
The Rise of Approximate Model Counting: Beyond
Classical Theory and Practice of SAT

Kuldeep S. Meel

National University of Singapore

Beyond Satisfiability

1/40

The Amazing Collaborators

S. Akshay (IITB, India), Teodora Baluta (NUS, SG), Fabrizio Biondi
(Avast, CZ), Supratik Chakraborty (IITB, India), Alexis de Colnet
(NUS, SG), Remi Delannoy (NUS, SG), Jeffrey Dudek (Rice,US),
Leonardo Duenas-Osorio (Rice,US), Mike Enescu (Inria, France) Daniel
Fremont (UCB, US), Dror Fried (Open U., Israel), Stephan Gocht
(Lund U., Sweden), Rahul Gupta (IITK, India), Annelie Heuser (Inria,
France), Alexander Ivrii (IBM, Israel), Alexey Ignatiev (IST, Portugal),
Axel Legay (UCL, Belgium), Sharad Malik (Princeton, US), Joao
Marques Silva (IST, Portugal), Rakesh Mistry (IITB, India), Nina
Narodytska ((VMWare, US), Roger Paredes (Rice,US), Yash Pote
(NUS, SG), Jean Quilbeuf(Inria, France), Subhajit Roy (IITK, India),
Mate Soos (NUS, SG), Prateek Saxena (NUS, SG), Sanjit Seshia
(UCB, US), Shubham Sharma (IITK, India), Aditya Shrotri(Rice,US),
Moshe Vardi (Rice,US)

Special shout out to Mate Soos, the maintainer of ApproxMC and
UniGen

2/40

Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

• Sol(F) = { solutions of F }

• Counting: Determine |Sol(F)|
– Approximation: Pr

[
|Sol(F)|
1+ε ≤ c ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

• Given F := (X1 ∨ X2)

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• |Sol(F)| = 3

3/40

Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

• Sol(F) = { solutions of F }
• Counting: Determine |Sol(F)|

– Approximation: Pr
[
|Sol(F)|
1+ε ≤ c ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

• Given F := (X1 ∨ X2)

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• |Sol(F)| = 3

3/40

Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

• Sol(F) = { solutions of F }
• Counting: Determine |Sol(F)|

– Approximation: Pr
[
|Sol(F)|
1+ε ≤ c ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

• Given F := (X1 ∨ X2)

• Sol(F) = {(0, 1), (1, 0), (1, 1)}
• |Sol(F)| = 3

3/40

Applications across Computer Science

Counting
Network

Reliability

Hardware
Validation

Explainable
AI

Neural
Network

Robustness

Quantified
Information

Flow

4/40

Through the Lens of SAT Revolution

Obs 1 SAT Oracle 6= NP Oracle

• Returns UNSAT with a proof
• Return a satisfying assignment if satisfiable

Obs 2 SAT Solver 6= SAT oracle

• The performance of solver depends on the formulas

Obs 3 Memoryfulness

• Incremental Solving: Often easier to solve F followed
by G if we G can be written as G = F ∧ H
• If F → C then (F ∧ H) =⇒ C

5/40

Through the Lens of SAT Revolution

Obs 1 SAT Oracle 6= NP Oracle

• Returns UNSAT with a proof
• Return a satisfying assignment if satisfiable

Obs 2 SAT Solver 6= SAT oracle

• The performance of solver depends on the formulas

Obs 3 Memoryfulness

• Incremental Solving: Often easier to solve F followed
by G if we G can be written as G = F ∧ H
• If F → C then (F ∧ H) =⇒ C

5/40

Through the Lens of SAT Revolution

Obs 1 SAT Oracle 6= NP Oracle

• Returns UNSAT with a proof
• Return a satisfying assignment if satisfiable

Obs 2 SAT Solver 6= SAT oracle

• The performance of solver depends on the formulas

Obs 3 Memoryfulness

• Incremental Solving: Often easier to solve F followed
by G if we G can be written as G = F ∧ H
• If F → C then (F ∧ H) =⇒ C

5/40

SAT Oracle vs NP Oracle vs SAT Solver

ThreshSAT(F, thresh): Does F has ≤ thresh solutions?
BoundedSAT(F, thresh): |Sol(F)| If F has ≤ thresh solutions, else ⊥?
• NP Oracle

– ThreshSAT: #Queries: 1 Size: |F | · thresh
– BoundedSAT: #Queries: thresh Size: |F | · thresh

• SAT Oracle

– ThreshSAT: #Queries: 1 Size: |F | · thresh
– BoundedSAT: #Queries: thresh Size: |F |+ n · thresh

• SAT Solver

– ThreshSAT: #Queries: thresh Size: |F |+ n · thresh
– BoundedSAT: #Queries: thresh Size: |F |+ n · thresh

Both ThreshSAT and BoundedSAT have same complexity!

6/40

SAT Oracle vs NP Oracle vs SAT Solver

ThreshSAT(F, thresh): Does F has ≤ thresh solutions?
BoundedSAT(F, thresh): |Sol(F)| If F has ≤ thresh solutions, else ⊥?
• NP Oracle

– ThreshSAT: #Queries: 1 Size: |F | · thresh
– BoundedSAT: #Queries: thresh Size: |F | · thresh

• SAT Oracle

– ThreshSAT: #Queries: 1 Size: |F | · thresh
– BoundedSAT: #Queries: thresh Size: |F |+ n · thresh

• SAT Solver

– ThreshSAT: #Queries: thresh Size: |F |+ n · thresh
– BoundedSAT: #Queries: thresh Size: |F |+ n · thresh

Both ThreshSAT and BoundedSAT have same complexity!

6/40

SAT Oracle vs NP Oracle vs SAT Solver

ThreshSAT(F, thresh): Does F has ≤ thresh solutions?
BoundedSAT(F, thresh): |Sol(F)| If F has ≤ thresh solutions, else ⊥?
• NP Oracle

– ThreshSAT: #Queries: 1 Size: |F | · thresh
– BoundedSAT: #Queries: thresh Size: |F | · thresh

• SAT Oracle

– ThreshSAT: #Queries: 1 Size: |F | · thresh
– BoundedSAT: #Queries: thresh Size: |F |+ n · thresh

• SAT Solver

– ThreshSAT: #Queries: thresh Size: |F |+ n · thresh
– BoundedSAT: #Queries: thresh Size: |F |+ n · thresh

Both ThreshSAT and BoundedSAT have same complexity!

6/40

So What Makes Hashing-based Techniques Work?

• Algorithmic

– From Stockmeyer to ApproxMC
– The Boon of Dependence
– Sparse XORs

• System: Efficient CNF+XOR Solving (Soos’ possible talk in SAT
Seminar?)
• Conceptual

– Independent Support
– Projection

The Rise of Hashing-based Approach: Promise of Scalability and
Guarantees
(S83,GSS06,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16,

KM18,ATD18,SM19,ABM20,SGM20)

7/40

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

8/40

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

8/40

As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

8/40

2-wise independent Hashing

• Let H be family of 2-wise independent hash functions mapping
{0, 1}n to {0, 1}m

∀y1, y2 ∈ {0, 1}n, α1, α2 ∈ {0, 1}m, h R←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(
1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(
1

2m

)2

• The power of 2-wise independentity
– Z be the number of solutions in a randomly chosen cell

– E[Z] = |Sol(F)|
2m

– σ2[Z] ≤ E[Z]

• Pr
[
E[Z]
1+ε ≤ Z ≤ E[Z](1 + ε)

]
≥ 1− 1

(ε
1+ε

)2(E[Z])

• E[Z] = c(1+εε)2 provides 1− 1
c lower bound

9/40

2-wise independent Hashing

• Let H be family of 2-wise independent hash functions mapping
{0, 1}n to {0, 1}m

∀y1, y2 ∈ {0, 1}n, α1, α2 ∈ {0, 1}m, h R←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(
1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(
1

2m

)2

• The power of 2-wise independentity
– Z be the number of solutions in a randomly chosen cell

– E[Z] = |Sol(F)|
2m

– σ2[Z] ≤ E[Z]

• Pr
[
E[Z]
1+ε ≤ Z ≤ E[Z](1 + ε)

]
≥ 1− 1

(ε
1+ε

)2(E[Z])

• E[Z] = c(1+εε)2 provides 1− 1
c lower bound

9/40

2-wise independent Hashing

• Let H be family of 2-wise independent hash functions mapping
{0, 1}n to {0, 1}m

∀y1, y2 ∈ {0, 1}n, α1, α2 ∈ {0, 1}m, h R←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(
1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(
1

2m

)2

• The power of 2-wise independentity
– Z be the number of solutions in a randomly chosen cell

– E[Z] = |Sol(F)|
2m

– σ2[Z] ≤ E[Z]

• Pr
[
E[Z]
1+ε ≤ Z ≤ E[Z](1 + ε)

]
≥ 1− 1

(ε
1+ε

)2(E[Z])

• E[Z] = c(1+εε)2 provides 1− 1
c lower bound

9/40

2-wise independent Hashing

• Let H be family of 2-wise independent hash functions mapping
{0, 1}n to {0, 1}m

∀y1, y2 ∈ {0, 1}n, α1, α2 ∈ {0, 1}m, h R←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(
1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(
1

2m

)2

• The power of 2-wise independentity
– Z be the number of solutions in a randomly chosen cell

– E[Z] = |Sol(F)|
2m

– σ2[Z] ≤ E[Z]

• Pr
[
E[Z]
1+ε ≤ Z ≤ E[Z](1 + ε)

]
≥ 1− 1

(ε
1+ε

)2(E[Z])

• E[Z] = c(1+εε)2 provides 1− 1
c lower bound

9/40

2-wise independent Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2
– Expected size of each XOR: n

2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)

X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

10/40

2-wise independent Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2
– Expected size of each XOR: n

2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)

X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

10/40

“Stockmeyer’s Approach” S83, JVV86, BP95

Constant Factor Suffices

• (1 + ε, δ)-Approximation

Pr

[|Sol(F)|
1 + ε

≤ ApproxCount(F , ε, δ) ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

• Constant Factor Approximation: (4,δ)

Pr

[|Sol(F)|
4

≤ ConstantCount(F , δ) ≤ 4 · |Sol(F)|
]
≥ 1− δ

• From 4 to 2-factor
Let G = F (X1) ∧ F (X2) (i.e., two identical copies of F)

|Sol(G)|
4

≤C ≤ 4 · |Sol(G)| =⇒ |Sol(F)|
2

≤
√
C ≤ 2 · |Sol(F)|

• From 4 to (1 + ε)-factor
Construct G = F (X1) ∧ F (X2) · · ·F (X 1

ε
) And then we can take

1
ε -root

11/40

“Stockmeyer’s Approach” S83, JVV86, BP95

Constant Factor Suffices

• (1 + ε, δ)-Approximation

Pr

[|Sol(F)|
1 + ε

≤ ApproxCount(F , ε, δ) ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

• Constant Factor Approximation: (4,δ)

Pr

[|Sol(F)|
4

≤ ConstantCount(F , δ) ≤ 4 · |Sol(F)|
]
≥ 1− δ

• From 4 to 2-factor
Let G = F (X1) ∧ F (X2) (i.e., two identical copies of F)

|Sol(G)|
4

≤C ≤ 4 · |Sol(G)| =⇒ |Sol(F)|
2

≤
√
C ≤ 2 · |Sol(F)|

• From 4 to (1 + ε)-factor
Construct G = F (X1) ∧ F (X2) · · ·F (X 1

ε
) And then we can take

1
ε -root

11/40

“Stockmeyer’s Approach” S83, JVV86, BP95

Constant Factor Suffices

• (1 + ε, δ)-Approximation

Pr

[|Sol(F)|
1 + ε

≤ ApproxCount(F , ε, δ) ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

• Constant Factor Approximation: (4,δ)

Pr

[|Sol(F)|
4

≤ ConstantCount(F , δ) ≤ 4 · |Sol(F)|
]
≥ 1− δ

• From 4 to 2-factor
Let G = F (X1) ∧ F (X2) (i.e., two identical copies of F)

|Sol(G)|
4

≤C ≤ 4 · |Sol(G)| =⇒ |Sol(F)|
2

≤
√
C ≤ 2 · |Sol(F)|

• From 4 to (1 + ε)-factor
Construct G = F (X1) ∧ F (X2) · · ·F (X 1

ε
) And then we can take

1
ε -root

11/40

“Stockmeyer’s Approach” S83, JVV86, BP95

Constant Factor Suffices

• (1 + ε, δ)-Approximation

Pr

[|Sol(F)|
1 + ε

≤ ApproxCount(F , ε, δ) ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

• Constant Factor Approximation: (4,δ)

Pr

[|Sol(F)|
4

≤ ConstantCount(F , δ) ≤ 4 · |Sol(F)|
]
≥ 1− δ

• From 4 to 2-factor
Let G = F (X1) ∧ F (X2) (i.e., two identical copies of F)

|Sol(G)|
4

≤C ≤ 4 · |Sol(G)| =⇒ |Sol(F)|
2

≤
√
C ≤ 2 · |Sol(F)|

• From 4 to (1 + ε)-factor
Construct G = F (X1) ∧ F (X2) · · ·F (X 1

ε
) And then we can take

1
ε -root 11/40

“Stockmeyer’s Approach” S83, JVV86, BP95

• aComp(F , k)

– If |Sol(F)| ≥ 2k+1, then aComp(F , k) returns YES whp
– If |Sol(F)| < 2k , then aComp(F , k) returns NO whp

• Counter(F)

– Invoke aComp(F , k) for k = 0, 1, . . . n
– Use binary search find the first k s.t. aComp(F , k) return NO

• For (1 + ε)-approx, invoke Counter on F (X1) ∧ F (X2) · · ·F (X 1
ε
)

and return 1
ε -root

Too large queries thresh = 9
ε2

• aComp(F , k)

– Call O(log log n) calls to ThreshSAT(F ∧ Q1 ∧ . . . ∧ Qk−5, 48) and
return the median.

Too many calls due to Union Bounds
– Dependence to avoid union bounds

12/40

“Stockmeyer’s Approach” S83, JVV86, BP95

• aComp(F , k)

– If |Sol(F)| ≥ 2k+1, then aComp(F , k) returns YES whp
– If |Sol(F)| < 2k , then aComp(F , k) returns NO whp

• Counter(F)

– Invoke aComp(F , k) for k = 0, 1, . . . n
– Use binary search find the first k s.t. aComp(F , k) return NO

• For (1 + ε)-approx, invoke Counter on F (X1) ∧ F (X2) · · ·F (X 1
ε
)

and return 1
ε -root

Too large queries thresh = 9
ε2

• aComp(F , k)

– Call O(log log n) calls to ThreshSAT(F ∧ Q1 ∧ . . . ∧ Qk−5, 48) and
return the median.

Too many calls due to Union Bounds
– Dependence to avoid union bounds

12/40

“Stockmeyer’s Approach” S83, JVV86, BP95

• aComp(F , k)

– If |Sol(F)| ≥ 2k+1, then aComp(F , k) returns YES whp
– If |Sol(F)| < 2k , then aComp(F , k) returns NO whp

• Counter(F)

– Invoke aComp(F , k) for k = 0, 1, . . . n
– Use binary search find the first k s.t. aComp(F , k) return NO

• For (1 + ε)-approx, invoke Counter on F (X1) ∧ F (X2) · · ·F (X 1
ε
)

and return 1
ε -root

Too large queries thresh = 9
ε2

• aComp(F , k)

– Call O(log log n) calls to ThreshSAT(F ∧ Q1 ∧ . . . ∧ Qk−5, 48) and
return the median.

Too many calls due to Union Bounds
– Dependence to avoid union bounds

12/40

“Stockmeyer’s Approach” S83, JVV86, BP95

• aComp(F , k)

– If |Sol(F)| ≥ 2k+1, then aComp(F , k) returns YES whp
– If |Sol(F)| < 2k , then aComp(F , k) returns NO whp

• Counter(F)

– Invoke aComp(F , k) for k = 0, 1, . . . n
– Use binary search find the first k s.t. aComp(F , k) return NO

• For (1 + ε)-approx, invoke Counter on F (X1) ∧ F (X2) · · ·F (X 1
ε
)

and return 1
ε -root

Too large queries thresh = 9
ε2

• aComp(F , k)

– Call O(log log n) calls to ThreshSAT(F ∧ Q1 ∧ . . . ∧ Qk−5, 48) and
return the median.

Too many calls due to Union Bounds
– Dependence to avoid union bounds

12/40

“Stockmeyer’s Approach” S83, JVV86, BP95

• aComp(F , k)

– If |Sol(F)| ≥ 2k+1, then aComp(F , k) returns YES whp
– If |Sol(F)| < 2k , then aComp(F , k) returns NO whp

• Counter(F)

– Invoke aComp(F , k) for k = 0, 1, . . . n
– Use binary search find the first k s.t. aComp(F , k) return NO

• For (1 + ε)-approx, invoke Counter on F (X1) ∧ F (X2) · · ·F (X 1
ε
)

and return 1
ε -root Too large queries

thresh = 9
ε2

• aComp(F , k)

– Call O(log log n) calls to ThreshSAT(F ∧ Q1 ∧ . . . ∧ Qk−5, 48) and
return the median. Too many calls due to Union Bounds

– Dependence to avoid union bounds

12/40

“Stockmeyer’s Approach” S83, JVV86, BP95

• aComp(F , k)

– If |Sol(F)| ≥ 2k+1, then aComp(F , k) returns YES whp
– If |Sol(F)| < 2k , then aComp(F , k) returns NO whp

• Counter(F)

– Invoke aComp(F , k) for k = 0, 1, . . . n
– Use binary search find the first k s.t. aComp(F , k) return NO

• For (1 + ε)-approx, invoke Counter on F (X1) ∧ F (X2) · · ·F (X 1
ε
)

and return 1
ε -root Too large queries thresh = 9

ε2

• aComp(F , k)

– Call O(log log n) calls to ThreshSAT(F ∧ Q1 ∧ . . . ∧ Qk−5, 48) and
return the median. Too many calls due to Union Bounds

– Dependence to avoid union bounds

12/40

ApproxMC

of sols
≤ thresh?

13/40

ApproxMC

of sols
≤ thresh?

of sols
≤ thresh?

No

13/40

ApproxMC

of sols
≤ thresh?

of sols
≤ thresh?

No No

13/40

ApproxMC

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

· · ·

No No

No

13/40

ApproxMC

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

Estimate =
of sols ×
of cells # of sols

≤ thresh?

· · ·

No No

No

Yes

13/40

ApproxMC

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

Estimate =
of sols ×
of cells # of sols

≤ thresh?

· · ·

No No

No

Yes

Repeat O(log(1/δ)) times and return the median
13/40

ApproxMC

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh
– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh
– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as BoundedSAT(F ∧ Q1 ∧ Q2 · · · ∧ Qm, thresh)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi)

– If Query i returns YES, then Query i + 1 must return YES

– Logarithmic search (# of SAT calls: O(log n))
– Incremental Search

• The Boon of Dependence

– Ei :
∣∣#(F ∧ Q1 ∧ Q2 · · · ∧ Qi)− |Sol(F)|2i

∣∣ ≥ (1 + ε) |Sol(F)|2i

– (Loosely), Ei ⊆ Ei+1 for i < m ∗ −2
– (Loosely), Ej ⊇ Ej+1 for j > m∗ + 1
– Pr[Error] = Pr[Em∗−2] + Pr[Em∗−1] + Pr[Em∗] + Pr[Em∗+1]

14/40

ApproxMC

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh
– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh
– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as BoundedSAT(F ∧ Q1 ∧ Q2 · · · ∧ Qm, thresh)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi)

– If Query i returns YES, then Query i + 1 must return YES
– Logarithmic search (# of SAT calls: O(log n))
– Incremental Search

• The Boon of Dependence

– Ei :
∣∣#(F ∧ Q1 ∧ Q2 · · · ∧ Qi)− |Sol(F)|2i

∣∣ ≥ (1 + ε) |Sol(F)|2i

– (Loosely), Ei ⊆ Ei+1 for i < m ∗ −2
– (Loosely), Ej ⊇ Ej+1 for j > m∗ + 1
– Pr[Error] = Pr[Em∗−2] + Pr[Em∗−1] + Pr[Em∗] + Pr[Em∗+1]

14/40

ApproxMC

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh
– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh
– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as BoundedSAT(F ∧ Q1 ∧ Q2 · · · ∧ Qm, thresh)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi)

– If Query i returns YES, then Query i + 1 must return YES
– Logarithmic search (# of SAT calls: O(log n))
– Incremental Search

• The Boon of Dependence

– Ei :
∣∣#(F ∧ Q1 ∧ Q2 · · · ∧ Qi)− |Sol(F)|2i

∣∣ ≥ (1 + ε) |Sol(F)|2i

– (Loosely), Ei ⊆ Ei+1 for i < m ∗ −2
– (Loosely), Ej ⊇ Ej+1 for j > m∗ + 1
– Pr[Error] = Pr[Em∗−2] + Pr[Em∗−1] + Pr[Em∗] + Pr[Em∗+1]

14/40

ApproxMC

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh
– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh
– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as BoundedSAT(F ∧ Q1 ∧ Q2 · · · ∧ Qm, thresh)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi)

– If Query i returns YES, then Query i + 1 must return YES
– Logarithmic search (# of SAT calls: O(log n))
– Incremental Search

• The Boon of Dependence

– Ei :
∣∣#(F ∧ Q1 ∧ Q2 · · · ∧ Qi)− |Sol(F)|2i

∣∣ ≥ (1 + ε) |Sol(F)|2i

– (Loosely), Ei ⊆ Ei+1 for i < m ∗ −2
– (Loosely), Ej ⊇ Ej+1 for j > m∗ + 1

– Pr[Error] = Pr[Em∗−2] + Pr[Em∗−1] + Pr[Em∗] + Pr[Em∗+1]

14/40

ApproxMC

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F)|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh
– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh
– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as BoundedSAT(F ∧ Q1 ∧ Q2 · · · ∧ Qm, thresh)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi)

– If Query i returns YES, then Query i + 1 must return YES
– Logarithmic search (# of SAT calls: O(log n))
– Incremental Search

• The Boon of Dependence

– Ei :
∣∣#(F ∧ Q1 ∧ Q2 · · · ∧ Qi)− |Sol(F)|2i

∣∣ ≥ (1 + ε) |Sol(F)|2i

– (Loosely), Ei ⊆ Ei+1 for i < m ∗ −2
– (Loosely), Ej ⊇ Ej+1 for j > m∗ + 1
– Pr[Error] = Pr[Em∗−2] + Pr[Em∗−1] + Pr[Em∗] + Pr[Em∗+1]

14/40

ApproxMC

Theorem (Correctness)

Pr
[
|Sol(F)|
1+ε ≤ ApproxMC(F , ε, δ) ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
log n log(1

δ
)

ε2
) calls to SAT oracle.

Theorem (FPRAS for DNF; (MSV, FSTTCS 17; CP 18, IJCAI-19))

If F is a DNF formula, then ApproxMC is FPRAS – different from the
Monte-Carlo based FPRAS for DNF (Karp, Luby 1983)

15/40

ApproxMC

Theorem (Correctness)

Pr
[
|Sol(F)|
1+ε ≤ ApproxMC(F , ε, δ) ≤ |Sol(F)|(1 + ε)

]
≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
log n log(1

δ
)

ε2
) calls to SAT oracle.

Theorem (FPRAS for DNF; (MSV, FSTTCS 17; CP 18, IJCAI-19))

If F is a DNF formula, then ApproxMC is FPRAS – different from the
Monte-Carlo based FPRAS for DNF (Karp, Luby 1983)

15/40

A Practical Counter

 0

 1000

 2000

 3000

 4000

 5000

 150 300 450 600 750 900 1050 1200 1350 1500 1650

T
im

e
 (

s
)

Solved instances
ApproxMC2 (2016)

ApproxMC1 (without dependence) was 10-100× slower.

16/40

The Hope of Short XORs

• If we pick every variable Xi with probability p .

– Expected Size of each XOR: np

– E[Zm] = |Sol(F)|
2m

– σ2[Zm] ≤ E[Zm] +
∑

σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w ,m)

I where, r(w ,m) =
((

1
2

+ (1−2p)w

2

)m

− 1
2m

)
– For p = 1

2 , we have σ2[Zm]
E[Zm]

≤ 1

• Earlier Attempts (GSS07,EGSS14,ZCSE16,AD17,ATD18)

–
∑

σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w ,m) ≤∑σ1∈Sol(F)
∑n

w=0

(
n
w

)
r(w ,m)

–
(
n
w

)
grows very fast with n, so could not upper bound σ2[Zm]

E[Zm]

– The weak bounds lead to significant slowdown: typically 100× to
1000× factor of slowdown! (ATD18,ABM20)

17/40

The Power of Isoperimetric Inequalities

• ∑
σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w ,m) =
n∑

w=0
CF (w)r(w ,m)

• CF (w) = |{σ1, σ2 ∈ Sol(F) | d(σ1, σ2) = w}|

• Isoperimetric Inequalities! (Rashtchian and Raynaud 2019)

Lemma
n∑

w=0
CF (w)r(w ,m) ≤

n∑
w=0

(8e√n·`
w

)
r(w ,m) where ` = log |Sol(F)|

–
(n
w)

(8e
√

n·`
w)
≈ (n

`)
w
2

18/40

The Power of Isoperimetric Inequalities

• ∑
σ1∈Sol(F)

∑
σ2∈Sol(F)
w=d(σ1,σ2)

r(w ,m) =
n∑

w=0
CF (w)r(w ,m)

• CF (w) = |{σ1, σ2 ∈ Sol(F) | d(σ1, σ2) = w}|
• Isoperimetric Inequalities! (Rashtchian and Raynaud 2019)

Lemma
n∑

w=0
CF (w)r(w ,m) ≤

n∑
w=0

(8e√n·`
w

)
r(w ,m) where ` = log |Sol(F)|

–
(n
w)

(8e
√

n·`
w)
≈ (n

`)
w
2

18/40

From Linear to Logarithmic Size XORs

Theorem (Informal)

For all q, k , |Sol(F)| ≤ k · 2m, p = O(logmm) we have

σ2[Zm]

E[Zm]
≤ q(a constant)

Recall, average size of XORs: n · p
Improvement of p from m/2

m to logm
m

Challenge: No meaningful bounds on |Sol(F)|
• Pr[Error] = Pr[Em∗−2] + Pr[Em∗−1] + Pr[Em∗] + Pr[Em∗+1]

• Key Insight: When adding m-th XOR, theoretical analysis only

requires σ2[Zm]
E[Zm]

≤ q whenever |Sol(F)| ≤ thresh · 2m

• Add m-th XOR with pm = O(logmm)

19/40

From Linear to Logarithmic Size XORs

Theorem (Informal)

For all q, k , |Sol(F)| ≤ k · 2m, p = O(logmm) we have

σ2[Zm]

E[Zm]
≤ q(a constant)

Recall, average size of XORs: n · p
Improvement of p from m/2

m to logm
m

Challenge: No meaningful bounds on |Sol(F)|
• Pr[Error] = Pr[Em∗−2] + Pr[Em∗−1] + Pr[Em∗] + Pr[Em∗+1]

• Key Insight: When adding m-th XOR, theoretical analysis only

requires σ2[Zm]
E[Zm]

≤ q whenever |Sol(F)| ≤ thresh · 2m

• Add m-th XOR with pm = O(logmm)

19/40

From Linear to Logarithmic Size XORs

Theorem (Informal)

For all q, k , |Sol(F)| ≤ k · 2m, p = O(logmm) we have

σ2[Zm]

E[Zm]
≤ q(a constant)

Recall, average size of XORs: n · p
Improvement of p from m/2

m to logm
m

Challenge: No meaningful bounds on |Sol(F)|
• Pr[Error] = Pr[Em∗−2] + Pr[Em∗−1] + Pr[Em∗] + Pr[Em∗+1]

• Key Insight: When adding m-th XOR, theoretical analysis only

requires σ2[Zm]
E[Zm]

≤ q whenever |Sol(F)| ≤ thresh · 2m

• Add m-th XOR with pm = O(logmm)

19/40

Sparse Hash Functions

0 100 200 300 400 500 600 700 800 900 1000

m

0.1

0.2

0.3

0.4

0.5

p m

HRennes
1.1

4∗log2(m+1)
m

HRennes
1.1 : Sparse hash functions that guarantee q = 1.1

20/40

Sparse XORs

Benchmark Vars log2(Count) ApproxMC ApproxMC+Sparse Speedup
03B-4 27966 28.55 983.72 1548.96 0.64
squaring23 710 23.11 0.66 1.21 0.55
case144 765 82.07 102.65 202.06 0.51
modexp8-4-6 83953 32.13 788.23 920.34 0.86
min-28s 3933 459.23 48.63 35.83 1.36
s9234a 7 4 6313 246.0 4.77 2.45 1.95
min-8 1545 284.78 8.86 4.59 1.93
s13207a 7 4 9386 699.0 34.94 17.05 2.05
min-16 3065 539.88 33.67 16.61 2.03
90-15-4-q 1065 839.25 273.1 135.75 2.01
s35932 15 7 17918 1761.0 – 72.32 –
s38417 3 2 25528 1663.02 – 71.04 –
75-10-8-q 460 360.13 – 4850.28 –
90-15-8-q 1065 840.0 – 3717.05 –

Remember; thresh = O(σ
2[Zm]
E[Zm]

· 1
ε2

)
σ2[Zm]
E[Zm]

≤ 1 for 2-wise independent; σ2[Zm]
E[Zm]

≤ q = 1.1 for HRennes
1.1 .

21/40

Outline

• Algorithmic

– From Stockmeyer to ApproxMC
– The Boon of Dependence
– Sparse XORs

• System: Efficient CNF+XOR Solving (Soos’s possible talk in SAT
Seminar?)
• Conceptual

– Independent Support
– Projection

22/40

CDCL(T)

For theories that are not efficiently simulated by CDCL
• T is the theory, e.g.:

– Gauss-Jordan Elimination [SoosNohlCastelluccia’2010]
– Pseudo-Boolean Reasoning [ChaiKuehlmann’2006]
– Symmetric Explanation Learning

[DevriendtBogaertsBruynooghe’2017]

• Theory is run side-by-side to the CDCL algorithm

• Propagate values implied by Theory given current assignment
stack of CDCL

• Conflict if Theory implies 1=0 given current assignment stack of
CDCL

• Theory must give reason for propagations&conflicts

CDCL Theory

Current assignment stack
Current set of conflict clauses

New propagations
New conflicts

23/40

CDCL(T) Cont.

Optimizations:
• Should only send delta of assignment stack + conflict clauses

– Variables assigned (decisions + propagations)
– Variables unassigned (backtracking, restarting)
– New conflict clauses

• Theory only needs to compute delta relative to old state
• Theory can give placeholders for reasons

– If reason is needed during conflict generation, Theory is queried
– Called “lazy” (vs “greedy”) interpolant generation

CDCL Theory
Solver

Delta assignment stack
Delta conflict clauses

New propagations
New conflicts

Reason placeholders
Theory StateUpdate state

Reason queries
and answers

24/40

CDCL(T) Gauss-Jordan Elimination: Ingredients

What components do we need?

• Extractor for XOR constraints: XORs may be encoded as CNF
• Delta update mechanism for row-echelon form matrix:

– how to handle when variable is set
– how to handle when variable is unset

• Efficient data structures to allow for quick updates

• Reason generation

25/40

CDCL(T) Gauss-Jordan Elimination: Extraction

l1 ⊕ l2 ⊕ l3 = 1 ⇔ l1 ∨ l2 ∨ l3∧
l1 ∨ l2 ∨ l3∧
l1 ∨ l2 ∨ l3∧
l1 ∨ l2 ∨ l3∧

l1 ⊕ l2 ⊕ l3 = 1 ← l1 ∨ l2 ∨ ∧
l1 ∨ l2 ∨ l3∧
l1 ∨ l2 ∨ l3∧
l1 ∨ l2 ∨ l3∧

• Missing literals only mean something stronger than XOR

• XOR is still implied and should be detected

26/40

CDCL(T) Gauss-Jordan Elimination: 2-variable watchlist

Let’s use a 2-variable watch scheme [HanJiang2012]:

• If 2 or more variables are unset in XOR constraint, it cannot
propagate or conflict

• If 1 variable is unset, it must propagate

• If 0 variable is unset, it is either satisfied or is in conflict

Watching for propagation and to perform GJE

• For every row (of XOR), there is a pivot variable (among the two
variables watching the row)

• A variable is pivot for at most one row.

27/40

CDCL(T) GJE: Reason Clauses and Backtracking

What combination of XOR constraints gave us the propagation?

• Each row is a combination of input XOR constraints

• It is guaranteed to propagate/conflict under current variable
assignment

During backtracking:

• All previous invariants still hold

• If the column (variable) was pivot for a row, it still is

• Both watches of the row are still good and in the watchlists

• Matrix looks differently than when we last had this assignment... is
that a problem?

• No! Observe: new matrix could have been reached from the
starting position, pivoting differently(!)

28/40

CDCL(T) Gauss-Jordan Elimination: Recap

Let’s recap! What was hard:

• Extracting XOR constraints
• Keeping CDCL and GJ in sync:

– Fast update for variable setting (propagation)
– Fast update for backtracking (conflict)

• Reason clause generation

29/40

Improvements Over the Years

 0

 1000

 2000

 3000

 4000

 5000

 150 300 450 600 750 900 1050 1200 1350 1500 1650

T
im

e
 (

s
)

Solved instances
ApproxMC2 (2016) ApproxMC3 (2019) ApproxMC4 (2020)

30/40

Outline

• Algorithmic

– From Stockmeyer to ApproxMC
– The Boon of Dependence
– Sparse XORs

• System: Efficient CNF+XOR Solving (Soos’s possible talk in SAT
Seminar?)
• Conceptual

– Independent Support
– Projection

31/40

Improved 2-wise Independent Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I (CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

32/40

Improved 2-wise Independent Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I (CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

32/40

Improved 2-wise Independent Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I (CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

32/40

Determining Independent Support

Independent Support: I Defined Variables: X \ I
• If I is independent support and xn is defined in terms of I \ {xn},

then I \ {xn} is independent support.

• Padao’s Theorem [1901] xn is defined in terms of I if and only if

F (X) ∧ F (Y) ∧
∧
xi∈I

(xi = yi) =⇒ (xn = yn) is VALID

i.e., F (X) ∧ F (Y) ∧
∧
xi∈I

(xi = yi) ∧ xn ∧ ¬yn is UNSAT

• So iterative procedure with initial I = X and remove xi from I if xi
is defined in terms of I \ {xi}
• O(n) SAT calls

33/40

Determining Independent Support

Independent Support: I Defined Variables: X \ I
• If I is independent support and xn is defined in terms of I \ {xn},

then I \ {xn} is independent support.

• Padao’s Theorem [1901] xn is defined in terms of I if and only if

F (X) ∧ F (Y) ∧
∧
xi∈I

(xi = yi) =⇒ (xn = yn) is VALID

i.e., F (X) ∧ F (Y) ∧
∧
xi∈I

(xi = yi) ∧ xn ∧ ¬yn is UNSAT

• So iterative procedure with initial I = X and remove xi from I if xi
is defined in terms of I \ {xi}
• O(n) SAT calls

33/40

Outline

• Algorithmic

– From Stockmeyer to ApproxMC
– The Boon of Dependence
– Sparse XORs

• System: Efficient CNF+XOR Solving (Soos’s possible talk in SAT
Seminar?)
• Conceptual

– Independent Support
– Projection

34/40

Projected Counting

• Given F on X ∪ Y , count number of solutions of ∃YF (X ,Y)

• Let X = x1;Y = y1; F = (x1 ∨ y1).

• So Sol(∃YF (X ,Y)) = {(x1 = 0), (x1 = 1)}
• Therefore, |Sol(∃YF (X ,Y))| = 2

• How do we compute |Sol(∃YF (X ,Y))|?

• Approach 1: Perform quantifier elimination
• Approach 2: ApproxMC with minor changes

– XORs over X and also enumerate solutions over X .
– ProjThresh(F ,X , thresh):

#Queries: thresh Size: |F |+ thresh ∗ |X | for SAT Oracle

• Usage of ∃ can lead to exponentially succinct formulas

35/40

Projected Counting

• Given F on X ∪ Y , count number of solutions of ∃YF (X ,Y)

• Let X = x1;Y = y1; F = (x1 ∨ y1).

• So Sol(∃YF (X ,Y)) = {(x1 = 0), (x1 = 1)}
• Therefore, |Sol(∃YF (X ,Y))| = 2

• How do we compute |Sol(∃YF (X ,Y))|?
• Approach 1: Perform quantifier elimination

• Approach 2: ApproxMC with minor changes

– XORs over X and also enumerate solutions over X .
– ProjThresh(F ,X , thresh):

#Queries: thresh Size: |F |+ thresh ∗ |X | for SAT Oracle

• Usage of ∃ can lead to exponentially succinct formulas

35/40

Projected Counting

• Given F on X ∪ Y , count number of solutions of ∃YF (X ,Y)

• Let X = x1;Y = y1; F = (x1 ∨ y1).

• So Sol(∃YF (X ,Y)) = {(x1 = 0), (x1 = 1)}
• Therefore, |Sol(∃YF (X ,Y))| = 2

• How do we compute |Sol(∃YF (X ,Y))|?
• Approach 1: Perform quantifier elimination
• Approach 2: ApproxMC with minor changes

– XORs over X and also enumerate solutions over X .
– ProjThresh(F ,X , thresh):

#Queries: thresh Size: |F |+ thresh ∗ |X | for SAT Oracle

• Usage of ∃ can lead to exponentially succinct formulas

35/40

Reliability of Critical Infrastructure Networks

• G = (N,E); source node: s and terminal node t

• (wlog) every edge fails with prob 1
2

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a 0/1 vector of size |E |
• πs,t : configuration where s and t are disconnected

– Represented as a solution to set of constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
2−E

• Variables for Nodes: PN = {pu}u∈N and Edges: {pe}e∈E
• Consider e = (u, v): pu ∧ eu,v → pv
• ϕ = ps ∧ ¬pt ∧

∧
(u,v)∈E (pu ∧ eu,v → pv))

• Count ∃PN(ϕ): Projected Counting

36/40

Reliability of Critical Infrastructure Networks

• G = (N,E); source node: s and terminal node t

• (wlog) every edge fails with prob 1
2

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a 0/1 vector of size |E |

• πs,t : configuration where s and t are disconnected

– Represented as a solution to set of constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
2−E

• Variables for Nodes: PN = {pu}u∈N and Edges: {pe}e∈E
• Consider e = (u, v): pu ∧ eu,v → pv
• ϕ = ps ∧ ¬pt ∧

∧
(u,v)∈E (pu ∧ eu,v → pv))

• Count ∃PN(ϕ): Projected Counting

36/40

Reliability of Critical Infrastructure Networks

• G = (N,E); source node: s and terminal node t

• (wlog) every edge fails with prob 1
2

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a 0/1 vector of size |E |
• πs,t : configuration where s and t are disconnected

– Represented as a solution to set of constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
2−E

• Variables for Nodes: PN = {pu}u∈N and Edges: {pe}e∈E
• Consider e = (u, v): pu ∧ eu,v → pv
• ϕ = ps ∧ ¬pt ∧

∧
(u,v)∈E (pu ∧ eu,v → pv))

• Count ∃PN(ϕ): Projected Counting

36/40

Reliability of Critical Infrastructure Networks

• G = (N,E); source node: s and terminal node t

• (wlog) every edge fails with prob 1
2

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a 0/1 vector of size |E |
• πs,t : configuration where s and t are disconnected

– Represented as a solution to set of constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
2−E

• Variables for Nodes: PN = {pu}u∈N and Edges: {pe}e∈E
• Consider e = (u, v): pu ∧ eu,v → pv
• ϕ = ps ∧ ¬pt ∧

∧
(u,v)∈E (pu ∧ eu,v → pv))

• Count ∃PN(ϕ): Projected Counting

36/40

Reliability of Critical Infrastructure Networks

• G = (N,E); source node: s and terminal node t

• (wlog) every edge fails with prob 1
2

• Compute Pr[s and t are disconnected]?

• π : Configuration (of network) denoted by a 0/1 vector of size |E |
• πs,t : configuration where s and t are disconnected

– Represented as a solution to set of constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
2−E

• Variables for Nodes: PN = {pu}u∈N and Edges: {pe}e∈E
• Consider e = (u, v): pu ∧ eu,v → pv
• ϕ = ps ∧ ¬pt ∧

∧
(u,v)∈E (pu ∧ eu,v → pv))

• Count ∃PN(ϕ): Projected Counting

36/40

So What Makes Hashing-based Techniques Work?

• Algorithmic

– From Stockmeyer to ApproxMC
– The Boon of Dependence
– Sparse XORs

• System: Efficient CNF+XOR Solving (Soos’ possible talk in SAT
Seminar?)
• Conceptual

– Independent Support
– Projection

The Rise of Hashing-based Approach: Promise of Scalability and
Guarantees
(S83,GSS06,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16,

KM18,ATD18,SM19,ABM20,SGM20)

37/40

Improvements Over the Years

 0

 1000

 2000

 3000

 4000

 5000

 150 300 450 600 750 900 1050 1200 1350 1500 1650

T
im

e
 (

s
)

Solved instances
ApproxMC2 (2016)
ApproxMC3 (2019)

ApproxMC4 (2020)
ApproxMC4.2 (2021)

38/40

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E);
source node: s

• Compute Pr[t is
disconnected]?

10 20 30 40 50 60

200

400

600

800

1,000

Terminal

T
im

e(
se

co
n

d
s)

Timeout = 1000 seconds

(DMPV, AAAI17)
39/40

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E);
source node: s

• Compute Pr[t is
disconnected]?

10 20 30 40 50 60

200

400

600

800

1,000

Terminal

T
im

e(
se

co
n

d
s)

RDA

Timeout = 1000 seconds

(DMPV, AAAI17)
39/40

Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E);
source node: s

• Compute Pr[t is
disconnected]?

10 20 30 40 50 60

200

400

600

800

1,000

Terminal

T
im

e(
se

co
n

d
s)

RDA
ApproxMC

Timeout = 1000 seconds

(DMPV, AAAI17)
39/40

Where do we go from here?

Algorithmic • Design of instance-dependent sparse XORs
• Can we prove accuracy observed in practice?

System • Better system for Sparse XORs
• Hybrid Counter to exploit complimentary exact and

approximate counting

Coneptual • Independent support is model counting preserving
but approximation would suffice
• Proof of correctness

40/40

