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Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

• Sol(F ) = { solutions of F }

• Counting: Determine |Sol(F )|
– Approximation: Pr

[
|Sol(F )|
1+ε ≤ c ≤ |Sol(F )|(1 + ε)

]
≥ 1− δ

• Given F := (X1 ∨ X2)

• Sol(F ) = {(0, 1), (1, 0), (1, 1)}
• |Sol(F )| = 3
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Applications across Computer Science

Counting
Network

Reliability

Hardware
Validation

Explainable
AI

Neural
Network

Robustness

Quantified
Information

Flow
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Through the Lens of SAT Revolution

Obs 1 SAT Oracle 6= NP Oracle

• Returns UNSAT with a proof
• Return a satisfying assignment if satisfiable

Obs 2 SAT Solver 6= SAT oracle

• The performance of solver depends on the formulas

Obs 3 Memoryfulness

• Incremental Solving: Often easier to solve F followed
by G if we G can be written as G = F ∧ H
• If F → C then (F ∧ H) =⇒ C
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SAT Oracle vs NP Oracle vs SAT Solver

ThreshSAT(F, thresh): Does F has ≤ thresh solutions?
BoundedSAT(F, thresh): |Sol(F )| If F has ≤ thresh solutions, else ⊥?
• NP Oracle

– ThreshSAT: #Queries: 1 Size: |F | · thresh
– BoundedSAT: #Queries: thresh Size: |F | · thresh

• SAT Oracle

– ThreshSAT: #Queries: 1 Size: |F | · thresh
– BoundedSAT: #Queries: thresh Size: |F |+ n · thresh

• SAT Solver

– ThreshSAT: #Queries: thresh Size: |F |+ n · thresh
– BoundedSAT: #Queries: thresh Size: |F |+ n · thresh

Both ThreshSAT and BoundedSAT have same complexity!
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So What Makes Hashing-based Techniques Work?

• Algorithmic

– From Stockmeyer to ApproxMC
– The Boon of Dependence
– Sparse XORs

• System: Efficient CNF+XOR Solving (Soos’ possible talk in SAT
Seminar?)
• Conceptual

– Independent Support
– Projection

The Rise of Hashing-based Approach: Promise of Scalability and
Guarantees
(S83,GSS06,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16,

KM18,ATD18,SM19,ABM20,SGM20)
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As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells
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2-wise independent Hashing

• Let H be family of 2-wise independent hash functions mapping
{0, 1}n to {0, 1}m

∀y1, y2 ∈ {0, 1}n, α1, α2 ∈ {0, 1}m, h R←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(
1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(
1

2m

)2

• The power of 2-wise independentity
– Z be the number of solutions in a randomly chosen cell

– E[Z ] = |Sol(F )|
2m

– σ2[Z ] ≤ E[Z ]

• Pr
[
E[Z ]
1+ε ≤ Z ≤ E[Z ](1 + ε)

]
≥ 1− 1

( ε
1+ε

)2(E[Z ])

• E[Z ] = c(1+εε )2 provides 1− 1
c lower bound
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2-wise independent Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2
– Expected size of each XOR: n

2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · · )

X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm
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“Stockmeyer’s Approach” S83, JVV86, BP95

Constant Factor Suffices

• (1 + ε, δ)-Approximation

Pr

[ |Sol(F )|
1 + ε

≤ ApproxCount(F , ε, δ) ≤ |Sol(F )|(1 + ε)

]
≥ 1− δ

• Constant Factor Approximation: (4,δ)

Pr

[ |Sol(F )|
4

≤ ConstantCount(F , δ) ≤ 4 · |Sol(F )|
]
≥ 1− δ

• From 4 to 2-factor
Let G = F (X1) ∧ F (X2) (i.e., two identical copies of F )

|Sol(G )|
4

≤C ≤ 4 · |Sol(G )| =⇒ |Sol(F )|
2

≤
√
C ≤ 2 · |Sol(F )|

• From 4 to (1 + ε)-factor
Construct G = F (X1) ∧ F (X2) · · ·F (X 1

ε
) And then we can take

1
ε -root
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“Stockmeyer’s Approach” S83, JVV86, BP95

• aComp(F , k)

– If |Sol(F )| ≥ 2k+1, then aComp(F , k) returns YES whp
– If |Sol(F )| < 2k , then aComp(F , k) returns NO whp

• Counter(F )

– Invoke aComp(F , k) for k = 0, 1, . . . n
– Use binary search find the first k s.t. aComp(F , k) return NO

• For (1 + ε)-approx, invoke Counter on F (X1) ∧ F (X2) · · ·F (X 1
ε
)

and return 1
ε -root

Too large queries thresh = 9
ε2

• aComp(F , k)

– Call O(log log n) calls to ThreshSAT(F ∧ Q1 ∧ . . . ∧ Qk−5, 48) and
return the median.

Too many calls due to Union Bounds
– Dependence to avoid union bounds
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ApproxMC

# of sols
≤ thresh?
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ApproxMC

# of sols
≤ thresh?

# of sols
≤ thresh?

# of sols
≤ thresh?

Estimate =
# of sols ×
# of cells # of sols

≤ thresh?

· · ·

No No

No

Yes
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ApproxMC

# of sols
≤ thresh?

# of sols
≤ thresh?

# of sols
≤ thresh?

Estimate =
# of sols ×
# of cells # of sols

≤ thresh?

· · ·

No No

No

Yes

Repeat O(log(1/δ)) times and return the median
13/40



ApproxMC

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F )|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh
– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh
– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as BoundedSAT(F ∧ Q1 ∧ Q2 · · · ∧ Qm, thresh)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi )

– If Query i returns YES, then Query i + 1 must return YES

– Logarithmic search (# of SAT calls: O(log n))
– Incremental Search

• The Boon of Dependence

– Ei :
∣∣#(F ∧ Q1 ∧ Q2 · · · ∧ Qi )− |Sol(F )|2i

∣∣ ≥ (1 + ε) |Sol(F )|2i

– (Loosely), Ei ⊆ Ei+1 for i < m ∗ −2
– (Loosely), Ej ⊇ Ej+1 for j > m∗ + 1
– Pr[Error] = Pr[Em∗−2] + Pr[Em∗−1] + Pr[Em∗ ] + Pr[Em∗+1]
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ApproxMC

Theorem (Correctness)

Pr
[
|Sol(F )|
1+ε ≤ ApproxMC(F , ε, δ) ≤ |Sol(F )|(1 + ε)

]
≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
log n log( 1

δ
)

ε2
) calls to SAT oracle.

Theorem (FPRAS for DNF; (MSV, FSTTCS 17; CP 18, IJCAI-19))

If F is a DNF formula, then ApproxMC is FPRAS – different from the
Monte-Carlo based FPRAS for DNF (Karp, Luby 1983)
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A Practical Counter
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The Hope of Short XORs

• If we pick every variable Xi with probability p .

– Expected Size of each XOR: np

– E[Zm] = |Sol(F )|
2m

– σ2[Zm] ≤ E[Zm] +
∑

σ1∈Sol(F )

∑
σ2∈Sol(F )
w=d(σ1,σ2)

r(w ,m)

I where, r(w ,m) =
((

1
2

+ (1−2p)w

2

)m

− 1
2m

)
– For p = 1

2 , we have σ2[Zm]
E[Zm]

≤ 1

• Earlier Attempts (GSS07,EGSS14,ZCSE16,AD17,ATD18)

–
∑

σ1∈Sol(F )

∑
σ2∈Sol(F )
w=d(σ1,σ2)

r(w ,m) ≤∑σ1∈Sol(F )
∑n

w=0

(
n
w

)
r(w ,m)

–
(
n
w

)
grows very fast with n, so could not upper bound σ2[Zm]

E[Zm]

– The weak bounds lead to significant slowdown: typically 100× to
1000× factor of slowdown! (ATD18,ABM20)
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The Power of Isoperimetric Inequalities

• ∑
σ1∈Sol(F )

∑
σ2∈Sol(F )
w=d(σ1,σ2)

r(w ,m) =
n∑

w=0
CF (w)r(w ,m)

• CF (w) = |{σ1, σ2 ∈ Sol(F ) | d(σ1, σ2) = w}|

• Isoperimetric Inequalities! (Rashtchian and Raynaud 2019)

Lemma
n∑

w=0
CF (w)r(w ,m) ≤

n∑
w=0

(8e√n·`
w

)
r(w ,m) where ` = log |Sol(F )|

–
(n
w)

(8e
√

n·`
w )
≈ ( n

` )
w
2

18/40



The Power of Isoperimetric Inequalities

• ∑
σ1∈Sol(F )

∑
σ2∈Sol(F )
w=d(σ1,σ2)

r(w ,m) =
n∑

w=0
CF (w)r(w ,m)

• CF (w) = |{σ1, σ2 ∈ Sol(F ) | d(σ1, σ2) = w}|
• Isoperimetric Inequalities! (Rashtchian and Raynaud 2019)

Lemma
n∑

w=0
CF (w)r(w ,m) ≤

n∑
w=0

(8e√n·`
w

)
r(w ,m) where ` = log |Sol(F )|

–
(n
w)

(8e
√

n·`
w )
≈ ( n

` )
w
2

18/40



From Linear to Logarithmic Size XORs

Theorem (Informal)

For all q, k , |Sol(F )| ≤ k · 2m, p = O( logmm ) we have

σ2[Zm]

E[Zm]
≤ q(a constant)

Recall, average size of XORs: n · p
Improvement of p from m/2

m to logm
m

Challenge: No meaningful bounds on |Sol(F )|
• Pr[Error] = Pr[Em∗−2] + Pr[Em∗−1] + Pr[Em∗ ] + Pr[Em∗+1]

• Key Insight: When adding m-th XOR, theoretical analysis only

requires σ2[Zm]
E[Zm]

≤ q whenever |Sol(F )| ≤ thresh · 2m

• Add m-th XOR with pm = O( logmm )
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Sparse Hash Functions

0 100 200 300 400 500 600 700 800 900 1000

m

0.1

0.2

0.3

0.4

0.5

p m

HRennes
1.1

4∗log2(m+1)
m

HRennes
1.1 : Sparse hash functions that guarantee q = 1.1
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Sparse XORs

Benchmark Vars log2(Count) ApproxMC ApproxMC+Sparse Speedup
03B-4 27966 28.55 983.72 1548.96 0.64
squaring23 710 23.11 0.66 1.21 0.55
case144 765 82.07 102.65 202.06 0.51
modexp8-4-6 83953 32.13 788.23 920.34 0.86
min-28s 3933 459.23 48.63 35.83 1.36
s9234a 7 4 6313 246.0 4.77 2.45 1.95
min-8 1545 284.78 8.86 4.59 1.93
s13207a 7 4 9386 699.0 34.94 17.05 2.05
min-16 3065 539.88 33.67 16.61 2.03
90-15-4-q 1065 839.25 273.1 135.75 2.01
s35932 15 7 17918 1761.0 – 72.32 –
s38417 3 2 25528 1663.02 – 71.04 –
75-10-8-q 460 360.13 – 4850.28 –
90-15-8-q 1065 840.0 – 3717.05 –

Remember; thresh = O(σ
2[Zm]
E[Zm]

· 1
ε2

)
σ2[Zm]
E[Zm]

≤ 1 for 2-wise independent; σ2[Zm]
E[Zm]

≤ q = 1.1 for HRennes
1.1 .
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Outline

• Algorithmic

– From Stockmeyer to ApproxMC
– The Boon of Dependence
– Sparse XORs

• System: Efficient CNF+XOR Solving (Soos’s possible talk in SAT
Seminar?)
• Conceptual

– Independent Support
– Projection
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CDCL(T)

For theories that are not efficiently simulated by CDCL
• T is the theory, e.g.:

– Gauss-Jordan Elimination [SoosNohlCastelluccia’2010]
– Pseudo-Boolean Reasoning [ChaiKuehlmann’2006]
– Symmetric Explanation Learning

[DevriendtBogaertsBruynooghe’2017]

• Theory is run side-by-side to the CDCL algorithm

• Propagate values implied by Theory given current assignment
stack of CDCL

• Conflict if Theory implies 1=0 given current assignment stack of
CDCL

• Theory must give reason for propagations&conflicts

CDCL Theory

Current assignment stack
Current set of conflict clauses

New propagations
New conflicts
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CDCL(T) Cont.

Optimizations:
• Should only send delta of assignment stack + conflict clauses

– Variables assigned (decisions + propagations)
– Variables unassigned (backtracking, restarting)
– New conflict clauses

• Theory only needs to compute delta relative to old state
• Theory can give placeholders for reasons

– If reason is needed during conflict generation, Theory is queried
– Called “lazy” (vs “greedy”) interpolant generation

CDCL Theory
Solver

Delta assignment stack
Delta conflict clauses

New propagations
New conflicts

Reason placeholders
Theory StateUpdate state

Reason queries
and answers
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CDCL(T) Gauss-Jordan Elimination: Ingredients

What components do we need?

• Extractor for XOR constraints: XORs may be encoded as CNF
• Delta update mechanism for row-echelon form matrix:

– how to handle when variable is set
– how to handle when variable is unset

• Efficient data structures to allow for quick updates

• Reason generation
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CDCL(T) Gauss-Jordan Elimination: Extraction

l1 ⊕ l2 ⊕ l3 = 1 ⇔ l1 ∨ l2 ∨ l3∧
l1 ∨ l2 ∨ l3∧
l1 ∨ l2 ∨ l3∧
l1 ∨ l2 ∨ l3∧

l1 ⊕ l2 ⊕ l3 = 1 ← l1 ∨ l2 ∨ ∧
l1 ∨ l2 ∨ l3∧
l1 ∨ l2 ∨ l3∧
l1 ∨ l2 ∨ l3∧

• Missing literals only mean something stronger than XOR

• XOR is still implied and should be detected
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CDCL(T) Gauss-Jordan Elimination: 2-variable watchlist

Let’s use a 2-variable watch scheme [HanJiang2012]:

• If 2 or more variables are unset in XOR constraint, it cannot
propagate or conflict

• If 1 variable is unset, it must propagate

• If 0 variable is unset, it is either satisfied or is in conflict

Watching for propagation and to perform GJE

• For every row (of XOR), there is a pivot variable (among the two
variables watching the row)

• A variable is pivot for at most one row.
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CDCL(T) GJE: Reason Clauses and Backtracking

What combination of XOR constraints gave us the propagation?

• Each row is a combination of input XOR constraints

• It is guaranteed to propagate/conflict under current variable
assignment

During backtracking:

• All previous invariants still hold

• If the column (variable) was pivot for a row, it still is

• Both watches of the row are still good and in the watchlists

• Matrix looks differently than when we last had this assignment... is
that a problem?

• No! Observe: new matrix could have been reached from the
starting position, pivoting differently(!)
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CDCL(T) Gauss-Jordan Elimination: Recap

Let’s recap! What was hard:

• Extracting XOR constraints
• Keeping CDCL and GJ in sync:

– Fast update for variable setting (propagation)
– Fast update for backtracking (conflict)

• Reason clause generation
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Improvements Over the Years
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Outline

• Algorithmic

– From Stockmeyer to ApproxMC
– The Boon of Dependence
– Sparse XORs

• System: Efficient CNF+XOR Solving (Soos’s possible talk in SAT
Seminar?)
• Conceptual

– Independent Support
– Projection
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Improved 2-wise Independent Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F ), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I ( CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

32/40



Improved 2-wise Independent Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F ), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I ( CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

32/40



Improved 2-wise Independent Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F ), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I ( CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

32/40



Determining Independent Support

Independent Support: I Defined Variables: X \ I
• If I is independent support and xn is defined in terms of I \ {xn},

then I \ {xn} is independent support.

• Padao’s Theorem [1901] xn is defined in terms of I if and only if

F (X ) ∧ F (Y ) ∧
∧
xi∈I

(xi = yi ) =⇒ (xn = yn) is VALID

i.e., F (X ) ∧ F (Y ) ∧
∧
xi∈I

(xi = yi ) ∧ xn ∧ ¬yn is UNSAT

• So iterative procedure with initial I = X and remove xi from I if xi
is defined in terms of I \ {xi}
• O(n) SAT calls
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Projected Counting

• Given F on X ∪ Y , count number of solutions of ∃YF (X ,Y )

• Let X = x1;Y = y1; F = (x1 ∨ y1).

• So Sol(∃YF (X ,Y )) = {(x1 = 0), (x1 = 1)}
• Therefore, |Sol(∃YF (X ,Y ))| = 2

• How do we compute |Sol(∃YF (X ,Y ))|?

• Approach 1: Perform quantifier elimination
• Approach 2: ApproxMC with minor changes

– XORs over X and also enumerate solutions over X .
– ProjThresh(F ,X , thresh):

#Queries: thresh Size: |F |+ thresh ∗ |X | for SAT Oracle

• Usage of ∃ can lead to exponentially succinct formulas
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Reliability of Critical Infrastructure Networks

• G = (N,E ); source node: s and terminal node t

• (wlog) every edge fails with prob 1
2

• Compute Pr[ s and t are disconnected]?

• π : Configuration (of network) denoted by a 0/1 vector of size |E |
• πs,t : configuration where s and t are disconnected

– Represented as a solution to set of constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
2−E

• Variables for Nodes: PN = {pu}u∈N and Edges: {pe}e∈E
• Consider e = (u, v): pu ∧ eu,v → pv
• ϕ = ps ∧ ¬pt ∧

∧
(u,v)∈E (pu ∧ eu,v → pv ))

• Count ∃PN(ϕ): Projected Counting
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So What Makes Hashing-based Techniques Work?

• Algorithmic

– From Stockmeyer to ApproxMC
– The Boon of Dependence
– Sparse XORs

• System: Efficient CNF+XOR Solving (Soos’ possible talk in SAT
Seminar?)
• Conceptual

– Independent Support
– Projection

The Rise of Hashing-based Approach: Promise of Scalability and
Guarantees
(S83,GSS06,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16,

KM18,ATD18,SM19,ABM20,SGM20)
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Improvements Over the Years
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Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E );
source node: s

• Compute Pr[ t is
disconnected]?

10 20 30 40 50 60

200

400

600

800

1,000

Terminal

T
im

e(
se

co
n

d
s)

Timeout = 1000 seconds

( DMPV, AAAI17)
39/40



Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E );
source node: s

• Compute Pr[ t is
disconnected]?

10 20 30 40 50 60

200

400

600

800

1,000

Terminal

T
im

e(
se

co
n

d
s)

RDA

Timeout = 1000 seconds

( DMPV, AAAI17)
39/40



Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E );
source node: s

• Compute Pr[ t is
disconnected]?

10 20 30 40 50 60

200

400

600

800

1,000

Terminal

T
im

e(
se

co
n

d
s)

RDA
ApproxMC

Timeout = 1000 seconds

( DMPV, AAAI17)
39/40



Where do we go from here?

Algorithmic • Design of instance-dependent sparse XORs
• Can we prove accuracy observed in practice?

System • Better system for Sparse XORs
• Hybrid Counter to exploit complimentary exact and

approximate counting

Coneptual • Independent support is model counting preserving
but approximation would suffice
• Proof of correctness
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