
Constrained Counting and Sampling:
Bridging the Gap between Theory and Practice

Kuldeep S. Meel

Rice University, USA

www.kuldeepmeel.com

kuldeep@rice.edu

1 / 44

www.kuldeepmeel.com
kuldeep@rice.edu

• Data

• Uncertainty

2 / 44

• Data

• Uncertainty

2 / 44

• Data

• Uncertainty

2 / 44

• Data

• Uncertainty

2 / 44

• Data

• Uncertainty

• Scalable

• Guarantees of Accuracy

2 / 44

Applications

Network
Reliability

Probabilistic
Inference

Side-
channel
attacks

Hardware
Validation

Theory

Universal
Hashing

Computational
Complexity

Randomized
Algorithms

Open Source Tools

ApproxMC

UniGen
MIS

3 / 44

Applications

Network
Reliability

Probabilistic
Inference

Side-
channel
attacks

Hardware
Validation

Theory

Universal
Hashing

Computational
Complexity

Randomized
Algorithms

Open Source Tools

ApproxMC

UniGen
MIS

Constrained Counting and Sampling

3 / 44

A Tale of Constraints

Boolean Satisfiability (SAT): Given a Boolean expression, using “and”
(∧), “or” (∨), and “not” (¬) is there a solution, i.e., an assignment of
0’s and 1’s to the variables that makes the expression equal 1?

Example: (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ ¬x3)

x1 = 1, x2 = 1, x3 = 1

4 / 44

A Tale of Constraints

Boolean Satisfiability (SAT): Given a Boolean expression, using “and”
(∧), “or” (∨), and “not” (¬) is there a solution, i.e., an assignment of
0’s and 1’s to the variables that makes the expression equal 1?

Example: (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ ¬x3)

x1 = 1, x2 = 1, x3 = 1

Ernst Schroder, 1841-1902: “Getting a handle on the consequences of
any premises, or at least the fastest method for obtaining these
consequences, seems to me to be one of the noblest, if not the ultimate
goal of mathematics and logic.”

Cook, 1971; Levin, 1973: SAT is NP-complete

4 / 44

The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical
problems that involve many thousands of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

5 / 44

The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical
problems that involve many thousands of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Industrial usage of SAT Solvers: hardware verification, planning,
Genome Rearrangement, Telecom Feature Subscription, Resource
Constrained Scheduling, Noise Analysis, Games, · · ·

5 / 44

The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical
problems that involve many thousands of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Industrial usage of SAT Solvers: hardware verification, planning,
Genome Rearrangement, Telecom Feature Subscription, Resource
Constrained Scheduling, Noise Analysis, Games, · · ·

Now that SAT is “easy”, it is time to look beyond satisfiability

5 / 44

Constrained Counting and Sampling

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

• Sol(F) = { solutions of F }

• Constrained Counting: Determine |Sol(F)|

• Constrained Sampling: Randomly sample from Sol(F) such that

Pr[y is sampled] = 1
|Sol(F)|

6 / 44

Constrained Counting and Sampling

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• Sol(F) = { solutions of F }

• W (F) = Σy∈Sol(F)W (y)

• Constrained Counting: Determine W (F)

• Constrained Sampling: Randomly sample from Sol(F) such that

Pr[y is sampled] = W (y)
W (F)

6 / 44

Constrained Counting and Sampling

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• Sol(F) = { solutions of F }

• W (F) = Σy∈Sol(F)W (y)

• Constrained Counting: Determine W (F)

• Constrained Sampling: Randomly sample from Sol(F) such that

Pr[y is sampled] = W (y)
W (F)

• F := (X1 ∨ X2);
W [(0, 0)] = W [(1, 1)] = 1

6 ;W [(1, 0)] = W [(0, 1)] = 1
3

• Sol(F) = {(0, 1), (1, 0), (1, 1)}

6 / 44

Constrained Counting and Sampling

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• Sol(F) = { solutions of F }

• W (F) = Σy∈Sol(F)W (y)

• Constrained Counting: Determine W (F)

• Constrained Sampling: Randomly sample from Sol(F) such that

Pr[y is sampled] = W (y)
W (F)

• F := (X1 ∨ X2);
W [(0, 0)] = W [(1, 1)] = 1

6 ;W [(1, 0)] = W [(0, 1)] = 1
3

• Sol(F) = {(0, 1), (1, 0), (1, 1)}

• W (F) = 1
3 + 1

3 + 1
6 = 5

6

6 / 44

Today’s Menu

Network Reliability

Probabilistic Inference

7 / 44

Today’s Menu

Network Reliability

Probabilistic Inference Constrained Counting

7 / 44

Today’s Menu

Network Reliability

Probabilistic Inference Constrained Counting Hashing Framework

7 / 44

Today’s Menu

Network Reliability

Probabilistic Inference Constrained Counting Hashing Framework

Hardware Validation Constrained Sampling

7 / 44

8 / 44

8 / 44

Can we reliably predict the effect of natural disasters on critical

infrastructure such as power grids?

8 / 44

Can we reliably predict the effect of natural disasters on critical

infrastructure such as power grids?

Can we predict likelihood of a region facing blackout?

8 / 44

Reliability of Critical Infrastructure Networks

Plantersville, SC

• G = (V ,E); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[s and t are disconnected]?

9 / 44

Reliability of Critical Infrastructure Networks

Plantersville, SC

• G = (V ,E); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

9 / 44

Reliability of Critical Infrastructure Networks

Plantersville, SC

• G = (V ,E); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

9 / 44

Reliability of Critical Infrastructure Networks

Plantersville, SC

• G = (V ,E); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

9 / 44

Reliability of Critical Infrastructure Networks

Plantersville, SC

• G = (V ,E); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

Constrained Counting (DMPV, AAAI 17)

9 / 44

Probabilistic Models

Patient Cough Smoker Asthma

Alice 1 0 0

Bob 0 0 1

Randee 1 0 0

Tova 1 1 1

Azucena 1 0 0

Georgine 1 1 0

Shoshana 1 0 1

Lina 0 0 1

Hermine 1 1 1

Smoker (S)

Cough (C)

Asthma (A)

10 / 44

Probabilistic Models

Patient Cough Smoker Asthma

Alice 1 0 0

Bob 0 0 1

Randee 1 0 0

Tova 1 1 1

Azucena 1 0 0

Georgine 1 1 0

Shoshana 1 0 1

Lina 0 0 1

Hermine 1 1 1

Smoker (S)

Cough (C)

Asthma (A)

10 / 44

Probabilistic Models

Patient Cough Smoker Asthma

Alice 1 0 0

Bob 0 0 1

Randee 1 0 0

Tova 1 1 1

Azucena 1 0 0

Georgine 1 1 0

Shoshana 1 0 1

Lina 0 0 1

Hermine 1 1 1

Smoker (S)

Cough (C)

Asthma (A)

Pr[Asthma(A) | Cough(C)] =
Pr[A ∩ C]

Pr[C]

10 / 44

Probabilistic Models

Patient Cough Smoker Asthma

Alice 1 0 0

Bob 0 0 1

Randee 1 0 0

Tova 1 1 1

Azucena 1 0 0

Georgine 1 1 0

Shoshana 1 0 1

Lina 0 0 1

Hermine 1 1 1

Smoker (S)

Cough (C)

Asthma (A)

Pr[Asthma(A) | Cough(C)] =
Pr[A ∩ C]

Pr[C]

F = A ∧ C

10 / 44

Probabilistic Models

Patient Cough Smoker Asthma

Alice 1 0 0

Bob 0 0 1

Randee 1 0 0

Tova 1 1 1

Azucena 1 0 0

Georgine 1 1 0

Shoshana 1 0 1

Lina 0 0 1

Hermine 1 1 1

Smoker (S)

Cough (C)

Asthma (A)

Pr[Asthma(A) | Cough(C)] =
Pr[A ∩ C]

Pr[C]

F = A ∧ C

Sol(F) = {(A,C, S), (A,C, S̄)}

10 / 44

Probabilistic Models

Patient Cough Smoker Asthma

Alice 1 0 0

Bob 0 0 1

Randee 1 0 0

Tova 1 1 1

Azucena 1 0 0

Georgine 1 1 0

Shoshana 1 0 1

Lina 0 0 1

Hermine 1 1 1

Smoker (S)

Cough (C)

Asthma (A)

Pr[Asthma(A) | Cough(C)] =
Pr[A ∩ C]

Pr[C]

F = A ∧ C

Sol(F) = {(A,C, S), (A,C, S̄)}

Pr[A ∩ C] = Σy∈Sol(F)W (y) = W (F)

Constrained Counting

10 / 44

Prior Work

Strong guarantees but poor scalability

• Exact counters (Birnbaum and Lozinskii 1999, Jr. and Schrag 1997, Sang et

al. 2004, Thurley 2006)

• Hashing-based approach (Stockmeyer 1983, Jerrum Valiant and Vazirani

1986)

Weak guarantees but impressive scalability

• Bounding counters (Gomes et al. 2007,Kroc, Sabharwal, and Selman 2008,

Gomes, Sabharwal, and Selman 2006, Kroc, Sabharwal, and Selman 2008)

• Sampling-based techniques (Wei and Selman 2005, Rubinstein 2012,

Gogate and Dechter 2011)

11 / 44

Prior Work

Strong guarantees but poor scalability

• Exact counters (Birnbaum and Lozinskii 1999, Jr. and Schrag 1997, Sang et

al. 2004, Thurley 2006)

• Hashing-based approach (Stockmeyer 1983, Jerrum Valiant and Vazirani

1986)

Weak guarantees but impressive scalability

• Bounding counters (Gomes et al. 2007,Kroc, Sabharwal, and Selman 2008,

Gomes, Sabharwal, and Selman 2006, Kroc, Sabharwal, and Selman 2008)

• Sampling-based techniques (Wei and Selman 2005, Rubinstein 2012,

Gogate and Dechter 2011)

How to bridge this gap?

11 / 44

Constrained Counting

• ExactCount(F ,W): Compute W (F)?

– #P-complete (Valiant 1979)

12 / 44

Constrained Counting

• ExactCount(F ,W): Compute W (F)?

– #P-complete (Valiant 1979)

• ApproxCount(F ,W , ε, δ): Compute C such that

Pr[
W (F)

1 + ε
≤ C ≤W (F)(1 + ε)] ≥ 1− δ

12 / 44

From Weighted to Unweighted Counting

Boolean Formula F and weight
function W : {0, 1}n → Q≥0

Boolean Formula F ′

W (F) = c(W)× |Sol(F ′)|

• Key Idea: Encode weight function as a set of constraints

(CFMV, IJCAI15)

13 / 44

From Weighted to Unweighted Counting

Boolean Formula F and weight
function W : {0, 1}n → Q≥0

Boolean Formula F ′

W (F) = c(W)× |Sol(F ′)|

• Key Idea: Encode weight function as a set of constraints

(CFMV, IJCAI15)

How do we estimate |Sol(F ′)|?

13 / 44

Counting in Singapore

How many people in Singapore like coffee?

• Population of NUS = 5.6M

• Assign every person a unique (n =) 23 bit identifier (2n = 5.6M)

14 / 44

Counting in Singapore

How many people in Singapore like coffee?

• Population of NUS = 5.6M

• Assign every person a unique (n =) 23 bit identifier (2n = 5.6M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 5.6M/50

14 / 44

Counting in Singapore

How many people in Singapore like coffee?

• Population of NUS = 5.6M

• Assign every person a unique (n =) 23 bit identifier (2n = 5.6M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 5.6M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

14 / 44

Counting in Singapore

How many people in Singapore like coffee?

• Population of NUS = 5.6M

• Assign every person a unique (n =) 23 bit identifier (2n = 5.6M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 5.6M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• NP Query: Find a person who likes coffee

14 / 44

Counting in Singapore

How many people in Singapore like coffee?

• Population of NUS = 5.6M

• Assign every person a unique (n =) 23 bit identifier (2n = 5.6M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 5.6M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• NP Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

14 / 44

Counting in Singapore

How many people in Singapore like coffee?

• Population of NUS = 5.6M

• Assign every person a unique (n =) 23 bit identifier (2n = 5.6M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 5.6M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• NP Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

14 / 44

Counting in Singapore

How many people in Singapore like coffee?

• Population of NUS = 5.6M

• Assign every person a unique (n =) 23 bit identifier (2n = 5.6M)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 5.6M/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• NP Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?

14 / 44

As Simple as Counting Dots

As Simple as Counting Dots

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

15 / 44

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

16 / 44

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

Challenge 2 How many cells?

16 / 44

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}

16 / 44

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}
• Deterministic h unlikely to work

16 / 44

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F) ∩ {y | h(y) = α}
• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash
functions
Universal Hashing (Carter and Wegman 1977)

16 / 44

2-Universal Hashing

• Let H be family of 2-universal hash functions mapping {0, 1}n to
{0, 1}m

∀y1, y2 ∈ {0, 1}
n, α1, α2 ∈ {0, 1}

m, h
R
←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(

1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(

1

2m

)2

17 / 44

2-Universal Hashing

• Let H be family of 2-universal hash functions mapping {0, 1}n to
{0, 1}m

∀y1, y2 ∈ {0, 1}
n, α1, α2 ∈ {0, 1}

m, h
R
←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(

1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(

1

2m

)2

• The power of 2-universality

– Z be the number of solutions in a randomly chosen cell

– E[Z] = |Sol(F)|
2m

– σ2[Z] ≤ E[Z]

17 / 44

2-Universal Hashing

• Let H be family of 2-universal hash functions mapping {0, 1}n to
{0, 1}m

∀y1, y2 ∈ {0, 1}
n, α1, α2 ∈ {0, 1}

m, h
R
←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(

1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(

1

2m

)2

• The power of 2-universality

– Z be the number of solutions in a randomly chosen cell

– E[Z] = |Sol(F)|
2m

– σ2[Z] ≤ E[Z]

17 / 44

2-Universal Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs
• Pick every Xi with prob. 1

2 and XOR them
– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2

– Expected size of each XOR: n
2

18 / 44

2-Universal Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs
• Pick every Xi with prob. 1

2 and XOR them
– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2

– Expected size of each XOR: n
2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)

X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

18 / 44

2-Universal Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs
• Pick every Xi with prob. 1

2 and XOR them
– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2

– Expected size of each XOR: n
2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)

X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• Performance of state of the art SAT solvers degrade with increase
in the size of XORs (SAT Solvers != SAT oracles)

18 / 44

2-Universal Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs
• Pick every Xi with prob. 1

2 and XOR them
– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2

– Expected size of each XOR: n
2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)

X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• Performance of state of the art SAT solvers degrade with increase
in the size of XORs (SAT Solvers != SAT oracles)

• Two orders of magnitude reduction in the size of XORs by
embedding formula into smaller dimension (“Independent
Support”)

(IMMV CP15, Best Student Paper) (IMMV Constraints16, Invited Paper)
18 / 44

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Independent Support-based 2-Universal Hash
Functions

Challenge 2 How many cells?

19 / 44

Question 2: How many cells?

• A cell is small if it has less than thresh = 5(1 + 1
ε
)2 solutions

20 / 44

Question 2: How many cells?

• A cell is small if it has less than thresh = 5(1 + 1
ε
)2 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

20 / 44

Question 2: How many cells?

• A cell is small if it has less than thresh = 5(1 + 1
ε
)2 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh

20 / 44

ApproxMC(F , ε, δ)

of sols
≤ thresh?

21 / 44

ApproxMC(F , ε, δ)

of sols
≤ thresh?

of sols
≤ thresh?

No

21 / 44

ApproxMC(F , ε, δ)

of sols
≤ thresh?

of sols
≤ thresh?

No No

21 / 44

ApproxMC(F , ε, δ)

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

· · ·

No No

No

21 / 44

ApproxMC(F , ε, δ)

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

Estimate =
of sols ×
of cells # of sols

≤ thresh?

· · ·

No No

No

Yes

21 / 44

ApproxMC(F , ε, δ)

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh

– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh

– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi)

– If Query i returns YES, then Query i + 1 must return YES

22 / 44

ApproxMC(F , ε, δ)

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh

– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh

– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi)

– If Query i returns YES, then Query i + 1 must return YES
– Logarithmic search (# of SAT calls: O(log n))

22 / 44

ApproxMC(F , ε, δ)

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh

– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh

– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi)

– If Query i returns YES, then Query i + 1 must return YES
– Logarithmic search (# of SAT calls: O(log n))

• Will this work? Will the “m” where we stop be close to m∗?

22 / 44

ApproxMC(F , ε, δ)

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh

– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh

– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi)

– If Query i returns YES, then Query i + 1 must return YES
– Logarithmic search (# of SAT calls: O(log n))

• Will this work? Will the “m” where we stop be close to m∗?

– Challenge Query i and Query j are not independent
– Independence crucial to analysis (Stockmeyer 1983, · · ·)

22 / 44

ApproxMC(F , ε, δ)

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh

– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh

– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi)

– If Query i returns YES, then Query i + 1 must return YES
– Logarithmic search (# of SAT calls: O(log n))

• Will this work? Will the “m” where we stop be close to m∗?

– Challenge Query i and Query j are not independent
– Independence crucial to analysis (Stockmeyer 1983, · · ·)
– Key Insight: The probability of making a bad choice of Qi is very

small for i ≪ m∗

(CMV, IJCAI16)

22 / 44

Taming the Curse of Dependence

Let 2m
∗

= |Sol(F)|
thresh

(m∗ = log(|Sol(F)|
thresh

))

Lemma (1)

ApproxMC (F , ε, δ) terminates with m ∈ {m∗ − 1,m∗} with probability
≥ 0.8

Lemma (2)

For m ∈ {m∗ − 1,m∗}, estimate obtained from a randomly picked cell
lies within a tolerance of ε of |Sol(F)| with probability ≥ 0.8

23 / 44

ApproxMC(F , ε, δ)

Theorem (Correctness)

Pr
[

|Sol(F)|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(F)|(1 + ε)
]

≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
log n log(1

δ
)

ε2
) calls to SAT oracle.

• Prior work required O(
n log n log(1

δ
)

ε
) calls to SAT oracle (Stockmeyer

1983)

24 / 44

Reliability of Critical Infrastructure Networks

Plantersville, SC

• G = (V ,E);
source node: s

• Compute Pr[t is
disconnected]?

10 20 30 40 50 60

200

400

600

800

1,000

Terminal

T
im

e(
se
co
n
d
s)

Timeout = 1000 seconds

(DMPV, AAAI17)
25 / 44

Reliability of Critical Infrastructure Networks

Plantersville, SC

• G = (V ,E);
source node: s

• Compute Pr[t is
disconnected]?

10 20 30 40 50 60

200

400

600

800

1,000

Terminal

T
im

e(
se
co
n
d
s)

RDA

Timeout = 1000 seconds

(DMPV, AAAI17)
25 / 44

Reliability of Critical Infrastructure Networks

Plantersville, SC

• G = (V ,E);
source node: s

• Compute Pr[t is
disconnected]?

10 20 30 40 50 60

200

400

600

800

1,000

Terminal

T
im

e(
se
co
n
d
s)

RDA
ApproxMC

Timeout = 1000 seconds

(DMPV, AAAI17)
25 / 44

Beyond Network Reliability

ApproxMC
Network
Reliability

Probabilistic
Inference

Quantified
Information

Flow

Program
Synthesis

(DMPV,
AAAI17)

(CFMSV, AAAI14), (IMMV,
CP15), (CFMV, IJCAI15), (CMMV,

AAAI16), (CMV, IJCAI16)

Fremont,
Rabe and
Seshia 2017

(CFMSV, AAAI14), Fremont
et al 2017, Ellis et al 2017

26 / 44

Network Reliability

Probabilistic Inference Constrained Counting

27 / 44

Network Reliability

Probabilistic Inference Constrained Counting

Hashing Framework

27 / 44

Network Reliability

Probabilistic Inference Constrained Counting

Hashing FrameworkHardware Validation

27 / 44

Hardware Validation

• Design is simulated with test vectors
(values of a and b)

• Results from simulation compared to
intended results

28 / 44

Hardware Validation

• Design is simulated with test vectors
(values of a and b)

• Results from simulation compared to
intended results

• Challenge: How do we generate test
vectors?

– 2128 combinations for a toy circuit

28 / 44

Hardware Validation

• Design is simulated with test vectors
(values of a and b)

• Results from simulation compared to
intended results

• Challenge: How do we generate test
vectors?

– 2128 combinations for a toy circuit

• Use constraints to represent interesting
verification scenarios

28 / 44

Constrained-Random Simulation

Constraints

• Designers:

– a+64 11 ∗ 32b = 12
– a <64 (b >> 4)

• Past Experience:

– 40 <64 34 + a <64 5050
– 120 <64 b <64 230

• Users:

– 232 ∗ 32a+64 b! = 1100
– 1020 <64 (b/642)+64 a <64 2200

Test vectors: random solutions of con-
straints

29 / 44

Constrained Sampling

• Given:

– Set of Constraints F over variables X1,X2, · · ·Xn

• Uniform Sampler

∀y ∈ Sol(F),Pr[y is output] =
1

|Sol(F)|

• Almost-Uniform Sampler

∀y ∈ Sol(F),
1

(1 + ε)|Sol(F)|
≤ Pr[y is output] ≤

(1 + ε)

|Sol(F)|

30 / 44

Close Cousins: Counting and Sampling

• Approximate counting and almost-uniform sampling are
inter-reducible (Jerrum, Valiant and Vazirani, 1986)

• Is the reduction efficient?

31 / 44

Close Cousins: Counting and Sampling

• Approximate counting and almost-uniform sampling are
inter-reducible (Jerrum, Valiant and Vazirani, 1986)

• Is the reduction efficient?

– Almost-uniform sampler (JVV) require linear number of
approximate counting calls

31 / 44

Prior Work

Strong guarantees but poor scalability

• Polynomial calls to NP oracle (Bellare, Goldreich and Petrank,2000)

• BDD-based techniques (Yuan et al 1999, Yuan et al 2004, Kukula and

Shiple 2000)

• Reduction to approximate counting (Jerrum, Valiant and Vazirani 1986)

Weak guarantees but impressive scalability

• Randomization in SAT solvers (Moskewicz 2001, Nadel 2011)

• MCMC-based approaches (Sinclair 1993, Jerrum and Sinclair 1996,

Kitchen and Kuehlmann 2007,...)

• Belief Networks (Dechter 2002, Gogate and Dechter 2006)

32 / 44

Prior Work

Strong guarantees but poor scalability

• Polynomial calls to NP oracle (Bellare, Goldreich and Petrank,2000)

• BDD-based techniques (Yuan et al 1999, Yuan et al 2004, Kukula and

Shiple 2000)

• Reduction to approximate counting (Jerrum, Valiant and Vazirani 1986)

Weak guarantees but impressive scalability

• Randomization in SAT solvers (Moskewicz 2001, Nadel 2011)

• MCMC-based approaches (Sinclair 1993, Jerrum and Sinclair 1996,

Kitchen and Kuehlmann 2007,...)

• Belief Networks (Dechter 2002, Gogate and Dechter 2006)

How to bridge this gap?

32 / 44

Key Ideas

• For right choice of number of cells, large number of cells are small

– almost all the cells are roughly equal

• Check if a randomly picked cell is small

• If yes, pick a solution randomly from randomly picked cell

33 / 44

Key Ideas

• For right choice of number of cells, large number of cells are small

– almost all the cells are roughly equal

• Check if a randomly picked cell is small

• If yes, pick a solution randomly from randomly picked cell

Challenge: How many cells?

33 / 44

How many cells?

• Desired Number of cells: 2m
∗

= |Sol(F)|
thresh

(m∗ = log |Sol(F)|
thresh

)

– ApproxMC(F , ε, δ) returns C such that

Pr
[

|Sol(F)|
1+ε

≤ C ≤ |Sol(F)|(1 + ε)
]

≥ 1− δ

– m̃ = log C
thresh

34 / 44

How many cells?

• Desired Number of cells: 2m
∗

= |Sol(F)|
thresh

(m∗ = log |Sol(F)|
thresh

)

– ApproxMC(F , ε, δ) returns C such that

Pr
[

|Sol(F)|
1+ε

≤ C ≤ |Sol(F)|(1 + ε)
]

≥ 1− δ

– m̃ = log C
thresh

– Check for m = m̃ − 1, m̃, m̃ + 1 if a randomly chosen cell is small

34 / 44

How many cells?

• Desired Number of cells: 2m
∗

= |Sol(F)|
thresh

(m∗ = log |Sol(F)|
thresh

)

– ApproxMC(F , ε, δ) returns C such that

Pr
[

|Sol(F)|
1+ε

≤ C ≤ |Sol(F)|(1 + ε)
]

≥ 1− δ

– m̃ = log C
thresh

– Check for m = m̃ − 1, m̃, m̃ + 1 if a randomly chosen cell is small
– Not just a practical hack required non-trivial proof

(CMV, CAV13)

(CMV, DAC14)

(CFMSV, TACAS15)

34 / 44

Theoretical Guarantees

Theorem (Almost-Uniformity)

∀y ∈ Sol(F), 1
(1+ε)|Sol(F)| ≤ Pr[y is output] ≤ 1+ε

|Sol(F)|

35 / 44

Theoretical Guarantees

Theorem (Almost-Uniformity)

∀y ∈ Sol(F), 1
(1+ε)|Sol(F)| ≤ Pr[y is output] ≤ 1+ε

|Sol(F)|

Theorem (Query)

For a formula F over n variables UniGen makes one call to
approximate counter

35 / 44

Theoretical Guarantees

Theorem (Almost-Uniformity)

∀y ∈ Sol(F), 1
(1+ε)|Sol(F)| ≤ Pr[y is output] ≤ 1+ε

|Sol(F)|

Theorem (Query)

For a formula F over n variables UniGen makes one call to
approximate counter

• JVV (Jerrum, Valiant and Vazirani 1986) makes n calls

35 / 44

Three Orders of Improvement

Relative Runtime

SAT Solver 1

Desired Uniform Generator 10

(CMV, CAV13)

(CMV, DAC14)

(CFMSV, TACAS15)

Experiments over 200+ benchmarks

36 / 44

Three Orders of Improvement

Relative Runtime

SAT Solver 1

Desired Uniform Generator 10

XORSample (2012 state of the art) 50000

(CMV, CAV13)

(CMV, DAC14)

(CFMSV, TACAS15)

Experiments over 200+ benchmarks

36 / 44

Three Orders of Improvement

Relative Runtime

SAT Solver 1

Desired Uniform Generator 10

XORSample (2012 state of the art) 50000

UniGen (2015) 21

(CMV, CAV13)

(CMV, DAC14)

(CFMSV, TACAS15)

Experiments over 200+ benchmarks

36 / 44

Three Orders of Improvement

Relative Runtime

SAT Solver 1

Desired Uniform Generator 10

XORSample (2012 state of the art) 50000

UniGen (2015) 21

(CMV, CAV13)

(CMV, DAC14)

(CFMSV, TACAS15)

Experiments over 200+ benchmarks
Closer to technical transfer

36 / 44

Uniformity

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4× 106; Total Solutions : 16384

37 / 44

Statistically Indistinguishable

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4× 106; Total Solutions : 16384

38 / 44

Usages of Open Source Tool: UniGen

UniGen
Hardware
Validation

Music
Improvisation

Pattern
Mining

Quantified
Information

Flow

Problem
Generation

39 / 44

2012 2013 2014 2015 2016

101

102

103

104

105

CP 13
CAV 13

DAC 14
AAAI 14

IJCAI15
CP 15
TACAS 15

IJCAI 16a
IJCAI16b
AAAI16
Constraints16

S
p
ee
d
u
p
ov
er

20
12

st
at
e
of

th
e
ar
t

40 / 44

2012 2014 2016 2018 2020 2022 2024 2025

101

102

103

104

105

S
p
ee
d
u
p
ov
er

20
12

st
at
e
of

th
e
ar
t

Requires combinations of ideas from theory, statistics and systems

40 / 44

Mission 2025: Constrained Counting and Sampling

Revolution

• Tighter integration between solvers and algorithms

41 / 44

Mission 2025: Constrained Counting and Sampling

Revolution

• Tighter integration between solvers and algorithms

• Exploring solution space structure of CNF+XOR formulas
(DMV, IJCAI16),

0 1 2 3 4 5 6

r: Density of 3-clauses

0.0

0.2

0.4

0.6

0.8

1.0

1.2
s:

D
en
si
ty

o
f
X
O
R
-c
la
u
se
s

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.00

41 / 44

Mission 2025: Constrained Counting and Sampling

Revolution

• Tighter integration between solvers and algorithms

• Exploring solution space structure of CNF+XOR formulas
(DMV, IJCAI16),

0 1 2 3 4 5 6

r: Density of 3-clauses

0.0

0.2

0.4

0.6

0.8

1.0

1.2
s:

D
en
si
ty

o
f
X
O
R
-c
la
u
se
s

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.00

• Beyond Boolean variables – without bit blasting

41 / 44

Mission 2025: Constrained Counting and Sampling

Revolution

Challenge Problems

42 / 44

Mission 2025: Constrained Counting and Sampling

Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

42 / 44

Mission 2025: Constrained Counting and Sampling

Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

Privacy Leakage Measurement for C++ program with 100 lines

42 / 44

Mission 2025: Constrained Counting and Sampling

Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

Privacy Leakage Measurement for C++ program with 100 lines

Artificial Intelligence Inference for Bayesian network with 1K nodes

42 / 44

Mission 2025: Constrained Counting and Sampling

Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

Privacy Leakage Measurement for C++ program with 100 lines

Artificial Intelligence Inference for Bayesian network with 1K nodes

The Potential of Hashing-based Framework

Machine Learning Probabilistic programming

42 / 44

Mission 2025: Constrained Counting and Sampling

Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

Privacy Leakage Measurement for C++ program with 100 lines

Artificial Intelligence Inference for Bayesian network with 1K nodes

The Potential of Hashing-based Framework

Machine Learning Probabilistic programming

Theory Classification of Approximate counting complexity

42 / 44

Mission 2025: Constrained Counting and Sampling

Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

Privacy Leakage Measurement for C++ program with 100 lines

Artificial Intelligence Inference for Bayesian network with 1K nodes

The Potential of Hashing-based Framework

Machine Learning Probabilistic programming

Theory Classification of Approximate counting complexity

Databases Streaming algorithms

42 / 44

Collaborators

43 / 44

Part I

Backup

44 / 44

Highly Accurate Estimates

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Terminal

E
rr
or

44 / 44

Highly Accurate Estimates

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Terminal

E
rr
or

Allowed

44 / 44

Highly Accurate Estimates

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Terminal

E
rr
or

Allowed
ApproxMC

44 / 44

	Backup

