Distribution Testing: The New Frontier for Formal Methods

Kuldeep S. Meel

University of Toronto

A joint adventure with **Sourav Chakraborty**, Arnab Bhattacharyya, Sutanu Gayen, Priyanka Golia, Dimitrios Myrisiotis, A. Pavan, Yash Pote, Mate Soos, and N. V. Vinodchandran

Relevant Papers: AAAI-19, FMCAD-21, CP-22, NeurIPS-21, NeurIPS-22, IJCAI-23

Distribution Testing: The New Frontier for Formal Methods

Kuldeep S. Meel

University of Toronto

A joint adventure with **Sourav Chakraborty**, Arnab Bhattacharyya, Sutanu Gayen, Priyanka Golia, Dimitrios Myrisiotis, A. Pavan, Yash Pote, Mate Soos, and N. V. Vinodchandran

Relevant Papers: AAAI-19, FMCAD-21, CP-22, NeurIPS-21, NeurIPS-22, IJCAI-23

Summary: A new problem space with opportunities for exciting theory, algorithms, and systems with practical impact.

Church - Turing Thesis, 1930's: The notion of computability von Neumann Architecture, 1945: Early hardware implementations

Church - Turing Thesis, 1930's: The notion of computability von Neumann Architecture, 1945: Early hardware implementations Scott-Rabin, 1958: Finite Automaton; the notion of non-determinism in automata Floyd; Hoare, 1968-69 Assigning meanings to programs; $\{P\}C\{Q\}$

Church - Turing Thesis, 1930's: The notion of computability von Neumann Architecture, 1945: Early hardware implementations Scott-Rabin, 1958: Finite Automaton; the notion of non-determinism in automata Floyd; Hoare, 1968-69 Assigning meanings to programs; $\{P\}C\{Q\}$ Pneulii, 1977: Introduction of Linear Temporal Logic to CS Clarke-Emerson; Quielle and Sifakis, 1981 : Birth of Model Checking

Church - Turing Thesis, 1930's: The notion of computability von Neumann Architecture, 1945: Early hardware implementations Scott-Rabin, 1958: Finite Automaton; the notion of non-determinism in automata Floyd; Hoare, 1968-69 Assigning meanings to programs; $\{P\}C\{Q\}$ Pneulii, 1977: Introduction of Linear Temporal Logic to CS Clarke-Emerson; Quielle and Sifakis, 1981 : Birth of Model Checking

Fundamental Aspect: Every execution of the program must satisfy the specification

• A single (or constantly many) execution suffices as witness for falsifiability

The Start of Automated Reasoning Revolution: BDDs, SAT, and Beyond SAT

Boolean Satisfiability (SAT); Given a Boolean expression, using "and" (\land) "or", (\lor) and "not" (\neg), *is there a satisfying solution* (an assignment of 0's and 1's to the variables that makes the expression equal 1)? **Example**:

$$(\neg x_1 \lor x_2 \lor x_3) \land (\neg x_2 \lor \neg x_3 \lor x_4) \land (x_3 \lor x_1 \lor x_4)$$

Solution: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 1$

The Story of SAT Revolution

The Progress over the years

- Late-90s: Few hundreds of variables and clauses
- Now: Millions of variables and clauses

Theoretical Advances + Algorithmic Engineering + Software Development

Knuth, 2016: "The story of satisfiability is a tale of the triumph of software engineering blended with rich doses of beautiful mathematics."

Many Industrial Applications: Hardware and Software verification, Security, Planning, Compliance, Telecom Feature Subscription, Bioinformatics, ···

B. Cook, 2022: Virtuous cycle in Automated Reasoning: ...application areas drives more investment in foundational tools, while improvements in the foundational tools drive further applications. Around and around.

The Story of SAT Revolution

The Progress over the years

- Late-90s: Few hundreds of variables and clauses
- Now: Millions of variables and clauses

Theoretical Advances + Algorithmic Engineering + Software Development

Knuth, 2016: "The story of satisfiability is a tale of the triumph of software engineering blended with rich doses of beautiful mathematics."

Many Industrial Applications: Hardware and Software verification, Security, Planning, Compliance, Telecom Feature Subscription, Bioinformatics, ···

B. Cook, 2022: Virtuous cycle in Automated Reasoning: ...application areas drives more investment in foundational tools, while improvements in the foundational tools drive further applications. Around and around.

Beyond Non-determinism: Power of Randomization

Erdos, 1959: Probabilistic Method in Graph Theory Solovay and Strassen; Rabin, 1976: Checking primality of a number Gill, 1977: Computational Complexity of Probabilistic Turing Machines

Beyond Non-determinism: Power of Randomization

Erdos, 1959: Probabilistic Method in Graph Theory Solovay and Strassen; Rabin, 1976: Checking primality of a number Gill, 1977: Computational Complexity of Probabilistic Turing Machines Carter-Wegman, 1977: Strongly Universal Hash Functions Morris, 1978: Probabilistic Counting

Beyond Non-determinism: Power of Randomization

Erdos, 1959: Probabilistic Method in Graph Theory Solovay and Strassen; Rabin, 1976: Checking primality of a number Gill, 1977: Computational Complexity of Probabilistic Turing Machines Carter-Wegman, 1977: Strongly Universal Hash Functions Morris, 1978: Probabilistic Counting

And then everything changed in 1980's and world was never the same

Randomization as a Core Ingredient: Distributed Computing, Cryptography, Testing, Streaming, and Machine Learning

How do we test and verify randomness?

- How do we know python's implementation of random is correct?
- How do we know constrained samplers used in testing are generating from desired distributions?

How do we test and verify randomness?

- How do we know python's implementation of random is correct?
- How do we know constrained samplers used in testing are generating from desired distributions?

What is different from traditional model checking

- A single (even, constants many) execution do not suffice as witness for falsifiability.
- Simple verification problems for probabilistic systems are #P-hard, compared to NP-hardness for (non)-deterministic programs [BGMMPV22]

How do we test and verify randomness?

- How do we know python's implementation of random is correct?
- How do we know constrained samplers used in testing are generating from desired distributions?

What is different from traditional model checking

- A single (even, constants many) execution do not suffice as witness for falsifiability.
- Simple verification problems for probabilistic systems are #P-hard, compared to NP-hardness for (non)-deterministic programs [BGMMPV22]

Is there any hope?

How do we test and verify randomness?

- How do we know python's implementation of random is correct?
- How do we know constrained samplers used in testing are generating from desired distributions?

What is different from traditional model checking

- A single (even, constants many) execution do not suffice as witness for falsifiability.
- Simple verification problems for probabilistic systems are #P-hard, compared to NP-hardness for (non)-deterministic programs [BGMMPV22]

Is there any hope?

Yes; We can build on the progress in the subfield of distribution testing in theoretical CS community

Distribution Testing: A "subfield, at the junction of property testing and Statistics, is concerned with studying properties of probability distributions." [Canonne, 2020]

Outline

Q1 What do distributions look like in the real world?

Q2 What properties matter to the practitioners?

Q3 Theory and Practice of Distirbution Testing

- Entropy Estimation [Part I]
- Complexity of Distance Estimation [Part II]
- Greybox Testing: Constrained Samplers [Part III]

Q4 Can distribution testing influence the design of systems ? [Part IV]

Q1: Distributions in Real World

Generative Probabilistic Models

Q1: Distributions in Real World: II

Constrained Random Simulation: Test Vector Generation

- Dominant methodology to test hardware systems
- $\bullet\,$ Use a formula φ to encode the verification scenarios
- A Constrained Sampler ${\mathcal A}$ takes φ as input and returns $\sigma\in{\rm Sol}(\varphi),$ and ideally ensures

$$\mathsf{Pr}[\sigma \leftarrow \mathcal{A}(arphi)] = rac{1}{|\mathsf{Sol}(arphi)|}$$

Constrained Samplers

- Even finding just a single satisfying assignment is NP-hard
- A well-studied problem by theoreticians and practitioners alike for nearly 40 years
- Only in 2010's, we could have samplers with theoretical guarantees and " reasonable" performance
 - · Well, not really reasonable from practical perspective
- Design of *practical* samplers based on MCMC, random walk, local search etc.

Goal: Develop sound procedures to distinguish samplers (if possible).

Outline

- Q1 What do distributions look like in the real world?
- Q2 What properties matter to the practitioners?
- Q3 How to develop practical scalable testers for distributions?
- Q4 Can distribution testing influence the design of systems ?

Q2: Properties that Matter

(Approximate) Equivalence Checking

White-box Setting

- Is a given probabilitic generative model closer to a desired model?
- Consider a probablistic program \mathcal{P} and say a compiler transforms \mathcal{P} into \mathcal{Q} :
 - Is Q close to \mathcal{P} ?

```
1 var x = sample(RandomInteger({n: 2**n}));
2 return x;
```

```
Listing: Program 1
```

```
1
     var eps = 0.3:
     var test = sample(Bernoulli({p: (1 - eps) / 2}));
2
3
     if (test = 1) {
       var x = \text{sample}(\text{RandomInteger}(\{n: 2**(n-1)\}));
4
5
     } else {
6
       var y = \text{sample}(\text{RandomInteger}(\{n: 2**(n-1)\}));
7
       var x = y + 2 * * (n-1):
8
     }
9
     return x;
```

Listing: Program 2, which is close to Program 1

Q2: Properties that Matter

Grey-box Setting

- (Fast) Sampler \mathcal{A} and a reference (but, often slow) sampler \mathcal{U}
- Reference sampler ${\cal U}$ is certified to produce samples according to desired distribution but is slow.
- Is the distribution generated by A, denoted by A_{φ} , close to that of U_{φ} ?

How to Measure Equivalence

Consider two distribution \mathcal{P} and \mathcal{Q} over $\{0,1\}^n$.

Two Notions of Distance

- d_{∞} distance: $\max_{\sigma \in \{0,1\}^n} |\mathcal{P}(\sigma) \mathcal{Q}(\sigma)|$
 - The most commonly seen behavior where a developer wants to approximate ${\mathcal P}$ with another distribution ${\mathcal Q}$
 - Almost-uniform sampling in the context of constrained random simulation

How to Measure Equivalence

Consider two distribution \mathcal{P} and \mathcal{Q} over $\{0,1\}^n$.

Two Notions of Distance

- d_{∞} distance: $\max_{\sigma \in \{0,1\}^n} |\mathcal{P}(\sigma) \mathcal{Q}(\sigma)|$
 - The most commonly seen behavior where a developer wants to approximate ${\cal P}$ with another distribution ${\cal Q}$
 - Almost-uniform sampling in the context of constrained random simulation
- Total Variation Distance (d_{TV}) or L_1 distance: $\frac{1}{2} \sum_{\sigma \in \{0,1\}^n} |\mathcal{P}(\sigma) \mathcal{Q}(\sigma)|$
 - Consider any arbitrary program A that uses samples from a distribution: there is a probability distribution over output of A.
 - Consider a Bad event over the output of A: such as not catching a bug.
 - Let's say \mathcal{A} samples from \mathcal{P} .
 - Folklore: If we were to replace \mathcal{P} with \mathcal{Q} then the probability of Bad event would increase/decrease at most by $d_{TV}(P, Q)$.

How to Measure Equivalence

Consider two distribution \mathcal{P} and \mathcal{Q} over $\{0,1\}^n$.

Two Notions of Distance

- d_{∞} distance: $\max_{\sigma \in \{0,1\}^n} |\mathcal{P}(\sigma) \mathcal{Q}(\sigma)|$
 - The most commonly seen behavior where a developer wants to approximate ${\cal P}$ with another distribution ${\cal Q}$
 - Almost-uniform sampling in the context of constrained random simulation
- Total Variation Distance (d_{TV}) or L_1 distance: $\frac{1}{2} \sum_{\sigma \in \{0,1\}^n} |\mathcal{P}(\sigma) \mathcal{Q}(\sigma)|$
 - Consider any arbitrary program A that uses samples from a distribution: there is a probability distribution over output of A.
 - Consider a Bad event over the output of \mathcal{A} : such as not catching a bug.
 - Let's say \mathcal{A} samples from \mathcal{P} .
 - Folklore: If we were to replace \mathcal{P} with \mathcal{Q} then the probability of Bad event would increase/decrease at most by $d_{TV}(P, Q)$.

Therefore, measure closeness with respect to d_{∞} and farness with respect to d_{TV}

• Checker should return Accept if two distributions are close in d_{∞} -distance and return Reject if two distributions are far in d_{TV} .

Outline

Theory and Practice of Distirbution Testing

Probabilistic Generative Models

• Complexity of Distance Estimation for Probabilistic Generative Models [Topic I]

Constrained Samplers

- Greybox Testing: Constrained Samplers [Topic II]
- Can distribution testing influence the design of systems ? [Topic III]

- A random process: Tossing a coin
 - p = 0.4 (probability of Heads)
- A random variable: assign a numerical value for outcome of random process
 - X = +1 if Heads and 0 if Tails
- Expectation $\mu = E[X]$

- A random process: Tossing a coin
 - p = 0.4 (probability of Heads)
- A random variable: assign a numerical value for outcome of random process
 - X = +1 if Heads and 0 if Tails
- Expectation µ = E[X]
 E[X] = 1 ⋅ p + 0 ⋅ (1 − p) = p
- Variance $\sigma^2[X] = \mathsf{E}[(X \mu)^2] = \mathsf{E}[X^2] \mu^2$

- A random process: Tossing a coin
 - p = 0.4 (probability of Heads)
- A random variable: assign a numerical value for outcome of random process
 - X = +1 if Heads and 0 if Tails
- Expectation µ = E[X]
 E[X] = 1 ⋅ p + 0 ⋅ (1 − p) = p
- Variance σ²[X] = E[(X − μ)²] = E[X²] − μ²
 σ²[X] = p − p²
- Two variables X and Y are independent, if Pr[X|Y] = Pr[X]

Hoeffding Bound Let $X_1, X_2, \dots X_n$ be independent and identically distributed variables such that $p = E[X_i]$ and let $X = (\sum_i X_i)/n$. Then

$$\mu = \mathsf{E}[X] = p$$

 $\mathsf{Pr}[|X - \mu| \ge \beta \mu] \le e^{-\beta^2 \mu/3}$

Hoeffding Bound Let $X_1, X_2, \dots X_n$ be independent and identically distributed variables such that $p = E[X_i]$ and let $X = (\sum_i X_i)/n$. Then

$$\mu = \mathsf{E}[X] = p$$

 $\mathsf{Pr}[|X - \mu| \ge \beta \mu] \le e^{-\beta^2 \mu/3}$

 $\varepsilon - \delta$ approximation A random variable Z is a (ε, δ) -approximation of a quantity k if the following holds:

$$\Pr[Z \in (1 \pm \varepsilon)k] \ge 1 - \delta$$

Hoeffding Bound Let $X_1, X_2, \dots X_n$ be independent and identically distributed variables such that $p = E[X_i]$ and let $X = (\sum_i X_i)/n$. Then

$$\mu = \mathsf{E}[X] = p$$

 $\mathsf{Pr}[|X - \mu| \ge \beta \mu] \le e^{-\beta^2 \mu/3}$

 $\varepsilon - \delta$ approximation A random variable Z is a (ε, δ) -approximation of a quantity k if the following holds:

$$\Pr[Z \in (1 \pm \varepsilon)k] \ge 1 - \delta$$

Problem Suppose we are given a coin and we want to estimate it's bias (i.e., the probability of heads). How many samples (i.e., tosses) do we need?

Hoeffding Bound Let $X_1, X_2, \dots X_n$ be independent and identically distributed variables such that $p = E[X_i]$ and let $X = (\sum_i X_i)/n$. Then

$$\mu = \mathsf{E}[X] = p$$

 $\mathsf{Pr}[|X - \mu| \ge \beta \mu] \le e^{-\beta^2 \mu/3}$

 $\varepsilon - \delta$ approximation A random variable Z is a (ε, δ) -approximation of a quantity k if the following holds:

$$\Pr[Z \in (1 \pm \varepsilon)k] \ge 1 - \delta$$

Problem Suppose we are given a coin and we want to estimate it's bias (i.e., the probability of heads). How many samples (i.e., tosses) do we need?

Zero-One Estimator Let X be a random variable with $\mu = \mathbb{E}[X]$, then $O\left(\frac{1}{\varepsilon^2 \mu} \log(1/\delta)\right)$ samples are sufficient to estimate μ within (ε, δ) -factor.

Probability Basics (III): Couplings

• Given P and Q on a common domain, a **coupling** C is a distribution on pairs (X, Y) such that X distributed as P and Y distributed as Q.

Example

• Suppose P = Bernoulli(2/3) and Q = Bernoulli(1/3). $d_{TV}(P, Q)$

Probability Basics (III): Couplings

 Given P and Q on a common domain, a coupling C is a distribution on pairs (X, Y) such that X distributed as P and Y distributed as Q.

Example

- Suppose P = Bernoulli(2/3) and Q = Bernoulli(1/3). $d_{TV}(P,Q) = 1/3$
- If $X \sim P$ and $Y \sim Q$ independently, then $\Pr[X \neq Y] = \frac{2}{3} \cdot \frac{2}{3} + \frac{1}{3} \cdot \frac{1}{3} = \frac{5}{9}$

• If
$$X \sim P$$
 and $Y = 1 - X$, then $\Pr[X \neq Y] = 1$

• $X \sim P$ and Y = Bernoulli(1/2) if X = 1 else Y = 0, then $\Pr[X \neq Y] = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$
Outline

Theory and Practice of Distirbution Testing

Probabilistic Generative Models

• Complexity of Distance Estimation for Probabilistic Generative Models

Constrained Samplers

- Greybox Testing: Constrained Samplers
- Can distribution testing influence the design of systems ?

Examples of Distributions

Bayesian Networks

Product Distributions

Figure: A network with no dependencies

TV Distance Computation

Consider P and Q as distributions on $\{0,1\}^n$.

$$d_{TV}(P,Q) = \frac{1}{2} ||P-Q||_1 = \sum_{\sigma} |P(\sigma) - Q(\sigma)|$$

How hard is to compute TV Distance?

Theorem (BGMMPV-23)

TV Distance computation between two product distribution is #P-hard

- · Given two circuits, checking their equivalence is just NP-hard
- #P-hard contains entire polynomial hierarchy

Technical Overview

#SubsetProd: Given integers a_1, \ldots, a_n and T, find

$$\left\{S\subseteq [n]:\prod_{i\in S}a_i=T\right\}$$

#PMFEquals: Given $p_1, \ldots, p_n, v \in [0, 1]$ where p_1, \ldots, p_n are the parameters of a product distribution *P*, find

$$|\{x \in \{0,1\}^n : P(x) = v\}|$$

#SubsetProd $\leq \#$ PMFEquals $\leq d_{TV}$

#PMFEquals: Given $p_1, \ldots, p_n, v \in [0, 1]$ where p_1, \ldots, p_n are the parameters of a product distribution *P*, find

 $|\{x \in \{0,1\}^n : P(x) = v\}|$

For simplicity, assume $v \leq 2^{-n}$

$\# \mathsf{PMFEquals} \leq d_{TV}$

#PMFEquals: Given $p_1, \ldots, p_n, v \in [0, 1]$ where p_1, \ldots, p_n are the parameters of a product distribution *P*, find

$$|\{x \in \{0,1\}^n : P(x) = v\}|$$

For simplicity, assume $v \leq 2^{-n}$

Define distributions \hat{P} and \hat{Q} on n+1 bits

•
$$\hat{p}_i = p_i$$
 for $i \leq n$ and $\hat{p}_{n+1} = 1$

• $\hat{q}_i = 1/2$ for $i \leq n$ and $\hat{q}_{n+1} = v2^n$

#PMFEquals: Given $p_1, \ldots, p_n, v \in [0, 1]$ where p_1, \ldots, p_n are the parameters of a product distribution *P*, find

$$|\{x \in \{0,1\}^n : P(x) = v\}|$$

For simplicity, assume $v \leq 2^{-n}$

Define distributions \hat{P} and \hat{Q} on n+1 bits

- $\hat{p}_i = p_i$ for $i \leq n$ and $\hat{p}_{n+1} = 1$
- $\hat{q}_i = 1/2$ for $i \leq n$ and $\hat{q}_{n+1} = v2^n$

Define Distributions P' and Q' on n+2 bits

- $p'_i = p_i$ for $i \le n$, $p'_{n+1} = 1$ and $p'_{n+2} = \frac{1}{2} + \beta$
- $q'_i = q_i$ for $i \le n$, $q'_{n+1} = 1$ and $q'_{n+2} = \frac{1}{2} + \beta$ where β is very small.

#PMFEquals $< d_{TV}$

#PMFEquals: Given $p_1, \ldots, p_n, v \in [0, 1]$ where p_1, \ldots, p_n are the parameters of a product distribution P, find

$$|\{x \in \{0,1\}^n : P(x) = v\}|$$

For simplicity, assume $v < 2^{-n}$

Define distributions \hat{P} and \hat{Q} on n+1 bits

- $\hat{p}_i = p_i$ for i < n and $\hat{p}_{n+1} = 1$
- $\hat{q}_i = 1/2$ for i < n and $\hat{q}_{n+1} = v2^n$

Define Distributions P' and Q' on n+2 bits

- $p'_i = p_i$ for $i \le n$, $p'_{n+1} = 1$ and $p'_{n+2} = \frac{1}{2} + \beta$
- $q'_i = q_i$ for $i \le n$, $q'_{n+1} = 1$ and $q'_{n+2} = \frac{1}{2} + \beta$ where β is very small.

Claim:

$$|\{x: P(x) = v\}| = \frac{d_{TV}(P', Q') - d_{TV}(\hat{P}, \hat{Q})}{2\beta v}$$

Define distributions \hat{P} and \hat{Q} on n+1 bits

- $\hat{p}_i = p_i$ for $i \leq n$ and $\hat{p}_{n+1} = 1$
- $\hat{q}_i = 1/2$ for $i \leq n$ and $\hat{q}_{n+1} = v2^n$

Define distributions \hat{P} and \hat{Q} on n+1 bits

- $\hat{p}_i = p_i$ for $i \leq n$ and $\hat{p}_{n+1} = 1$
- $\hat{q}_i = 1/2$ for $i \leq n$ and $\hat{q}_{n+1} = v2^n$

$$d_{TV}(\hat{P},\hat{Q}) = \sum_{x:P(x)>v} P(x) - v$$

Define distributions \hat{P} and \hat{Q} on n+1 bits

- $\hat{p}_i = p_i$ for $i \leq n$ and $\hat{p}_{n+1} = 1$
- $\hat{q}_i = 1/2$ for $i \leq n$ and $\hat{q}_{n+1} = v2^n$

$$d_{TV}(\hat{P},\hat{Q}) = \sum_{x:P(x)>v} P(x) - v$$

Define Distributions P' and Q' on n+2 bits

- $p'_i = p_i$ for $i \le n$, $p'_{n+1} = 1$ and $p'_{n+2} = \frac{1}{2} + \beta$
- $q'_i = q_i$ for $i \le n$, $q'_{n+1} = 1$ and $q'_{n+2} = \frac{1}{2} \beta$

where β is very small.

$$d_{TV}(P',Q') = 2\beta v \cdot |\{x:P(x) = v\}| + \sum_{x:P(x) > v} P(x) - v$$

$$|\{x: P(x) = v\}| = \frac{d_{TV}(P', Q') - d_{TV}(\hat{P}, \hat{Q})}{2\beta v}$$

Theorem: The (ε, δ) -approximation of TV distance between two product distributions P and Q can be accomoplished in $O(\frac{n^2}{\varepsilon^2} \log(1/\delta))$ time.

- Algorithm boils down to a simple but clever Monte Carlo estimator
- Based on dual characterization of TV distance in terms of couplings.

Couplings

• Given P and Q on a common domain, a **coupling** C is a distribution on pairs (X, Y) such that X distributed as P and Y distributed as Q.

Example

• Suppose P = Bernoulli(2/3) and Q = Bernoulli(1/3). $d_{TV}(P,Q)$

Couplings

• Given P and Q on a common domain, a **coupling** C is a distribution on pairs (X, Y) such that X distributed as P and Y distributed as Q.

Example

- Suppose P = Bernoulli(2/3) and Q = Bernoulli(1/3). $d_{TV}(P,Q) = 1/3$
- If $X \sim P$ and $Y \sim Q$ independently, then $\Pr[X \neq Y] = \frac{2}{3} \cdot \frac{2}{3} + \frac{1}{3} \cdot \frac{1}{3} = \frac{5}{9}$
- If $X \sim P$ and Y = 1 X, then $\Pr[X \neq Y] = 1$
- $X \sim P$ and Y = Bernoulli(1/2) if X = 1 else Y = 0, then $\Pr[X \neq Y] = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$
- An optimal coupling O satisifes:

$$\Pr_{(X,Y)\sim O}[X\neq Y]=d_{TV}(P,Q)$$

• In an optimal coupling O, for any w,

$$\Pr_O[X = Y = w] = \min(P(w), Q(w))$$

Coupling between Product Distributions

- Consider P and Q product distributions on {0,1}ⁿ. Coupling between them is a distribution on ({0,1}ⁿ)²
- Let O_i be optimal coupling between *i*-th marginals, P_i and Q_i . Then, $C = O_1 \otimes O_2 \otimes \ldots \otimes O_n$ is a local coupling

Example:

- Suppose $P = \text{Bernoulli}(2/3) \otimes \text{Bernoulli}(2/3)$ and $Q = \text{Bernoulli}(1/2) \otimes \text{Bernoulli}(1/3)$.
- $d_{TV}(P,Q)$

Coupling between Product Distributions

- Consider P and Q product distributions on {0,1}ⁿ. Coupling between them is a distribution on ({0,1}ⁿ)²
- Let O_i be optimal coupling between *i*-th marginals, P_i and Q_i . Then, $C = O_1 \otimes O_2 \otimes \ldots \otimes O_n$ is a local coupling

Example:

- Suppose $P = \text{Bernoulli}(2/3) \otimes \text{Bernoulli}(2/3)$ and $Q = \text{Bernoulli}(1/2) \otimes \text{Bernoulli}(1/3)$.
- $d_{TV}(P,Q) = 1/3$
- If (X, Y) form a local coupling, then $\Pr[X \neq Y] = \frac{5}{9}$
- Local coupling may not be an optimal coupling
- But, it's easy to sample from local coupling

Observation If C is local coupling, then $\Pr_C[X \neq Y] \leq \sum_i \Pr_C(X_i \neq Y_i) \leq \sum_i d_{TV}(P_i, Q_i).$

Observation If *C* is local coupling, then $\Pr_C[X \neq Y] \leq \sum_i \Pr_C(X_i \neq Y_i) \leq \sum_i d_{TV}(P_i, Q_i).$

Key Lemma For Product distributions P and Q, we have

$$\max_{i} d_{TV}(P_i, Q_i) \leq d_{TV}(P, Q) \leq \sum_{i} d_{TV}(P_i, Q_i)$$

Observation If C is local coupling, then $\Pr_C[X \neq Y] \leq \sum_i \Pr_C(X_i \neq Y_i) \leq \sum_i d_{TV}(P_i, Q_i).$

Key Lemma For Product distributions P and Q, we have

$$\max_{i} d_{TV}(P_i, Q_i) \leq d_{TV}(P, Q) \leq \sum_{i} d_{TV}(P_i, Q_i)$$

Let $\alpha = \frac{d_{TV}(P,Q)}{\Pr_C[X \neq Y]} = \frac{\Pr_O[X \neq Y]}{\Pr_C[X \neq Y]}$

We have

$$\frac{1}{n} \le \alpha \le 1$$

Observation If C is local coupling, then $\Pr_C[X \neq Y] \leq \sum_i \Pr_C(X_i \neq Y_i) \leq \sum_i d_{TV}(P_i, Q_i).$

Key Lemma For Product distributions P and Q, we have

$$\max_i d_{TV}(P_i, Q_i) \leq d_{TV}(P, Q) \leq \sum_i d_{TV}(P_i, Q_i)$$

Let
$$\alpha = \frac{d_{TV}(P,Q)}{\Pr_C[X \neq Y]} = \frac{\Pr_O[X \neq Y]}{\Pr_C[X \neq Y]}$$

We have

$$\frac{1}{n} \le \alpha \le 1$$

Key Idea The denominator $\Pr_C[X \neq Y]$ is easy to compute.

$$\Pr_{C}[X \neq Y] = 1 - \Pr_{C}(X = Y) = 1 - \prod_{i} (1 - d_{TV}(P_{i}, Q_{i}))$$

Estimator for α

Define $f(w) = P(w) - \min(P(w), Q(w))$.

Define $g(w) = P(w) - \prod_i \min(P_i(w_i), Q_i(w_i)).$

Define π to be distribution with mass function proportional to g.

Note that $0 \le f(w) \le g(w)$ for all w.

Define
$$f(w) = P(w) - \min(P(w), Q(w))$$
.

Define
$$g(w) = P(w) - \prod_i \min(P_i(w_i), Q_i(w_i)).$$

Define π to be distribution with mass function proportional to g.

•
$$\sum_{w} f(w) = \Pr_{O}[X \neq Y].$$

•
$$\sum_{w} g(w) = \Pr_{C}[X \neq Y].$$

• Therefore,

$$\alpha = \frac{\sum_{w} f(w)}{\sum_{w} g(w)} = \mathbb{E}_{\pi} \left[\frac{f(w)}{g(w)} \right].$$

• Sampling from π reduces to computing $\sum_{w} g(w)$ which we know how to do efficiently.

$$\alpha = \frac{\Pr[X \neq Y]}{\Pr_{C}[X \neq Y]}$$

Outline

Theory and Practice of Distirbution Testing

Probabilistic Generative Models

• Complexity of Distance Estimation for Probabilistic Generative Models $\left[\checkmark
ight]$

Constrained Samplers

- Greybox Testing: Constrained Samplers
- · Can distribution testing influence the design of systems ?

Problem Setting

- A Boolean formula φ
- Reference Sampler \mathcal{U}
 - · With rigorous theoretical guarantees but often slower
- Sampler Under Test: A sampler A that claims to be close to uniform sampler for formulas in benchmark set
 - Superior runtime performance but often no theoretical analysis
- Closeness and farness parameters: ε and η

Task: Determine whether distributions \mathcal{A}_{φ} and \mathcal{U}_{φ} are ε -close or η -far

Limitations of Black-Box Testing

Figure: \mathcal{U}_{φ} : Uniform Distribution

Figure: \mathcal{A}_{φ} : 1/2-far from uniform

SAMP: Allows you to draw samples from a distribution

Limitations of Black-Box Testing

Figure: \mathcal{U}_{φ} : Uniform Distribution

Figure: \mathcal{A}_{φ} : 1/2-far from uniform

SAMP: Allows you to draw samples from a distribution

• If $<\sqrt{|\mathsf{Sol}(\varphi)|}/100$ samples are drawn then with high probability you see only distinct samples from either distribution.

Theorem The above bound is optimal.

[BFRSW 98; Pan 08]

Limitations of Black-Box Testing

Figure: \mathcal{U}_{φ} : Uniform Distribution

Figure: \mathcal{A}_{φ} : 1/2-far from uniform

SAMP: Allows you to draw samples from a distribution

• If $<\sqrt{|\mathsf{Sol}(\varphi)|}/100$ samples are drawn then with high probability you see only distinct samples from either distribution.

Theorem The above bound is optimal.

[BFRSW 98; Pan 08]

Greybox Testing: Inspired by Distribution Testing Literature COND (P, T)

$$\Pr[\sigma \leftarrow \text{COND}(\mathcal{P}, T)] = \begin{cases} \frac{\mathcal{P}(\sigma)}{\sum \mathcal{P}(\rho)} & \sigma \in T\\ 0 & \text{otherwise} \end{cases}$$

When $T = \{0, 1\}^n$, then $COND(\mathcal{P}, T) = SAMP$

The Power of COND model

Figure: \mathcal{U}_{φ} : Uniform Distribution

Figure: \mathcal{A}_{φ} : 1/2-far from uniform

The Power of COND model

Figure: \mathcal{U}_{φ} : Uniform Distribution

Figure: \mathcal{A}_{φ} : 1/2-far from uniform

An algorithm for testing uniformity using conditional sampling:

- Sample σ_1, σ_2 from \mathcal{U}_{φ} . Let $T = \{\sigma_1, \sigma_2\}$.
- In the case of the "far" distribution, with constant probability, $\mathcal{A}_{arphi}(\sigma_1) \ll \mathcal{A}_{arphi}(\sigma_2)$
- We will be able to distinguish the far distribution from the uniform distribution using constant number of samples from COND(A_φ, T).
- The constant depend on the farness parameter.

What about other distributions?

Figure: \mathcal{U}_{φ} : Uniform Distribution

Figure: \mathcal{A}_{φ} : Far Distribution

What about other distributions?

Figure: \mathcal{U}_{φ} : Uniform Distribution

Figure: \mathcal{A}_{φ} : Far Distribution

Previous algorithm fails in this case:

- Draw two elements σ_1 and σ_2 uniformly at random from the domain. Let $T = \{\sigma_1, \sigma_2\}.$
- In the case of the "far" distribution, with probability almost 1, both the two elements will have probability same, namely ϵ .
- Probability that we will be able to distinguish the far distribution from the uniform distribution is very low.

Testing Uniformity Using Conditional Sampling

Figure: \mathcal{U}_{φ} : Uniform Distribution

Testing Uniformity Using Conditional Sampling

An algorithm for testing uniformity using conditional sampling:

- Sample σ_1 from \mathcal{U}_{φ} and σ_2 from \mathcal{A}_{φ} . Let $T = \{\sigma_1, \sigma_2\}$.
- In the case of the "far" distribution, with constant probability, $\mathcal{A}_{\varphi}(\sigma_1) \ll \mathcal{A}_{\varphi}(\sigma_2)$
- We will be able to distinguish the far distribution from the uniform distribution using constant number of samples from COND(A_φ, T).
- The constant depend on the farness parameter.

From Theory to Practice: Realizing COND Model

Challenge: How do we ask sampler for Conditional samples over $T = \{\sigma_1, \sigma_2\}$.

• Construct $\hat{\varphi} = \varphi \land (X = \sigma_1 \lor X = \sigma_2)$

From Theory to Practice: Realizing COND Model

Challenge: How do we ask sampler for Conditional samples over $T = \{\sigma_1, \sigma_2\}$.

• Construct
$$\hat{\varphi} = \varphi \land (X = \sigma_1 \lor X = \sigma_2)$$

Almost all the constrained samplers just enumerate all the solutions when the number of solutions is small

From Theory to Practice: Realizing COND Model

Challenge: How do we ask sampler for Conditional samples over $T = \{\sigma_1, \sigma_2\}$.

• Construct
$$\hat{\varphi} = \varphi \land (X = \sigma_1 \lor X = \sigma_2)$$

Almost all the constrained samplers just enumerate all the solutions when the number of solutions is small

• Need way to construct formulas whose solution space is large but every solution can be mapped to either *σ*₁ or *σ*₂.
Kernel

Input: A Boolean formula $\varphi,$ two assignments σ_1 and $\sigma_2,$ and desired number of solutions τ

Output: Formula $\hat{\varphi}$

- $\tau = |\mathsf{Sol}(\hat{\varphi})|$
- $z \in \mathsf{Sol}(\hat{\varphi}) \implies z_{\downarrow X} \in \{\sigma_1, \sigma_2\}$
- $|\{z \in \mathsf{Sol}(\hat{\varphi}) \mid z_{\downarrow X} = \sigma_1\}| = |\{z \in \mathsf{Sol}(\hat{\varphi}) \mid z_{\downarrow X} \cap \sigma_2\}|$
- φ and $\hat{\varphi}$ has similar structure

Kernel

Input: A Boolean formula $\varphi,$ two assignments σ_1 and $\sigma_2,$ and desired number of solutions τ

Output: Formula $\hat{\varphi}$

- $\tau = |\mathsf{Sol}(\hat{\varphi})|$
- $z \in \mathsf{Sol}(\hat{\varphi}) \implies z_{\downarrow X} \in \{\sigma_1, \sigma_2\}$
- $|\{z \in \mathsf{Sol}(\hat{\varphi}) \mid z_{\downarrow X} = \sigma_1\}| = |\{z \in \mathsf{Sol}(\hat{\varphi}) \mid z_{\downarrow X} \cap \sigma_2\}|$
- φ and $\hat{\varphi}$ has similar structure

Non-adversarial Sampler Assumption: The distribution of the projection of samples obtained from $\mathcal{A}_{\hat{\varphi}}$ to variables of φ is same as $\text{COND}(\mathcal{A}_{\varphi}, \{\sigma_1, \sigma_2\})$.

Implications:

- If $\ensuremath{\mathcal{A}}$ is a uniform sampler for every Boolean formula, it satisfies non-adversarial sampler assumption
- If $\ensuremath{\mathcal{A}}$ is not a uniform sampler, it may not necessarily satisfy non-adversarial sampler assumption

Kernel

Input: A Boolean formula $\varphi,$ two assignments σ_1 and $\sigma_2,$ and desired number of solutions τ

Output: Formula $\hat{\varphi}$

- $\tau = |\mathsf{Sol}(\hat{\varphi})|$
- $z \in \mathsf{Sol}(\hat{\varphi}) \implies z_{\downarrow X} \in \{\sigma_1, \sigma_2\}$
- $|\{z \in \mathsf{Sol}(\hat{\varphi}) \mid z_{\downarrow X} = \sigma_1\}| = |\{z \in \mathsf{Sol}(\hat{\varphi}) \mid z_{\downarrow X} \cap \sigma_2\}|$
- φ and $\hat{\varphi}$ has similar structure

Non-adversarial Sampler Assumption: The distribution of the projection of samples obtained from $\mathcal{A}_{\hat{\varphi}}$ to variables of φ is same as $\text{COND}(\mathcal{A}_{\varphi}, \{\sigma_1, \sigma_2\})$.

Implications:

- If $\ensuremath{\mathcal{A}}$ is a uniform sampler for every Boolean formula, it satisfies non-adversarial sampler assumption
- If $\ensuremath{\mathcal{A}}$ is not a uniform sampler, it may not necessarily satisfy non-adversarial sampler assumption

Non-adversarial assumption allows us to use the theory of COND query model

Barbarik

Input: A sampler under test A, a reference uniform sampler U, a tolerance parameter $\varepsilon > 0$, an intolerance parmaeter $\eta > \varepsilon$, a guarantee parameter δ and a CNF formula φ

Output: ACCEPT or REJECT with the following guarantees:

- if the generator \mathcal{A} is ε -close (in d_{∞}), i.e., $d_{\infty}(\mathcal{A}, \mathcal{U}) \leq \varepsilon$ then Barbarik ACCEPTS with probability at least (1δ) .
- If the generator A is η-far in (d_{TV}), i.e., d_{TV}(A,U) > η and if non-adversarial sampler assumption holds then Barbarik REJECTS with probability at least 1 − δ.

Observe: Complexity independent of $|{\rm Sol}(\varphi)|$ in contrast to black box's approach's dependence on $\sqrt{|{\rm Sol}(\varphi)|}$

Barbarik

Input: A sampler under test A, a reference uniform sampler U, a tolerance parameter $\varepsilon > 0$, an intolerance parmaeter $\eta > \varepsilon$, a guarantee parameter δ and a CNF formula φ

Output: ACCEPT or REJECT with the following guarantees:

- if the generator \mathcal{A} is ε -close (in d_{∞}), i.e., $d_{\infty}(\mathcal{A}, \mathcal{U}) \leq \varepsilon$ then Barbarik ACCEPTS with probability at least (1δ) .
- If the generator A is η-far in (d_{TV}), i.e., d_{TV}(A,U) > η and if non-adversarial sampler assumption holds then Barbarik REJECTS with probability at least 1 − δ.

Observe: Complexity independent of $|{\rm Sol}(\varphi)|$ in contrast to black box's approach's dependence on $\sqrt{|{\rm Sol}(\varphi)|}$

Experimental Evaluation over three state of the art (almost-)uniform samplers

- UniGen3: Theoretical Guarantees of almost-uniformity
- SearchTreeSampler: Very weak guarantees
- QuickSampler: No Guarantees

The study (in 2018) that proposed Quicksampler could only perform unsound statistical tests, and therefore, could not distinguish the three samplers

Results-I

Instances	#Solutions	UniGen3		SearchTreeSampler	
		Output	#Samples	Output	#Samples
71	1.14×2^{59}	А	1729750	R	250
blasted_case49	1.00×2^{61}	A	1729750	R	250
blasted_case50	1.00×2^{62}	A	1729750	R	250
scenarios_aig_insertion1	1.06×2^{65}	A	1729750	R	250
scenarios_aig_insertion2	1.06×2^{65}	A	1729750	R	250
36	1.00×2^{72}	A	1729750	R	250
30	1.73×2^{72}	A	1729750	R	250
110	1.09×2^{76}	A	1729750	R	250
scenarios_tree_insert_insert	1.32×2^{76}	A	1729750	R	250
107	1.52×2^{76}	A	1729750	R	250
blasted_case211	1.00×2^{80}	A	1729750	R	250
blasted_case210	1.00×2^{80}	A	1729750	R	250
blasted_case212	1.00×2^{88}	A	1729750	R	250
blasted_case209	1.00×2^{88}	A	1729750	R	250
54	1.15×2^{90}	A	1729750	R	250

Results-II

Instances	#Solutions	UniGen3		QuickSampler	
		Output	#Samples	Output	#Samples
71	1.14×2^{59}	А	1729750	R	250
blasted_case49	1.00×2^{61}	A	1729750	R	250
blasted_case50	1.00×2^{62}	A	1729750	R	250
scenarios_aig_insertion1	1.06×2^{65}	A	1729750	R	250
scenarios_aig_insertion2	1.06×2^{65}	A	1729750	R	250
36	1.00×2^{72}	A	1729750	R	250
30	1.73×2^{72}	A	1729750	R	250
110	1.09×2^{76}	А	1729750	R	250
scenarios_tree_insert_insert	1.32×2^{76}	A	1729750	R	250
107	1.52×2^{76}	A	1729750	R	250
blasted_case211	1.00×2^{80}	А	1729750	R	250
blasted_case210	1.00×2^{80}	A	1729750	R	250
blasted_case212	1.00×2^{88}	A	1729750	R	250
blasted_case209	1.00×2^{88}	A	1729750	R	250
54	1.15×2^{90}	A	1729750	R	250

Recap: Outline

- Q1 What do distributions look like in the real world?
- Q2 What properties matter to the practitioners?
- Q3 Theory and Practice of Distirbution Testing
 - Complexity of Distance Estimation
 - Greybox Testing: Constrained Samplers
- Q4 Can distribution testing influence the design of systems ?

Q1: Distributions in Real World: II

Constrained Random Simulation: Test Vector Generation

- Dominant methodology to test hardware systems
- $\bullet\,$ Use a formula φ to encode the verification scenarios
- A Constrained Sampler ${\mathcal A}$ takes φ as input and returns $\sigma\in{\rm Sol}(\varphi),$ and ideally ensures

$$\mathsf{Pr}[\sigma \leftarrow \mathcal{A}(arphi)] = rac{1}{|\mathsf{Sol}(arphi)|}$$

Probabilistic Programs

- Typical programs augmented with ability to sample and condition
- $X \leftarrow \mathsf{Sample}(\mathcal{N}, 100, 10)$
 - Sample from Gaussian with $\mu = 100$ and $\sigma^2 = 10$
- Observe(X < 10)
 - The compiler must ensure that the value of X is less than 10.
 - Allows conditioning of the distributions

Semantics: A probabilistic program P describes distribution

Who cares about Probabilistic Programs?

Facebook (HackPPL), Google(Tensorflow-probability), Uber (Pyro) " *Probabilistic programming aims to make (probabilistic) modeling more accessible to developers*" (Facebook, 2016)

Q2: Properties that Matter

Grey-box Setting

- (Fast) Sampler \mathcal{A} and a reference (but, often slow) sampler \mathcal{U}
- Reference sampler ${\cal U}$ is certified to produce samples according to desired distribution but is slow.
- Is the distribution generated by A, denoted by A_{φ} , close to that of U_{φ} ?

How to Measure Equivalence

Consider two distribution \mathcal{P} and \mathcal{Q} over $\{0,1\}^n$.

Two Notions of Distance

- d_{∞} distance: $\max_{\sigma \in \{0,1\}^n} |\mathcal{P}(\sigma) \mathcal{Q}(\sigma)|$
 - The most commonly seen behavior where a developer wants to approximate ${\mathcal P}$ with another distribution ${\mathcal Q}$
 - Almost-uniform sampling in the context of constrained random simulation

How to Measure Equivalence

Consider two distribution \mathcal{P} and \mathcal{Q} over $\{0,1\}^n$.

Two Notions of Distance

- d_{∞} distance: $\max_{\sigma \in \{0,1\}^n} |\mathcal{P}(\sigma) \mathcal{Q}(\sigma)|$
 - The most commonly seen behavior where a developer wants to approximate ${\mathcal P}$ with another distribution ${\mathcal Q}$
 - Almost-uniform sampling in the context of constrained random simulation
- Total Variation Distance (d_{TV}) or L_1 distance: $\frac{1}{2} \sum_{\sigma \in \{0,1\}^n} |\mathcal{P}(\sigma) \mathcal{Q}(\sigma)|$
 - Consider any arbitrary program A that uses samples from a distribution: there is a probability distribution over output of A.
 - Consider a Bad event over the output of A: such as not catching a bug.
 - Let's say \mathcal{A} samples from \mathcal{P} .
 - Folklore: If we were to replace \mathcal{P} with \mathcal{Q} then the probability of Bad event would increase/decrease at most by $d_{TV}(P, Q)$.

How to Measure Equivalence

Consider two distribution \mathcal{P} and \mathcal{Q} over $\{0,1\}^n$.

Two Notions of Distance

- d_{∞} distance: $\max_{\sigma \in \{0,1\}^n} |\mathcal{P}(\sigma) \mathcal{Q}(\sigma)|$
 - The most commonly seen behavior where a developer wants to approximate ${\mathcal P}$ with another distribution ${\mathcal Q}$
 - Almost-uniform sampling in the context of constrained random simulation
- Total Variation Distance (d_{TV}) or L_1 distance: $\frac{1}{2} \sum_{\sigma \in \{0,1\}^n} |\mathcal{P}(\sigma) \mathcal{Q}(\sigma)|$
 - Consider any arbitrary program A that uses samples from a distribution: there is a probability distribution over output of A.
 - Consider a Bad event over the output of A: such as not catching a bug.
 - Let's say \mathcal{A} samples from \mathcal{P} .
 - Folklore: If we were to replace \mathcal{P} with \mathcal{Q} then the probability of Bad event would increase/decrease at most by $d_{TV}(P, Q)$.

Therefore, measure closeness with respect to d_{∞} and farness with respect to d_{TV}

• Checker should return Accept if two distributions are close in d_{∞} -distance and return Reject if two distributions are far in d_{TV} .

Recap: Outline

Theory and Practice of Distirbution Testing

Probabilistic Generative Models

• Complexity of Distance Estimation for Probabilistic Generative Models

Constrained Samplers

- Greybox Testing: Constrained Samplers
- Can distribution testing influence the design of systems ?
 - Constrained Samplers
 - Binomial Sampler in Python

Product Distributions

• Represented by list of probabilities: { $p_1, p_2, \dots p_n$ }

•
$$P(x) = \prod_{x_i=1} p_i \prod_{x_i=0} (1-p_i)$$

Product Distributions

Represented by list of probabilities: {p₁, p₂, ... p_n}

•
$$P(x) = \prod_{x_i=1} p_i \prod_{x_i=0} (1-p_i)$$

Theorem: Given two product distributions P and Q, computation of $d_{TV}(P, Q)$ is #P-hard.

Product Distributions

Represented by list of probabilities: {p₁, p₂, ... p_n}

•
$$P(x) = \prod_{x_i=1}^{n} p_i \prod_{x_i=0}^{n} (1-p_i)$$

Theorem: Given two product distributions P and Q, computation of $d_{TV}(P, Q)$ is #P-hard.

```
1
          program P
                                          1
                                                   program Q
2
3
4
5
6
          X[1] = Bernoulli(p_1);
                                         2
3
4
5
6
                                                  Y[1] = Bernoulli(q_1);
                                               Y[1] = Bernoulli(q_2);
Y[2] = Bernoulli(q_2);
          X[2] = Bernoulli(p_2);
          X[n] = Bernoulli(p_n);
                                                   Y[n] = Bernoulli(q_n);
          return X;
                                                    return Y
7
                                          7
```

Testing Uniformity Using Conditional Sampling

Figure: \mathcal{U}_{φ} : Uniform Distribution

Testing Uniformity Using Conditional Sampling

An algorithm for testing uniformity using conditional sampling:

- Sample σ_1 from \mathcal{U}_{φ} and σ_2 from \mathcal{A}_{φ} . Let $T = \{\sigma_1, \sigma_2\}$.
- In the case of the "far" distribution, with constant probability, $\mathcal{A}_{\varphi}(\sigma_1) \ll \mathcal{A}_{\varphi}(\sigma_2)$
- We will be able to distinguish the far distribution from the uniform distribution using constant number of samples from COND(A_φ, T).
- The constant depend on the farness parameter.

Barbarik

Input: A sampler under test A, a reference uniform sampler U, a tolerance parameter $\varepsilon > 0$, an intolerance parmaeter $\eta > \varepsilon$, a guarantee parameter δ and a CNF formula φ

Output: ACCEPT or REJECT with the following guarantees:

- if the generator A is ε-close (in d_∞), i.e., d_∞(A, U) ≤ ε then Barbarik ACCEPTS with probability at least (1 − δ).
- If the generator A is η-far in (d_{TV}), i.e., d_{TV}(A,U) > η and if non-adversarial sampler assumption holds then Barbarik REJECTS with probability at least 1 − δ.

Observe: Complexity independent of $|{\rm Sol}(\varphi)|$ in contrast to black box's approach's dependence on $\sqrt{|{\rm Sol}(\varphi)|}$

Barbarik

Input: A sampler under test A, a reference uniform sampler U, a tolerance parameter $\varepsilon > 0$, an intolerance parmaeter $\eta > \varepsilon$, a guarantee parameter δ and a CNF formula φ

Output: ACCEPT or REJECT with the following guarantees:

- if the generator A is ε-close (in d_∞), i.e., d_∞(A, U) ≤ ε then Barbarik ACCEPTS with probability at least (1 − δ).
- If the generator A is η-far in (d_{TV}), i.e., d_{TV}(A,U) > η and if non-adversarial sampler assumption holds then Barbarik REJECTS with probability at least 1 − δ.

Observe: Complexity independent of $|{\rm Sol}(\varphi)|$ in contrast to black box's approach's dependence on $\sqrt{|{\rm Sol}(\varphi)|}$

Results-I

Instances	#Solutions	UniGen3		SearchTreeSampler	
		Output	#Samples	Output	#Samples
71	1.14×2^{59}	А	1729750	R	250
blasted_case49	1.00×2^{61}	A	1729750	R	250
blasted_case50	1.00×2^{62}	A	1729750	R	250
scenarios_aig_insertion1	1.06×2^{65}	A	1729750	R	250
scenarios_aig_insertion2	1.06×2^{65}	A	1729750	R	250
36	1.00×2^{72}	A	1729750	R	250
30	1.73×2^{72}	A	1729750	R	250
110	1.09×2^{76}	A	1729750	R	250
scenarios_tree_insert_insert	1.32×2^{76}	A	1729750	R	250
107	1.52×2^{76}	A	1729750	R	250
blasted_case211	1.00×2^{80}	A	1729750	R	250
blasted_case210	1.00×2^{80}	A	1729750	R	250
blasted_case212	1.00×2^{88}	A	1729750	R	250
blasted_case209	1.00×2^{88}	A	1729750	R	250
54	1.15×2^{90}	A	1729750	R	250

Results-II

Instances	#Solutions	UniGen3		QuickSampler	
		Output	#Samples	Output	#Samples
71	1.14×2^{59}	А	1729750	R	250
blasted_case49	1.00×2^{61}	A	1729750	R	250
blasted_case50	1.00×2^{62}	A	1729750	R	250
scenarios_aig_insertion1	1.06×2^{65}	A	1729750	R	250
scenarios_aig_insertion2	1.06×2^{65}	A	1729750	R	250
36	1.00×2^{72}	A	1729750	R	250
30	1.73×2^{72}	A	1729750	R	250
110	1.09×2^{76}	A	1729750	R	250
scenarios_tree_insert_insert	1.32×2^{76}	A	1729750	R	250
107	1.52×2^{76}	A	1729750	R	250
blasted_case211	1.00×2^{80}	A	1729750	R	250
blasted_case210	1.00×2^{80}	A	1729750	R	250
blasted_case212	1.00×2^{88}	A	1729750	R	250
blasted_case209	1.00×2^{88}	A	1729750	R	250
54	1.15×2^{90}	A	1729750	R	250

Barbarik for Probabilistic Programs

- Conditioning is just inserting Observe statements!
- Input: A program under test A, a reference program generating uniform distribution U, a tolerance parameter $\varepsilon > 0$, an intolerance parameter $\eta > \varepsilon$, a guarantee parameter δ

Output: ACCEPT or REJECT with the following guarantees:

- if the program A specifies ε -additive uniform distribution then Barbarik ACCEPTS with probability at least (1δ) .
- if A is η -far from a uniform generator holds then Barbarik REJECTS with probability at least 1δ .
- Preliminary experiments in progress

Outline

Theory and Practice of Distirbution Testing

Probabilistic Generative Models

• Complexity of Distance Estimation for Probabilistic Generative Models $\left[\checkmark
ight]$

Constrained Samplers

- Greybox Testing: Constrained Samplers $[\checkmark]$
- Can distribution testing influence the design of systems ?
 - Constrained Samplers
 - Binomial Sampler in Python

Can distribution testing influence the design of systems ?

Wishlist

- Sampler should be at least as fast as STS and QuickSampler.
- Sampler should by accepted by Barbarik.
- Sampler should have impact on downstream (real world) applications.

CMSGen

• Exploits the flexibility CryptoMiniSat.

CMSGen

- Exploits the flexibility CryptoMiniSat.
- Pick polarities and branch on variables at random.
 - To explore the search space as evenly as possible.
 - To have samples over all the solution space.
- Turn off all pre and inprocessing.
 - Processing techniques: bounded variable elimination, local search, or symmetry breaking, and many more.
 - Can change solution space of instances.
- Restart at static intervals.
 - Helps to generate samples which are very hard to find.

Power of Distribution Testing-Driven Development

- Test-Driven Development of CMSGen.
- Parameters of CMSGen are decided with the help of Barbarik
 - Iterative process.
 - Based on feedback from Barbarik, change the parameters.
- Uniform-like-sampler.
- Lack of theoretical analysis
 - We have very little idea about why SAT solvers work?
 - Much less about what happens when you tweak them to make them samplers

Runtime Performance

Testing of Samplers

- Samplers without guarantees (Uniform-like Samplers):
 - STS (Ermon, Gomes, Sabharwal, Selman, 2012)
 - QuickSampler (Dutra, Laeufer, Bachrach, Sen, 2018)
- Sampler with guarantees:
 - UniGen3 (Chakraborty, Meel, and Vardi 2013, 2014,2015)

	QuickSampler	STS	UniGen3
ACCEPTs	0	14	50
REJECTs	50	36	0

Testing of Samplers

- Samplers without guarantees (Uniform-like Samplers):
 - STS [EGSS12]
 - QuickSampler [DLBS18]
 - CMSGen
- Sampler with guarantees:
 - UniGen3

[CMV13, CMV14, SGM20]

	QuickSampler	STS	UniGen3	CMSGen
ACCEPTs	0	14	50	50
REJECTs	50	36	0	0

Outline

Wishlist

- $\bullet\,$ Sampler should be at least as fast as STS and QuickSampler. $\checkmark\,$
- $\bullet\,$ Sampler should by accepted by Barbarik. $\checkmark\,$
- Sampler should have impact on downstream (real world) applications.

Application I: Functional Synthesis

Holy Grail of Programming: The user states the problem, the computer solves it (Freuder, 1996)

Holy Grail of Programming: The user states the problem, the computer solves it (Freuder, 1996)

Holy Grail of Programming: The user states the problem, the computer solves it (Freuder, 1996)

Holy Grail of Programming: The user states the problem, the computer solves it (Freuder, 1996)

State of the art approach: Manthan

Sampling + Machine Learning + Counter-example guided repair

State of the art approach: Manthan

Sampling + Machine Learning + Counter-example guided repair

Application II: Combinatorial Testing

- A powerful paradigm for testing configurable system.
- Challenge: To generate test suites that maximizes *t*-wise coverage.

t-wise coverage: = $\frac{\# \text{ of t-sized combinations in test suite}}{\text{ all possible valid t-sized combinations}}$

• To generate the test suites use constraint samplers.

Application II: Combinatorial Testing

- A powerful paradigm for testing configurable system.
- Challenge: To generate test suites that maximizes *t*-wise coverage.

t-wise coverage: = $\frac{\# \text{ of t-sized combinations in test suite}}{\text{ all possible valid t-sized combinations}}$

- To generate the test suites use constraint samplers.
- Experimental Evaluations:
 - Generate 1000 samples (test cases).
 - 110 Benchmarks, Timeout: 3600 seconds
 - 2-wise coverage t = 2.

Combinatorial Testing: The Power of CMSGen

Higher is better

Outline

Can distribution testing influence the design of systems?

Wishlist

- $\bullet\,$ Sampler should be at least as fast as STS and QuickSampler. $\checkmark\,$
- Sampler should by accepted by Barbarik. \checkmark
- Sampler should have impact on downstream (real world) applications. \checkmark

Outline

Theory and Practice of Distirbution Testing

Probabilistic Generative Models

• Complexity of Distance Estimation for Probabilistic Generative Models $\left[\checkmark
ight]$

Constrained Samplers

- Greybox Testing: Constrained Samplers $[\checkmark]$
- Can distribution testing influence the design of systems ?
 - Constrained Samplers [√]
 - Binomial Sampler in Python

Binomial Distribution in Python

```
> numpy.random.binomimial(2**63, 0.1)
Traceback (most recent call last):
File " < stdin > ", line 1, in < module >
File "numpy/random / mtrand. pyx", line 3455, in numpy.random.mtrand.RandomState.binomial
OverflowError: Python int too large to convert to C long
```

Figure: Code snippet (Numpy version: 1.26.1 and Python version 3.9.6)

Inverse Transform Sampling

$$\hat{H}^{-1}(u) = \left(\frac{2a}{(1/2 - |u|)} + b\right)u + c, \quad \hat{h}^{-1}(u) = \frac{1}{\hat{h}(u)} = \frac{a}{(1/2 - |u|)^2} + b$$
$$\alpha = (2.83 + 5.1/b)\sqrt{np(1 - p)}$$

Input : Binomial Distribution $\mathcal{B}_{n,n}$ Output: Sample k from $\mathcal{B}_{n,p}$ 1 Initialize inverse distribution $\hat{H}^{-1}(\cdot)$, $\hat{h}^{-1}(\cdot)$ (according to Equation 1); ² Initialize rejection ratio α (according to Equation 2); $m \leftarrow \lfloor (n+1)p \rfloor;$ 4 $l_m \leftarrow \log m!$; 5 $l_{nm} \leftarrow \log (n-m)!;$ 6 while True do generate uniform random variates u, v; 7 $k \leftarrow \hat{H}^{-1}(u);$ 8 $l_k \leftarrow \log k!, l_{nk} \leftarrow \log (n-k)!;$ 9 if $\log v \leq l_m + l_{mk} - l_k - l_{nk} + (n-k) \log \left(\frac{p}{q}\right) + \log \hat{h}^{-1}(u) - \log \alpha$ then 10 return k 11

Inverse Transform Sampling

$$\hat{H}^{-1}(u) = \left(\frac{2a}{(1/2 - |u|)} + b\right)u + c, \quad \hat{h}^{-1}(u) = \frac{1}{\hat{h}(u)} = \frac{a}{(1/2 - |u|)^2} + b$$
$$\alpha = (2.83 + 5.1/b)\sqrt{np(1 - p)}$$

Algorithm 1: Binomial Transformed Rejection Sampling **Input** : Binomial Distribution $\mathcal{B}_{n,n}$ Output: Sample k from $\mathcal{B}_{n,p}$ 1 Initialize inverse distribution $\hat{H}^{-1}(\cdot)$, $\hat{h}^{-1}(\cdot)$ (according to Equation 1); ² Initialize rejection ratio α (according to Equation 2); $m \leftarrow \lfloor (n+1)p \rfloor;$ 4 $l_m \leftarrow \log m!$; 5 $l_{nm} \leftarrow \log (n-m)!;$ 6 while True do generate uniform random variates u, v; 7 $k \leftarrow \hat{H}^{-1}(u);$ 8 $l_k \leftarrow \log k!, l_{nk} \leftarrow \log (n-k)!;$ 9 if $\log v \leq l_m + l_{mk} - l_k - l_{nk} + (n-k) \log \left(\frac{p}{q}\right) + \log \hat{h}^{-1}(u) - \log \alpha$ then 10 return k 11

Just Implement all operations with arbitrary precision arithmetic

Inverse Transform Sampling

$$\hat{H}^{-1}(u) = \left(\frac{2a}{(1/2 - |u|)} + b\right)u + c, \quad \hat{h}^{-1}(u) = \frac{1}{\hat{h}(u)} = \frac{a}{(1/2 - |u|)^2} + b$$
$$\alpha = (2.83 + 5.1/b)\sqrt{np(1 - p)}$$

Algorithm 1: Binomial Transformed Rejection Sampling

Input : Binomial Distribution $\mathcal{B}_{n,n}$ Output: Sample k from $\mathcal{B}_{n,p}$ 1 Initialize inverse distribution $\hat{H}^{-1}(\cdot)$, $\hat{h}^{-1}(\cdot)$ (according to Equation 1); ² Initialize rejection ratio α (according to Equation 2); $3 m \leftarrow |(n+1)p|$: 4 $l_m \leftarrow \log m!$; 5 $l_{nm} \leftarrow \log(n-m)!;$ 6 while True do generate uniform random variates u, v; $k \leftarrow \hat{H}^{-1}(u);$ 8 $l_k \leftarrow \log k!, l_{nk} \leftarrow \log (n-k)!;$ 9 if $\log v \leq l_m + l_{mk} - l_k - l_{nk} + (n-k)\log\left(\frac{p}{q}\right) + \log \hat{h}^{-1}(u) - \log \alpha$ then 10 return k 11

Just Implement all operations with arbitrary precision arithmetic

- · Factorials need approximation, for runtime efficiency
- But approximation introduces errors

Le Cam's Theorem

Le Cam's Theorem:

$$\sum_{k=0}^{\infty} \left| \Pr[\mathcal{B}_{n,p} = k] - \frac{\lambda^k e^{-\lambda}}{k!} \right| < 2np^2$$

where $\lambda = np$. In other words,

$$d_{TV}(\mathcal{B}_{n,p},\mathsf{Pois}(np)) \leq np^2$$

For certain range of parameters (n and p), sampling from Poisson distribution is closer in total variation distance and is more efficient

Proposal for New Interface

Sample from $\mathcal{B}_{n,p}$

- Find the closest distribution from which we should sample to balance total variation distance and runtime
- Report the total variation distance (i.e., error)

Not merely return a sample but also return total variation distance

Runtime Performance Improvement

Figure: Comparison of the time taken by smartBinom and Baseline across 350,000 calls to (n, p) instances.

Quality of Error

Figure: Upper bound estimation of the cumulative error reported by smartBinom and Baseline on 350,000 calls to (n, p) instances.

Figure: Performance comparison of smartBinom against the Baseline sampler.

Union of Sets

Algorithm 7: APS-Estimator	
1 Initialize Bucket threshold <i>T</i> ;	
² Initialize probability <i>p</i> ;	
³ Initialize empty Buckets X;	
4 for $i = 1$ to m do	
5 for all $\sigma \in X$ do	
6 if $\sigma \models F_i$ then	
7 remove σ from X ;	
8 Pick a number N_i from the binomial distribution $\mathcal{B}_{ F_i ,p}$;	
9 Add N_i distinct random solutions of F_i to X ;	
while $ X $ is more than bucket threshold T do	
p = p/2;	
12 Throw away each element of X with probability $\frac{1}{2}$;	
13 Output $\frac{ X }{p}$;	

Experimental Results I: Runtime

Experimental Results I: Quality

Conclusion

- Q1 What do distributions look like in the real world?Ans Probability distributions are first-class objects in modern computing
- Q2 What properties matter to the practitioners? Ans Equivalence
- Q3 How to develop practical scalable testers for distributions?Ans Greybox access, which can be modeled via Conditional Sampling
- Q4 Can distribution testing influence the design of systems ?Ans Yes. It can allow us to design state of the art samplers via a different approach. And such samplers dramatically improve downstream applications.

Where do we go from here?

We have just started!

- Scalable testers for distributions beyond uniform
- Scalable samplers for SMT/CSP via Test-Driven Development
- Developing the notion of counterexample for testing distributions
- How do we certify the correctness of distribution testers?

CMSGen (MIT License): https://github.com/meelgroup/cmsgen Barbarik (MIT License): https://github.com/meelgroup/barbarik

These slides are available at https://www.cs.toronto.edu/~meel/talks.html