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Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using
“and” (∧) “or”, (∨) and “not” (¬), is there a satisfying solution (an
assignment of 0’s and 1’s to the variables that makes the expression
equal 1)?
Example:

(¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x3 ∨ x1 ∨ x4)

Solution: x1 = 0, x2 = 0, x3 = 1, x4 = 1

2/45



Complexity of Boolean Reasoning

History:

• William Stanley Jevons, 1835-1882: “I have given much attention,
therefore, to lessening both the manual and mental labour of the
process, and I shall describe several devices which may be adopted
for saving trouble and risk of mistake.”

• Ernst Schröder, 1841-1902: “Getting a handle on the
consequences of any premises, or at least the fastest method for
obtaining these consequences, seems to me to be one of the
noblest, if not the ultimate goal of mathematics and logic.”

• Cook, 1971, Levin, 1973: Boolean Satisfiability is NP-complete.

• Clay Institute, 2000: $1M Award!
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Algorithmic Boolean Reasoning: Early History

• Davis and Putnam, 1958: “Computational Methods in The
Propositional calculus”, unpublished report to the NSA

• Davis and Putnam, JACM 1960: “A Computing procedure for
quantification theory”

• Davis, Logemman, and Loveland, CACM 1962: “A machine
program for theorem proving”

• Conflict-Driven Clause Learning (MSS96a; )

• Two decades of Moore’s Law for SAT solvers
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The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with
practical problems that involve millions of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Industrial usage of SAT Solvers: Model Checking, Planning, Genome
Rearrangement, Telecom Feature Subscription, Resource Constrained
Scheduling, Noise Analysis, Games, · · ·

Now that SAT is “easy”, it is time to look beyond satisfiability
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The Disruption of NP Revolution

Before:

Practitioners There are no powerful SAT solvers, so design
problem-specified algorithms

Theoreticians Assume access to all-powerful SAT oracle.

After/During:

Oracle vs Solver SAT Solvers ̸= SAT oracle; The performance of solver
depends on the formulas

Incremental Solving It is often easier to solve F followed by G if we G
can be written as G = F ∧ H
• Clause Learning: If F → C then (F ∧ H) =⇒ C

Beyond CNF Solvers Just handling CNF solving is not sufficient
• Need to handle CNF+XOR formulas;
• XORs can be solved by Gaussian elimination
• CryptoMiniSAT: Solver designed to perform CDCL
and Gaussian Elimination in tandem (Soos 09; SM,

AAAI19)
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Constrained Counting and Sampling

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• Sol(F ) = { solutions of F }

• W (F ) = Σy∈Sol(F )W (y)

• Constrained Counting: Determine

W (F )

• Constrained Sampling: Randomly sample from Sol(F ) such that

Pr[y is sampled] = W (y)
W (F )

• Given

– F := (X1 ∨ X2)
– W [(0, 0)] = W [(1, 1)] = 1

6 ;W [(1, 0)] = W [(0, 1)] = 1
3

• Sol(F ) = {(0, 1), (1, 0), (1, 1)}
• W (F ) = 1

3 + 1
3 + 1

6 = 5
6
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Today’s Menu

Testing of AI systems

Network Reliability

Hardware Validation

Constrained Counting Hashing Framework

Constrained Sampling
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Testing of AI Systems

• Classical verification/testing setup for traditional systems

– System captured as a model M(I,O) via logical constraints

– Specification φ(I,O): relationship between input and output

– Methodology: Find one execution of M such that φ is not satisfied

• Modern Machine Learning Systems
– Model: A given neural network and an image
– Specification: For all small perturbations, the model should not give

different answers.

“Panda”

+ =

Imperceptible 
Perturbation

“Gibbon”

• Acceptable despite multiple executions with error: From
satisfiability to counting

(BSSMS, 2019)
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Can we reliably predict the effect of natural disasters on critical
infrastructure such as power grids?
Can we predict likelihood of a region facing blackout?
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Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E ); source node: s and terminal
node t

• failure probability g : E → [0, 1]

• Compute Pr[ s and t are disconnected]?

• π : Configuration (of network) denoted by a
0/1 vector of size |E |

• W (π) = Pr(π)

• πs,t : configuration where s and t are
disconnected

– Represented as a solution to set of
constraints over edge variables

• Pr[s and t are disconnected] =
∑

πs,t
W (πs,t)

Constrained Counting ( DMPV, AAAI 17, ICASP-13, RESS 2019)
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Prior Work

Strong guarantees but poor scalability

• Exact counters (Birnbaum and Lozinskii 1999, Jr. and Schrag 1997, Sang et

al. 2004, Thurley 2006)

• Hashing-based approach (Stockmeyer 1983, Jerrum Valiant and Vazirani

1986)

Weak guarantees but impressive scalability

• Bounding counters (Gomes et al. 2007,Kroc, Sabharwal, and Selman 2008,

Gomes, Sabharwal, and Selman 2006, Kroc, Sabharwal, and Selman 2008)

• Sampling-based techniques (Wei and Selman 2005, Rubinstein 2012,

Gogate and Dechter 2011)

How to bridge this gap between theory and practice?
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Constrained Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• ExactCount(F ,W ): Compute W (F )?

– #P-complete (Valiant 1979)

• ApproxCount(F ,W , ε, δ): Compute C such that

Pr[
W (F )

1 + ε
≤ C ≤W (F )(1 + ε)] ≥ 1− δ
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From Weighted to Unweighted Counting

Boolean Formula F and weight
function W : {0, 1}n → Q≥0

Boolean Formula F ′

W (F ) = c(W )× |Sol(F ′)|
• Key Idea: Encode weight function as a set of constraints

• Caveat: |F ′| = O(|F |+ |W |)
( CFMV, IJCAI15)

How do we estimate |Sol(F ′)|?
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Counting in Helsinki

How many people in Helsinki like coffee?

• Population of Helsinki = 650K

• Assign every person a unique (n =) 20 bit identifier (2n = 650K)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 650K/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• SAT Query: Find a person who likes coffee
• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?
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As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells
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Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F ) ∩ {y | h(y) = α}

• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash
functions
Universal Hashing (Carter and Wegman 1977)
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2-Universal Hashing

• Let H be family of 2-universal hash functions mapping {0, 1}n to
{0, 1}m

∀y1, y2 ∈ {0, 1}n, α1, α2 ∈ {0, 1}m, h
R←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(
1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(
1

2m

)2

• The power of 2-universality

– Z be the number of solutions in a randomly chosen cell

– E[Z ] = |Sol(F )|
2m

– σ2[Z ] ≤ E[Z ]
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2-Universal Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2

– Expected size of each XOR: n
2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · · )
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• Performance of state of the art SAT solvers degrade with increase
in the size of XORs (SAT Solvers != SAT oracles)
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Improved Universal Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F ), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

• FPNP procedure via reduction to Minimal Unsatisfiable Subset

• Two orders of magnitude runtime improvement
( IMMV; CP15, Constraints16)
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Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Independent Support-based 2-Universal Hash
Functions

Challenge 2 How many cells?
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Question 2: How many cells?

• A cell is small if it has about thresh = 5(1 + 1
ε )

2 solutions

• We want to partition into 2m
∗
cells such that 2m

∗
= |Sol(F )|

thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh
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ApproxMC(F , ε, δ)

# of sols
≤ thresh?
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ApproxMC(F , ε, δ)

# of sols
≤ thresh?

# of sols
≤ thresh?

# of sols
≤ thresh?

Estimate =
# of sols ×
# of cells # of sols

≤ thresh?

· · ·

No No

No
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ApproxMC(F , ε, δ)

• We want to partition into 2m
∗
cells such that 2m

∗
= |Sol(F )|

thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh
– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh
– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi )

– If Query i returns YES, then Query i + 1 must return YES

– Logarithmic search (# of SAT calls: O(log n))
– Incremental Search

• Will this work? Will the “m” where we stop be close to m∗?
– Challenge Query i and Query j are not independent
– Independence crucial to analysis (Stockmeyer 1983, · · · )
– Key Insight: The probability of making a bad choice of Qi is very

small for i ≪ m∗

( CMV, IJCAI16)
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Taming the Curse of Dependence

Let 2m
∗
= |Sol(F )|

thresh (m∗ = log( |Sol(F )|thresh ))

Lemma (1)

ApproxMC (F , ε, δ) terminates with m ∈ {m∗ − 1,m∗} with probability
≥ 0.8

Lemma (2)

For m ∈ {m∗ − 1,m∗}, estimate obtained from a randomly picked cell
lies within a tolerance of ε of |Sol(F )| with probability ≥ 0.8
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ApproxMC(F , ε, δ)

Theorem (Correctness)

Pr
[
|Sol(F )|
1+ε ≤ ApproxMC(F , ε, δ) ≤ |Sol(F )|(1 + ε)

]
≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O( log n log(
1
δ
)

ε2
) calls to SAT oracle.

• Prior work required O(n log n log( 1
δ
)

ε ) calls to SAT oracle (Stockmeyer

1983)

Theorem (FPRAS for DNF; (MSV, FSTTCS 17; CP 18, IJCAI-19))

If F is a DNF formula, then ApproxMC is FPRAS – fundamentally
different from the only other known FPRAS for DNF (Karp, Luby 1983)
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Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E );
source node: s

• Compute Pr[ t is
disconnected]?
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Beyond Network Reliability

ApproxMC
Network
Reliability

Probabilistic
Reasoning

Quantified
Information

Flow

Synthesis

(DMPV,
AAAI17;
RESS19)

(CMMV, AAAI16), (CMV, IJCAI16),

Fremont, Rabe and Seshia
2017, BEHLM Q-18, Bang-
2018, ZGG19, BSSMS19

(CFMSV, AAAI14), Fremont
et al 2017, Ellis et al 2017,
Raghothaman et al 2018
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Verification of AI systems

Network Reliability Constrained Counting

Hashing FrameworkHardware Validation
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Hardware Validation

• Design is simulated with test vectors
(values of a and b)

• Results from simulation compared to
intended results

• Challenge: How do we generate test
vectors?

– 2128 combinations for a toy circuit

• Use constraints to represent interesting
verification scenarios
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Constrained-Random Simulation

Constraints
• Designers:

– a+64 11 ∗ 32b = 12
– a <64 (b >> 4)

• Past Experience:

– 40 <64 34 + a <64 5050
– 120 <64 b <64 230

• Users:

– 232 ∗ 32a+64 b! = 1100
– 1020 <64 (b/642)+64 a <64 2200

Test vectors: random solutions of con-
straints
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Constrained Sampling

• Given:

– Set of Constraints F over variables X1,X2, · · ·Xn

• Uniform Sampler

∀y ∈ Sol(F ),Pr[y is output] =
1

|Sol(F )|

• Almost-Uniform Sampler

∀y ∈ Sol(F ),
1

(1 + ε)|Sol(F )|
≤ Pr[y is output] ≤ (1 + ε)

|Sol(F )|
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Prior Work

Strong guarantees but poor scalability

• Polynomial calls to NP oracle (Bellare, Goldreich and Petrank,2000)

• BDD-based techniques (Yuan et al 1999, Yuan et al 2004, Kukula and

Shiple 2000)

• Reduction to approximate counting (Jerrum, Valiant and Vazirani 1986)

Weak guarantees but impressive scalability

• Randomization in SAT solvers (Moskewicz 2001, Nadel 2011, Dutra

Bachrach and Sen 2018)

• MCMC-based approaches (Sinclair 1993, Jerrum and Sinclair 1996,

Kitchen and Kuehlmann 2007,...)

• Belief Networks (Dechter 2002, Gogate and Dechter 2006)

How to bridge this gap between theory and practice?
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Close Cousins: Counting and Sampling

• Approximate counting and almost-uniform sampling are
inter-reducible (Jerrum, Valiant and Vazirani, 1986)

• Is the reduction efficient?

– Almost-uniform sampler (JVV) require linear number of
approximate counting calls
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Key Ideas

• Check if a randomly picked cell is small

– If yes, pick a solution randomly from randomly picked cell

Challenge: How many cells?
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How many cells?

• Desired Number of cells: 2m
∗
= |Sol(F )|

thresh ( m∗ = log |Sol(F )|
thresh )

– ApproxMC(F , ε, δ) returns C such that

Pr
[
|Sol(F )|
1+ε ≤ C ≤ |Sol(F )|(1 + ε)

]
≥ 1− δ

– m̃ = log C
thresh

– Check for m = m̃ − 1, m̃, m̃ + 1 if a randomly chosen cell is small
– Not just a practical hack required non-trivial proof

( CMV; DAC14),
( CFMSV; AAAI14, TACAS15),

( SGRM; LPAR18,TACAS19)
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Theoretical Guarantees

Theorem (Almost-Uniformity)

∀y ∈ Sol(F ), 1
(1+ε)|Sol(F )| ≤ Pr[y is output] ≤ 1+ε

|Sol(F )| ; ε > 1.71

Theorem (Query)

For a formula F over n variables UniGen makes one call to
approximate counter

• Prior work required n calls to approximate counter (Jerrum, Valiant

and Vazirani, 1986)

Universality

• JVV employs 2-universal hash functions

• UniGen employs 3-universal hash functions

Random XORs are 3-universal
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Three Orders of Improvement

Relative Runtime

SAT Solver 1

Desired Uniform Generator 10

XORSample (2012 state of the art) 50000

UniGen 21

Experiments over 200+ benchmarks

Closer to technical transfer
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Quiz Time: Uniformity

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4× 106; Total Solutions : 16384
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Usages of Open Source Tool: UniGen

UniGen
Hardware
Validation

Pattern
Mining

Probabilistic
Reasoning

Problem
Generation
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Mission 2025: Constrained Counting and Sampling
Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid

Neural Networks Handling 100K neurons

Security Leakage Measurement for C++ program with 1K lines

Hardware Verification Handling SMT formulas with 10K nodes
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Mission 2025: Constrained Counting and Sampling
Revolution

• Handling weighted distributions: Connections to theory of
integration (CM, CP19)

• Tighter integration between solvers and algorithms (SM, AAAI19)

• Verification of sampling and counting (CM, AAAI19)

• Exploiting domain specific properties (T. Talvitie’s PhD Thesis;
Thursday 12:15 PM)

• Understanding and applying sampling and counting to real world
use-cases

We can only see a short distance ahead but we can see plenty
there that needs to be done (Turing, 1950)
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The Amazing Collaborators

S. Akshay (IITB, India), Teodora Baluta (NUS, SG), Fabrizio Biondi
(Avast, CZ), Supratik Chakraborty (IITB, India), Alexis de Colnet
(NUS, SG), Remi Delannoy (NUS, SG), Jeffrey Dudek (Rice,US),
Leonardo Duenas-Osorio (Rice,US), Mike Enescu (Inria, France) Daniel
Fremont (UCB, US), Dror Fried (Open U., Israel), Rahul Gupta (IITK,
India), Annelie Heuser (Inria, France), Alexander Ivrii (IBM, Israel),
Alexey Ignatiev (IST, Portugal), Axel Legay (UCL, Belgium), Sharad
Malik (Princeton, US), Joao Marques Silva (IST, Portugal), Rakesh
Mistry (IITB, India), Nina Narodytska ((VMWare, US), Roger Paredes
(Rice,US), Yash Pote (NUS, SG), Jean Quilbeuf(Inria, France),
Subhajit Roy (IITK, India), Mate Soos (NUS, SG), Prateek Saxena
(NUS, SG), Sanjit Seshia (UCB, US), Shubham Sharma (IITK, India),
Aditya Shrotri(Rice,US), Moshe Vardi (Rice,US)

Thanks to Joao Marques-Silva for slides on CDCL solving.
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