Approximate Counting and Sampling

Kuldeep S. Meel

National University of Singapore

Simons Bootcamp

The Amazing Collaborators

S. Akshay (IITB, India), Teodora Baluta (NUS, SG), Fabrizio Biondi (Avast, CZ), Supratik Chakraborty (IITB, India), Alexis de Colnet (NUS, SG), Remi Delannoy (NUS, SG), Jeffrey Dudek (Rice,US), Leonardo Duenas-Osorio (Rice,US), Mike Enescu (Inria, France) Daniel Fremont (UCB, US), Dror Fried (Open U., Israel), Stephan Gocht (Lund U., Sweden), Rahul Gupta (IITK, India), Annelie Heuser (Inria, France), Alexander Ivrii (IBM, Israel), Alexey Ignatiev (IST, Portugal), Axel Legay (UCL, Belgium), Sharad Malik (Princeton, US), Joao Marques Silva (IST, Portugal), Rakesh Mistry (IITB, India), Nina Narodytska ((VMWare, US), Roger Paredes (Rice,US), Yash Pote (NUS, SG), Jean Quilbeuf(Inria, France), Subhajit Roy (IITK, India), Mate Soos (NUS, SG), Prateek Saxena (NUS, SG), Sanjit Seshia (UCB, US), Shubham Sharma (IITK, India), Aditya Shrotri(Rice,US), Moshe Vardi (Rice,US)

Special shout out to Mate Soos, maintainer of ApproxMC and UniGen

Modern SAT solvers are able to deal routinely with practical problems that involve millions of variables, although such problems were regarded as hopeless just a few years ago. (Donald Knuth, 2016)

Modern SAT solvers are able to deal routinely with practical problems that involve millions of variables, although such problems were regarded as hopeless just a few years ago. (Donald Knuth, 2016)

Industrial usage of SAT Solvers: Model Checking, Planning, Genome Rearrangement, Telecom Feature Subscription, Resource Constrained Scheduling, Noise Analysis, Games, ...

The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical problems that involve millions of variables, although such problems were regarded as hopeless just a few years ago. (Donald Knuth, 2016)

Industrial usage of SAT Solvers: Model Checking, Planning, Genome Rearrangement, Telecom Feature Subscription, Resource Constrained Scheduling, Noise Analysis, Games, ...

Now that SAT is "easy", it is time to look beyond satisfiability

Counting and Sampling

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$

Counting and Sampling

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- Counting: Determine $|\operatorname{Sol}(F)|$
- Approximation: $\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq c \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$

Counting and Sampling

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- Counting: Determine $|\operatorname{Sol}(F)|$
- Approximation: $\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq c \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$
- Uniform Sampling $\operatorname{Pr}[y$ is output $]=\frac{1}{|\operatorname{Sol}(F)|}$
- Almost-Uniform: $\frac{1}{(1+\varepsilon) \mid \text { Sol(F)| }} \leq \operatorname{Pr}[\mathrm{y}$ is output $] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}$

Counting and Sampling

- Given
- Boolean variables $X_{1}, X_{2}, \cdots X_{n}$
- Formula F over $X_{1}, X_{2}, \cdots X_{n}$
- $\operatorname{Sol}(F)=\{$ solutions of $F\}$
- Counting: Determine $|\operatorname{Sol}(F)|$
- Approximation: $\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq c \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$
- Uniform Sampling $\operatorname{Pr}[y$ is output $]=\frac{1}{|\operatorname{Sol}(F)|}$
- Almost-Uniform: $\frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y$ is output $] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}$
- Given
$-F:=\left(X_{1} \vee X_{2}\right)$
- Sol $(F)=\{(0,1),(1,0),(1,1)\}$
- $|\operatorname{Sol}(F)|=3$

Applications across Computer Science

Obs 1 SAT Oracle \neq NP Oracle

- Returns UNSAT with a proof
- Return a satisfying assignment if satisfiable

Obs 1 SAT Oracle \neq NP Oracle

- Returns UNSAT with a proof
- Return a satisfying assignment if satisfiable

Obs 2 SAT Solver \neq SAT oracle

- The performance of solver depends on the formulas

Obs 1 SAT Oracle \neq NP Oracle

- Returns UNSAT with a proof
- Return a satisfying assignment if satisfiable

Obs 2 SAT Solver \neq SAT oracle

- The performance of solver depends on the formulas

Obs 3 Memoryfulness

- Incremental Solving: Often easier to solve F followed by G if we G can be written as $G=F \wedge H$
- If $F \rightarrow C$ then $(F \wedge H) \Longrightarrow C$

Constrained Counting

Constrained Counting Hashing Framework

The Rise of Hashing-based Approach: Promise of Scalability and Guarantees (S83,GSS06,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16 KM18,ATD18,SM19,ABM20,SGM20)

Constrained Counting Hashing Framework Constrained Sampling

The Rise of Hashing-based Approach: Promise of Scalability and Guarantees (S83,GSS06,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16 KM18,ATD18,SM19,ABM20,SGM20)

Counting in Berkeley

How many people in Berkeley like coffee?

- Population of Berkeley $=112 \mathrm{~K}$
- Assign every person a unique $(n=) 17$ bit identifier $\left(2^{n}=112 \mathrm{~K}\right)$

Counting in Berkeley

How many people in Berkeley like coffee?

- Population of Berkeley $=112 \mathrm{~K}$
- Assign every person a unique ($n=$) 17 bit identifier $\left(2^{n}=112 \mathrm{~K}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $112 \mathrm{~K} / 50$

Counting in Berkeley

How many people in Berkeley like coffee?

- Population of Berkeley $=112 \mathrm{~K}$
- Assign every person a unique ($n=$) 17 bit identifier $\left(2^{n}=112 \mathrm{~K}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $112 \mathrm{~K} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50

Counting in Berkeley

How many people in Berkeley like coffee?

- Population of Berkeley $=112 \mathrm{~K}$
- Assign every person a unique ($n=$) 17 bit identifier $\left(2^{n}=112 \mathrm{~K}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $112 \mathrm{~K} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee

Counting in Berkeley

How many people in Berkeley like coffee?

- Population of Berkeley $=112 \mathrm{~K}$
- Assign every person a unique ($n=$) 17 bit identifier $\left(2^{n}=112 \mathrm{~K}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $112 \mathrm{~K} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y

Counting in Berkeley

How many people in Berkeley like coffee?

- Population of Berkeley $=112 \mathrm{~K}$
- Assign every person a unique ($n=$) 17 bit identifier $\left(2^{n}=112 \mathrm{~K}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $112 \mathrm{~K} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y
- Attempt \#2: Enumerate every person who likes coffee

Counting in Berkeley

How many people in Berkeley like coffee?

- Population of Berkeley $=112 \mathrm{~K}$
- Assign every person a unique ($n=$) 17 bit identifier $\left(2^{n}=112 \mathrm{~K}\right)$
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by $112 \mathrm{~K} / 50$
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- SAT Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person y
- Attempt \#2: Enumerate every person who likes coffee
- Potentially 2^{n} queries

Can we do with lesser \# of SAT queries $-\mathcal{O}(n)$ or $\mathcal{O}(\log n)$?

As Simple as Counting Dots

As Simple as Counting Dots

As Simple as Counting Dots

Pick a random cell

Estimate $=$ Number of solutions in a cell \times Number of cells

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenge 2 How many cells?
Challenge 3 What is exactly a small cell ?

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Solutions in a cell α : $\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}$

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Solutions in a cell α : $\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}$
- Deterministic h unlikely to work

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Designing function h : assignments \rightarrow cells (hashing)
- Solutions in a cell α : $\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}$
- Deterministic h unlikely to work
- Choose h randomly from a large family H of hash functions
Universal Hashing (Carter and Wegman 1977)

2-wise independent Hashing

- Let H be family of 2-wise independent hash functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{m}$

$$
\begin{gathered}
\forall y_{1}, y_{2} \in\{0,1\}^{n}, \alpha_{1}, \alpha_{2} \in\{0,1\}^{m}, h \stackrel{R}{\leftarrow} H \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1}\right]=\operatorname{Pr}\left[h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right) \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1} \wedge h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right)^{2}
\end{gathered}
$$

2-wise independent Hashing

- Let H be family of 2-wise independent hash functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{m}$

$$
\begin{gathered}
\forall y_{1}, y_{2} \in\{0,1\}^{n}, \alpha_{1}, \alpha_{2} \in\{0,1\}^{m}, h \stackrel{R}{\leftarrow} H \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1}\right]=\operatorname{Pr}\left[h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right) \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1} \wedge h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right)^{2}
\end{gathered}
$$

- The power of 2-wise independentity
- Z be the number of solutions in a randomly chosen cell
$-\mathrm{E}[Z]=\frac{|\mathrm{Sol}(F)|}{2^{m} \mid}$
$-\sigma^{2}[Z] \leq \mathrm{E}[Z]$

2-wise independent Hash Functions

- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}^{2}$
- Expected size of each XOR: $\frac{n}{2}$

2-wise independent Hash Functions

- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}$
- Expected size of each XOR: $\frac{n}{2}$
- To choose $\alpha \in\{0,1\}^{m}$, set every XOR equation to 0 or 1 randomly

$$
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
$$

- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$

2-wise independent Hash Functions

- Variables: $X_{1}, X_{2}, \cdots X_{n}$
- To construct $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, choose m random XORs
- Pick every X_{i} with prob. $\frac{1}{2}$ and XOR them
- $X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}$
- Expected size of each XOR: $\frac{n}{2}$
- To choose $\alpha \in\{0,1\}^{m}$, set every XOR equation to 0 or 1 randomly

$$
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
$$

- Solutions in a cell: $F \wedge Q_{1} \cdots \wedge Q_{m}$
- Performance of state of the art SAT solvers degrade with increase in the size of XORs (SAT Solvers $!=$ SAT oracles)

Improved 2-wise Independent Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not

Improved 2-wise Independent Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not
- Random XORs need to be constructed only over I

Improved 2-wise Independent Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not
- Random XORs need to be constructed only over I
(CMV DAC14)
- Typically I is $1-2$ orders of magnitude smaller than X
- Auxiliary variables introduced during encoding phase are dependent
(Tseitin 1968)

Improved 2-wise Independent Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not
- Random XORs need to be constructed only over I
(CMV DAC14)
- Typically I is $1-2$ orders of magnitude smaller than X
- Auxiliary variables introduced during encoding phase are dependent
(Tseitin 1968)
Algorithmic procedure to determine I?

Improved 2-wise Independent Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not
- Random XORs need to be constructed only over I
(CMV DAC14)
- Typically I is $1-2$ orders of magnitude smaller than X
- Auxiliary variables introduced during encoding phase are dependent
(Tseitin 1968)
Algorithmic procedure to determine I?
- $F P^{N P}$ procedure via reduction to Minimal Unsatisfiable Subset

Improved 2-wise Independent Hash Functions

- Not all variables are required to specify solution space of F
$-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)$
- X_{1} and X_{2} uniquely determines rest of the variables (i.e., X_{3})
- Formally: if I is independent support, then $\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)$, if σ_{1} and σ_{2} agree on $/$ then $\sigma_{1}=\sigma_{2}$
- $\left\{X_{1}, X_{2}\right\}$ is independent support but $\left\{X_{1}, X_{3}\right\}$ is not
- Random XORs need to be constructed only over I
(CMV DAC14)
- Typically I is $1-2$ orders of magnitude smaller than X
- Auxiliary variables introduced during encoding phase are dependent
(Tseitin 1968)
Algorithmic procedure to determine I?
- $F P^{N P}$ procedure via reduction to Minimal Unsatisfiable Subset
- Two orders of magnitude runtime improvement
(IMMV; CP15, Constraints16)

Handling CNF+XOR Formulas

- CNF + Sparse XORs are still CNF+XOR formulas.
- Translating XORs to CNF and performing CDCL is not sufficient

Handling CNF+XOR Formulas

- CNF + Sparse XORs are still CNF+XOR formulas.
- Translating XORs to CNF and performing CDCL is not sufficient
- XORs can be solved by Gaussian elimination
- CryptoMiniSAT: Solver designed to perform CDCL and Gaussian Elimination in tandem (SNC09; SM19, SGM20)
- BIRD (Blast, Inprocess, Recover, and Detach): Tighter integration

Challenges

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

- Independent Support-based XORs
- Specialized CNF Solvers

Challenge 2 How many cells?
Challenge 3 What is exactly a small cell ?

Challenge 2: How many cells?

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$

Challenge 2: How many cells?

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Check for every $m=0,1, \cdots n$ if the number of solutions \leq thresh

ApproxMC

ApproxMC

ApproxMC

ApproxMC

ApproxMC

ApproxMC

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- ...
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES

ApproxMC

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- ...
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES
- Logarithmic search (\# of SAT calls: $\mathcal{O}(\log n)$)
- Incremental Search

ApproxMC

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- ...
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES
- Logarithmic search (\# of SAT calls: $\mathcal{O}(\log n)$)
- Incremental Search
- Will this work? Will the " m " where we stop be close to m^{*} ?

ApproxMC

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- ...
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES
- Logarithmic search (\# of SAT calls: $\mathcal{O}(\log n)$)
- Incremental Search
- Will this work? Will the " m " where we stop be close to m^{*} ?
- Challenge Query i and Query j are not independent
- Independence crucial to analysis (Stockmeyer 1983, ...)

ApproxMC

- We want to partition into $2^{m^{*}}$ cells such that $2^{m^{*}}=\frac{|\mathrm{Sol}(F)|}{\text { thresh }}$
- Query 1: Is $\#\left(F \wedge Q_{1}\right) \leq$ thresh
- Query 2: Is $\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq$ thresh
- ...
- Query n : Is $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq$ thresh
- Stop at the first m where Query m returns YES and return estimate as $\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}$
- Observation: $\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)$
- If Query i returns YES, then Query $i+1$ must return YES
- Logarithmic search (\# of SAT calls: $\mathcal{O}(\log n)$)
- Incremental Search
- Will this work? Will the " m " where we stop be close to m^{*} ?
- Challenge Query i and Query j are not independent
- Independence crucial to analysis (Stockmeyer 1983, ..)
- Key Insight: The probability of making a bad choice of Q_{i} is very small for $i \ll m^{*}$

Taming the Curse of Dependence

Let $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \left(\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\right)\right)$

Lemma (1)

ApproxMC terminates with $m \in\left\{m^{*}-1, m^{*}\right\}$ with probability ≥ 0.8

Lemma (2)
For $m \in\left\{m^{*}-1, m^{*}\right\}$, estimate obtained from a randomly picked cell lies within a tolerance of ε of $|\operatorname{Sol}(F)|$ with probability ≥ 0.8

Repeat $\mathcal{O}(\log (1 / \delta))$ times and return the median

Challenges

Challenge 3 What is a small cell?

Challenges

Challenge 3 What is a small cell?

- A cell is small cell if it has \approx thresh solutions.
- Approach 1: thresh $=$ constant $\rightarrow 4$-factor approximation
- From 4 to 2-factor

Let $G=F_{1} \wedge F_{2}$ (i.e., two identical copies of F)

$$
\frac{|\operatorname{Sol}(G)|}{4} \leq C \leq 4 \cdot|\operatorname{Sol}(G)| \Longrightarrow \frac{|\operatorname{Sol}(F)|}{2} \leq \sqrt{C} \leq 2 \cdot|\operatorname{Sol}(F)|
$$

Challenges

Challenge 3 What is a small cell?

- A cell is small cell if it has \approx thresh solutions.
- Approach 1: thresh $=$ constant $\rightarrow 4$-factor approximation
- From 4 to 2-factor

Let $G=F_{1} \wedge F_{2}$ (i.e., two identical copies of F)

$$
\frac{|\operatorname{Sol}(G)|}{4} \leq C \leq 4 \cdot|\operatorname{Sol}(G)| \Longrightarrow \frac{|\operatorname{Sol}(F)|}{2} \leq \sqrt{C} \leq 2 \cdot|\operatorname{Sol}(F)|
$$

- From 4 to $(1+\varepsilon)$-factor Construct $G=F_{1} \wedge F_{2} \ldots F_{\frac{1}{\varepsilon}}$ And then we can take $\frac{1}{\varepsilon}$-root

Challenges

Challenge 3 What is a small cell?

- A cell is small cell if it has \approx thresh solutions.
- Approach 1: thresh $=$ constant $\rightarrow 4$-factor approximation
- From 4 to 2-factor

Let $G=F_{1} \wedge F_{2}$ (i.e., two identical copies of F)

$$
\frac{|\operatorname{Sol}(G)|}{4} \leq C \leq 4 \cdot|\operatorname{Sol}(G)| \Longrightarrow \frac{|\operatorname{Sol}(F)|}{2} \leq \sqrt{C} \leq 2 \cdot|\operatorname{Sol}(F)|
$$

- From 4 to $(1+\varepsilon)$-factor Construct $G=F_{1} \wedge F_{2} \ldots F_{\frac{1}{\varepsilon}}$ And then we can take $\frac{1}{\varepsilon}$-root
- Approach 2: thresh $=\mathcal{O}\left(\frac{1}{\varepsilon^{2}}\right)$ gives $(1+\varepsilon)$-approximation directly

Challenges

Challenge 3 What is a small cell?

- A cell is small cell if it has \approx thresh solutions.
- Approach 1: thresh $=$ constant \rightarrow 4-factor approximation
- From 4 to 2-factor

Let $G=F_{1} \wedge F_{2}$ (i.e., two identical copies of F)

$$
\frac{|\operatorname{Sol}(G)|}{4} \leq C \leq 4 \cdot|\operatorname{Sol}(G)| \Longrightarrow \frac{|\operatorname{Sol}(F)|}{2} \leq \sqrt{C} \leq 2 \cdot|\operatorname{Sol}(F)|
$$

- From 4 to $(1+\varepsilon)$-factor Construct $G=F_{1} \wedge F_{2} \ldots F_{\frac{1}{\varepsilon}}$ And then we can take $\frac{1}{\varepsilon}$-root
- Approach 2: thresh $=\mathcal{O}\left(\frac{1}{\varepsilon^{2}}\right)$ gives $(1+\varepsilon)$-approximation directly

Techniques based on thresh $=\mathcal{O}\left(\frac{1}{\varepsilon^{2}}\right)$, despite worse complexity, e.g., ApproxMC scale significantly better than those based on thresh $=$ constant.

The performance of SAT solvers depend on the formulas

ApproxMC

Theorem (Correctness)

$\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$

Theorem (Complexity)

ApproxMC (F, ε, δ) makes $\mathcal{O}\left(\frac{\log n \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)$ calls to SAT oracle.

ApproxMC

Theorem (Correctness)

$\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta$

Theorem (Complexity)

ApproxMC (F, ε, δ) makes $\mathcal{O}\left(\frac{\log n \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)$ calls to SAT oracle.

Theorem (FPRAS for DNF; (MSV, FSTTCS 17; CP 18, IJCAI-19))

If F is a DNF formula, then ApproxMC is FPRAS - different from the Monte-Carlo based FPRAS for DNF (Karp, Luby 1983)

Improvements Over the Years

Constrained Counting \checkmark Hashing Framework \checkmark
Constrained Sampling

Constrained Sampling

- Given:
- Set of Constraints F over variables $X_{1}, X_{2}, \cdots X_{n}$
- Uniform Sampler

$$
\forall y \in \operatorname{Sol}(F), \operatorname{Pr}[y \text { is output }]=\frac{1}{|\operatorname{Sol}(F)|}
$$

- Almost-Uniform Sampler

$$
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[\mathrm{y} \text { is output }] \leq \frac{(1+\varepsilon)}{|\operatorname{Sol}(F)|}
$$

Close Cousins: Counting and Sampling

- Approximate counting and almost-uniform sampling are inter-reducible
(Jerrum, Valiant and Vazirani, 1986)

Close Cousins: Counting and Sampling

- Approximate counting and almost-uniform sampling are inter-reducible
- Is the reduction efficient?
- Almost-uniform sampler (JVV) require linear number of approximate counting calls

Key Ideas

- Check if a randomly picked cell is small
- If yes, pick a solution randomly from randomly picked cell

Key Ideas

- Check if a randomly picked cell is small
- If yes, pick a solution randomly from randomly picked cell Challenge: How many cells?

How many cells?

- Desired Number of cells: $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \frac{|\mathrm{Sol}(F)|}{\text { thresh }}\right)$

How many cells?

- Desired Number of cells: $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \frac{|\mathrm{Sol}(F)|}{\text { thresh }}\right)$
- ApproxMC (F, ε, δ) returns C such that

$$
\begin{aligned}
& \operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq C \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta \\
& -\tilde{m}=\log \frac{C}{\text { thresh }}
\end{aligned}
$$

How many cells?

- Desired Number of cells: $2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \frac{|\mathrm{Sol}(F)|}{\text { thresh }}\right)$
- ApproxMC (F, ε, δ) returns C such that

$$
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq C \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta
$$

$$
-\tilde{m}=\log \frac{C}{\text { thresh }}
$$

- Check for $m=\tilde{m}-1, \tilde{m}, \tilde{m}+1$ if a randomly chosen cell is small
- $\operatorname{Pr}[y$ is output $]=\operatorname{Pr}[y$ is chosen $] \operatorname{Pr[Cell}$ is small $\mid \mathrm{y}$ is in cell]
- The conditioning in $\operatorname{Pr}[$ Cell is small $\mid y$ is in cell] leads to requirement of 3-wise independence of 2-wise independence.
(CMV14, CFMSV14, CFMSV15,SGM20)

Theoretical Guarantees

Theorem (Almost-Uniformity)

$$
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
$$

Theoretical Guarantees

Theorem (Almost-Uniformity)

$$
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
$$

Theorem (Query)

For a formula F over n variables UniGen makes one call to approximate counter

Theoretical Guarantees

Theorem (Almost-Uniformity)

$$
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
$$

Theorem (Query)

For a formula F over n variables UniGen makes one call to approximate counter

- Prior work required n calls to approximate counter (Jerrum, Valiant and Vazirani, 1986)

Theoretical Guarantees

Theorem (Almost-Uniformity)

$$
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
$$

Theorem (Query)

For a formula F over n variables UniGen makes one call to approximate counter

- Prior work required n calls to approximate counter (Jerrum, Valiant and Vazirani, 1986)
- JVV employs 2-wise independent hash functions
- UniGen employs 3 -wise independent hash functions

Theoretical Guarantees

Theorem (Almost-Uniformity)

$$
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
$$

Theorem (Query)

For a formula F over n variables UniGen makes one call to approximate counter

- Prior work required n calls to approximate counter (Jerrum, Valiant and Vazirani, 1986)
- JVV employs 2-wise independent hash functions
- UniGen employs 3-wise independent hash functions Random XORs are 3-wise independent

Quiz Time: Uniformity

- Benchmark: case110.cnf; \#var: 287; \#clauses: 1263
- Total Runs: 4×10^{6}; Total Solutions : 16384

Statistically Indistinguishable

- Benchmark: case110.cnf; \#var: 287; \#clauses: 1263
- Total Runs: 4×10^{6}; Total Solutions : 16384

Now that SAT is "easy", it is time to look beyond satisfiability

Improvements Over the Years

Enabling "Beyond NP" Revolution

Challenge Problems

Enabling "Beyond NP" Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid
Security Leakage Measurement for C++ program with 1K lines
Hardware Verification Handling SMT formulas with 10K nodes

Enabling "Beyond NP" Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid Security Leakage Measurement for C++ program with 1K lines Hardware Verification Handling SMT formulas with 10K nodes

Technical Directions

- Tighter integration between solvers and algorithms
- Handling weighted distributions: Connections to theory of integration
- Verification of sampling and counting

Enabling "Beyond NP" Revolution

Challenge Problems

Civil Engineering Reliability for Los Angeles Transmission Grid Security Leakage Measurement for C++ program with 1K lines Hardware Verification Handling SMT formulas with 10K nodes

Technical Directions

- Tighter integration between solvers and algorithms
- Handling weighted distributions: Connections to theory of integration
- Verification of sampling and counting

Questions?

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?

Figure: Plantersville, SC

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[s$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$

Figure: Plantersville, SC

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$
- $\pi_{s, t}$: configuration where s and t are disconnected
- Represented as a solution to set of constraints over edge variables

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$
- $\pi_{s, t}$: configuration where s and t are disconnected
- Represented as a solution to set of constraints over edge variables
- $\operatorname{Pr}[s$ and t are disconnected $]=\sum_{\pi_{s, t}} W\left(\pi_{s, t}\right)$

Reliability of Critical Infrastructure Networks

- $G=(V, E)$; source node: s and terminal node t
- failure probability $g: E \rightarrow[0,1]$
- Compute $\operatorname{Pr}[\mathrm{s}$ and t are disconnected]?
- π : Configuration (of network) denoted by a $0 / 1$ vector of size $|E|$
- $W(\pi)=\operatorname{Pr}(\pi)$
- $\pi_{s, t}$: configuration where s and t are disconnected
- Represented as a solution to set of constraints over edge variables
- $\operatorname{Pr}[s$ and t are disconnected $]=\sum_{\pi_{s, t}} W\left(\pi_{s, t}\right)$
(DMPV, AAAI 17, ICASP-13, RESS 2019)

Reliability of Critical Infrastructure Networks

Figure: Plantersville, SC

- $G=(V, E)$; source node: s
- Compute $\operatorname{Pr}[\mathrm{t}$ is disconnected]?
Timeout $=1000$ seconds

(DMPV, AAAI17)

Reliability of Critical Infrastructure Networks

Figure: Plantersville, SC

- $G=(V, E)$; source node: s
- Compute $\operatorname{Pr}[\mathrm{t}$ is disconnected]?
Timeout $=1000$ seconds

(DMPV, AAAI17)

Reliability of Critical Infrastructure Networks

Timeout $=1000$ seconds
(DMPV, AAAI17)

