} and \mathcal{U}_{φ} are ε -close or η -far

Outline

- Q1 What do distributions look like in the real world?
- Q2 What properties matter to the practitioners?
- Q3 How to develop practical scalable testers for distributions?
- Q4 Can distribution testing influence the design of systems?

Limitations of Black-Box Testing

Figure: \mathcal{U}_{φ} : Uniform Distribution

Figure: \mathcal{A}_{φ} : 1/2-far from uniform

SAMP: Allows you to draw samples from a distribution

Limitations of Black-Box Testing

Figure: \mathcal{U}_{φ} : Uniform Distribution

Figure: A_{φ} : 1/2-far from uniform

SAMP: Allows you to draw samples from a distribution

• If $<\sqrt{|{\rm Sol}(\varphi)|}/100$ samples are drawn then with high probability you see only distinct samples from either distribution.

Theorem The above bound is optimal.

[BFRSW 98; Pan 08]

Limitations of Black-Box Testing

Figure: \mathcal{U}_{φ} : Uniform Distribution

Figure: A_{io} : 1/2-far from uniform

SAMP: Allows you to draw samples from a distribution

• If $<\sqrt{|{\sf Sol}(\varphi)|}/100$ samples are drawn then with high probability you see only distinct samples from either distribution.

Theorem The above bound is optimal.

[BFRSW 98; Pan 08]

Greybox Testing: Inspired by Distribution Testing Literature

COND (P, T)

$$\Pr[\sigma \leftarrow \mathsf{COND}(\mathcal{P}, T)] = \begin{cases} \frac{\mathcal{P}(\sigma)}{\sum\limits_{\rho \in T} \mathcal{P}(\rho)} & \sigma \in T \\ 0 & \mathsf{otherwise} \end{cases}$$

When
$$T = \{0,1\}^n$$
, then $COND(\mathcal{P}, T) = SAMP$

The Power of COND model

Figure: \mathcal{U}_{φ} : Uniform Distribution

Figure: \mathcal{A}_{arphi} : 1/2-far from uniform

The Power of COND model

Figure: \mathcal{U}_{φ} : Uniform Distribution

Figure: \mathcal{A}_{φ} : 1/2-far from uniform

An algorithm for testing uniformity using conditional sampling:

- Sample σ_1 from \mathcal{U}_{φ} and σ_2 from \mathcal{A}_{φ} . Let $\mathcal{T} = {\sigma_1, \sigma_2}$.
- ullet In the case of the "far" distribution, with constant probability, ${\cal A}_{arphi}(\sigma_1)\ll {\cal A}_{arphi}(\sigma_2)$
- We will be able to distinguish the far distribution from the uniform distribution using constant number of samples from $COND(A_{\varphi}, T)$.
- The constant depend on the farness parameter.

From Theory to Practice: Realizing COND Model

Challenge: How do we ask sampler for Conditional samples over $T = \{\sigma_1, \sigma_2\}$.

 $\bullet \ \, \mathsf{Construct} \,\, \hat{\varphi} = \varphi \wedge (\mathsf{X} = \sigma_1 \vee \mathsf{X} = \sigma_2)$

From Theory to Practice: Realizing COND Model

Challenge: How do we ask sampler for Conditional samples over $T = \{\sigma_1, \sigma_2\}$.

• Construct $\hat{\varphi} = \varphi \wedge (X = \sigma_1 \vee X = \sigma_2)$

Almost all the constrained samplers just enumerate all the solutions when the number of solutions is small

From Theory to Practice: Realizing COND Model

Challenge: How do we ask sampler for Conditional samples over $T = {\sigma_1, \sigma_2}$.

• Construct $\hat{\varphi} = \varphi \wedge (X = \sigma_1 \vee X = \sigma_2)$

Almost all the constrained samplers just enumerate all the solutions when the number of solutions is small

• Need way to construct formulas whose solution space is large but every solution can be mapped to either σ_1 or σ_2 .

Kernel

Input: A Boolean formula φ , two assignments σ_1 and σ_2 , and desired number of solutions τ

Output: Formula $\hat{\varphi}$

- $\bullet \ \tau = |\mathsf{Sol}(\hat{\varphi})|$
- $z \in Sol(\hat{\varphi}) \implies z_{\downarrow X} \in \{\sigma_1, \sigma_2\}$
- $|\{z \in \operatorname{Sol}(\hat{\varphi}) \mid z_{\downarrow X} = \sigma_1\}| = |\{z \in \operatorname{Sol}(\hat{\varphi}) \mid z_{\downarrow X} \cap \sigma_2\}|$
- ullet φ and $\hat{\varphi}$ has similar structure

Kernel

Input: A Boolean formula φ , two assignments σ_1 and σ_2 , and desired number of solutions τ

Output: Formula $\hat{\varphi}$

- $\tau = |\mathsf{Sol}(\hat{\varphi})|$
- $z \in Sol(\hat{\varphi}) \implies z_{\downarrow X} \in \{\sigma_1, \sigma_2\}$
- $|\{z \in \operatorname{Sol}(\hat{\varphi}) \mid z_{\downarrow X} = \sigma_1\}| = |\{z \in \operatorname{Sol}(\hat{\varphi}) \mid z_{\downarrow X} \cap \sigma_2\}|$
- ullet φ and $\hat{\varphi}$ has similar structure

Non-adversarial Sampler Assumption: The distribution of the projection of samples obtained from $\mathcal{A}_{\hat{\varphi}}$ to variables of φ is same as $\mathsf{COND}(\mathcal{A}_{\varphi}, \{\sigma_1, \sigma_2\})$.

Implications:

- $\bullet\,$ If ${\cal A}$ is a uniform sampler for every Boolean formula, it satisfies non-adversarial sampler assumption
- \bullet If ${\cal A}$ is not a uniform sampler, it may not necessarily satisfy non-adversarial sampler assumption

Kernel

Input: A Boolean formula φ , two assignments σ_1 and σ_2 , and desired number of solutions τ

Output: Formula $\hat{\varphi}$

- $\tau = |\mathsf{Sol}(\hat{\varphi})|$
- $z \in Sol(\hat{\varphi}) \implies z_{\downarrow X} \in \{\sigma_1, \sigma_2\}$
- $|\{z \in \operatorname{Sol}(\hat{\varphi}) \mid z_{\downarrow X} = \sigma_1\}| = |\{z \in \operatorname{Sol}(\hat{\varphi}) \mid z_{\downarrow X} \cap \sigma_2\}|$
- ullet φ and $\hat{\varphi}$ has similar structure

Non-adversarial Sampler Assumption: The distribution of the projection of samples obtained from $\mathcal{A}_{\hat{\varphi}}$ to variables of φ is same as $\mathsf{COND}(\mathcal{A}_{\varphi}, \{\sigma_1, \sigma_2\})$.

Implications:

- $\bullet\,$ If ${\cal A}$ is a uniform sampler for every Boolean formula, it satisfies non-adversarial sampler assumption
- \bullet If ${\cal A}$ is not a uniform sampler, it may not necessarily satisfy non-adversarial sampler assumption

Non-adversarial assumption allows us to use the theory of COND query model

Barbarik

Input: A sampler under test $\mathcal A$, a reference uniform sampler $\mathcal U$, a tolerance parameter $\varepsilon>0$, an intolerance parameter $\eta>\varepsilon$, a guarantee parameter δ and a CNF formula φ

Output: ACCEPT or REJECT with the following guarantees:

- if the generator \mathcal{A} is ε -close (in d_{∞}), i.e., $d_{\infty}(\mathcal{A}, \mathcal{U}) \leq \varepsilon$ then Barbarik ACCEPTS with probability at least (1δ) .
- If the generator $\mathcal A$ is η -far in (d_{TV}) , i.e., $d_{TV}(\mathcal A,\mathcal U)>\eta$ and if non-adversarial sampler assumption holds then Barbarik REJECTS with probability at least $1-\delta$.

Observe: Complexity independent of |Sol(varphi)| in contrast to black box's approach's dependence on $\sqrt{|Sol(varphi)|}$

Barbarik

Input: A sampler under test $\mathcal A$, a reference uniform sampler $\mathcal U$, a tolerance parameter $\varepsilon>0$, an intolerance parameter $\eta>\varepsilon$, a guarantee parameter δ and a CNF formula φ

Output: ACCEPT or REJECT with the following guarantees:

- if the generator \mathcal{A} is ε -close (in d_{∞}), i.e., $d_{\infty}(\mathcal{A}, \mathcal{U}) \leq \varepsilon$ then Barbarik ACCEPTS with probability at least (1δ) .
- If the generator $\mathcal A$ is η -far in (d_{TV}) , i.e., $d_{TV}(\mathcal A,\mathcal U)>\eta$ and if non-adversarial sampler assumption holds then Barbarik REJECTS with probability at least $1-\delta$.

Observe: Complexity independent of |Sol(varphi)| in contrast to black box's approach's dependence on $\sqrt{|Sol(varphi)|}$

Experimental Evaluation over three state of the art (almost-)uniform samplers

- UniGen3: Theoretical Guarantees of almost-uniformity
- SearchTreeSampler: Very weak guarantees
- QuickSampler: No Guarantees

The study (in 2018) that proposed Quicksampler could only perform unsound statistical tests, and therefore, could not distinguish the three samplers

Results-I

Instances	#Solutions	UniGen3		SearchTreeSampler	
		Output	#Samples	Output	#Samples
71	1.14×2^{59}	А	1729750	R	250
blasted_case49	1.00×2^{61}	А	1729750	R	250
blasted_case50	1.00 × 2 ⁶²	А	1729750	R	250
scenarios_aig_insertion1	1.06 × 2 ⁶⁵	А	1729750	R	250
scenarios_aig_insertion2	1.06 × 2 ⁶⁵	А	1729750	R	250
36	1.00×2^{72}	А	1729750	R	250
30	1.73×2^{72}	А	1729750	R	250
110	1.09×2^{76}	А	1729750	R	250
scenarios_tree_insert_insert	1.32×2^{76}	А	1729750	R	250
107	1.52×2^{76}	А	1729750	R	250
blasted_case211	1.00×2^{80}	А	1729750	R	250
blasted_case210	1.00 × 2 ⁸⁰	А	1729750	R	250
blasted_case212	1.00 × 2 ⁸⁸	А	1729750	R	250
blasted_case209	1.00 × 2 ⁸⁸	А	1729750	R	250
54	1.15 × 2 ⁹⁰	А	1729750	R	250

Results-II

Instances	#Solutions	UniGen3		QuickSampler	
		Output	#Samples	Output	#Samples
71	1.14×2^{59}	А	1729750	R	250
blasted_case49	1.00×2^{61}	А	1729750	R	250
blasted_case50	1.00 × 2 ⁶²	А	1729750	R	250
scenarios_aig_insertion1	1.06×2^{65}	А	1729750	R	250
scenarios_aig_insertion2	1.06×2^{65}	А	1729750	R	250
36	1.00×2^{72}	А	1729750	R	250
30	1.73×2^{72}	А	1729750	R	250
110	1.09×2^{76}	А	1729750	R	250
scenarios_tree_insert_insert	1.32×2^{76}	А	1729750	R	250
107	1.52×2^{76}	А	1729750	R	250
blasted_case211	1.00×2^{80}	А	1729750	R	250
blasted_case210	1.00 × 2 ⁸⁰	А	1729750	R	250
blasted_case212	1.00 × 2 ⁸⁸	А	1729750	R	250
blasted_case209	1.00 × 2 ⁸⁸	А	1729750	R	250
54	1.15 × 2 ⁹⁰	А	1729750	R	250

Outline

- Q1 What do distributions look like in the real world?
- Q2 What properties matter to the practitioners?
- Q3 What are the resource constraints?
- Q4 Can distribution testing influence the design of systems?

Outline

- Q1 What do distributions look like in the real world?
- Q2 What properties matter to the practitioners?
- Q3 What are the resource constraints?
- Q4 Can distribution testing influence the design of systems?

Wishlist

- Sampler should be at least as fast as STS and QuickSampler.
- Sampler should by accepted by Barbarik.
- Sampler should have impact on downstream (real world) applications.

CMSGen

• Exploits the flexibility CryptoMiniSat.

CMSGen

- Exploits the flexibility CryptoMiniSat.
- Pick polarities and branch on variables at random.
 - To explore the search space as evenly as possible.
 - To have samples over all the solution space.
- Turn off all pre and inprocessing.
 - Processing techniques: bounded variable elimination, local search, or symmetry breaking, and many more.
 - Can change solution space of instances.
- Restart at static intervals
 - Helps to generate samples which are very hard to find.

Power of Distribution Testing-Driven Development

- Test-Driven Development of CMSGen.
- Parameters of CMSGen are decided with the help of Barbarik
 - Iterative process.
 - Based on feedback from Barbarik, change the parameters.
- Uniform-like-sampler.
- Lack of theoretical analysis
 - We have very little idea about why SAT solvers work?
 - Much less about what happens when you tweak them to make them samplers

Runtime Performance

Testing of Samplers

- Samplers without guarantees (Uniform-like Samplers):
 - STS (Ermon, Gomes, Sabharwal, Selman, 2012)
 - QuickSampler (Dutra, Laeufer, Bachrach, Sen, 2018)
- Sampler with guarantees:
 - UniGen3 (Chakraborty, Meel, and Vardi 2013, 2014,2015)

QuickSampler	STS	UniGen3	
0	14	50	
50	36	0	
	0		

Testing of Samplers

• Samplers without guarantees (Uniform-like Samplers):

• STS [EGSS12]

• QuickSampler [DLBS18]

- CMSGen
- Sampler with guarantees:
 - UniGen3

[CMV13, CMV14, SGM20]

	QuickSampler	STS	UniGen3	CMSGen
ACCEPTs	0	14	50	50
REJECTs	50	36	0	0

Outline

- Q1 What do distributions look like in the real world?
- Q2 What properties matter to the practitioners?
- Q3 What are the resource constraints?
- Q4 Can distribution testing influence the design of systems?

Wishlist

- \bullet Sampler should be at least as fast as STS and QuickSampler. \checkmark
- Sampler should by accepted by Barbarik. √
- Sampler should have impact on downstream (real world) applications.

State of the art approach: Manthan

 ${\sf Sampling} + {\sf Machine} \; {\sf Learning} + {\sf Counter-example} \; {\sf guided} \; {\sf repair}$

State of the art approach: Manthan

 ${\sf Sampling} + {\sf Machine} \ {\sf Learning} + {\sf Counter-example} \ {\sf guided} \ {\sf repair}$

Application II: Combinatorial Testing

- A powerful paradigm for testing configurable system.
- Challenge: To generate test suites that maximizes *t*-wise coverage.

t-wise coverage: $=\frac{\text{\# of t-sized combinations in test suite}}{\text{all possible valid t-sized combinations}}$

• To generate the test suites use constraint samplers.

Application II: Combinatorial Testing

- A powerful paradigm for testing configurable system.
- ullet Challenge: To generate test suites that maximizes t-wise coverage.

```
t-wise coverage: =\frac{\text{\# of t-sized combinations in test suite}}{\text{all possible valid t-sized combinations}}
```

- To generate the test suites use constraint samplers.
- Experimental Evaluations:
 - Generate 1000 samples (test cases).
 - 110 Benchmarks, Timeout: 3600 seconds
 - 2-wise coverage t = 2.

Combinatorial Testing: The Power of CMSGen

Outline

- Q1 What do distributions look like in the real world?
- Q2 What properties matter to the practitioners?
- Q3 What are the resource constraints?
- Q4 Can distribution testing influence the design of systems?

Wishlist

- ullet Sampler should be at least as fast as STS and QuickSampler. \checkmark
- Sampler should by accepted by Barbarik. ✓
- \bullet Sampler should perform good on real world applications. \checkmark

Conclusion

- Q1 What do distributions look like in the real world?
 Ans Probability distributions are first-class objects in modern computing
- Q2 What properties matter to the practitioners?
 Ans Equivalence, Support Size Estimation, Entropy
- Q3 How to develop practical scalable testers for distributions?
 Ans Greybox access, which can be modeled via Conditional Sampling
- Q4 Can distribution testing influence the design of systems?
 - Ans Yes. It can allow us to design state of the art samplers via a different approach. And such samplers dramatically improve downstream applications.

Where do we go from here?

We have just started!

- Scalable testers for distributions beyond uniform
- Scalable samplers for SMT/CSP via Test-Driven Development
- Developing the notion of counterexample for testing distributions
- How do we certify the correctness of distribution testers?

```
CMSGen (MIT License): https://github.com/meelgroup/cmsgen
Barbarik (MIT License): https://github.com/meelgroup/barbarik
```

These slides are available at https://www.cs.toronto.edu/~meel/talks.html