Constrained Counting and Sampling: Bridging the Gap between Theory and Practice

Kuldeep S. Meel

Rice University, USA
www.kuldeepmeel.com
kuldeep@rice.edu

- Data
- Uncertainty

- Data
- Uncertainty

- Data
- Uncertainty

- Data
- Uncertainty

- Data
- Uncertainty
- Scalable
- Guarantees of Accuracy

A Tale of Constraints

Boolean Satisfiability (SAT): Given a Boolean expression, using "and" (\wedge), "or" (\vee), and "not" (\neg) is there a solution, i.e., an assignment of 0 's and 1 's to the variables that makes the expression equal 1 ?

Example: $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)$
$x_{1}=1, x_{2}=1, x_{3}=1$

A Tale of Constraints

Boolean Satisfiability (SAT): Given a Boolean expression, using "and" (\wedge), "or" (\vee), and "not" (\neg) is there a solution, i.e., an assignment of 0 's and 1 's to the variables that makes the expression equal 1 ?

Example: $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)$
$x_{1}=1, x_{2}=1, x_{3}=1$

Ernst Schroder, 1841-1902: "Getting a handle on the consequences of any premises, or at least the fastest method for obtaining these consequences, seems to me to be one of the noblest, if not the ultimate goal of mathematics and logic."

Cook, 1971; Levin, 1973: SAT is NP-complete

Modern SAT solvers are able to deal routinely with practical problems that involve many thousands of variables, although such problems were regarded as hopeless just a few years ago. (Donald Knuth, 2016)

The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical problems that involve many thousands of variables, although such problems were regarded as hopeless just a few years ago. (Donald Knuth, 2016)

Industrial usage of SAT Solvers: hardware verification, planning, Genome Rearrangement, Telecom Feature Subscription, Resource Constrained Scheduling, Noise Analysis, Games, ...

The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical problems that involve many thousands of variables, although such problems were regarded as hopeless just a few years ago. (Donald Knuth, 2016)

Industrial usage of SAT Solvers: hardware verification, planning, Genome Rearrangement, Telecom Feature Subscription, Resource Constrained Scheduling, Noise Analysis, Games, ...

Now that SAT is "easy", it is time to look beyond satisfiability

Constrained Counting and Sampling

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- Constrained Counting: Determine $|\operatorname{Sol}(F)|$
- Constrained Sampling: Randomly sample from $\operatorname{Sol}(F)$ such that $\operatorname{Pr}[\mathrm{y}$ is sampled $]=\frac{1}{|\operatorname{Sol}(F)|}$

Constrained Counting and Sampling

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- Weight Function $W:\{0,1\}^{n} \mapsto[0,1]$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- $W(F)=\Sigma_{y \in \operatorname{Sol}(F)} W(y)$
- Constrained Counting: Determine $W(F)$
- Constrained Sampling: Randomly sample from $\operatorname{Sol}(F)$ such that $\operatorname{Pr}[\mathrm{y}$ is sampled $]=\frac{W(y)}{W(F)}$

Constrained Counting and Sampling

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- Weight Function $W:\{0,1\}^{n} \mapsto[0,1]$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- $W(F)=\Sigma_{y \in \operatorname{Sol}(F)} W(y)$
- Constrained Counting: Determine $W(F)$
- Constrained Sampling: Randomly sample from $\operatorname{Sol}(F)$ such that $\operatorname{Pr}[\mathrm{y}$ is sampled $]=\frac{W(y)}{W(F)}$
- $F:=\left(X_{1} \vee X_{2}\right)$;
$W[(0,0)]=W[(1,1)]=\frac{1}{6} ; W[(1,0)]=W[(0,1)]=\frac{1}{3}$
- $\operatorname{Sol}(F)=\{(0,1),(1,0),(1,1)\}$

Constrained Counting and Sampling

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- Weight Function $W:\{0,1\}^{n} \mapsto[0,1]$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- $W(F)=\Sigma_{y \in \operatorname{Sol}(F)} W(y)$
- Constrained Counting: Determine $W(F)$
- Constrained Sampling: Randomly sample from Sol (F) such that $\operatorname{Pr}[\mathrm{y}$ is sampled $]=\frac{W(y)}{W(F)}$
- $F:=\left(X_{1} \vee X_{2}\right)$;
$W[(0,0)]=W[(1,1)]=\frac{1}{6} ; W[(1,0)]=W[(0,1)]=\frac{1}{3}$
- $\operatorname{Sol}(F)=\{(0,1),(1,0),(1,1)\}$
- $W(F)=\frac{1}{3}+\frac{1}{3}+\frac{1}{6}=\frac{5}{6}$

Network Reliability

Probabilistic Inference

Network Reliability

Probabilistic Inference

Constrained Counting

Network Reliability

Probabilistic Inference Constrained Counting Hashing Framework

Network Reliability

Probabilistic Inference	Constrained Counting	Hashing Framework
Hardware Validation	Constrained Sampling	

Can we reliably predict the effect of natural disasters on critical infrastructure such as power grids?

Can we reliably predict the effect of natural disasters on critical infrastructure such as power grids?
Can we predict likelihood of a region facing blackout?

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?

Plantersville, SC

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$

Plantersville, SC

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[s$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$
- $\pi_{s, t}$: configuration where s and t are disconnected
- Represented as a solution to set of constraints over edge variables

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$
- $\pi_{s, t}$: configuration where s and t are disconnected
- Represented as a solution to set of constraints over edge variables
- $\operatorname{Pr}[s$ and t are disconnected $]=\sum_{\pi_{s, t}} W\left(\pi_{s, t}\right)$

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$
- $\pi_{s, t}$: configuration where s and t are disconnected
- Represented as a solution to set of constraints over edge variables
- $\operatorname{Pr}[s$ and t are disconnected $]=\sum_{\pi_{s, t}} W\left(\pi_{s, t}\right)$
(DMPV, AAAI 17)

Probabilistic Models

Patient	Cough	Smoker	Asthma
Alice	1	0	0
Bob	0	0	1
Randee	1	0	0
Tova	1	1	1
Azucena	1	0	0
Georgine	1	1	0
Shoshana	1	0	1
Lina	0	0	1
Hermine	1	1	1

Probabilistic Models

Patient	Cough	Smoker	Asthma
Alice	1	0	0
Bob	0	0	1
Randee	1	0	0
Tova	1	1	1
Azucena	1	0	0
Georgine	1	1	0
Shoshana	1	0	1
Lina	0	0	1
Hermine	1	1	1

Probabilistic Models

Patient	Cough	Smoker	Asthma
Alice	1	0	0
Bob	0	0	1
Randee	1	0	0
Tova	1	1	1
Azucena	1	0	0
Georgine	1	1	0
Shoshana	1	0	1
Lina	0	0	1
Hermine	1	1	1

$$
\operatorname{Pr}[\operatorname{Asthma}(\mathrm{A}) \mid \operatorname{Cough}(\mathrm{C})]=\frac{\operatorname{Pr}[\mathrm{A} \cap \mathrm{C}]}{\operatorname{Pr}[\mathrm{C}]}
$$

Probabilistic Models

Patient	Cough	Smoker	Asthma
Alice	1	0	0
Bob	0	0	1
Randee	1	0	0
Tova	1	1	1
Azucena	1	0	0
Georgine	1	1	0
Shoshana	1	0	1
Lina	0	0	1
Hermine	1	1	1

$$
\operatorname{Pr}[\operatorname{Asthma}(\mathrm{A}) \mid \operatorname{Cough}(\mathrm{C})]=\frac{\operatorname{Pr}[\mathrm{A} \cap \mathrm{C}]}{\operatorname{Pr}[\mathrm{C}]}
$$

$$
F=\mathrm{A} \wedge \mathrm{C}
$$

Probabilistic Models

Patient	Cough	Smoker	Asthma
Alice	1	0	0
Bob	0	0	1
Randee	1	0	0
Tova	1	1	1
Azucena	1	0	0
Georgine	1	1	0
Shoshana	1	0	1
Lina	0	0	1
Hermine	1	1	1

$\operatorname{Pr}[\operatorname{Asthma}(\mathrm{A}) \mid \operatorname{Cough}(\mathrm{C})]=\frac{\operatorname{Pr}[\mathrm{A} \cap \mathrm{C}]}{\operatorname{Pr}[\mathrm{C}]}$
$F=\mathrm{A} \wedge \mathrm{C}$
$\operatorname{Sol}(F)=\{(\mathrm{A}, \mathrm{C}, \mathrm{S}),(\mathrm{A}, \mathrm{C}, \overline{\mathrm{S}})\}$

Probabilistic Models

Patient	Cough	Smoker	Asthma
Alice	1	0	0
Bob	0	0	1
Randee	1	0	0
Tova	1	1	1
Azucena	1	0	0
Georgine	1	1	0
Shoshana	1	0	1
Lina	0	0	1
Hermine	1	1	1

$$
\operatorname{Pr}[\operatorname{Asthma}(\mathrm{A}) \mid \operatorname{Cough}(\mathrm{C})]=\frac{\operatorname{Pr}[\mathrm{A} \cap \mathrm{C}]}{\operatorname{Pr}[\mathrm{C}]}
$$

$$
F=\mathrm{A} \wedge \mathrm{C}
$$

$$
\operatorname{Sol}(F)=\{(\mathrm{A}, \mathrm{C}, \mathrm{~S}),(\mathrm{A}, \mathrm{C}, \overline{\mathrm{~S}})\}
$$

$$
\operatorname{Pr}[\mathrm{A} \cap \mathrm{C}]=\Sigma_{y \in \operatorname{Sol}(F)} W(y)=W(F)
$$

Constrained Counting

Prior Work

Strong guarantees but poor scalability

- Exact counters (Birnbaum and Lozinskii 1999, Jr. and Schrag 1997, Sang et al. 2004, Thurley 2006)
- Hashing-based approach (Stockmeyer 1983, Jerrum Valiant and Vazirani 1986)

Weak guarantees but impressive scalability

- Bounding counters (Gomes et al. 2007,Kroc, Sabharwal, and Selman 2008, Gomes, Sabharwal, and Selman 2006, Kroc, Sabharwal, and Selman 2008)
- Sampling-based techniques
(Wei and Selman 2005, Rubinstein 2012, Gogate and Dechter 2011)

Prior Work

Strong guarantees but poor scalability

- Exact counters (Birnbaum and Lozinskii 1999, Jr. and Schrag 1997, Sang et al. 2004, Thurley 2006)
- Hashing-based approach (Stockmeyer 1983, Jerrum Valiant and Vazirani 1986)

Weak guarantees but impressive scalability

- Bounding counters (Gomes et al. 2007,Kroc, Sabharwal, and Selman 2008, Gomes, Sabharwal, and Selman 2006, Kroc, Sabharwal, and Selman 2008)
- Sampling-based techniques (Wei and Selman 2005, Rubinstein 2012, Gogate and Dechter 2011)

How to bridge this gap?

Constrained Counting

- ExactCount (F, W) : Compute $W(F)$?
- \#P-complete

Constrained Counting

- ExactCount (F, W) : Compute $W(F)$?
- \#P-complete
- ApproxCount $(F, W, \varepsilon, \delta)$: Compute C such that

$$
\operatorname{Pr}\left[\frac{W(F)}{1+\varepsilon} \leq C \leq W(F)(1+\varepsilon)\right] \geq 1-\delta
$$

From Weighted to Unweighted Counting

Boolean Formula F and weight Boolean Formula F^{\prime} function $W:\{0,1\}^{n} \rightarrow \mathbb{Q}^{\geq 0}$

$$
W(F)=c(W) \times\left|\operatorname{Sol}\left(F^{\prime}\right)\right|
$$

- Key Idea: Encode weight function as a set of constraints
(CFMV, IJCAI15)

Boolean Formula F and weight Boolean Formula F^{\prime} function $W:\{0,1\}^{n} \rightarrow \mathbb{Q}^{\geq 0}$

$$
W(F)=c(W) \times\left|\operatorname{Sol}\left(F^{\prime}\right)\right|
$$

- Key Idea: Encode weight function as a set of constraints
(CFMV, IJCAI15)
How do we estimate $\left|\operatorname{Sol}\left(F^{\prime}\right)\right|$?

Counting in Singapore

How many people in Singapore like coffee?

- Population of NUS $=5.6 \mathrm{M}$
- Assign every person a unique $(n=) 23$ bit identifier $\left(2^{n}=5.6 \mathrm{M}\right)$

Counting in Singapore

How many people in Singapore like coffee?

- Population of NUS $=5.6 \mathrm{M}$
- Assign every person a unique $(n=) 23$ bit identifier $\left(2^{n}=5.6 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $5.6 \mathrm{M} / 50$

Counting in Singapore

How many people in Singapore like coffee?

- Population of NUS $=5.6 \mathrm{M}$
- Assign every person a unique $(n=) 23$ bit identifier $\left(2^{n}=5.6 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $5.6 \mathrm{M} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50

Counting in Singapore

How many people in Singapore like coffee?

- Population of NUS $=5.6 \mathrm{M}$
- Assign every person a unique $(n=) 23$ bit identifier $\left(2^{n}=5.6 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $5.6 \mathrm{M} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- NP Query: Find a person who likes coffee

Counting in Singapore

How many people in Singapore like coffee?

- Population of NUS $=5.6 \mathrm{M}$
- Assign every person a unique $(n=) 23$ bit identifier $\left(2^{n}=5.6 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $5.6 \mathrm{M} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- NP Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y

Counting in Singapore

How many people in Singapore like coffee?

- Population of NUS $=5.6 \mathrm{M}$
- Assign every person a unique $(n=) 23$ bit identifier $\left(2^{n}=5.6 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $5.6 \mathrm{M} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- NP Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y
- Attempt \#2: Enumerate every person who likes coffee

Counting in Singapore

How many people in Singapore like coffee?

- Population of NUS $=5.6 \mathrm{M}$
- Assign every person a unique $(n=) 23$ bit identifier $\left(2^{n}=5.6 \mathrm{M}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $5.6 \mathrm{M} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- NP Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y
- Attempt \#2: Enumerate every person who likes coffee
- Potentially 2^{n} queries

Can we do with lesser \# of SAT queries $-\mathcal{O}(n)$ or $\mathcal{O}(\log n)$?

As Simple as Counting Dots

As Simple as Counting Dots

As Simple as Counting Dots

Pick a random cell

Estimate $=$ Number of solutions in a cell \times Number of cells

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenge 2 How many cells?

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Solutions in a cell α : $\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}$

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Solutions in a cell α : $\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}$
- Deterministic h unlikely to work

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Solutions in a cell α : $\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}$
- Deterministic h unlikely to work
- Choose h randomly from a large family H of hash functions
Universal Hashing (Carter and Wegman 1977)

2-Universal Hashing

- Let H be family of 2 -universal hash functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{m}$

$$
\begin{gathered}
\forall y_{1}, y_{2} \in\{0,1\}^{n}, \alpha_{1}, \alpha_{2} \in\{0,1\}^{m}, h \stackrel{R}{\leftarrow} H \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1}\right]=\operatorname{Pr}\left[h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right) \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1} \wedge h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right)^{2}
\end{gathered}
$$

2-Universal Hashing

- Let H be family of 2 -universal hash functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{m}$

$$
\begin{gathered}
\forall y_{1}, y_{2} \in\{0,1\}^{n}, \alpha_{1}, \alpha_{2} \in\{0,1\}^{m}, h \stackrel{R}{\leftarrow} H \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1}\right]=\operatorname{Pr}\left[h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right) \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1} \wedge h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right)^{2}
\end{gathered}
$$

- The power of 2-universality
- Z be the number of solutions in a randomly chosen cell
$-\mathrm{E}[Z]=\frac{|\mathrm{Sol}(F)|}{2^{m}}$
$-\sigma^{2}[Z] \leq \mathrm{E}[Z]$

2-Universal Hashing

- Let H be family of 2 -universal hash functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{m}$

$$
\begin{gathered}
\forall y_{1}, y_{2} \in\{0,1\}^{n}, \alpha_{1}, \alpha_{2} \in\{0,1\}^{m}, h \stackrel{R}{\leftarrow} H \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1}\right]=\operatorname{Pr}\left[h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right) \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1} \wedge h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right)^{2}
\end{gathered}
$$

- The power of 2-universality
- Z be the number of solutions in a randomly chosen cell
$-\mathrm{E}[Z]=\frac{|\mathrm{Sol}(F)|}{2^{m}}$
$-\sigma^{2}[Z] \leq \mathrm{E}[Z]$

2-Universal Hash Functions

- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}$
- Expected size of each XOR: $\frac{n}{2}$

2-Universal Hash Functions

- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}$
- Expected size of each XOR: $\frac{n}{2}$
- To choose $\alpha \in\{0,1\}^{m}$, set every XOR equation to 0 or 1 randomly

$$
\begin{array}{r}
x_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
x_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
$$

- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$

2-Universal Hash Functions

- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}^{2}$
- Expected size of each XOR: $\frac{n}{2}$
- To choose $\alpha \in\{0,1\}^{m}$, set every XOR equation to 0 or 1 randomly

$$
\begin{array}{r}
x_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
x_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
$$

- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$
- Performance of state of the art SAT solvers degrade with increase in the size of XORs (SAT Solvers $!=$ SAT oracles)

2-Universal Hash Functions

- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}$
- Expected size of each XOR: $\frac{n}{2}$
- To choose $\alpha \in\{0,1\}^{m}$, set every XOR equation to 0 or 1 randomly

$$
\begin{array}{r}
x_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
x_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
$$

- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$
- Performance of state of the art SAT solvers degrade with increase in the size of XORs (SAT Solvers != SAT oracles)
- Two orders of magnitude reduction in the size of XORs by embedding formula into smaller dimension ("Independent Support")

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Independent Support-based 2-Universal Hash Functions
Challenge 2 How many cells?

Question 2: How many cells?

- A cell is small if it has less than thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions

Question 2: How many cells?

- A cell is small if it has less than thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$

Question 2: How many cells?

- A cell is small if it has less than thresh $=5\left(1+\frac{1}{\varepsilon}\right)^{2}$ solutions
- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Check for every $m=0,1, \cdots n$ if the number of solutions \leq thresh

ApproxMC(F, $\varepsilon, \delta)$

ApproxMC(F, $\varepsilon, \delta)$

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- ...
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES

ApproxMC(F, $\varepsilon, \delta)$

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- ...
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES
- Logarithmic search (\# of SAT calls: $\mathcal{O}(\log n)$)

ApproxMC(F, $\varepsilon, \delta)$

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- ...
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES
- Logarithmic search (\# of SAT calls: $\mathcal{O}(\log n)$)
- Will this work? Will the " m " where we stop be close to m^{*} ?

ApproxMC(F, $\varepsilon, \delta)$

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- ...
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES
- Logarithmic search (\# of SAT calls: $\mathcal{O}(\log n)$)
- Will this work? Will the " m " where we stop be close to m^{*} ?
- Challenge Query i and Query j are not independent
- Independence crucial to analysis (Stockmeyer 1983, ...)

ApproxMC(F, $\varepsilon, \delta)$

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- ...
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES
- Logarithmic search (\# of SAT calls: $\mathcal{O}(\log n)$)
- Will this work? Will the " m " where we stop be close to m *?
- Challenge Query i and Query j are not independent
- Independence crucial to analysis (Stockmeyer 1983, ...)
- Key Insight: The probability of making a bad choice of Q_{i} is very small for $i \ll m^{*}$
(CMV, IJCAI16)

Taming the Curse of Dependence

Let $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \left(\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\right)\right)$
Lemma (1)
ApproxMC (F, ε, δ) terminates with $m \in\left\{m^{*}-1, m^{*}\right\}$ with probability ≥ 0.8

Lemma (2)

For $m \in\left\{m^{*}-1, m^{*}\right\}$, estimate obtained from a randomly picked cell lies within a tolerance of ε of $|\operatorname{Sol}(F)|$ with probability ≥ 0.8

ApproxMC($F, \varepsilon, \delta)$

Theorem (Correctness)

$\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$

Theorem (Complexity)

ApproxMC (F, ε, δ) makes $\mathcal{O}\left(\frac{\log n \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)$ calls to SAT oracle.

- Prior work required $\mathcal{O}\left(\frac{\boldsymbol{n} \log \boldsymbol{n} \log \left(\frac{1}{\delta}\right)}{\varepsilon}\right)$ calls to SAT oracle (Stockmeyer 1983)

Reliability of Critical Infrastructure Networks

Timeout $=1000$ seconds
(DMPV, AAAI17)

Reliability of Critical Infrastructure Networks

Timeout $=1000$ seconds
(DMPV, AAAI17)

Reliability of Critical Infrastructure Networks

Timeout $=1000$ seconds
(DMPV, AAAI17)

Beyond Network Reliability

Network Reliability

Probabilistic Inference

Network Reliability

Probabilistic Inference

Constrained Counting

Hashing Framework

Network Reliability

Probabilistic Inference

Hardware Validation

Constrained Counting
Hashing Framework

Hardware Validation

- Design is simulated with test vectors (values of a and b)
- Results from simulation compared to intended results

Hardware Validation

- Design is simulated with test vectors (values of a and b)
- Results from simulation compared to intended results
- Challenge: How do we generate test vectors?
- 2^{128} combinations for a toy circuit

Hardware Validation

- Design is simulated with test vectors (values of a and b)
- Results from simulation compared to intended results
- Challenge: How do we generate test vectors?
- 2^{128} combinations for a toy circuit
- Use constraints to represent interesting verification scenarios

Constrained-Random Simulation

Constraints

- Designers:

$$
\begin{aligned}
& -a+6411 * 32 b=12 \\
& -a<_{64}(b \gg 4)
\end{aligned}
$$

- Past Experience:
$-40<6434+a<645050$
$-120<64 b<64230$
- Users:
$-232 * 32 a+64 b!=1100$
$-1020<_{64}(b / 642)+64 a<642200$
Test vectors: random solutions of constraints

Constrained Sampling

- Given:
- Set of Constraints F over variables $X_{1}, X_{2}, \cdots X_{n}$
- Uniform Sampler

$$
\forall y \in \operatorname{Sol}(F), \operatorname{Pr}[y \text { is output }]=\frac{1}{|\operatorname{Sol}(F)|}
$$

- Almost-Uniform Sampler

$$
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[\mathrm{y} \text { is output }] \leq \frac{(1+\varepsilon)}{|\operatorname{Sol}(F)|}
$$

Close Cousins: Counting and Sampling

- Approximate counting and almost-uniform sampling are inter-reducible
- Is the reduction efficient?

Close Cousins: Counting and Sampling

- Approximate counting and almost-uniform sampling are inter-reducible
- Is the reduction efficient?
- Almost-uniform sampler (JVV) require linear number of approximate counting calls

Prior Work

Strong guarantees but poor scalability

- Polynomial calls to NP oracle
(Bellare, Goldreich and Petrank, 2000)
- BDD-based techniques (Yuan et al 1999, Yuan et al 2004, Kukula and Shiple 2000)
- Reduction to approximate counting (Jerrum, Valiant and Vazirani 1986)

Weak guarantees but impressive scalability

- Randomization in SAT solvers
(Moskewicz 2001, Nadel 2011)
- MCMC-based approaches Kitchen and Kuehlmann 2007,...)
- Belief Networks

Prior Work

Strong guarantees but poor scalability

- Polynomial calls to NP oracle
(Bellare, Goldreich and Petrank, 2000)
- BDD-based techniques (Yuan et al 1999, Yuan et al 2004, Kukula and Shiple 2000)
- Reduction to approximate counting (Jerrum, Valiant and Vazirani 1986)

Weak guarantees but impressive scalability

- Randomization in SAT solvers
(Moskewicz 2001, Nadel 2011)
- MCMC-based approaches
(Sinclair 1993, Jerrum and Sinclair 1996, Kitchen and Kuehlmann 2007,...)
- Belief Networks

How to bridge this gap?

Key Ideas

- For right choice of number of cells, large number of cells are small
- almost all the cells are roughly equal
- Check if a randomly picked cell is small
- If yes, pick a solution randomly from randomly picked cell

Key Ideas

- For right choice of number of cells, large number of cells are small
- almost all the cells are roughly equal
- Check if a randomly picked cell is small
- If yes, pick a solution randomly from randomly picked cell Challenge: How many cells?

How many cells?

- Desired Number of cells: $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \frac{\mid \text { Sol }(F) \mid}{\text { thresh }}\right)$
- ApproxMC (F, ε, δ) returns C such that

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq C \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta
$$

- $\tilde{m}=\log \frac{C}{\text { thresh }}$

How many cells?

- Desired Number of cells: $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \frac{|\operatorname{Sol}(F)|}{\text { thresh }}\right)$
- ApproxMC (F, ε, δ) returns C such that

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq C \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta
$$

$-\tilde{m}=\log \frac{C}{\text { thresh }}$

- Check for $m=\tilde{m}-1, \tilde{m}, \tilde{m}+1$ if a randomly chosen cell is small

How many cells?

- Desired Number of cells: $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \frac{|\operatorname{Sol}(F)|}{\text { thresh }}\right)$
- ApproxMC (F, ε, δ) returns C such that

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq C \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta
$$

- $\tilde{m}=\log \frac{C}{\text { thresh }}$
- Check for $m=\tilde{m}-1, \tilde{m}, \tilde{m}+1$ if a randomly chosen cell is small
- Not just a practical hack required non-trivial proof
(CMV, CAV13)
(CMV, DAC14)
(CFMSV, TACAS15)

Theoretical Guarantees

Theorem (Almost-Uniformity)

$$
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
$$

Theorem (Almost-Uniformity)

$$
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
$$

Theorem (Query)

For a formula F over n variables UniGen makes one call to approximate counter

Theorem (Almost-Uniformity)

$$
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
$$

Theorem (Query)

For a formula F over n variables UniGen makes one call to approximate counter

- JVV (Jerrum, Valiant and Vazirani 1986) makes n calls

	Relative Runtime
SAT Solver	1
Desired Uniform Generator	10

(CMV, CAV13)
(CMV, DAC14)
(CFMSV, TACAS15)
Experiments over 200+ benchmarks

Three Orders of Improvement

	Relative Runtime
SAT Solver	1
Desired Uniform Generator	10
XORSample (2012 state of the art)	50000

(CMV, CAV13)
(CMV, DAC14)
(CFMSV, TACAS15)
Experiments over 200+ benchmarks

Three Orders of Improvement

	Relative Runtime
SAT Solver	1
Desired Uniform Generator	10
XORSample (2012 state of the art)	50000
UniGen (2015)	21

(CMV, CAV13)
(CMV, DAC14)
(CFMSV, TACAS15)
Experiments over 200+ benchmarks

Three Orders of Improvement

	Relative Runtime
SAT Solver	1
Desired Uniform Generator	10
XORSample (2012 state of the art)	50000
UniGen (2015)	21

(CMV, CAV13)
(CMV, DAC14)
(CFMSV, TACAS15)
Experiments over 200+ benchmarks
Closer to technical transfer

Uniformity

- Benchmark: case110.cnf; \#var: 287; \#clauses: 1263
- Total Runs: 4×10^{6}; Total Solutions : 16384

Statistically Indistinguishable

- Benchmark: case110.cnf; \#var: 287; \#clauses: 1263
- Total Runs: 4×10^{6}; Total Solutions : 16384

Usages of Open Source Tool: UniGen

Requires combinations of ideas from theory, statistics and systems

Mission 2025: Constrained Counting and Sampling Revolution

- Tighter integration between solvers and algorithms

Mission 2025: Constrained Counting and Sampling Revolution

- Tighter integration between solvers and algorithms
- Exploring solution space structure of CNF + XOR formulas
(DMV, IJCAI16),

Mission 2025: Constrained Counting and Sampling Revolution

- Tighter integration between solvers and algorithms
- Exploring solution space structure of CNF+XOR formulas
(DMV, IJCAI16),

- Beyond Boolean variables - without bit blasting

Mission 2025: Constrained Counting and Sampling Revolution

Challenge Problems

Mission 2025: Constrained Counting and Sampling Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

Mission 2025: Constrained Counting and Sampling Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid
Privacy Leakage Measurement for $\mathrm{C}++$ program with 100 lines

Mission 2025: Constrained Counting and Sampling Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid
Privacy Leakage Measurement for C++ program with 100 lines
Artificial Intelligence Inference for Bayesian network with 1K nodes

Mission 2025: Constrained Counting and Sampling Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid
Privacy Leakage Measurement for $\mathrm{C}++$ program with 100 lines
Artificial Intelligence Inference for Bayesian network with 1K nodes
The Potential of Hashing-based Framework
Machine Learning Probabilistic programming

Mission 2025: Constrained Counting and Sampling Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid
Privacy Leakage Measurement for $\mathrm{C}++$ program with 100 lines
Artificial Intelligence Inference for Bayesian network with 1K nodes
The Potential of Hashing-based Framework
Machine Learning Probabilistic programming
Theory Classification of Approximate counting complexity

Mission 2025: Constrained Counting and Sampling Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid
Privacy Leakage Measurement for $\mathrm{C}++$ program with 100 lines
Artificial Intelligence Inference for Bayesian network with 1K nodes
The Potential of Hashing-based Framework
Machine Learning Probabilistic programming
Theory Classification of Approximate counting complexity
Databases Streaming algorithms

Collaborators

Part I

Backup

Highly Accurate Estimates

