Scaling Discrete Integration and Sampling:
 Foundations and Challenges

Supratik Chakraborty, IIT Bombay
Kuldeep S. Meel, National University of Singapore

Outline

- Part 1: Applications
- Part 2: Prior Work
- Part 3: Overview of SAT Solving
- Part 4: Hashing-based Approach for Uniform Distribution
- Part 5: Beyond Propositional
- Part 6: Challenges

Logical breakpoint in Part 4 for coffee break Slides will be available at https://tinyurl.com/ijcai18tutorial

Notation

- Given
- $X_{1}, \ldots X_{n}$: variables with domains $D_{1}, \ldots D_{n}$
- Constraint (logical formula) φ over $X_{1}, \ldots X_{n}$
- Weight function $W: D_{1} \times \ldots D_{n} \rightarrow Q^{\geq 0}$

Sol (φ) : set of assignments of $X_{1}, \ldots X_{n}$ satisfying φ

- Determine $W(\varphi)=\sum_{y \in \operatorname{Sol}(\varphi)} W(y)$ If $\mathrm{W}(\mathrm{y})=1$ for all y , then $\mathrm{W}(\varphi)=|\operatorname{Sol}(\varphi)|$

Discrete Integration (Model Counting)

- Randomly sample from $\operatorname{Sol}(\varphi)$ such that $\operatorname{Pr[y}$ is sampled] $\propto \mathrm{W}(\mathrm{y})$ If $W(y)=1$ for all y, then uniformly sample from $\operatorname{Sol}(\varphi)$

Discrete Sampling
For this tutorial: Initially, D_{i} 's are $\{0,1\}$ - Boolean variavoes
Later, we'll consider D_{i} 's as $\{0,1\}$ n $, R, Z$ - Bit-vectors, reals, integers

Closer Look At Some Applications

- Discrete Integration
- Probabilistic Inference
- Network (viz. electrical grid) reliability
- Quantitative Information flow
- And many more ...
- Discrete Sampling
- Constrained random verification
- Automatic problem generation
- And many more ...

Application 1: Probabilistic Inference

- An alarm rings if it's in a working state when an earthquake happens or a burglary happens
- The alarm can malfunction and ring without earthquake or burglary happening
- Given that the alarm rang, what is the likelihood that an earthquake happened?
- Given conditional dependencies (and conditional probabilities) calculate $\operatorname{Pr}[$ event | evidence]
- What is Pr [Earthquake | Alarm] ?

Probabilistic Inference: Bayes' Rule

$\operatorname{Pr}\left[\right.$ event $_{i} \mid$ evidence $]=\frac{\operatorname{Pr}\left[\text { event }_{i} \cap \text { evidence }\right]}{\operatorname{Pr}[\text { evidence }]}=\frac{\operatorname{Pr}\left[\text { event }_{i} \cap \text { evidence }\right]}{\sum_{j}^{\operatorname{Pr}\left[\text { event }_{j} \cap \text { evidence }\right]}}$
$\operatorname{Pr}\left[\right.$ event $_{j} \cap$ evidence $]=\operatorname{Pr}\left[\right.$ evidence \mid event $\left._{j}\right] \times \operatorname{Pr}\left[\right.$ event $\left._{j}\right]$

How do we represent conditional dependencies efficiently, and calculate these probabilities?

Probablistic Inference: Graphical Models

Probabilistic Inference: First Principle Calculation

B	Pr
T	0.8
F	0.2

B	E	A	$\operatorname{Pr}(\mathbf{A} \mid \mathbf{E}, \mathbf{B})$
T	T	T	0.3
T	T	F	0.7
T	F	T	0.4
T	F	F	0.6
F	T	T	0.2
F	F	F	0.8
F	F	T	0.1
F	F	F	0.9

Probabilisitc Inference: Logical Formulation

$$
\begin{aligned}
& V=\left\{v_{A}, v_{\sim A}, v_{B}, v_{\sim B}, v_{E}, v_{\sim E}\right\} \\
& T=\left\{t_{A \mid B, E}, t_{\sim A \mid B, E}, t_{A \mid B, \sim E} \ldots\right\}
\end{aligned}
$$

Formula encoding probabilistic graphical model ($\varphi_{\text {РGм }}$):
$\left(v_{A} \oplus v_{\sim A}\right) \wedge\left(v_{B} \oplus v_{\sim B}\right) \wedge\left(v_{E} \oplus v_{\sim E}\right)$
Exactly one of v_{A} and $v_{\sim A}$ is true

$$
\left(\mathrm{t}_{\mathrm{A} \mid \mathrm{B}, \mathrm{E}} \Leftrightarrow \mathrm{v}_{\mathrm{A}} \wedge \mathrm{v}_{\mathrm{B}} \wedge \mathrm{v}_{\mathrm{E}}\right) \wedge\left(\mathrm{t}_{\mathrm{A} \mid \mathrm{B}, \mathrm{E}} \Leftrightarrow \mathrm{v}_{\sim \mathrm{A}} \wedge \mathrm{v}_{\mathrm{B}} \wedge \mathrm{v}_{\mathrm{E}}\right) \wedge \ldots
$$

If $\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}}, \mathrm{v}_{\mathrm{E}}$ are true, so must $\mathrm{t}_{\mathrm{A} \mid \mathrm{B}, \mathrm{E}}$ and vice versa

Probabilistic Inference: Logic and Weights

$$
\begin{aligned}
& V=\left\{v_{A}, v_{\sim A}, v_{B}, v_{\sim B}, v_{E}, v_{\sim E}\right\} \\
& T=\left\{t_{A \mid B, E}, t_{\sim A \mid B, E}, t_{A \mid B, \sim E} \ldots\right\} \\
& W\left(v_{\sim B}\right)=0.2, W\left(v_{B}\right)=0.8 \quad \text { Probabilities of indep events are weights of +ve literals } \\
& W\left(v_{\sim E}\right)=0.1, W\left(v_{E}\right)=0.9 \\
& \begin{array}{l}
\text { (} \left.t_{A \mid B, E}\right)=0.3, W\left(t_{\sim A \mid B, E}\right)=0.7, \ldots \quad \text { CPT entries are weights of + ve literals } \\
W\left(v_{A}\right)=W\left(v_{\sim A}\right)=1 \\
W\left(\neg v_{\sim B}\right)=W\left(\neg v_{B}\right)=W\left(\neg t_{A \mid B, E}\right) \ldots=1 \quad \text { Weights of vars corresponding to dependent events }
\end{array} \\
& \text { Weights of -ve literals are all } 1
\end{aligned}
$$

$$
\text { Weight of assignment }\left(\mathrm{v}_{\mathrm{A}}=1, \mathrm{v}_{\sim \mathrm{A}}=0, \mathrm{t}_{\mathrm{A} \mid \mathrm{B}, \mathrm{E}}=1, \ldots\right)=\mathrm{W}\left(\mathrm{v}_{\mathrm{A}}\right)^{*} \mathrm{~W}\left(\neg \mathrm{v}_{\sim \mathrm{A}}\right)^{*} \mathrm{~W}\left(\mathrm{t}_{\mathrm{A} \mid \mathrm{B}, \mathrm{E}}\right)^{*} \ldots
$$

Probabilistic Inference: Discrete Integration

$$
\begin{aligned}
& V=\left\{v_{A}, v_{\sim A}, v_{B}, v_{\sim B}, v_{E}, v_{\sim E}\right\} \\
& T=\left\{t_{A \mid B, E}, t_{\sim A \mid B, E}, t_{A \mid B, \sim E} \ldots\right\}
\end{aligned}
$$

Formula encoding combination of events in probabilistic model

$$
\text { (Alarm and Earthquake) } \quad F=\varphi_{P G M} \wedge v_{A} \wedge v_{E}
$$

Set of satisfying assignments of F :

$$
R_{F}=\left\{\left(v_{A}=1, v_{E}=1, v_{B}=1, t_{A \mid B, E}=1, \text { all else } 0\right),\left(v_{A}=1, v_{E}=1, v_{\sim B}=1, t_{A \mid-B, E}=1 \text {, all else } 0\right)\right\}
$$

Weight of satisfying assignments of F :

$$
\begin{aligned}
& W\left(R_{F}\right)=W\left(v_{A}\right) * W\left(v_{E}\right) * W\left(v_{B}\right) * W\left(t_{A \mid B, E}\right)+W\left(v_{A}\right) * W\left(v_{E}\right) * W\left(v_{\sim B}\right) * W\left(t_{A \mid \sim B, E}\right) \\
& \quad=1^{*} \operatorname{Pr}[E] * \operatorname{Pr}[B] * \operatorname{Pr}[A \mid B, E]+1^{*} \operatorname{Pr}[E] * \operatorname{Pr}[\sim B] * \operatorname{Pr}[A \mid \sim B, E]=\operatorname{Pr}[A \cap E]
\end{aligned}
$$

Application 2: Network Reliability

Graph $G=(V, E)$ represents a (power-grid) network

- Nodes (V) are towns, villages, power stations
- Edges (E) are power lines
- Assume each edge e fails with prob $g(e) \in[0,1]$
- Assume failure of edges statistically independent
- What is the probability that s and t become disconnected?

Network Reliability: First Principles Modeling

$$
\begin{aligned}
& \pi: E \rightarrow\{0,1\} \quad \ldots \text { configuration of network } \\
& --\pi(e)=0 \text { if edge e has failed, } 1 \text { otherwise }
\end{aligned}
$$

Prob of network being in configuration π

$$
\operatorname{Pr}[\pi]=\underset{e: \pi(e)=0}{\prod g(e)} \times \prod_{e: \pi(e)=1}^{\prod(1-g(e))}
$$

Prob of s and t being disconnected

$$
\mathrm{P}_{\mathrm{s}, \mathrm{t}}=\sum_{\pi: \mathrm{s}, \mathrm{t} \text { disconnected in } \pi} \operatorname{Pr}^{[\pi]} \begin{aligned}
& \text { May need to sum over } \\
& \left(>2^{100}\right) \text { configurations }
\end{aligned}
$$

Network Reliability: Discrete Integration

- p_{v} : Boolean variable for each v in V
- q_{e} : Boolean variable for each e in E
- $\varphi_{\mathrm{s}, \mathrm{t}}\left(\mathrm{p}_{\mathrm{v} 1}, \ldots \mathrm{p}_{\mathrm{vn}}, \mathrm{q}_{\mathrm{e} 1}, \ldots \mathrm{q}_{\mathrm{em}}\right)$:

Boolean formula such that sat assignments σ of $\varphi_{s, t}$ have 1-1 correspondence with configs π that disconnect s and t

$$
-W(\sigma)=\operatorname{Pr}[\pi]
$$

$$
\mathrm{P}_{\mathrm{s}, \mathrm{t}}=\sum_{\pi: \mathrm{s}, \mathrm{t} \text { disconnected in } \pi} \operatorname{Pr}[\pi] \quad=\sum_{\sigma \vDash \varphi_{s, t}} \mathrm{~W}(\sigma)=\mathrm{W}(\varphi)
$$

Application 3: Quantitative Information Flow

- A password-checker PC takes a secret password (SP) and a user input (UI) and returns "Yes" iff SP = UI [Bang et al 2016]
- Suppose passwords are 4 characters (' 0 ' through ' 9 ') long

```
PC1 (char[] SP, char[] UI) {
    for (int i=0; i<SP.length(); i++) {
        if(SP[i] != UI[i]) return "No";
}
    return "Yes";
}
```

```
PC2 (char[] H, char[] L) {
    match = true;
    for (int i=0; i<SP.length(); i++) {
        if (SP[i] != UI[i]) match=false;
        else match = match;
}
    if match return "Yes";
else return "No";
}
```

Which of PC1 and PC2 is more likely to leak information about the secret key through side-channel observations?

QIF: Some Basics

- Program P receives some "high" input (H) and produces a "low" (L) output
- Password checking: H is SP, L is time taken to answer "Ils SP = UI?"
- Side-channel observations: memory, time ...
- Adversary may infer partial information about H on seeing L - E.g. in password checking, infer: 1st char is password is not 9.
- Can we quantify "leakage of information"?
"initial uncertainty in H" = "info leaked" + "remaining uncertainty in H" [Smith 2009]
- Uncertainty and information leakage usually quantified using information theoretic measures, e.g. Shannon entropy

QIF: First Principles Approach

- Password checking: Observed time to answer "Yes"/"No"
- Depends on \# instructions executed
- E.g. SP = 00700700

$$
\mathrm{UI}=\mathrm{N} 2345678, N \neq 0
$$

PC1 executes for loop once

$$
\mathrm{UI}=02345678
$$

```
PC1 (char[] SP, char[] UI) {
    for (int i=0; i<SP.length(); i++) {
        if(SP[i] != UI[i]) return "No";
}
    return "Yes";
}
```

PC1 executes for loop at least twice
Observing time to "No" gives away whether $1^{\text {st }}$ char is not $\mathrm{N}, N \neq 0$ In 10 attempts, $1^{\text {st }}$ char can of SP can be uniquely determined. In max 40 attempts, SP can be cracked.

QIF: First Principles Approach

- Password checking: Observed time to answer "Yes"/"No"
- Depends on \# instructions executed
- E.g. SP = 00700700

$$
\mathrm{UI}=\mathrm{N} 2345678, N \neq 0
$$

PC1 executes for loop 4 times

$$
\mathrm{UI}=02345678
$$

```
PC2 (char[] H, char[] L) {
    match = true;
    for (int i=0; i<SP.length(); i++) {
        if (SP[i] != UI[i]) match=false;
        else match = match;
}
    if match return "Yes";
    else return "No";
}
```

PC1 executes for loop 4 times
Cracking SP requires max 10^{4} attempts !!! ("less leakage")

QIF: Partitioning Space of Secret Password

- Observable time effectively partitions values of SP [Bultan2016]
return "Yes";
}

```
PC1 (char[] SP, char[] UI) {
PC1 (char[] SP, char[] UI) {
    for (int i=0; i<SP.length(); i++) {
    for (int i=0; i<SP.length(); i++) {
        if(SP[i] != UI[i]) return "No";
        if(SP[i] != UI[i]) return "No";
    }
    }

\section*{QIF: Probabilities of Observed Times}


\section*{QIF: Probabilities of Observed Times}


Discrete Integration if UI chosen according to weight function

\section*{QIF: Quantifying Leakage via Integration}
- Exp information leakage = Shannon entropy of obs times \(=\sum_{k \in\{3,5,7,9,11\}} \operatorname{Pr}[t=k] . \log 1 / \operatorname{Pr}[t=k]\)
- Information leakage in password checker example
\[
\begin{array}{ll}
\text { PC1: } 0.52 \text { (more "leaky") } \\
\text { PC2: } 0.0014 \text { (less "leaky") }
\end{array}
\]

Discrete integration crucial in obtaining \(\operatorname{Pr}[\mathbf{t}=\mathrm{k}]\)

\section*{Unweighted Counting Suffices in Principle}


Weighted Model Counting \(\Rightarrow\) Unweighted Model Counting IJCAI 2015
Reduction polynomial in \#bits representing weights

\section*{Application 4: Constr Random Verification}


Functional Verification
- Formal verification
- Challenges: formal requirements, scalability
- 10-15\% of verification effort
- Dynamic verification: dominant approach

\section*{CRV: Dynamic Verification}
- Design is simulated with test vectors
- Test vectors represent different verification scenarios
-Results from simulation compared to intended results
- How do we generate test vectors?

Challenge: Exceedingly large test input space!
Can't try all input combinations
\(2^{128}\) combinations for a 64-bit binary operator!!!

\section*{CRV: Sources of Constraints}

- Designers:
1. \(a+{ }_{64} 11^{*}{ }_{32} \mathrm{~b}=12\)
2. \(a<64(b \gg 4)\)
- Past Experience:
1. \(40<6434+a<645050\)
2. \(120<64 b<{ }_{64} 230\)
- Users:
1. \(232{ }^{*}{ }_{32} a+b!=1100\)
2. \(1020<_{64}\left(b /_{64} 2\right)+{ }_{64} a<642200\)
- Test vectors: solutions of constraints

\section*{CRV: Why Existing Solvers Don't Suffice}

Constraints

- Designers:
1. \(a+{ }_{64} 11{ }_{32} \mathrm{~b}=12\)
2. \(a<64(b \gg 4)\)
- Past Experience:
1. \(40<_{64} 34+a<645050\)
2. \(120<64 \mathrm{~b}<{ }_{64} 230\)
- Users:
1. \(232{ }^{*}{ }_{32} a+b!=1100\)
2. \(1020<_{64}(b / 642)+{ }_{64} a<642200\)

Modern SAT/SMT solvers are complex systems
Efficiency stems from the solver automatically "biasing" search Fails to give unbiased or user-biased distribution of test vectors

\section*{CRV: Need To Go Beyond SAT Solvers}

\section*{Constrained Random Verification}


Set of Constraints


Sample satisfying assignments uniformly at random

\section*{Scalable Uniform Generation of SAT Witnesses}

\section*{Outline}
- Part 1: Applications
- Part 2: Prior Work
- Part 3: Overview of SAT Solving
- Part 4: Hashing-based Approach for Uniform Distribution
- Part 5: Beyond Propositional
- Part 6: Challenges

Logical breakpoint in Part 4 for coffee break Slides will be available at https://tinyurl.com/ijcai18tutorial

\section*{How Hard is it to Count/Sample?}
- Trivial if we could enumerate \(\mathrm{R}_{\mathrm{F}}\) : Almost always impractical
- Computational complexity of counting (discrete integration):

Exact unweighted counting: \#P-complete [Valiant 1978]

\section*{Approximate unweighted counting:}

Deterministic: Polynomial time det. Turing Machine with \(\Sigma_{2}{ }^{\mathrm{p}}\) oracle [Stockmeyer 1983]
\[
\frac{\left|R_{F}\right|}{1+\varepsilon} \leq \operatorname{DetEstimate}(\mathrm{F}, \varepsilon) \leq\left|R_{F}\right| \times(1+\varepsilon), \text { for } \varepsilon>0
\]

Randomized: Poly-time probabilistic Turing Machine with NP oracle
[Stockmeyer 1983; Jerrum,Valiant,Vazirani 1986]
\[
\operatorname{Pr}\left[\frac{\left|R_{F}\right|}{1+\varepsilon} \leq \operatorname{RandEstimate}(\mathrm{F}, \varepsilon, \delta) \leq\left|R_{F}\right| \cdot(1+\varepsilon)\right] \geq 1-\delta, \text { for } \varepsilon>0,0<\delta \leq 1
\]

Probably Approximately Correct (PAC) algorithm
Weighted versions of counting: Exact: \#P-complete [Roth 1996],
Approximate: same class as unweighted version [follows from Roth 1996]

\section*{How Hard is it to Count/Sample?}

\section*{- Computational complexity of sampling:}

Uniform sampling: Poly-time prob. Turing Machine with NP oracle [Bellare,Goldreich,Petrank 2000]
\[
\operatorname{Pr}[y=\text { UniformGenerator }(\mathrm{F})]=c \text {, where }\left\{\begin{array}{l}
c=0 \text { if } y \notin \mathrm{R}_{\mathrm{F}} \\
c>0 \text { and indep of } y \text { if } y \in \mathrm{R}_{\mathrm{F}}
\end{array}\right.
\]

Almost uniform sampling: Poly-time prob. Turing Machine with NP oracle [Jerrum, Valiant,Vazirani 1986, also from Bellare,Goldreich,Petrank 2000]
\(\frac{c}{1+\varepsilon} \leq \operatorname{Pr}[y=\operatorname{AUGenerator}(\mathrm{F}, \varepsilon)] \leq c \cdot(1+\varepsilon)\), where \(\left\{\begin{array}{l}c=0 \text { if } y \notin \mathrm{R}_{\mathrm{F}} \\ c>0 \text { and indep of } y \text { if } y \in \mathrm{R}_{\mathrm{F}}\end{array}\right.\)
\(\operatorname{Pr}[A l g o r i t h m\) outputs some \(y] \geq 1 / 2\), if \(F\) is satisfiable

\section*{Markov Chain Monte Carlo Techniques}
- Rich body of theoretical work with applications to sampling and counting [Jerrum,Sinclair 1996]
- Some popular (and intensively studied) algorithms:
- Metropolis-Hastings [Metropolis et al 1953, Hastings 1970], Simulated Annealing [Kirkpatrick et al 1982]
- High-level idea:
- Start from a "state" (assignment of variables)
- Randomly choose next state using "local" biasing functions (depends on target distribution \& algorithm parameters)
- Repeat for an appropriately large number (N) of steps
- After N steps, samples follow target distribution with high confidence
- Convergence to desired distribution guaranteed only after N (large) steps
- In practice, steps truncated early heuristically

Nullifies/weakens theoretical guarantees [Kitchen,Keuhlman 2007]

\section*{Exact Counters}
- DPLL based counters [CDP: Birnbaum,Lozinski 1999]
- DPLL branching search procedure, with partial truth assignments
- Once a branch is found satisfiable, if \(t\) out of \(n\) variables assigned, add \(2^{\text {n-t }}\) to model count, backtrack to last decision point, flip decision and continue
- Requires data structure to check if all clauses are satisfied by partial assignment

Usually not implemented in modern DPLL SAT solvers
- Can output a lower bound at any time

\section*{Exact Counters}
- DPLL + component analysis [RelSat: Bayardo, Pehoushek 2000]
- Constraint graph G:

Variables of \(F\) are vertices
An edge connects two vertices if corresponding variables appear in some clause of \(F\)
- Disjoint components of G lazily identified during DPLL search
- F1, F2, .. Fn : subformulas of F corresponding to components \(\left|R_{F}\right|=\left|R_{F 1}\right|{ }^{*}\left|R_{F 2}\right|{ }^{*}\left|R_{F 3}\right|^{*} \ldots\)
- Heuristic optimizations:

Solve most constrained sub-problems first
Solving sub-problems in interleaved manner

\section*{Exact Counters}
- DPLL + Caching [Bacchus et al 2003, Cachet: Sang et al 2004, sharpSAT: Thurley 2006]
If same sub-formula revisited multiple times during DPLL search, cache result and re-use it
"Signature" of the satisfiable sub-formula/component must be stored
Different forms of caching used:
Simple sub-formula caching
Component caching Linear-space caching
Component caching can also be combined with clause learning and other reasoning techniques at each node of DPLL search tree

WeightedCachet: DPLL + Caching for weighted assignments

\section*{Exact Counters}
- Knowledge Compilation based
- Compile given formula to another form which allows counting models in time polynomial in representation size
- Reduced Ordered Binary Decision Diagrams (ROBDD) [Bryant 1986]: Construction can blow up exponentially
- Deterministic Decomposable Negation Normal Form (d-DNNF) [c2d: Darwiche 2004]
Generalizes ROBDDs; can be significantly more succinct
Negation normal form with following restrictions:
Decomposability: All AND operators have arguments with disjoint support
Determinizability: All OR operators have arguments with disjoint solution sets
- Sentential Decision Diagrams (SDD) [Darwiche 2011]

\section*{Exact Counters: How far do they go?}
- Work reasonably well in small-medium sized problems, and in large problem instances with special structure
- Use them whenever possible
- \#P-completeness hits back eventually - scalability suffers!

\section*{Bounding Counters}
[MBound: Gomes et al 2006; SampleCount: Gomes et al 2007; BPCount: Kroc et al 2008]
- Provide lower and/or upper bounds of model count
- Usually more efficient than exact counters
- No approximation guarantees on bounds

Useful only for limited applications

\section*{Hashing-based Sampling}
- Bellare, Goldreich, Petrank (BGP 2000)
- Uniform generator for SAT witnesses:
- Polynomial time randomized algorithm with access to an NP oracle
\[
\operatorname{Pr}[y=\operatorname{BGP}(\mathrm{F})]=\left\{\begin{array}{l}
0 \text { if } y \notin \mathrm{R}_{\mathrm{F}} \\
c(>0) \text { if } y \in \mathrm{R}_{\mathrm{F}}
\end{array}, \text { where } c \text { is independent of } y\right.
\]
- Employs n-universal hash functions
- Works well for small values of \(n\)

Much more on this coming in Part 3
- For high dimensions (large n), significant computational overheads

\section*{Approximate Integration and Sampling: Close Cousins}
- Seminal paper by Jerrum, Valiant, Vazirani 1986

- Yet, no practical algorithms that scale to large problem instances were derived from this work
- No scalable PAC counter or almost-uniform generator existed until a few years back
- The inter-reductions are practically computation intensive -Think of \(O(n)\) calls to the counter when \(n=100000\)

\section*{Prior Work}


Performance

\section*{Outline}
Part 1: Applications
Part 2: Prior Work
Part 3: Overview of SAT Solving
Part 4: Hashing-based Approach for Uniform Distribution
Part 5: Beyond Propositional
Part 6: Challenges

\section*{Part III}

\section*{Overview of SAT Solving}

\section*{A Tale of Constraints}

Boolean Satisfiability (SAT): Given a Boolean expression, using "and" \((\wedge)\), "or" \((\vee)\), and "not" \((\neg)\) is there a solution, i.e., an assignment of 0 's and 1 's to the variables that makes the expression equal 1 ?

Example: \(\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)\)
\(x_{1}=1, x_{2}=1, x_{3}=1\)

\section*{A Tale of Constraints}

Boolean Satisfiability (SAT): Given a Boolean expression, using "and" \((\wedge)\), "or" \((\vee)\), and "not" \((\neg)\) is there a solution, i.e., an assignment of 0 's and 1 's to the variables that makes the expression equal 1 ?

Example: \(\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)\)
\(x_{1}=1, x_{2}=1, x_{3}=1\)

Ernst Schroder, 1841-1902: "Getting a handle on the consequences of any premises, or at least the fastest method for obtaining these consequences, seems to me to be one of the noblest, if not the ultimate goal of mathematics and logic."

Cook, 1971; Levin, 1973: SAT is NP-complete

Modern SAT solvers are able to deal routinely with practical problems that involve many thousands of variables, although such problems were regarded as hopeless just a few years ago. (Donald Knuth, 2016)

\section*{The Tale of Triumph of SAT Solvers}

Modern SAT solvers are able to deal routinely with practical problems that involve many thousands of variables, although such problems were regarded as hopeless just a few years ago. (Donald Knuth, 2016)

Industrial usage of SAT Solvers: hardware verification, planning, Genome Rearrangement, Telecom Feature Subscription, Resource Constrained Scheduling, Noise Analysis, Games, ...

\section*{Resolution}
- Resolution rule:
\[
\frac{(\alpha \vee x)}{(\alpha \vee \beta)}
\]
- Complete proof system for propositional logic

\section*{Resolution}
- Resolution rule:
\[
\frac{(\alpha \vee x) \quad(\beta \vee \bar{x})}{(\alpha \vee \beta)}
\]
- Complete proof system for propositional logic

- Extensively used with (CDCL) SAT solvers

\section*{Resolution}
- Resolution rule:
\[
\frac{(\alpha \vee x) \quad(\beta \vee \bar{x})}{(\alpha \vee \beta)}
\]
- Complete proof system for propositional logic

- Extensively used with (CDCL) SAT solvers
- Self-subsuming resolution (with \(\alpha^{\prime} \subseteq \alpha\) ):
\[
\frac{(\alpha \vee x) \quad\left(\alpha^{\prime} \vee \bar{x}\right)}{(\alpha)}
\]
- \((\alpha)\) subsumes \((\alpha \vee x)\)

\section*{Unit propagation}
\[
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \wedge \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
\]
\[
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \wedge \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
\]
- What can we deduce?
\[
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \wedge \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
\]
- What can we deduce?
- \(s=1\)


The DPLL algorithm


\section*{What is a CDCL SAT solver?}
- Extend DPLL SAT solver with:
- Clause learning \& non-chronological backtracking [msS96a,MSS99,B597,Z297]
- Search restarts
- Lazy data structures
- Conflict-guided branching

\section*{What is a CDCL SAT solver?}
- Extend DPLL SAT solver with:
[DP60,DLL62]
- Clause learning \& non-chronological backtracking [MSS96a,MSS99,BS97,Z97]
- Exploit UIPs
[MSS96a,SSS12]
- Minimize learned clauses
[SB09,VG09]
- Opportunistically delete clauses
- Search restarts
- Lazy data structures
- Watched literals
- Conflict-guided branching
- Lightweight branching heuristics
- Phase saving

\section*{Clause learning}
\((\bar{a} \vee \bar{b}) \wedge(\bar{z} \vee b) \wedge(\bar{x} \vee \bar{z} \vee a) \wedge(y \vee b)\)
Level Dec. Unit Prop.


\section*{Clause learning}
\((\bar{a} \vee \bar{b}) \wedge(\bar{z} \vee b) \wedge(\bar{x} \vee \bar{z} \vee a) \wedge(y \vee b)\)
Level Dec. Unit Prop.

- Analyze conflict

\section*{Clause learning}
\((\bar{a} \vee \bar{b}) \wedge(\bar{z} \vee b) \wedge(\bar{x} \vee \bar{z} \vee a) \wedge(y \vee b)\)
Level Dec. Unit Prop.

- Analyze conflict
- Reasons: \(x\) and \(z\)
- Decision variable \& literals assigned at decision levels less than current

\section*{Clause learning}
\((\bar{a} \vee \bar{b}) \wedge(\bar{z} \vee b) \wedge(\bar{x} \vee \bar{z} \vee a) \wedge(y \vee b)\)
Level Dec. Unit Prop.
\(0 \emptyset\)
1

2

- Analyze conflict
- Reasons: \(x\) and \(z\)
- Decision variable \& literals assigned at decision levels less than current
- Create new clause: \((\bar{x} \vee \bar{z})\)

\section*{Clause learning}
\((\bar{a} \vee \bar{b}) \wedge(\bar{z} \vee b) \wedge(\bar{x} \vee \bar{z} \vee a) \wedge(y \vee b)\)
Level Dec. Unit Prop.
\(0 \emptyset\)
\[
(\bar{a} \vee \bar{b}) \quad(\bar{z} \vee b) \quad(\bar{x} \vee \bar{z} \vee a)
\]

1

- Analyze conflict
- Reasons: \(x\) and \(z\)
- Decision variable \& literals assigned at decision levels less than current
- Create new clause: \((\bar{x} \vee \bar{z})\)
- Can relate clause learning with resolution

\section*{Clause learning}
\((\bar{a} \vee \bar{b}) \wedge(\bar{z} \vee b) \wedge(\bar{x} \vee \bar{z} \vee a) \wedge(y \vee b)\)
Level Dec. Unit Prop.
0


3
1
- Analyze conflict
- Reasons: \(x\) and \(z\)
- Decision variable \& literals assigned at decision levels less than current
- Create new clause: \((\bar{x} \vee \bar{z})\)
- Can relate clause learning with resolution

\section*{Clause learning}
\((\bar{a} \vee \bar{b}) \wedge(\bar{z} \vee b) \wedge(\bar{x} \vee \bar{z} \vee a) \wedge(y \vee b)\)
Level Dec. Unit Prop.

- Analyze conflict
- Reasons: \(x\) and \(z\)
- Decision variable \& literals assigned at decision levels less than current
- Create new clause: \((\bar{x} \vee \bar{z})\)
- Can relate clause learning with resolution

\section*{Clause learning}
\((\bar{a} \vee \bar{b}) \wedge(\bar{z} \vee b) \wedge(\bar{x} \vee \bar{z} \vee a) \wedge(y \vee b)\)
Level Dec. Unit Prop.

- Analyze conflict
- Reasons: \(x\) and \(z\)
- Decision variable \& literals assigned at decision levels less than current
- Create new clause: \((\bar{x} \vee \bar{z})\)
- Can relate clause learning with resolution
- Learned clauses result from (selected) resolution operations

\section*{Clause learning - after backtracking}

Level Dec. Unit Prop.


\section*{Clause learning - after backtracking}

Level Dec. Unit Prop.
0 Ø
\(1 x\)

2

3

- Clause \((\bar{x} \vee \bar{z})\) is asserting at decision level 1

\section*{Clause learning - after backtracking}
\begin{tabular}{ccccc} 
Level & Dec. & Unit Prop. & Level & Dec. \\
0 & \(\emptyset\) & & 0 & \(\emptyset\) \\
1 & \(x\) & & 1 & \(x \longrightarrow \bar{z}\) \\
2 & \(y\) & & & \\
& & & \\
3 & & &
\end{tabular}
- Clause \((\bar{x} \vee \bar{z})\) is asserting at decision level 1

\section*{Clause learning - after backtracking}
\begin{tabular}{cccccc} 
Level & Dec. & Unit Prop. & Level & Dec. & Unit Prop. \\
0 & \(\emptyset\) & & 0 & \(\emptyset\) & \\
1 & \(x\) & & 1 & \(x \longrightarrow \bar{z}\) \\
& & & & & \\
2 & \(y\) & & &
\end{tabular}
- Clause \((\bar{x} \vee \bar{z})\) is asserting at decision level 1
- Learned clauses are asserting (with exceptions)
- Backtracking differs from plain DPLL:
- Always bactrack after a conflict

\section*{Search restarts}
- Restart search after a number of conflicts


\section*{Search restarts}
- Restart search after a number of conflicts
- Increase cutoff after each restart
- Guarantees completeness
- Different policies exist


\section*{Search restarts}
- Restart search after a number of conflicts
- Increase cutoff after each restart
- Guarantees completeness
- Different policies exist

- Learned clauses effective after restart(s)

\section*{Data structures basics}
- Each literal / should access clauses containing /
- Why?

\section*{Data structures basics}
- Each literal / should access clauses containing /
- Why? Unit propagation

\section*{Data structures basics}
- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with \(k\) literals results in \(k\) references, from literals to the clause

\section*{Data structures basics}
- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with \(k\) literals results in \(k\) references, from literals to the clause
- Number of clause references equals number of literals, \(L\)

\section*{Data structures basics}
- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with \(k\) literals results in \(k\) references, from literals to the clause
- Number of clause references equals number of literals, \(L\)
- Clause learning can generate large clauses
- Worst-case size: \(\mathcal{O}(n)\)

\section*{Data structures basics}
- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with \(k\) literals results in \(k\) references, from literals to the clause
- Number of clause references equals number of literals, \(L\)
- Clause learning can generate large clauses
- Worst-case size: \(\mathcal{O}(n)\)
- Worst-case number of literals: \(\mathcal{O}(m n)\)

\section*{Data structures basics}
- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with \(k\) literals results in \(k\) references, from literals to the clause
- Number of clause references equals number of literals, \(L\)
- Clause learning can generate large clauses
- Worst-case size: \(\mathcal{O}(n)\)
- Worst-case number of literals: \(\mathcal{O}(m n)\)
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !

\section*{Data structures basics}
- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with \(k\) literals results in \(k\) references, from literals to the clause
- Number of clause references equals number of literals, \(L\)
- Clause learning can generate large clauses
- Worst-case size: \(\mathcal{O}(n)\)
- Worst-case number of literals: \(\mathcal{O}(m n)\)
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !
- Clause learning to be effective requires a more efficient representation:

\section*{Data structures basics}
- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with \(k\) literals results in \(k\) references, from literals to the clause
- Number of clause references equals number of literals, \(L\)
- Clause learning can generate large clauses
- Worst-case size: \(\mathcal{O}(n)\)
- Worst-case number of literals: \(\mathcal{O}(m n)\)
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !
- Clause learning to be effective requires a more efficient representation: Watched Literals

\section*{Data structures basics}
- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with \(k\) literals results in \(k\) references, from literals to the clause
- Number of clause references equals number of literals, \(L\)
- Clause learning can generate large clauses
- Worst-case size: \(\mathcal{O}(n)\)
- Worst-case number of literals: \(\mathcal{O}(m n)\)
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !
- Clause learning to be effective requires a more efficient representation: Watched Literals
- Keep track of only two literals per clause

\section*{Data structures basics}
- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with \(k\) literals results in \(k\) references, from literals to the clause
- Number of clause references equals number of literals, \(L\)
- Clause learning can generate large clauses
- Worst-case size: \(\mathcal{O}(n)\)
- Worst-case number of literals: \(\mathcal{O}(m n)\)
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !
- Clause learning to be effective requires a more efficient representation: Watched Literals
- Keep track of only two literals per clause
- Watched literals are one example of lazy data structures
- But there are others

\section*{Additional key techniques}
- Lightweight branching
- Use conflict to bias variables to branch on, associate score with each variable
- Prefer recent bias by regularly decreasing variable scores
- Recent promising ML-based branching

\section*{Additional key techniques}
- Lightweight branching
- Use conflict to bias variables to branch on, associate score with each variable
- Prefer recent bias by regularly decreasing variable scores
- Recent promising ML-based branching
[LGPC16a,LGPC16b]
- Clause deletion policies
- Not practical to keep all learned clauses
- Delete larger clauses
- Delete less used clauses

\section*{Additional key techniques}
- Lightweight branching
- Use conflict to bias variables to branch on, associate score with each variable
- Prefer recent bias by regularly decreasing variable scores
- Recent promising ML-based branching
[LGPC16a,LGPC16b]
- Clause deletion policies
- Not practical to keep all learned clauses
- Delete larger clauses
- Delete less used clauses
[E.g. GN02,ES03]
- Other effective techniques:
- Phase saving
- Luby restarts
- Literal blocks distance
- Preprocessing/inprocessing

\section*{Getting the maximum mileage from CDCL Solvers}

Oracle vs Solver SAT Solvers \(\neq\) SAT oracle; The performance of solver depends on the formulas

\section*{Getting the maximum mileage from CDCL Solvers}

Oracle vs Solver SAT Solvers \(\neq\) SAT oracle; The performance of solver depends on the formulas

Incremental Solving It is often easier to solve \(F\) followed by \(G\) if we \(G\) can be written as \(G=F \wedge H\)
- Clause Learning: If \(F \rightarrow C\) then \((F \wedge H) \Longrightarrow C\)

\section*{Getting the maximum mileage from CDCL Solvers}

Oracle vs Solver SAT Solvers \(\neq\) SAT oracle; The performance of solver depends on the formulas

Incremental Solving It is often easier to solve \(F\) followed by \(G\) if we \(G\) can be written as \(G=F \wedge H\)
- Clause Learning: If \(F \rightarrow C\) then \((F \wedge H) \Longrightarrow C\)

Beyond CDCL Solver Just CDCL is not sufficient
- Need to handle CNF+XOR formulas
- XORs can be solved by Gaussian elimination
- CryptoMiniSAT: Solver designed to perform CDCL and Gaussian Elimination in tandem

\section*{Part IV}

\section*{Hashing-based Approach for Uniform \\ Distribution}

\section*{Outline}
(1) Uniform Constrained Counting
(2) Uniform Constrained Sampling

\section*{Uniform Constrained Counting}
- Given
- Boolean variables \(X_{1}, X_{2}, \cdots X_{n}\)
- Formula \(F\) over \(X_{1}, X_{2}, \cdots X_{n}\)
- Weight Function \(W:\{0,1\}^{n} \mapsto\{1\}\)
- \(W(F)=|\operatorname{Sol}(F)|\)
- ExactCount \((F)\) : Compute \(|\operatorname{Sol}(F)|\) ?
- \#P-complete

\section*{Uniform Constrained Counting}
- Given
- Boolean variables \(X_{1}, X_{2}, \cdots X_{n}\)
- Formula \(F\) over \(X_{1}, X_{2}, \cdots X_{n}\)
- Weight Function \(W:\{0,1\}^{n} \mapsto\{1\}\)
- \(W(F)=|\operatorname{Sol}(F)|\)
- ExactCount \((F)\) : Compute \(|\operatorname{Sol}(F)|\) ?
- \#P-complete
- ApproxCount \((F, \varepsilon, \delta)\) : Compute \(C\) such that
\[
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq C \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta
\]

\section*{Counting in Stockholm}

How many people in Stockholm like coffee?
- Population of Stockholm \(=952 \mathrm{~K}\)
- Assign every person a unique \((n=) 21\) bit identifier \(\left(2^{n}=952 \mathrm{~K}\right)\)

\section*{Counting in Stockholm}

\section*{How many people in Stockholm like coffee?}
- Population of Stockholm \(=952 \mathrm{~K}\)
- Assign every person a unique ( \(n=\) ) 21 bit identifier \(\left(2^{n}=952 \mathrm{~K}\right)\)
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by \(952 \mathrm{~K} / 50\)

\section*{Counting in Stockholm}

\section*{How many people in Stockholm like coffee?}
- Population of Stockholm \(=952 \mathrm{~K}\)
- Assign every person a unique ( \(n=\) ) 21 bit identifier \(\left(2^{n}=952 \mathrm{~K}\right)\)
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by \(952 \mathrm{~K} / 50\)
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50

\section*{Counting in Stockholm}

\section*{How many people in Stockholm like coffee?}
- Population of Stockholm \(=952 \mathrm{~K}\)
- Assign every person a unique ( \(n=\) ) 21 bit identifier \(\left(2^{n}=952 \mathrm{~K}\right)\)
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by \(952 \mathrm{~K} / 50\)
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- NP Query: Find a person who likes coffee

\section*{Counting in Stockholm}

\section*{How many people in Stockholm like coffee?}
- Population of Stockholm \(=952 \mathrm{~K}\)
- Assign every person a unique ( \(n=\) ) 21 bit identifier \(\left(2^{n}=952 \mathrm{~K}\right)\)
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by \(952 \mathrm{~K} / 50\)
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- NP Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person \(y\)

\section*{Counting in Stockholm}

\section*{How many people in Stockholm like coffee?}
- Population of Stockholm \(=952 \mathrm{~K}\)
- Assign every person a unique ( \(n=\) ) 21 bit identifier \(\left(2^{n}=952 \mathrm{~K}\right)\)
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by \(952 \mathrm{~K} / 50\)
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- NP Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person \(y\)
- Attempt \#2: Enumerate every person who likes coffee

\section*{Counting in Stockholm}

\section*{How many people in Stockholm like coffee?}
- Population of Stockholm \(=952 \mathrm{~K}\)
- Assign every person a unique ( \(n=\) ) 21 bit identifier \(\left(2^{n}=952 \mathrm{~K}\right)\)
- Attempt \#1: Pick 50 people and count how many of them like coffee and multiple by \(952 \mathrm{~K} / 50\)
- If only 5 people like coffee, it is unlikely that we will find anyone who likes coffee in our sample of 50
- NP Query: Find a person who likes coffee
- A SAT solver can answer queries like:
- Q1: Find a person who likes coffee
- Q2: Find a person who likes coffee and is not person \(y\)
- Attempt \#2: Enumerate every person who likes coffee
- Potentially \(2^{n}\) queries

Can we do with lesser \# of SAT queries \(-\mathcal{O}(n)\) or \(\mathcal{O}(\log n)\) ?

\section*{As Simple as Counting Dots}


\section*{As Simple as Counting Dots}


\section*{As Simple as Counting Dots}

Pick a random cell


Estimate \(=\) Number of solutions in a cell \(\times\) Number of cells

\section*{Challenges}

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

\section*{Challenges}

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenge 2 How many cells?

\section*{Challenges}

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?
- Designing function \(h\) : assignments \(\rightarrow\) cells (hashing)
- Solutions in a cell \(\alpha\) : \(\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}\)

\section*{Challenges}

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?
- Designing function \(h\) : assignments \(\rightarrow\) cells (hashing)
- Solutions in a cell \(\alpha\) : \(\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}\)
- Deterministic \(h\) unlikely to work

\section*{Challenges}

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?
- Designing function \(h\) : assignments \(\rightarrow\) cells (hashing)
- Solutions in a cell \(\alpha\) : \(\operatorname{Sol}(F) \cap\{y \mid h(y)=\alpha\}\)
- Deterministic \(h\) unlikely to work
- Choose \(h\) randomly from a large family \(H\) of hash functions
Universal Hashing (Carter and Wegman 1977)

\section*{Desired Properties}
- Let \(h\) be randomly picked a family of hash function \(H\) and \(Z\) be the number of solutions in a randomly chosen cell \(\alpha\)
- What is \(\mathrm{E}[Z]\) and how much does \(Z\) deviate from \(\mathrm{E}[Z]\) ?
- For every \(y \in \operatorname{Sol}(F)\), we define \(I_{y}= \begin{cases}1 & h(y)=\alpha(y \text { is in cell) } \\ 0 & \end{cases}\) 0 otherwise
- \(Z=\sum_{y \in \operatorname{Sol}(F)} I_{y}\)
- Desired: \(\mathrm{E}[Z]=\frac{|\mathrm{Sol}(F)|}{2^{m}}\) and \(\sigma^{2}[Z] \leq \mathrm{E}[Z]\)

\section*{Desired Properties}
- Let \(h\) be randomly picked a family of hash function \(H\) and \(Z\) be the number of solutions in a randomly chosen cell \(\alpha\)
- What is \(\mathrm{E}[Z]\) and how much does \(Z\) deviate from \(\mathrm{E}[Z]\) ?
- For every \(y \in \operatorname{Sol}(F)\), we define \(I_{y}= \begin{cases}1 & h(y)=\alpha(y \text { is in cell })\end{cases}\)
- \(Z=\sum_{y \in \operatorname{Sol}(F)} I_{y}\)
- Desired: \(\mathrm{E}[Z]=\frac{|\mathrm{Sol}(F)|}{2^{m}}\) and \(\sigma^{2}[Z] \leq \mathrm{E}[Z]\)
\(-\operatorname{Pr}\left[\frac{\mathrm{E}[Z]}{2} \leq Z \leq \mathrm{E}[Z] \cdot 2\right] \geq 1-\frac{4 \sigma^{2}[Z]}{(\mathrm{E}[Z])^{2}} \geq 1-\frac{4}{(\mathrm{E}[Z])}\)

\section*{Desired Properties}
- Let \(h\) be randomly picked a family of hash function \(H\) and \(Z\) be the number of solutions in a randomly chosen cell \(\alpha\)
- What is \(\mathrm{E}[Z]\) and how much does \(Z\) deviate from \(\mathrm{E}[Z]\) ?
- For every \(y \in \operatorname{Sol}(F)\), we define \(I_{y}= \begin{cases}1 & h(y)=\alpha(y \text { is in cell }) \\ 0 & \text { otherwise }\end{cases}\)
- \(Z=\sum_{y \in \operatorname{Sol}(F)} I_{y}\)
- Desired: \(\mathrm{E}[Z]=\frac{|\mathrm{Sol}(F)|}{2^{m}}\) and \(\sigma^{2}[Z] \leq \mathrm{E}[Z]\)
\(-\operatorname{Pr}\left[\frac{\mathrm{E}[Z]}{2} \leq Z \leq \mathrm{E}[Z] \cdot 2\right] \geq 1-\frac{4 \sigma^{2}[Z]}{(\mathrm{E}[Z])^{2}} \geq 1-\frac{4}{(\mathrm{E}[Z])}\)
- Having \(\mathrm{E}[Z] \geq 4 \cdot k\) provides \(1-\frac{1}{k}\) lower bound
- What kind of \(H\) would ensure the above properties

\section*{Desired Properties}
- Let \(h\) be randomly picked a family of hash function \(H\) and \(Z\) be the number of solutions in a randomly chosen cell \(\alpha\)
- What is \(\mathrm{E}[Z]\) and how much does \(Z\) deviate from \(\mathrm{E}[Z]\) ?
- For every \(y \in \operatorname{Sol}(F)\), we define \(I_{y}= \begin{cases}1 & h(y)=\alpha(\mathrm{y} \text { is in cell }) \\ 0 & \text { otherwise }\end{cases}\) 0 otherwise
- \(Z=\sum_{y \in \operatorname{Sol}(F)} I_{y}\)
- Desired: \(\mathrm{E}[Z]=\frac{|\mathrm{Sol}(F)|}{2^{m}}\) and \(\sigma^{2}[Z] \leq \mathrm{E}[Z]\)
\(-\operatorname{Pr}\left[\frac{\mathrm{E}[Z]}{2} \leq Z \leq \mathrm{E}[Z] \cdot 2\right] \geq 1-\frac{4 \sigma^{2}[Z]}{(\mathrm{E}[Z])^{2}} \geq 1-\frac{4}{(\mathrm{E}[Z])}\)
- Having \(\mathrm{E}[Z] \geq 4 \cdot k\) provides \(1-\frac{1}{k}\) lower bound
- What kind of \(H\) would ensure the above properties
- 2-universal hash functions

\section*{2-Universal Hashing}
- Let \(H\) be family of 2 -universal hash functions mapping \(\{0,1\}^{n}\) to \(\{0,1\}^{m}\)
\[
\begin{gathered}
\forall y_{1}, y_{2} \in\{0,1\}^{n}, \alpha_{1}, \alpha_{2} \in\{0,1\}^{m}, h \stackrel{R}{\leftarrow} H \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1}\right]=\operatorname{Pr}\left[h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right) \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1} \wedge h\left(y_{2}\right)=\alpha_{2}\right]=\left(\frac{1}{2^{m}}\right)^{2}
\end{gathered}
\]

\section*{2-Universal Hash Functions}
- Variables: \(X_{1}, X_{2}, \cdots X_{n}\)
- To construct \(h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\), choose m random XORs
- Pick every \(X_{i}\) with prob. \(\frac{1}{2}\) and XOR them; and XOR 1 with prob. \(\frac{1}{2}\)
\(-X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2} \oplus 1\)
- Expected size of each XOR: \(\frac{n}{2}\)

\section*{2-Universal Hash Functions}
- Variables: \(X_{1}, X_{2}, \cdots X_{n}\)
- To construct \(h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\), choose m random XORs
- Pick every \(X_{i}\) with prob. \(\frac{1}{2}\) and XOR them; and XOR 1 with prob. \(\frac{1}{2}\)
\(-X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2} \oplus 1\)
- Expected size of each XOR: \(\frac{n}{2}\)
- To choose \(\alpha \in\{0,1\}^{m}\), set every XOR equation to 0 or 1 randomly
\[
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2} \oplus 1=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
\cdots \\
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2} \oplus 1=1
\end{array}
\]
- Solutions in a cell: \(F \wedge Q_{1} \cdots \wedge Q_{m}\)
- To construct \(h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\), choose \(m\) random XORs
- Since every XOR is independently constructed, let us focus on the first XOR (denoted by \(h^{1}\) ) and the first bit of the cell: \(\alpha^{1}\)
- We can view construction of \(h^{1}\) as choosing \(a_{1}, a_{2} \ldots a_{n}, b\) randomly with prob \(\frac{1}{2}\) and then writing XOR as \(a_{1} \cdot x_{1} \oplus a_{2} \cdot x_{2} \oplus \ldots a_{n} \cdot x_{n} \oplus b\)
- 1-universality, i.e. \(\operatorname{Pr}\left[h^{1}(y)=\alpha^{1}\right]\)
- For every choice of \(a_{1}, a_{2}, \ldots a_{n}\), there is a unique \(b\) such that \(h^{1}(y)=\alpha^{1} . \operatorname{Pr}\left[h^{1}(y)=\alpha^{1}\right]=\frac{1}{2}\)
- We can view construction of \(h^{1}\) as \(a_{1}, a_{2} \ldots a_{n}, b\) randomly with prob \(\frac{1}{2}\) and then writing XOR as \(a_{1} \cdot x_{1} \oplus a_{2} \cdot x_{2} \oplus \ldots a_{n} \cdot x_{n} \oplus b\)
- 2-universality, i.e., \(\operatorname{Pr}\left[h^{1}(y)=\alpha^{1} \mid h^{1}(z)=\alpha^{1}\right]\)
\(-\operatorname{Pr}\left[h^{1}(y)=\alpha^{1} \mid h^{1}(z)=\alpha^{1}\right] \equiv \operatorname{Pr}\left[h^{1}(y-z)=0\right]\)
- Let us consider \(y-z=[1,0,0, \ldots 0]\)
- We can view construction of \(h^{1}\) as \(a_{1}, a_{2} \ldots a_{n}, b\) randomly with prob \(\frac{1}{2}\) and then writing XOR as \(a_{1} \cdot x_{1} \oplus a_{2} \cdot x_{2} \oplus \ldots a_{n} \cdot x_{n} \oplus b\)
- 2-universality, i.e., \(\operatorname{Pr}\left[h^{1}(y)=\alpha^{1} \mid h^{1}(z)=\alpha^{1}\right]\)
\(-\operatorname{Pr}\left[h^{1}(y)=\alpha^{1} \mid h^{1}(z)=\alpha^{1}\right] \equiv \operatorname{Pr}\left[h^{1}(y-z)=0\right]\)
- Let us consider \(y-z=[1,0,0, \ldots 0]\)
\(-\operatorname{Pr}\left[h^{1}([1,0,0, \ldots 0])=0\right] \equiv \operatorname{Pr}\left[a_{1}=0\right]=\)
- We can view construction of \(h^{1}\) as \(a_{1}, a_{2} \ldots a_{n}, b\) randomly with prob \(\frac{1}{2}\) and then writing XOR as \(a_{1} \cdot x_{1} \oplus a_{2} \cdot x_{2} \oplus \ldots a_{n} \cdot x_{n} \oplus b\)
- 2-universality, i.e., \(\operatorname{Pr}\left[h^{1}(y)=\alpha^{1} \mid h^{1}(z)=\alpha^{1}\right]\)
\(-\operatorname{Pr}\left[h^{1}(y)=\alpha^{1} \mid h^{1}(z)=\alpha^{1}\right] \equiv \operatorname{Pr}\left[h^{1}(y-z)=0\right]\)
- Let us consider \(y-z=[1,0,0, \ldots 0]\)
\(-\operatorname{Pr}\left[h^{1}([1,0,0, \ldots 0])=0\right] \equiv \operatorname{Pr}\left[a_{1}=0\right]=\frac{1}{2}\)
- Now observe that set of all possible \(h^{1}\) is unchanged under rotation and origin shift operation.
- We can view construction of \(h^{1}\) as \(a_{1}, a_{2} \ldots a_{n}, b\) randomly with prob \(\frac{1}{2}\) and then writing XOR as \(a_{1} \cdot x_{1} \oplus a_{2} \cdot x_{2} \oplus \ldots a_{n} \cdot x_{n} \oplus b\)
- 2-universality, i.e., \(\operatorname{Pr}\left[h^{1}(y)=\alpha^{1} \mid h^{1}(z)=\alpha^{1}\right]\)
\(-\operatorname{Pr}\left[h^{1}(y)=\alpha^{1} \mid h^{1}(z)=\alpha^{1}\right] \equiv \operatorname{Pr}\left[h^{1}(y-z)=0\right]\)
- Let us consider \(y-z=[1,0,0, \ldots 0]\)
\(-\operatorname{Pr}\left[h^{1}([1,0,0, \ldots 0])=0\right] \equiv \operatorname{Pr}\left[a_{1}=0\right]=\frac{1}{2}\)
- Now observe that set of all possible \(h^{1}\) is unchanged under rotation and origin shift operation. Therefore, for all \(y, z \in\{0,1\}^{n}\), one can perform series of transformations such that \(T(y)-T(z)=[1,0,0, \ldots 0]\)
- We can view construction of \(h^{1}\) as \(a_{1}, a_{2} \ldots a_{n}, b\) randomly with prob \(\frac{1}{2}\) and then writing XOR as \(a_{1} \cdot x_{1} \oplus a_{2} \cdot x_{2} \oplus \ldots a_{n} \cdot x_{n} \oplus b\)
- 2-universality, i.e., \(\operatorname{Pr}\left[h^{1}(y)=\alpha^{1} \mid h^{1}(z)=\alpha^{1}\right]\)
\(-\operatorname{Pr}\left[h^{1}(y)=\alpha^{1} \mid h^{1}(z)=\alpha^{1}\right] \equiv \operatorname{Pr}\left[h^{1}(y-z)=0\right]\)
- Let us consider \(y-z=[1,0,0, \ldots 0]\)
\(-\operatorname{Pr}\left[h^{1}([1,0,0, \ldots 0])=0\right] \equiv \operatorname{Pr}\left[a_{1}=0\right]=\frac{1}{2}\)
- Now observe that set of all possible \(h^{1}\) is unchanged under rotation and origin shift operation. Therefore, for all \(y, z \in\{0,1\}^{n}\), one can perform series of transformations such that \(T(y)-T(z)=[1,0,0, \ldots 0]\)
\(-\operatorname{Pr}\left[h^{1}(y-z)=0\right]=\frac{1}{2}\)

\section*{Challenges}

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?
- Choose \(h\) randomly from a large family \(H\) of hash functions
Universal Hashing (Carter and Wegman 1977)

Challenge 2 How many cells?

\section*{Question 2: How many cells?}
- A cell is small if it has less than thresh \(=48\) solutions

\section*{Question 2: How many cells?}
- A cell is small if it has less than thresh \(=48\) solutions
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}\)

\section*{Question 2: How many cells?}
- A cell is small if it has less than thresh \(=48\) solutions
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}\)
- Check for every \(m=0,1, \cdots n\) if the number of solutions \(\leq\) thresh

\section*{HashCount \((F, \delta)\)}
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}\)
- Query 1: Is \(\#\left(F \wedge Q_{1}^{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{2}^{1} \wedge Q_{2}^{2} \leq\right.\) thresh
- ...
- Query n: Is \(\#\left(F \wedge Q_{3}^{1} \wedge Q_{3}^{2} \cdots \wedge Q_{n}^{n} \leq\right.\) thresh
- Stop at the first \(m\) where Query \(m\) returns YES and return estimate as \(\#\left(F \wedge Q_{m}^{1} \wedge Q_{m}^{2} \cdots \wedge Q_{m}^{m}\right) \times 2^{m}\)

\section*{HashCount \((F, \delta)\)}
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}\)
- Query 1: Is \(\#\left(F \wedge Q_{1}^{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{2}^{1} \wedge Q_{2}^{2} \leq\right.\) thresh
- ...
- Query \(n\) : Is \(\#\left(F \wedge Q_{3}^{1} \wedge Q_{3}^{2} \cdots \wedge Q_{n}^{n} \leq\right.\) thresh
- Stop at the first \(m\) where Query \(m\) returns YES and return estimate as \(\#\left(F \wedge Q_{m}^{1} \wedge Q_{m}^{2} \cdots \wedge Q_{m}^{m}\right) \times 2^{m}\)
- To obtain confidence of \(1-\delta\), repeat the above procedure \(\mathcal{O}\left(\log \frac{1}{\delta}\right)\)
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}\)
- Query 1: Is \(\#\left(F \wedge Q_{1}^{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{2}^{1} \wedge Q_{2}^{2} \leq\right.\) thresh
- ...
- Query \(n\) : Is \(\#\left(F \wedge Q_{3}^{1} \wedge Q_{3}^{2} \cdots \wedge Q_{n}^{n} \leq\right.\) thresh
- Stop at the first \(m\) where Query \(m\) returns YES and return estimate as \(\#\left(F \wedge Q_{m}^{1} \wedge Q_{m}^{2} \cdots \wedge Q_{m}^{m}\right) \times 2^{m}\)
- To obtain confidence of \(1-\delta\), repeat the above procedure \(\mathcal{O}\left(\log \frac{1}{\delta}\right)\)
- Will this work? Will the " \(m\) " where we stop be close to \(m^{*}\) ?

\section*{HashCount}

Let \(2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \left(\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\right)\right)\)
Lemma (1)
For \((F, \varepsilon, \delta)\), the procedure terminates with \(m \in\left\{m^{*}-1, m^{*}\right\}\) with probability \(\geq 0.8\)

\section*{Lemma (2)}

For \(m \in\left\{m^{*}-1, m^{*}\right\}\), estimate obtained from a randomly picked cell lies within a factor of 8 of \(|\operatorname{Sol}(F)|\) with probability \(\geq 0.8\)

\section*{Theorem (Correctness)}
\(\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{8} \leq \operatorname{HashCount}(F, \delta) \leq|\operatorname{Sol}(F)|(8)\right] \geq 1-\delta\)

\section*{From Constant Factor to \((1+\varepsilon)\)}
- \(G=F(X) \wedge F(Y)\)
- \(|\operatorname{Sol}(G)|=|\operatorname{Sol}(F)|^{2}\)
- \(\frac{\mid \text { Sol }(G)}{8} \leq C \leq 8|\operatorname{Sol}(G)| \Longrightarrow \frac{\mid \operatorname{Sol}(G)}{\sqrt{8}} \leq C \leq \sqrt{8}|\operatorname{Sol}(G)|\)

\section*{From Constant Factor to \((1+\varepsilon)\)}
- \(G=F(X) \wedge F(Y)\)
- \(|\operatorname{Sol}(G)|=|\operatorname{Sol}(F)|^{2}\)
- \(\frac{\mid \operatorname{Sol}(G)}{8} \leq C \leq 8|\operatorname{Sol}(G)| \Longrightarrow \frac{\mid \operatorname{Sol}(G)}{\sqrt{8}} \leq C \leq \sqrt{8}|\operatorname{Sol}(G)|\)
- Make \(\mathcal{O}\left(\frac{1}{\varepsilon}\right)\) copies of \(F\) and then take \(\frac{1}{\varepsilon}\) the root of the estimate to obtain \((1+\varepsilon)\) factor approximation

\section*{HashCount \((F, \varepsilon, \delta)\)}

\section*{Theorem (Correctness)}
\(\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{HashCount}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta\)

\section*{Theorem (Complexity)}

HashCount \((F, \varepsilon, \delta)\) makes \(\mathcal{O}\left(\frac{n \log n \log \left(\frac{1}{\delta}\right)}{\varepsilon}\right)\) calls to SAT oracle (Stockmeyer 1983)

\section*{Scalability}

HashCount fails to scale to formulas beyond few hundreds of variables

\section*{Challenges}

Long XORs Expected size of each XOR added is \(n / 2\)
Large Formulas HashCount is invoked on G, where \(|G|=\frac{1}{\varepsilon} \times|F|\)
No Incrementality The calls to SAT oracle do not allow incremental solving
Too many calls The number of calls to SAT oracle is \(O(n \log n)\)

\section*{2-Universal Hash Functions}
- Variables: \(X_{1}, X_{2}, \cdots X_{n}\)
- To construct \(h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\), choose \(m\) random XORs
- Pick every \(X_{i}\) with prob. \(\frac{1}{2}\) and XOR them
\(-X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}^{2}\)
- Expected size of each XOR: \(\frac{n}{2}\)

\section*{2-Universal Hash Functions}
- Variables: \(X_{1}, X_{2}, \cdots X_{n}\)
- To construct \(h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\), choose \(m\) random XORs
- Pick every \(X_{i}\) with prob. \(\frac{1}{2}\) and XOR them
- \(X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}^{2}\)
- Expected size of each XOR: \(\frac{n}{2}\)
- To choose \(\alpha \in\{0,1\}^{m}\), set every XOR equation to 0 or 1 randomly
\[
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
\]
- Solutions in a cell: \(F \wedge Q_{1} \cdots \wedge Q_{m}\)

\section*{2-Universal Hash Functions}
- Variables: \(X_{1}, X_{2}, \cdots X_{n}\)
- To construct \(h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\), choose \(m\) random XORs
- Pick every \(X_{i}\) with prob. \(\frac{1}{2}\) and XOR them
- \(X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}^{2}\)
- Expected size of each XOR: \(\frac{n}{2}\)
- To choose \(\alpha \in\{0,1\}^{m}\), set every XOR equation to 0 or 1 randomly
\[
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2}=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1}=1 \\
\cdots \\
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
\]
- Solutions in a cell: \(F \wedge Q_{1} \cdots \wedge Q_{m}\)
- The performance of SAT solver degrades with increase in size of XORs (SAT solver \(\neq\) SAT oracle)

\section*{Improved Universal Hash Functions}
- Not all variables are required to specify solution space of \(F\)
\(-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)\)
- \(X_{1}\) and \(X_{2}\) uniquely determines rest of the variables (i.e., \(X_{3}\) )
- Formally: if \(I\) is independent support, then \(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)\), if \(\sigma_{1}\) and \(\sigma_{2}\) agree on \(/\) then \(\sigma_{1}=\sigma_{2}\)
- \(\left\{X_{1}, X_{2}\right\}\) is independent support but \(\left\{X_{1}, X_{3}\right\}\) is not

\section*{Improved Universal Hash Functions}
- Not all variables are required to specify solution space of \(F\)
\(-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)\)
- \(X_{1}\) and \(X_{2}\) uniquely determines rest of the variables (i.e., \(X_{3}\) )
- Formally: if \(I\) is independent support, then \(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)\), if \(\sigma_{1}\) and \(\sigma_{2}\) agree on \(/\) then \(\sigma_{1}=\sigma_{2}\)
- \(\left\{X_{1}, X_{2}\right\}\) is independent support but \(\left\{X_{1}, X_{3}\right\}\) is not
- Random XORs need to be constructed only over I

\section*{Improved Universal Hash Functions}
- Not all variables are required to specify solution space of \(F\)
\(-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)\)
- \(X_{1}\) and \(X_{2}\) uniquely determines rest of the variables (i.e., \(X_{3}\) )
- Formally: if \(I\) is independent support, then \(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)\), if \(\sigma_{1}\) and \(\sigma_{2}\) agree on \(/\) then \(\sigma_{1}=\sigma_{2}\)
- \(\left\{X_{1}, X_{2}\right\}\) is independent support but \(\left\{X_{1}, X_{3}\right\}\) is not
- Random XORs need to be constructed only over I
- Typically I is \(1-2\) orders of magnitude smaller than \(X\)
- Auxiliary variables introduced during encoding phase are dependent
(Tseitin 1968)
- Not all variables are required to specify solution space of \(F\)
\(-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)\)
- \(X_{1}\) and \(X_{2}\) uniquely determines rest of the variables (i.e., \(X_{3}\) )
- Formally: if \(I\) is independent support, then \(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)\), if \(\sigma_{1}\) and \(\sigma_{2}\) agree on \(/\) then \(\sigma_{1}=\sigma_{2}\)
- \(\left\{X_{1}, X_{2}\right\}\) is independent support but \(\left\{X_{1}, X_{3}\right\}\) is not
- Random XORs need to be constructed only over I
- Typically I is \(1-2\) orders of magnitude smaller than \(X\)
- Auxiliary variables introduced during encoding phase are dependent
(Tseitin 1968)
Algorithmic procedure to determine \(I\) ?
- Not all variables are required to specify solution space of \(F\)
\(-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)\)
- \(X_{1}\) and \(X_{2}\) uniquely determines rest of the variables (i.e., \(X_{3}\) )
- Formally: if \(I\) is independent support, then \(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(F)\), if \(\sigma_{1}\) and \(\sigma_{2}\) agree on \(/\) then \(\sigma_{1}=\sigma_{2}\)
- \(\left\{X_{1}, X_{2}\right\}\) is independent support but \(\left\{X_{1}, X_{3}\right\}\) is not
- Random XORs need to be constructed only over I
- Typically I is \(1-2\) orders of magnitude smaller than \(X\)
- Auxiliary variables introduced during encoding phase are dependent
(Tseitin 1968)
Algorithmic procedure to determine \(I\) ?

\section*{Independent Support}
- \(I \subseteq X\) is an independent support:
\(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(() \varphi), \sigma_{1}\) and \(\sigma_{2}\) agree on \(I\) then \(\sigma_{1}=\sigma_{2}\)

\section*{Independent Support}
- \(I \subseteq X\) is an independent support:
\(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(() \varphi), \sigma_{1}\) and \(\sigma_{2}\) agree on \(I\) then \(\sigma_{1}=\sigma_{2}\)
- \(F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \Longrightarrow \bigwedge_{i}\left(x_{i}=y_{i}\right)\) where \(F\left(y_{1}, \cdots y_{n}\right):=F\left(x_{1} \mapsto y_{1}, \cdots x_{n} \mapsto y_{n}\right)\)

\section*{Independent Support}
- \(I \subseteq X\) is an independent support:
\(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(() \varphi), \sigma_{1}\) and \(\sigma_{2}\) agree on \(I\) then \(\sigma_{1}=\sigma_{2}\)
- \(F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \Longrightarrow \bigwedge_{i}\left(x_{i}=y_{i}\right)\) where \(F\left(y_{1}, \cdots y_{n}\right):=F\left(x_{1} \mapsto y_{1}, \cdots x_{n} \mapsto y_{n}\right)\)
- \(Q_{F, I}:=F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \wedge \neg\left(\bigwedge_{i}\left(x_{i}=\right.\right.\) \(\left.y_{i}\right)\) )

\section*{Independent Support}
- \(I \subseteq X\) is an independent support:
\(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(() \varphi), \sigma_{1}\) and \(\sigma_{2}\) agree on \(I\) then \(\sigma_{1}=\sigma_{2}\)
- \(F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \Longrightarrow \bigwedge_{i}\left(x_{i}=y_{i}\right)\) where \(F\left(y_{1}, \cdots y_{n}\right):=F\left(x_{1} \mapsto y_{1}, \cdots x_{n} \mapsto y_{n}\right)\)
- \(Q_{F, I}:=F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \wedge \neg\left(\bigwedge_{i}\left(x_{i}=\right.\right.\) \(\left.y_{i}\right)\) )
- Lemma: \(Q_{F, I}\) is UNSAT if and only if \(I\) is independent support

\section*{Independent Support}
\[
\begin{aligned}
H_{1}:= & \left\{x_{1}=y_{1}\right\}, H_{2}:=\left\{x_{2}=y_{2}\right\}, \cdots H_{n}:=\left\{x_{n}=y_{n}\right\} \\
& \Omega=F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \neg\left(\bigwedge_{i}\left(x_{i}=y_{i}\right)\right)
\end{aligned}
\]

\section*{Lemma}
\(I=\left\{x_{i}\right\}\) is independent support iif \(H^{\prime} \wedge \Omega\) is UNSAT where \(H^{\prime}=\left\{H_{i} \mid x_{i} \in I\right\}\)

\section*{Minimal Unsatisfiable Subset}

Given \(\Psi=H_{1} \wedge H_{2} \cdots \wedge H_{m} \wedge \Omega\)
Unsatisfiable Subset Find subset \(\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}\) of \(\left\{H_{1}, H_{2}, \cdots H_{m}\right\}\) such that \(H_{i 1} \wedge H_{i 2} \wedge H_{i k} \wedge \Omega\) is UNSAT

\section*{Minimal Unsatisfiable Subset}

Given \(\Psi=H_{1} \wedge H_{2} \cdots \wedge H_{m} \wedge \Omega\)
Unsatisfiable Subset Find subset \(\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}\) of \(\left\{H_{1}, H_{2}, \cdots H_{m}\right\}\) such that \(H_{i 1} \wedge H_{i 2} \wedge H_{i k} \wedge \Omega\) is UNSAT
Minimal Unsatisfiable Subset Find minimal subset \(\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}\) of \(\left\{H_{1}, H_{2}, \cdots H_{m}\right\}\) such that \(H_{i 1} \wedge H_{i 2} \wedge H_{i k} \wedge \Omega\) is UNSAT

\section*{Minimal Unsatisfiable Subset}

Given \(\Psi=H_{1} \wedge H_{2} \cdots \wedge H_{m} \wedge \Omega\)
Unsatisfiable Subset Find subset \(\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}\) of \(\left\{H_{1}, H_{2}, \cdots H_{m}\right\}\) such that \(H_{i 1} \wedge H_{i 2} \wedge H_{i k} \wedge \Omega\) is UNSAT
Minimal Unsatisfiable Subset Find minimal subset \(\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}\) of \(\left\{H_{1}, H_{2}, \cdots H_{m}\right\}\) such that \(H_{i 1} \wedge H_{i 2} \wedge H_{i k} \wedge \Omega\) is UNSAT

\section*{Minimal Independent Support}
\[
\begin{aligned}
H_{1}:= & \left\{x_{1}=y_{1}\right\}, H_{2}:=\left\{x_{2}=y_{2}\right\}, \cdots H_{n}:=\left\{x_{n}=y_{n}\right\} \\
& \Omega=F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \neg\left(\bigwedge\left(x_{i}=y_{i}\right)\right)
\end{aligned}
\]

\section*{Lemma}
\(I=\left\{x_{i}\right\}\) is Minimal Independent Support iif \(H^{\prime}\) is Minimal Unsatisfiable Subset where \(H^{\prime}=\left\{H_{i} \mid x_{i} \in I\right\}\)

\section*{MIS \(\Rightarrow\) MUS}

\section*{Minimal Independent Support}
\[
\begin{aligned}
H_{1}:= & \left\{x_{1}=y_{1}\right\}, H_{2}:=\left\{x_{2}=y_{2}\right\}, \cdots H_{n}:=\left\{x_{n}=y_{n}\right\} \\
& \Omega=F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \neg\left(\bigwedge\left(x_{i}=y_{i}\right)\right)
\end{aligned}
\]

\section*{Lemma}
\(I=\left\{x_{i}\right\}\) is Minimal Independent Support if \(H^{\prime}\) is Minimal Unsatisfiable Subset where \(H^{\prime}=\left\{H_{i} \mid x_{i} \in I\right\}\)

\section*{MIS \(\Rightarrow\) MUS}

Two orders of magnitude improvement in runtime

\section*{Challenges}

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?
- Independent Support-based 2-Universal Hash Functions
Challenge 2 How many cells?

\section*{Desired Properties}
- Let \(h\) be randomly picked a family of hash function \(H\) and \(Z\) be the number of solutions in a randomly chosen cell \(\alpha\)
- What is \(\mathrm{E}[Z]\) and how much does \(Z\) deviate from \(\mathrm{E}[Z]\) ?
- For every \(y \in \operatorname{Sol}(F)\), we define \(I_{y}= \begin{cases}1 & h(y)=\alpha(y \text { is in cell }) \\ 0 & \text { otherwise }\end{cases}\)
- \(Z=\sum_{y \in \operatorname{Sol}(F)} I_{y}\)
- Desired: \(\mathrm{E}[Z]=\frac{|\mathrm{Sol}(F)|}{2^{m}}\) and \(\sigma^{2}[Z] \leq \mathrm{E}[Z]\)

\section*{Desired Properties}
- Let \(h\) be randomly picked a family of hash function \(H\) and \(Z\) be the number of solutions in a randomly chosen cell \(\alpha\)
- What is \(\mathrm{E}[Z]\) and how much does \(Z\) deviate from \(\mathrm{E}[Z]\) ?
- For every \(y \in \operatorname{Sol}(F)\), we define \(I_{y}= \begin{cases}1 & h(y)=\alpha(y \text { is in cell }) \\ 0 & \text { otherwise }\end{cases}\)
- \(Z=\sum_{y \in \operatorname{Sol}(F)} I_{y}\)
- Desired: \(\mathrm{E}[Z]=\frac{|\mathrm{Sol}(F)|}{2^{m}}\) and \(\sigma^{2}[Z] \leq \mathrm{E}[Z]\)
\(-\operatorname{Pr}\left[\frac{\mathrm{E}[Z]}{1+\varepsilon} \leq Z \leq \mathrm{E}[Z](1+\varepsilon)\right] \geq 1-\frac{\sigma^{2}[Z]}{\left(\frac{\varepsilon}{1+\varepsilon}\right)^{2}(\mathrm{E}[Z])^{2}} \geq 1-\frac{1}{\left(\frac{\varepsilon}{1+\varepsilon}\right)^{2}(\mathrm{E}[Z])}\)

\section*{Desired Properties}
- Let \(h\) be randomly picked a family of hash function \(H\) and \(Z\) be the number of solutions in a randomly chosen cell \(\alpha\)
- What is \(\mathrm{E}[Z]\) and how much does \(Z\) deviate from \(\mathrm{E}[Z]\) ?
- For every \(y \in \operatorname{Sol}(F)\), we define \(I_{y}= \begin{cases}1 & h(y)=\alpha(y \text { is in cell }) \\ 0 & \text { otherwise }\end{cases}\)
- \(Z=\sum_{y \in \operatorname{Sol}(F)} I_{y}\)
- Desired: \(\mathrm{E}[Z]=\frac{|\mathrm{Sol}(F)|}{2^{m}}\) and \(\sigma^{2}[Z] \leq \mathrm{E}[Z]\)
\(-\operatorname{Pr}\left[\frac{\mathrm{E}[Z]}{1+\varepsilon} \leq Z \leq \mathrm{E}[Z](1+\varepsilon)\right] \geq 1-\frac{\sigma^{2}[Z]}{\left(\frac{\varepsilon}{1+\varepsilon}\right)^{2}(\mathrm{E}[Z])^{2}} \geq 1-\frac{1}{\left(\frac{\varepsilon}{1+\varepsilon}\right)^{2}(\mathrm{E}[Z])}\)
- Having \(\mathrm{E}[Z] \geq k\left(\frac{1+\varepsilon}{\varepsilon}\right)^{2}\) provides \(1-\frac{1}{k}\) lower bound

\section*{Desired Properties}
- Let \(h\) be randomly picked a family of hash function \(H\) and \(Z\) be the number of solutions in a randomly chosen cell \(\alpha\)
- What is \(\mathrm{E}[Z]\) and how much does \(Z\) deviate from \(\mathrm{E}[Z]\) ?
- For every \(y \in \operatorname{Sol}(F)\), we define \(I_{y}= \begin{cases}1 & h(y)=\alpha(y \text { is in cell }) \\ 0 & \text { otherwise }\end{cases}\)
- \(Z=\sum_{y \in \operatorname{Sol}(F)} I_{y}\)
- Desired: \(\mathrm{E}[Z]=\frac{|\mathrm{Sol}(F)|}{2^{m}}\) and \(\sigma^{2}[Z] \leq \mathrm{E}[Z]\)
\(-\operatorname{Pr}\left[\frac{\mathrm{E}[Z]}{1+\varepsilon} \leq Z \leq \mathrm{E}[Z](1+\varepsilon)\right] \geq 1-\frac{\sigma^{2}[Z]}{\left(\frac{\varepsilon}{1+\varepsilon}\right)^{2}(\mathrm{E}[Z])^{2}} \geq 1-\frac{1}{\left(\frac{\varepsilon}{1+\varepsilon}\right)^{2}(\mathrm{E}[Z])}\)
- Having \(\mathrm{E}[Z] \geq k\left(\frac{1+\varepsilon}{\varepsilon}\right)^{2}\) provides \(1-\frac{1}{k}\) lower bound
- A cell is small if it has less than thresh \(=5\left(\frac{1+\varepsilon}{\varepsilon}\right)^{2}\) solutions

\section*{Question 2: How many cells?}
- A cell is small if it has less than thresh \(=5\left(1+\frac{1}{\varepsilon}\right)^{2}\) solutions

\section*{Question 2: How many cells?}
- A cell is small if it has less than thresh \(=5\left(1+\frac{1}{\varepsilon}\right)^{2}\) solutions
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}\)

\section*{Question 2: How many cells?}
- A cell is small if it has less than thresh \(=5\left(1+\frac{1}{\varepsilon}\right)^{2}\) solutions
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}\)
- Check for every \(m=0,1, \cdots n\) if the number of solutions \(\leq\) thresh

\section*{ApproxMC(F, \(\varepsilon, \delta)\)}


\section*{ApproxMC(F, \(\varepsilon, \delta)\)}


\section*{ApproxMC(F, \(\varepsilon, \delta)\)}


\section*{ApproxMC(F, \(\varepsilon, \delta)\)}


\section*{ApproxMC( \(F, \varepsilon, \delta)\)}


\section*{ApproxMC( \(F, \varepsilon, \delta)\)}
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}\)
- Query 1: Is \(\#\left(F \wedge Q_{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq\) thresh
- ...
- Query \(n\) : Is \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq\) thresh
- Stop at the first \(m\) where Query \(m\) returns YES and return estimate as \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}\)
- Observation: \(\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)\)
- If Query \(i\) returns YES, then Query \(i+1\) must return YES

\section*{ApproxMC(F, \(\varepsilon, \delta)\)}
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}\)
- Query 1: Is \(\#\left(F \wedge Q_{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq\) thresh
- ...
- Query \(n\) : Is \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq\) thresh
- Stop at the first \(m\) where Query \(m\) returns YES and return estimate as \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}\)
- Observation: \(\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)\)
- If Query \(i\) returns YES, then Query \(i+1\) must return YES
- Logarithmic search (\# of SAT calls: \(\mathcal{O}(\log n)\) )
- Incremental search

\section*{ApproxMC(F, \(\varepsilon, \delta)\)}
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}\)
- Query 1: Is \(\#\left(F \wedge Q_{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq\) thresh
- ...
- Query \(n\) : Is \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq\) thresh
- Stop at the first \(m\) where Query \(m\) returns YES and return estimate as \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}\)
- Observation: \(\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)\)
- If Query \(i\) returns YES, then Query \(i+1\) must return YES
- Logarithmic search (\# of SAT calls: \(\mathcal{O}(\log n)\) )
- Incremental search
- Will this work? Will the " \(m\) " where we stop be close to \(m^{*}\) ?

\section*{ApproxMC( \(F, \varepsilon, \delta)\)}
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}\)
- Query 1: Is \(\#\left(F \wedge Q_{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq\) thresh
- ...
- Query \(n\) : Is \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq\) thresh
- Stop at the first \(m\) where Query \(m\) returns YES and return estimate as \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}\)
- Observation: \(\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)\)
- If Query \(i\) returns YES, then Query \(i+1\) must return YES
- Logarithmic search (\# of SAT calls: \(\mathcal{O}(\log n)\) )
- Incremental search
- Will this work? Will the " \(m\) " where we stop be close to \(m^{*}\) ?
- Challenge Query \(i\) and Query \(j\) are not independent
- Independence crucial to analysis (Stockmeyer 1983, ...)

\section*{ApproxMC(F, \(\varepsilon, \delta)\)}
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(F) \mid}{\text { thresh }}\)
- Query 1: Is \(\#\left(F \wedge Q_{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq\) thresh
- ...
- Query n: Is \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq\) thresh
- Stop at the first \(m\) where Query \(m\) returns YES and return estimate as \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}\)
- Observation: \(\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)\)
- If Query \(i\) returns YES, then Query \(i+1\) must return YES
- Logarithmic search (\# of SAT calls: \(\mathcal{O}(\log n)\) )
- Incremental search
- Will this work? Will the " \(m\) " where we stop be close to \(m^{*}\) ?
- Challenge Query \(i\) and Query \(j\) are not independent
- Independence crucial to analysis (Stockmeyer 1983, ...)
- Key Insight: The probability of making a bad choice of \(Q_{i}\) is very small for \(i \ll m^{*}\)

\section*{Taming the Curse of Dependence}

Let \(2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \left(\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\right)\right)\)
Lemma (1)
ApproxMC \((F, \varepsilon, \delta)\) terminates with \(m \in\left\{m^{*}-1, m^{*}\right\}\) with probability \(\geq 0.8\)

\section*{Lemma (2)}

For \(m \in\left\{m^{*}-1, m^{*}\right\}\), estimate obtained from a randomly picked cell lies within a tolerance of \(\varepsilon\) of \(|\operatorname{Sol}(F)|\) with probability \(\geq 0.8\)

\section*{ApproxMC(F, \(\varepsilon, \delta)\)}

\section*{Theorem (Correctness)}
\(\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta\)

Theorem (Complexity)
ApproxMC \((F, \varepsilon, \delta)\) makes \(\mathcal{O}\left(\frac{\log n \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)\) calls to SAT oracle.
- Prior work required \(\mathcal{O}\left(\frac{n \log n \log \left(\frac{1}{\delta}\right)}{\varepsilon}\right)\) calls to SAT oracle (Stockmeyer 1983)

\section*{Summary of our Journey}

HashCount fails to scale to formulas beyond few hundreds of variables

\section*{Challenges}

Long XORs Expected size of each XOR added is \(n / 2\)

Large Formulas HashCount is invoked on \(G\), where \(|G|=\frac{1}{\varepsilon} \times|F|\)

No Incrementality The calls to SAT oracle do not allow incremental solving
Too many calls The number of calls to SAT oracle is \(O(n \log n)\)

\section*{Summary of our Journey}

HashCount fails to scale to formulas beyond few hundreds of variables

\section*{Challenges}

Long XORs Expected size of each XOR added is \(n / 2\) Independent support-based XORs
Large Formulas HashCount is invoked on \(G\), where \(|G|=\frac{1}{\varepsilon} \times|F|\)

No Incrementality The calls to SAT oracle do not allow incremental solving
Too many calls The number of calls to SAT oracle is \(O(n \log n)\)

\section*{Summary of our Journey}

HashCount fails to scale to formulas beyond few hundreds of variables

\section*{Challenges}

Long XORs Expected size of each XOR added is \(n / 2\) Independent support-based XORs
Large Formulas HashCount is invoked on \(G\), where \(|G|=\frac{1}{\varepsilon} \times|F|\) Constant pivot to \(\varepsilon\) dependent pivot

No Incrementality The calls to SAT oracle do not allow incremental solving
Too many calls The number of calls to SAT oracle is \(O(n \log n)\) Dependent XORs with new proof technique. Killed two birds with one stone!

\section*{Reliability of Critical Infrastructure Networks}


Figure: Plantersville, SC


Timeout \(=1000\) seconds


\section*{Highly Accurate Estimates}


Observed Geometric mean: 0.03


Observed Geometric mean: 0.03
These results are good


Observed Geometric mean: 0.03
These results are good problem.

\section*{Outline}
(1) Uniform Constrained Counting
(2) Uniform Constrained Sampling

\section*{Constrained Sampling}
- Given:
- Set of Constraints \(F\) over variables \(X_{1}, X_{2}, \cdots X_{n}\)
- Uniform Sampler
\[
\forall y \in \operatorname{Sol}(F), \operatorname{Pr}[y \text { is output }]=\frac{1}{|\operatorname{Sol}(F)|}
\]
- Almost-Uniform Sampler
\[
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[\mathrm{y} \text { is output }] \leq \frac{(1+\varepsilon)}{|\operatorname{Sol}(F)|}
\]

\section*{Close Cousins: Counting and Sampling}
- Approximate counting and almost-uniform sampling are inter-reducible
(Jerrum, Valiant and Vazirani, 1986)

\section*{Close Cousins: Counting and Sampling}
- Approximate counting and almost-uniform sampling are inter-reducible
- Is the reduction efficient?
- Almost-uniform sampler (JVV) require linear number of approximate counting calls

\section*{Key Ideas}

- Check if a randomly picked cell is small
- If yes, pick a solution randomly from randomly picked cell

\section*{Key Ideas}

- Check if a randomly picked cell is small
- If yes, pick a solution randomly from randomly picked cell Challenge: How many cells?

\section*{How many cells?}
- Desired Number of cells: \(2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \frac{|\mathrm{Sol}(F)|}{\text { thresh }}\right)\)

\section*{How many cells?}
- Desired Number of cells: \(2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \frac{|\mathrm{Sol}(F)|}{\text { thresh }}\right)\)
- ApproxMC( \(F, \varepsilon, \delta)\) returns \(C\) such that
\[
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq C \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta
\]
\(-\tilde{m}=\log \frac{C}{\text { thresh }}\)

\section*{How many cells?}
- Desired Number of cells: \(2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \frac{|\mathrm{Sol}(F)|}{\text { thresh }}\right)\)
- ApproxMC( \(F, \varepsilon, \delta)\) returns \(C\) such that
\[
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(F)|}{1+\varepsilon} \leq C \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta
\]
- \(\tilde{m}=\log \frac{C}{\text { thresh }}\)
- Check for \(m=\tilde{m}-1, \tilde{m}, \tilde{m}+1\) if a randomly chosen cell is small

\section*{How many cells?}
- Desired Number of cells: \(2^{m^{*}}=\frac{|\operatorname{Sol}(F)|}{\text { thresh }}\left(m^{*}=\log \frac{|\mathrm{Sol}(F)|}{\text { thresh }}\right)\)
- ApproxMC( \(F, \varepsilon, \delta)\) returns \(C\) such that
\[
\operatorname{Pr}\left[\frac{|\operatorname{Sol}|(F) \mid}{1+\varepsilon} \leq C \leq|\operatorname{Sol}(F)|(1+\varepsilon)\right] \geq 1-\delta
\]
\(-\tilde{m}=\log \frac{C}{\text { thresh }}\)
- Check for \(m=\tilde{m}-1, \tilde{m}, \tilde{m}+1\) if a randomly chosen cell is small
- Not just a practical hack required non-trivial proof

Theoretical Guarantees

Theorem (Almost-Uniformity)
\[
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
\]

Theoretical Guarantees

Theorem (Almost-Uniformity)
\[
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
\]

\section*{Theorem (Query)}

For a formula F over \(n\) variables UniGen makes one call to approximate counter

Theoretical Guarantees

\section*{Theorem (Almost-Uniformity)}
\[
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
\]

\section*{Theorem (Query)}

For a formula F over \(n\) variables UniGen makes one call to approximate counter
- Prior work required \(\mathbf{n}\) calls to approximate counter (Jerrum, Valiant and Vazirani, 1986)

Theoretical Guarantees

\section*{Theorem (Almost-Uniformity)}
\[
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
\]

\section*{Theorem (Query)}

For a formula F over \(n\) variables UniGen makes one call to approximate counter
- Prior work required \(\mathbf{n}\) calls to approximate counter (Jerrum, Valiant and Vazirani, 1986)

Universality
- JVV employs 2-universal hash functions
- UniGen employs 3-universal hash functions

Theoretical Guarantees

\section*{Theorem (Almost-Uniformity)}
\[
\forall y \in \operatorname{Sol}(F), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(F)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(F)|}
\]

\section*{Theorem (Query)}

For a formula F over \(n\) variables UniGen makes one call to approximate counter
- Prior work required \(\mathbf{n}\) calls to approximate counter (Jerrum, Valiant and Vazirani, 1986)

Universality
- JVV employs 2-universal hash functions
- UniGen employs 3-universal hash functions

Random XORs are 3-universal
\begin{tabular}{|c|l|}
\hline & Relative Runtime \\
\hline SAT Solver & 1 \\
\hline Desired Uniform Generator & 10 \\
\hline
\end{tabular}

Experiments over 200+ benchmarks
\begin{tabular}{|c|l|}
\hline & Relative Runtime \\
\hline SAT Solver & 1 \\
\hline Desired Uniform Generator & 10 \\
\hline XORSample (2012 state of the art) & 50000 \\
\hline
\end{tabular}

Experiments over 200+ benchmarks

\section*{Three Orders of Improvement}
\begin{tabular}{|c|l|}
\hline & Relative Runtime \\
\hline SAT Solver & 1 \\
\hline Desired Uniform Generator & 10 \\
\hline XORSample (2012 state of the art) & 50000 \\
\hline UniGen (2015) & 21 \\
\hline & \\
\hline
\end{tabular}

Experiments over 200+ benchmarks

\section*{Three Orders of Improvement}
\begin{tabular}{|c|l|}
\hline & Relative Runtime \\
\hline SAT Solver & 1 \\
\hline Desired Uniform Generator & 10 \\
\hline XORSample (2012 state of the art) & 50000 \\
\hline UniGen (2015) & 21 \\
\hline & \\
\hline
\end{tabular}

Experiments over 200+ benchmarks
Closer to technical transfer

\section*{Quiz Time: Uniformity}

- Benchmark: case110.cnf; \#var: 287; \#clauses: 1263
- Total Runs: \(4 \times 10^{6}\); Total Solutions : 16384

\section*{Statistically Indistinguishable}

- Benchmark: case110.cnf; \#var: 287; \#clauses: 1263
- Total Runs: \(4 \times 10^{6}\); Total Solutions: 16384

\section*{Outline}
Part 1: Applications
Part 2: Prior Work
Part 3: Overview of SAT Solving
Part 4: Hashing-based Approach for Uniform Distribution
Part 5: Beyond Propositional
Part 6: Challenges

\section*{Part V}

\section*{Beyond Propositional}

Why go beyond propositional?

\section*{Why go beyond propositional?}
- Lifted inference: first order (FO) logic + probabilistic reasoning (Kersting2012, Poole2003)
- FO variables of non-binary type
- Reasoning about FO constraints directly key to scalability
- Inference reduces to counting models of these constraints

\section*{Why go beyond propositional?}
- Lifted inference: first order (FO) logic + probabilistic reasoning (Kersting2012, Poole2003)
- FO variables of non-binary type
- Reasoning about FO constraints directly key to scalability
- Inference reduces to counting models of these constraints
- Probabilistic program analysis
- Value problem: \(\operatorname{Pr[Accepting~runs]/Pr[Terminating~runs]~}\)
- Program variables of enumerated, integer or float type
- Encoded as model-counting of integer+rational arithmetic formulas (Chistikov2015)

\section*{Why go beyond propositional?}
- Lifted inference: first order (FO) logic + probabilistic reasoning (Kersting2012, Poole2003)
- FO variables of non-binary type
- Reasoning about FO constraints directly key to scalability
- Inference reduces to counting models of these constraints
- Probabilistic program analysis
- Value problem: \(\operatorname{Pr[Accepting~runs]/Pr[Terminating~runs]~}\)
- Program variables of enumerated, integer or float type
- Encoded as model-counting of integer+rational arithmetic formulas (Chistikov2015)
- Inference in continuous \& hybrid Markov networks
- Mix of discrete and continuous random variables
- Encoded as model counting in theory of rationals + Booleans

\section*{How do we go beyond propositional?}
- For finite domains, binary encoding + propositional counting often used
+ Leverage advances in propositional model counting
- Fails to exploit domain-specific propeties (e.g. linear algebraic identities)
- Scalability a concern
- Count of variables and constraints increases with domain size
- Infinite domains out of reach

\section*{How do we go beyond propositional?}
- For finite domains, binary encoding + propositional counting often used
+ Leverage advances in propositional model counting
- Fails to exploit domain-specific propeties (e.g. linear algebraic identities)
- Scalability a concern
- Count of variables and constraints increases with domain size
- Infinite domains out of reach
- Can we do better?

\section*{How do we go beyond propositional?}
- For finite domains, binary encoding + propositional counting often used
+ Leverage advances in propositional model counting
- Fails to exploit domain-specific propeties (e.g. linear algebraic identities)
- Scalability a concern
- Count of variables and constraints increases with domain size
- Infinite domains out of reach
- Can we do better?
- Yes in some cases
- Not yet in general

\section*{Overview: Three different approaches}

\section*{Overview: Three different approaches}
- Domain-specific universal hash functions
- Not always easy to design
- Bit-vector model counting

\section*{Overview: Three different approaches}
- Domain-specific universal hash functions
- Not always easy to design
- Bit-vector model counting
- Domain-specific decomposition + prop model counting
- Estimating model volume in bounded integer+rational linear arithmetic

\section*{Overview: Three different approaches}
- Domain-specific universal hash functions
- Not always easy to design
- Bit-vector model counting
- Domain-specific decomposition + prop model counting
- Estimating model volume in bounded integer+rational linear arithmetic
- Weighted model integration
- Generalizes weighted model counting
- Bootstraps on advances in SMT solvers \& abstraction techniques (Belle2015, Morettin2017)

\section*{Bit-vector Model Counting}
- Given constraint \(\varphi\left(x_{1}, \ldots x_{n}\right)\), where

\section*{Bit-vector Model Counting}
- Given constraint \(\varphi\left(x_{1}, \ldots x_{n}\right)\), where
- \(x_{1}, \ldots x_{n}\) are bit-vector variables
- Simplifying assumption: all \(k\)-bits wide
- Domain of \(x_{i}=\{0,1\}^{k}\)

\section*{Bit-vector Model Counting}
- Given constraint \(\varphi\left(x_{1}, \ldots x_{n}\right)\), where
- \(x_{1}, \ldots x_{n}\) are bit-vector variables
- Simplifying assumption: all \(k\)-bits wide
- Domain of \(x_{i}=\{0,1\}^{k}\)
- Functions and predicates from theory of bit-vectors
- extract, concat, leftshift, \(+_{[k]}, \times_{k} \ldots\)

\section*{Bit-vector Model Counting}
- Given constraint \(\varphi\left(x_{1}, \ldots x_{n}\right)\), where
- \(x_{1}, \ldots x_{n}\) are bit-vector variables
- Simplifying assumption: all \(k\)-bits wide
- Domain of \(x_{i}=\{0,1\}^{k}\)
- Functions and predicates from theory of bit-vectors
- extract, concat, leftshift, \(+_{[k]}, \times_{k} \ldots\)
- Example:
\(-\varphi\left(x_{1}, x_{2}\right) \equiv\left(x+{ }_{[3]} y=000\right) \vee(\operatorname{extract}(x, 1,1)=0)\)
- \(x_{1}, x_{2}\) : all 3 -bits wide

\section*{Bit-vector Model Counting}
- Given constraint \(\varphi\left(x_{1}, \ldots x_{n}\right)\), where
- \(x_{1}, \ldots x_{n}\) are bit-vector variables
- Simplifying assumption: all \(k\)-bits wide
- Domain of \(x_{i}=\{0,1\}^{k}\)
- Functions and predicates from theory of bit-vectors
- extract, concat, leftshift, \(+_{[k]}, \times_{k} \ldots\)
- Example:
\(-\varphi\left(x_{1}, x_{2}\right) \equiv\left(x+{ }_{[3]} y=000\right) \vee(\operatorname{extract}(x, 1,1)=0)\)
- \(x_{1}, x_{2}\) : all 3 -bits wide
- How many satisfying assignments does \(\varphi\) have?

\section*{Bit-vector Model Counting}
- Given constraint \(\varphi\left(x_{1}, \ldots x_{n}\right)\), where
\(-x_{1}, \ldots x_{n}\) are bit-vector variables
- Simplifying assumption: all \(k\)-bits wide
- Domain of \(x_{i}=\{0,1\}^{k}\)
- Functions and predicates from theory of bit-vectors
- extract, concat, leftshift, \(+_{[k]}, \times_{k} \ldots\)
- Example:
\(-\varphi\left(x_{1}, x_{2}\right) \equiv\left(x+{ }_{[3]} y=000\right) \vee(\operatorname{extract}(x, 1,1)=0)\)
- \(x_{1}, x_{2}\) : all 3 -bits wide
- How many satisfying assignments does \(\varphi\) have?
\(-\operatorname{Sol}(\varphi)=\left\{\left(x_{1}=000, x_{2}=000\right),\left(x_{1}=001, x_{2}=111\right)\right\}\)
\(-|\operatorname{Sol}(\varphi)|=2\)

\section*{Bit-vector Model Counting}
- Key idea: New 2-universal hash function \(h_{B V}\) for bit-vectors

\section*{Bit-vector Model Counting}
- Key idea: New 2-universal hash function \(h_{B V}\) for bit-vectors
- Recall from propositional case
- Prop variables \(\left\{x_{1}, \ldots x_{n}\right\}\)
- Example: \(h\left(x_{1}, \ldots\right)=x_{1} \oplus x_{4} \oplus \ldots \oplus 1\)

\section*{Bit-vector Model Counting}
- Key idea: New 2-universal hash function \(h_{B V}\) for bit-vectors
- Recall from propositional case
- Prop variables \(\left\{x_{1}, \ldots x_{n}\right\}\)
- Example: \(h\left(x_{1}, \ldots\right)=x_{1} \oplus x_{4} \oplus \ldots \oplus 1\)
- Alternatively, \(h\left(x_{1}, \ldots\right)=\left(1 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}+1 \cdot x_{4}+\ldots+1\right)\) \(\bmod 2\)

\section*{Bit-vector Model Counting}
- Key idea: New 2-universal hash function \(h_{B V}\) for bit-vectors
- Recall from propositional case
- Prop variables \(\left\{x_{1}, \ldots x_{n}\right\}\)
- Example: \(h\left(x_{1}, \ldots\right)=x_{1} \oplus x_{4} \oplus \ldots \oplus 1\)
- Alternatively, \(h\left(x_{1}, \ldots\right)=\left(1 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}+1 \cdot x_{4}+\ldots+1\right)\) \(\bmod 2\)
- Family of hash functions to choose from \(\mathcal{H}=\left\{\left(a_{1} \cdot x_{1}+\ldots+a_{n} \cdot x_{n}+b\right) \bmod 2 \mid a_{1}, \ldots a_{n}, b\right.\) randomly chosen from \(\left.\mathbb{Z}_{2}=\{0,1\}\right\}\)

\section*{Bit-vector Model Counting}
- Key idea: New 2-universal hash function \(h_{B V}\) for bit-vectors
- Recall from propositional case
- Prop variables \(\left\{x_{1}, \ldots x_{n}\right\}\)
- Example: \(h\left(x_{1}, \ldots\right)=x_{1} \oplus x_{4} \oplus \ldots \oplus 1\)
- Alternatively, \(h\left(x_{1}, \ldots\right)=\left(1 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}+1 \cdot x_{4}+\ldots+1\right)\) \(\bmod 2\)
- Family of hash functions to choose from \(\mathcal{H}=\left\{\left(a_{1} \cdot x_{1}+\ldots+a_{n} \cdot x_{n}+b\right) \bmod 2 \mid a_{1}, \ldots a_{n}, b\right.\) randomly chosen from \(\left.\mathbb{Z}_{2}=\{0,1\}\right\}\)
- Generalizing to bit-vectors
- Bit-vector variables \(\left\{x_{1}, \ldots x_{n}\right\}\)

\section*{Bit-vector Model Counting}
- Key idea: New 2-universal hash function \(h_{B V}\) for bit-vectors
- Recall from propositional case
- Prop variables \(\left\{x_{1}, \ldots x_{n}\right\}\)
- Example: \(h\left(x_{1}, \ldots\right)=x_{1} \oplus x_{4} \oplus \ldots \oplus 1\)
- Alternatively, \(h\left(x_{1}, \ldots\right)=\left(1 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}+1 \cdot x_{4}+\ldots+1\right)\) \(\bmod 2\)
- Family of hash functions to choose from \(\mathcal{H}=\left\{\left(a_{1} \cdot x_{1}+\ldots+a_{n} \cdot x_{n}+b\right) \bmod 2 \mid a_{1}, \ldots a_{n}, b\right.\) randomly chosen from \(\left.\mathbb{Z}_{2}=\{0,1\}\right\}\)
- Generalizing to bit-vectors
- Bit-vector variables \(\left\{x_{1}, \ldots x_{n}\right\}\)
- Use a suitable prime \(p\) instead of 2 for modulus
- Smallest \(p\) such that \(2^{k} \leq p<2^{n k}\)

\section*{Bit-vector Model Counting}
- Key idea: New 2-universal hash function \(h_{B V}\) for bit-vectors
- Recall from propositional case
- Prop variables \(\left\{x_{1}, \ldots x_{n}\right\}\)
- Example: \(h\left(x_{1}, \ldots\right)=x_{1} \oplus x_{4} \oplus \ldots \oplus 1\)
- Alternatively, \(h\left(x_{1}, \ldots\right)=\left(1 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}+1 \cdot x_{4}+\ldots+1\right)\) \(\bmod 2\)
- Family of hash functions to choose from \(\mathcal{H}=\left\{\left(a_{1} \cdot x_{1}+\ldots+a_{n} \cdot x_{n}+b\right) \bmod 2 \mid a_{1}, \ldots a_{n}, b\right.\) randomly chosen from \(\left.\mathbb{Z}_{2}=\{0,1\}\right\}\)
- Generalizing to bit-vectors
- Bit-vector variables \(\left\{x_{1}, \ldots x_{n}\right\}\)
- Use a suitable prime \(p\) instead of 2 for modulus
- Smallest \(p\) such that \(2^{k} \leq p<2^{n k}\)
- First-cut \(\mathcal{H}_{B V}\) (linear modular hash functions): \(\left\{\left(a_{1} \cdot x_{1}+\ldots+a_{n} \cdot x_{n} \ldots b\right) \bmod p \mid a_{i}, \ldots a_{n}, b\right.\) randomly chosen from \(\left.\mathbb{Z}_{p}=\{0,1, \ldots p-1\}\right\}\)

\section*{Closer look at \(\mathcal{H}_{B V}\)}
\(\varphi\left(x_{1}, \ldots x_{n}\right)\) : Bit-vector formula
- Randomly choose \(h\left(x_{1}, \ldots\right):\{0,1\}^{n k} \rightarrow \mathbb{Z}_{p}\) from \(\mathcal{H}_{B V}\)
- Partitions \(\{0,1\}^{n k}\) into \(p\) cells
- Expected \# solutions per cell \(=|\operatorname{Sol}(\varphi)| / p\)

\section*{Closer look at \(\mathcal{H}_{B V}\)}
\(\varphi\left(x_{1}, \ldots x_{n}\right)\) : Bit-vector formula
- Randomly choose \(h\left(x_{1}, \ldots\right):\{0,1\}^{n k} \rightarrow \mathbb{Z}_{p}\) from \(\mathcal{H}_{B V}\)
- Partitions \(\{0,1\}^{n k}\) into \(p\) cells
- Expected \# solutions per cell \(=|\operatorname{Sol}(\varphi)| / p\)
- What if \(p\) is too small compared to \(|\operatorname{Sol}(\varphi)|\) ?
- Recall we'd like each cell to have "few" solutions of \(\varphi\)

\section*{Closer look at \(\mathcal{H}_{B V}\)}
\(\varphi\left(x_{1}, \ldots x_{n}\right)\) : Bit-vector formula
- Randomly choose \(h\left(x_{1}, \ldots\right):\{0,1\}^{n k} \rightarrow \mathbb{Z}_{p}\) from \(\mathcal{H}_{B V}\)
- Partitions \(\{0,1\}^{n k}\) into \(p\) cells
- Expected \# solutions per cell \(=|\operatorname{Sol}(\varphi)| / p\)
- What if \(p\) is too small compared to \(|\operatorname{Sol}(\varphi)|\) ?
- Recall we'd like each cell to have "few" solutions of \(\varphi\)
- Choose \(h_{1}, h_{2}, \ldots h_{c}\) independently at random from \(\mathcal{H}_{B V}\)

\section*{Closer look at \(\mathcal{H}_{B V}\)}
\(\varphi\left(x_{1}, \ldots x_{n}\right)\) : Bit-vector formula
- Randomly choose \(h\left(x_{1}, \ldots\right):\{0,1\}^{n k} \rightarrow \mathbb{Z}_{p}\) from \(\mathcal{H}_{B V}\)
- Partitions \(\{0,1\}^{n k}\) into \(p\) cells
- Expected \# solutions per cell \(=|\operatorname{Sol}(\varphi)| / p\)
- What if \(p\) is too small compared to \(|\operatorname{Sol}(\varphi)|\) ?
- Recall we'd like each cell to have "few" solutions of \(\varphi\)
- Choose \(h_{1}, h_{2}, \ldots h_{c}\) independently at random from \(\mathcal{H}_{B V}\)
- Choose \(\alpha_{1}, \ldots \alpha_{c}\) independently at random from \(\mathbb{Z}_{p}\)

\section*{Closer look at \(\mathcal{H}_{B V}\)}
\(\varphi\left(x_{1}, \ldots x_{n}\right)\) : Bit-vector formula
- Randomly choose \(h\left(x_{1}, \ldots\right):\{0,1\}^{n k} \rightarrow \mathbb{Z}_{p}\) from \(\mathcal{H}_{B V}\)
- Partitions \(\{0,1\}^{n k}\) into \(p\) cells
- Expected \# solutions per cell \(=|\operatorname{Sol}(\varphi)| / p\)
- What if \(p\) is too small compared to \(|\operatorname{Sol}(\varphi)|\) ?
- Recall we'd like each cell to have "few" solutions of \(\varphi\)
- Choose \(h_{1}, h_{2}, \ldots h_{c}\) independently at random from \(\mathcal{H}_{B V}\)
- Choose \(\alpha_{1}, \ldots \alpha_{c}\) independently at random from \(\mathbb{Z}_{p}\)
- Expected \# models of \(\varphi_{B V}(\ldots) \wedge\left(h_{1}(\ldots)=\alpha_{1}\right) \wedge \cdots\left(h_{c}(\ldots)=\alpha_{c}\right)\) is \(|\operatorname{Sol}(\varphi)| / p^{c}\)
- Works if \(p^{c}\) is within a small factor of \(|\operatorname{Sol}(\varphi)|\).

\section*{Closer look at \(\mathcal{H}_{B V}\)}
- What if \(\operatorname{Sol}(\varphi) / p^{c}\) is \(<1\), but \(\operatorname{Sol}\left(\varphi_{B V}\right) / p^{c-1}\) is too large?
- Can happen for large \(p\)
- Can we reduce \(p\) arbitrarily?

\section*{Closer look at \(\mathcal{H}_{B V}\)}
- What if \(\operatorname{Sol}(\varphi) / p^{c}\) is \(<1\), but \(\operatorname{Sol}\left(\varphi_{B V}\right) / p^{c-1}\) is too large?
- Can happen for large \(p\)
- Can we reduce \(p\) arbitrarily? Need \(2^{k} \leq p<2^{n k}\)

\section*{Closer look at \(\mathcal{H}_{B V}\)}
- What if \(\operatorname{Sol}(\varphi) / p^{c}\) is \(<1\), but \(\operatorname{Sol}\left(\varphi_{B V}\right) / p^{c-1}\) is too large?
- Can happen for large \(p\)
- Can we reduce \(p\) arbitrarily? Need \(2^{k} \leq p<2^{n k}\)
- Solution: Slice each \(x_{1}, \ldots x_{n}\) into two equal slices
- Effectively halves \(k\) and doubles \(n\)
- Allows smaller prime \(q(<p)\) for modulus in additional \(h_{i}\) 's
- Expected \# models in each cell is now \(\operatorname{Sol}(\varphi) /\left(\mathbf{p}^{c} \cdot \mathbf{q}\right)\)
- Recursively apply this technique until cells are "small" enough

\section*{Closer look at \(\mathcal{H}_{B V}\)}
- What if \(\operatorname{Sol}(\varphi) / p^{c}\) is \(<1\), but \(\operatorname{Sol}\left(\varphi_{B V}\right) / p^{c-1}\) is too large?
- Can happen for large \(p\)
- Can we reduce \(p\) arbitrarily? Need \(2^{k} \leq p<2^{n k}\)
- Solution: Slice each \(x_{1}, \ldots x_{n}\) into two equal slices
- Effectively halves \(k\) and doubles \(n\)
- Allows smaller prime \(q(<p)\) for modulus in additional \(h_{i}\) 's
- Expected \# models in each cell is now \(\operatorname{Sol}(\varphi) /\left(\mathbf{p}^{\mathrm{c}} . \mathbf{q}\right)\)
- Recursively apply this technique until cells are "small" enough


Illustration with non-prime modulus

\section*{Closer look at \(\mathcal{H}_{B V}\)}
- What if \(\operatorname{Sol}(\varphi) / p^{c}\) is \(<1\), but \(\operatorname{Sol}\left(\varphi_{B V}\right) / p^{c-1}\) is too large?
- Can happen for large \(p\)
- Can we reduce \(p\) arbitrarily? Need \(2^{k} \leq p<2^{n k}\)
- Solution: Slice each \(x_{1}, \ldots x_{n}\) into two equal slices
- Effectively halves \(k\) and doubles \(n\)
- Allows smaller prime \(q(<p)\) for modulus in additional \(h_{i}\) 's
- Expected \# models in each cell is now \(\operatorname{Sol}(\varphi) /\left(\mathbf{p}^{c} . \mathbf{q}\right)\)
- Recursively apply this technique until cells are "small" enough

- \(h_{1}\) with \(k\)

Illustration with non-prime modulus

\section*{Closer look at \(\mathcal{H}_{B V}\)}
- What if \(\operatorname{Sol}(\varphi) / p^{c}\) is \(<1\), but \(\operatorname{Sol}\left(\varphi_{B V}\right) / p^{c-1}\) is too large?
- Can happen for large \(p\)
- Can we reduce \(p\) arbitrarily? Need \(2^{k} \leq p<2^{n k}\)
- Solution: Slice each \(x_{1}, \ldots x_{n}\) into two equal slices
- Effectively halves \(k\) and doubles \(n\)
- Allows smaller prime \(q(<p)\) for modulus in additional \(h_{i}\) 's
- Expected \# models in each cell is now \(\operatorname{Sol}(\varphi) /\left(\mathbf{p}^{\mathrm{c}} . \mathbf{q}\right)\)
- Recursively apply this technique until cells are "small" enough

- \(h_{1}\) with \(k\)

Illustration with non-prime modulus

\section*{Closer look at \(\mathcal{H}_{B V}\)}
- What if \(\operatorname{Sol}(\varphi) / p^{c}\) is \(<1\), but \(\operatorname{Sol}\left(\varphi_{B V}\right) / p^{c-1}\) is too large?
- Can happen for large \(p\)
- Can we reduce \(p\) arbitrarily? Need \(2^{k} \leq p<2^{n k}\)
- Solution: Slice each \(x_{1}, \ldots x_{n}\) into two equal slices
- Effectively halves \(k\) and doubles \(n\)
- Allows smaller prime \(q(<p)\) for modulus in additional \(h_{i}\) 's
- Expected \# models in each cell is now \(\operatorname{Sol}(\varphi) /\left(\mathbf{p}^{c} . \mathbf{q}\right)\)
- Recursively apply this technique until cells are "small" enough

- \(h_{1}\) with \(k\)
- \(h_{2}\) with \(k\)

Illustration with non-prime modulus

\section*{Closer look at \(\mathcal{H}_{B V}\)}
- What if \(\operatorname{Sol}(\varphi) / p^{c}\) is \(<1\), but \(\operatorname{Sol}\left(\varphi_{B V}\right) / p^{c-1}\) is too large?
- Can happen for large \(p\)
- Can we reduce \(p\) arbitrarily? Need \(2^{k} \leq p<2^{n k}\)
- Solution: Slice each \(x_{1}, \ldots x_{n}\) into two equal slices
- Effectively halves \(k\) and doubles \(n\)
- Allows smaller prime \(q(<p)\) for modulus in additional \(h_{i}\) 's
- Expected \# models in each cell is now \(\operatorname{Sol}(\varphi) /\left(\mathbf{p}^{\mathrm{c}} . \mathbf{q}\right)\)
- Recursively apply this technique until cells are "small" enough

- \(h_{1}\) with \(k\)
- \(h_{2}\) with \(k\)

Illustration with non-prime modulus

\section*{Closer look at \(\mathcal{H}_{B V}\)}
- What if \(\operatorname{Sol}(\varphi) / p^{c}\) is \(<1\), but \(\operatorname{Sol}\left(\varphi_{B V}\right) / p^{c-1}\) is too large?
- Can happen for large \(p\)
- Can we reduce \(p\) arbitrarily? Need \(2^{k} \leq p<2^{n k}\)
- Solution: Slice each \(x_{1}, \ldots x_{n}\) into two equal slices
- Effectively halves \(k\) and doubles \(n\)
- Allows smaller prime \(q(<p)\) for modulus in additional \(h_{i}\) 's
- Expected \# models in each cell is now \(\operatorname{Sol}(\varphi) /\left(\mathbf{p}^{c} . \mathbf{q}\right)\)
- Recursively apply this technique until cells are "small" enough

- \(h_{1}\) with \(k\)
- \(h_{2}\) with \(k\)
- \(h_{3}\) with \(k / 2\)

Illustration with non-prime modulus

\section*{Closer look at \(\mathcal{H}_{B V}\)}
- What if \(\operatorname{Sol}(\varphi) / p^{c}\) is \(<1\), but \(\operatorname{Sol}\left(\varphi_{B V}\right) / p^{c-1}\) is too large?
- Can happen for large \(p\)
- Can we reduce \(p\) arbitrarily? Need \(2^{k} \leq p<2^{n k}\)
- Solution: Slice each \(x_{1}, \ldots x_{n}\) into two equal slices
- Effectively halves \(k\) and doubles \(n\)
- Allows smaller prime \(q(<p)\) for modulus in additional \(h_{i}\) 's
- Expected \# models in each cell is now \(\operatorname{Sol}(\varphi) /\left(\mathbf{p}^{c} . \mathbf{q}\right)\)
- Recursively apply this technique until cells are "small" enough

- \(h_{1}\) with \(k\)
- \(h_{2}\) with \(k\)
- \(h_{3}\) with \(k / 2\)

Illustration with non-prime modulus

\section*{Closer look at \(\mathcal{H}_{B V}\)}
- What if \(\operatorname{Sol}(\varphi) / p^{c}\) is \(<1\), but \(\operatorname{Sol}\left(\varphi_{B V}\right) / p^{c-1}\) is too large?
- Can happen for large \(p\)
- Can we reduce \(p\) arbitrarily? Need \(2^{k} \leq p<2^{n k}\)
- Solution: Slice each \(x_{1}, \ldots x_{n}\) into two equal slices
- Effectively halves \(k\) and doubles \(n\)
- Allows smaller prime \(q(<p)\) for modulus in additional \(h_{i}\) 's
- Expected \# models in each cell is now \(\operatorname{Sol}(\varphi) /\left(\mathbf{p}^{c} . \mathbf{q}\right)\)
- Recursively apply this technique until cells are "small" enough

- \(h_{1}\) with \(k\)
- \(h_{2}\) with \(k\)
- \(h_{3}\) with \(k / 2\)
- \(h_{4}\) with \(k / 2\)

Illustration with non-prime modulus

\section*{Closer look at \(\mathcal{H}_{B V}\)}
- What if \(\operatorname{Sol}(\varphi) / p^{c}\) is \(<1\), but \(\operatorname{Sol}\left(\varphi_{B V}\right) / p^{c-1}\) is too large?
- Can happen for large \(p\)
- Can we reduce \(p\) arbitrarily? Need \(2^{k} \leq p<2^{n k}\)
- Solution: Slice each \(x_{1}, \ldots x_{n}\) into two equal slices
- Effectively halves \(k\) and doubles \(n\)
- Allows smaller prime \(q(<p)\) for modulus in additional \(h_{i}\) 's
- Expected \# models in each cell is now \(\operatorname{Sol}(\varphi) /\left(\mathbf{p}^{c} . \mathbf{q}\right)\)
- Recursively apply this technique until cells are "small" enough

- \(h_{1}\) with \(k\)
- \(h_{2}\) with \(k\)
- \(h_{3}\) with \(k / 2\)
- \(h_{4}\) with \(k / 2\)

Illustration with non-prime modulus

\section*{Closer look at \(\mathcal{H}_{B V}\)}
- Let \(M=p_{1}^{c_{1}} \cdot p_{2}^{c_{2}} \cdots p_{r}^{c_{r}}\), where
- \(p_{1}, \ldots p_{r}\) are primes such that
- \(2^{k-i} \leq p_{i}<2^{n k}\) for all \(i \in\{1, \ldots r\}\)
\(-1<2^{n k} / M\)

\section*{Closer look at \(\mathcal{H}_{B V}\)}
- Let \(M=p_{1}^{c_{1}} \cdot p_{2}^{c_{2}} \cdots p_{r}^{c_{r}}\), where
- \(p_{1}, \ldots p_{r}\) are primes such that
- \(2^{k-i} \leq p_{i}<2^{n k}\) for all \(i \in\{1, \ldots r\}\)
\(-1<2^{n k} / M\)
- Final version of \(\mathcal{H}_{B V}\) Every hash function in \(\mathcal{H}_{B V}\) is a tuple of \(c_{1}+c_{2}+\ldots c_{r}\) linear modular hash functions
- \(c_{1}\) hash functions with modulus \(p_{1}\)
- \(c_{2}\) hash functions with modulus \(p_{2}\)
- ...
- \(c_{r}\) hash functions with modulus \(p_{r}\)

\section*{Closer look at \(\mathcal{H}_{B V}\)}
- Let \(M=p_{1}^{c_{1}} \cdot p_{2}^{c_{2}} \cdots p_{r}^{c_{r}}\), where
- \(p_{1}, \ldots p_{r}\) are primes such that
- \(2^{k-i} \leq p_{i}<2^{n k}\) for all \(i \in\{1, \ldots r\}\)
\(-1<2^{n k} / M\)
- Final version of \(\mathcal{H}_{B V}\) Every hash function in \(\mathcal{H}_{B V}\) is a tuple of \(c_{1}+c_{2}+\ldots c_{r}\) linear modular hash functions
\(-c_{1}\) hash functions with modulus \(p_{1}\)
\(-c_{2}\) hash functions with modulus \(p_{2}\)
- ...
- \(c_{r}\) hash functions with modulus \(p_{r}\)
- Every hash function \(h_{B V} \in \mathcal{H}_{B V}\) maps
\[
\{0,1\}^{n k} \text { to }\left(\mathbb{Z}_{p_{1}}\right)^{c_{1}} \times\left(\mathbb{Z}_{p_{1}}\right)^{c_{1}} \times \cdots \times\left(\mathbb{Z}_{p_{r}}\right)^{c_{r}}
\]

\section*{Properties of \(\mathcal{H}_{B V}\)}

\section*{Theorem: \(\mathcal{H}_{B V}\) is 2-universal}

For every \(\alpha_{1}, \alpha_{2} \in\left(\mathbb{Z}_{p_{1}}\right)^{c_{1}} \times \cdots \times\left(\mathbb{Z}_{p_{r}}\right)^{c_{r}}\), every \(\mathbf{X}_{1}, \mathbf{X}_{2} \in\{0,1\}^{n k}\), and every hash function \(h\) chosen randomly from \(\mathcal{H}_{B V}\),
\(\operatorname{Pr}\left[h\left(\mathbf{X}_{1}\right)=\alpha_{1} \wedge h\left(\mathbf{X}_{2}\right)=\alpha_{2}\right]=\operatorname{Pr}\left[h\left(\mathbf{X}_{1}\right)=\alpha_{1}\right] \cdot \operatorname{Pr}\left[h\left(\mathbf{X}_{2}\right)=\alpha_{2}\right]=\) \(\left(1 / p_{1}\right)^{2 c_{1}} \cdot\left(1 / p_{2}\right)^{2 c_{2}} \cdots\left(1 / p_{r}\right)^{2 c_{r}}\).

\section*{Properties of \(\mathcal{H}_{B V}\)}

\section*{Theorem: \(\mathcal{H}_{B V}\) is 2-universal}

For every \(\alpha_{1}, \alpha_{2} \in\left(\mathbb{Z}_{p_{1}}\right)^{c_{1}} \times \cdots \times\left(\mathbb{Z}_{p_{r}}\right)^{c_{r}}\), every \(\mathbf{X}_{1}, \mathbf{X}_{2} \in\{0,1\}^{n k}\), and every hash function \(h\) chosen randomly from \(\mathcal{H}_{B V}\),
\(\operatorname{Pr}\left[h\left(\mathbf{X}_{1}\right)=\alpha_{1} \wedge h\left(\mathbf{X}_{2}\right)=\alpha_{2}\right]=\operatorname{Pr}\left[h\left(\mathbf{X}_{1}\right)=\alpha_{1}\right] \cdot \operatorname{Pr}\left[h\left(\mathbf{X}_{2}\right)=\alpha_{2}\right]=\) \(\left(1 / p_{1}\right)^{2 c_{1}} \cdot\left(1 / p_{2}\right)^{2 c_{2}} \cdots\left(1 / p_{r}\right)^{2 c_{r}}\).
\(\mathcal{H}_{B V}\) can be used for bit-vector model counting

\section*{Putting it all together: SMTApproxMC}


Illustration with non-prime modulus

\section*{Putting it all together: SMTApproxMC}


\author{
- \(\left(h_{1}\right.\) with \(\left.p_{1}\right)\)
}

Illustration with non-prime modulus

\section*{Putting it all together: SMTApproxMC}


\author{
- ( \(h_{1}\) with \(\left.p_{1}\right)\) \\ - ( \(h_{1}, h_{2}\) with \(\left.p_{1}\right)\)
}

Illustration with non-prime modulus

\section*{Putting it all together: SMTApproxMC}

- \(\left(h_{1}\right.\) with \(\left.p_{1}\right)\)
- \(\left(h_{1}, h_{2}\right.\) with \(\left.p_{1}\right)\)
- \(\left(h_{1}, h_{2}\right.\) with \(p_{1} ; h_{3}\) with \(\left.p_{2}\right)\)

Illustration with non-prime modulus

\section*{Putting it all together: SMTApproxMC}

- \(\left(h_{1}\right.\) with \(\left.p_{1}\right)\)
- \(\left(h_{1}, h_{2}\right.\) with \(\left.p_{1}\right)\)
- \(\left(h_{1}, h_{2}\right.\) with \(p_{1} ; h_{3}\) with \(\left.p_{2}\right)\)
- \(\left(h_{1}, h_{2}\right.\) with \(p_{1} ; h_{3}, h_{4}\) with \(\left.p_{2}\right)\)

Illustration with non-prime modulus

\section*{Putting it all together: SMTApproxMC}

\[
\begin{aligned}
& \text { - }\left(h_{1} \text { with } p_{1}\right) \\
& -\left(h_{1}, h_{2} \text { with } p_{1}\right) \\
& -\left(h_{1}, h_{2} \text { with } p_{1} ; h_{3} \text { with } p_{2}\right) \\
& -\left(h_{1}, h_{2} \text { with } p_{1} ; h_{3}, h_{4} \text { with } p_{2}\right)
\end{aligned}
\]

Illustration with non-prime modulus
- Given bit-vector constraint \(\varphi, \varepsilon(>0)\), and \(\delta \in(0,1]\)
(1) Determine pivot from \(\varepsilon\), repCount from \(\delta\) and initial \(\mathcal{H}_{B V}\)
(2) Randomly choose \(h \in \mathcal{H}_{B V}\) and \(\alpha \in \operatorname{range}(h)\)
(3) Let \(\kappa=|\operatorname{Sol}(\varphi(\mathbf{X}) \wedge(h(\mathbf{X})=\alpha))|\)
(4) If \(\kappa \notin(0\), pivot \(]\) then
- Update \(\mathcal{H}_{B V}\) with next linear modular hash function
- Go to (2)
(5) Else, AddToListOfSolns( \(\kappa\) ) and repeat (2)-(4) repCount times
(6) Return median of ListOfSolns

\section*{Need for SMT solver}

Step (3): Count \# solutions of \(\varphi(\mathbf{X}) \wedge(h(\mathbf{X})=\alpha)\)

\section*{Need for SMT solver}
\[
\text { Step (3): Count \# solutions of } \varphi(\mathbf{X}) \wedge(h(\mathbf{X})=\alpha)
\]
- Solution: Use Satisfiability Modulo Theories (SMT) solver for theory of bit-vectors

\section*{Need for SMT solver}

Step (3): Count \# solutions of \(\varphi(\mathbf{X}) \wedge(h(\mathbf{X})=\alpha)\)
- Solution: Use Satisfiability Modulo Theories (SMT) solver for theory of bit-vectors
- Uses axioms and inference rules from first-order theory of bit-vectors as much as possible
\(-x_{[l]}+0_{[l]}=x_{[l]}\)
\(-\operatorname{concat}\left(\operatorname{extract}\left(\mathrm{x}_{[1]}, 0, \mathrm{~m}\right), \operatorname{extract}\left(\mathrm{x}_{[]}, \mathrm{m}+1, \mathrm{I}-1\right)=x_{[]]}\right.\), if \(0 \leq m<I-1\)
- leftshift \(\left(x_{[]}, t\right)=x / 2^{t}\)
- ... plenty of well-studied rules

\section*{Need for SMT solver}

Step (3): Count \# solutions of \(\varphi(\mathbf{X}) \wedge(h(\mathbf{X})=\alpha)\)
- Solution: Use Satisfiability Modulo Theories (SMT) solver for theory of bit-vectors
- Uses axioms and inference rules from first-order theory of bit-vectors as much as possible
\(-x_{[/]}+0_{[/]}=x_{[/]}\)
\(-\operatorname{concat}\left(\operatorname{extract}\left(x_{[I]}, 0, m\right), \operatorname{extract}\left(x_{[I]}, m+1, I-1\right)=x_{[I]}\right.\), if \(0 \leq m<I-1\)
\(-\operatorname{leftshift}\left(x_{[/]}, t\right)=x / 2^{t}\)
- ... plenty of well-studied rules
- Bit-blast only if no rule applies
- Desirable: efficient reasoning about \(\varphi+\) linear constraints modulo primes

\section*{Need for SMT solver}

Step (3): Count \# solutions of \(\varphi(\mathbf{X}) \wedge(h(\mathbf{X})=\alpha)\)
- Solution: Use Satisfiability Modulo Theories (SMT) solver for theory of bit-vectors
- Uses axioms and inference rules from first-order theory of bit-vectors as much as possible
\(-x_{[l]}+0_{[l]}=x_{[l]}\)
\(-\operatorname{concat}\left(\operatorname{extract}\left(\mathrm{x}_{[1]}, 0, \mathrm{~m}\right), \operatorname{extract}\left(\mathrm{x}_{[]}, \mathrm{m}+1, \mathrm{I}-1\right)=x_{[]]}\right.\), if \(0 \leq m<I-1\)
\(-\operatorname{leftshift}\left(x_{[]}, t\right)=x / 2^{t}\)
- ... plenty of well-studied rules
- Bit-blast only if no rule applies
- Desirable: efficient reasoning about \(\varphi+\) linear constraints modulo primes
- Linear constraints modulo primes admit Gaussian elimination
- Need to integrate Gaussian elimination within existing SMT solvers
- Yet to be fully solved

Theoretical guarantees and Performance
Theorem
- \(\operatorname{Pr}\left[\frac{\operatorname{Sol}(\varphi) \mid}{1+\varepsilon} \leq \operatorname{SMTApproxMC}(\varphi, \varepsilon, \delta) \leq(1+\varepsilon) \cdot|\operatorname{Sol}(\varphi)|\right] \geq 1-\delta\)
- SMTApproxMC \((\varphi, \varepsilon, \delta)\) runs in time polynomial in \(|\varphi|, 1 / \varepsilon\) and \(\log (1 / \delta)\).

Theoretical guarantees and Performance

\section*{Theorem}
- \(\operatorname{Pr}\left[\frac{|\operatorname{Sol}(\varphi)|}{1+\varepsilon} \leq \operatorname{SMTApproxMC}(\varphi, \varepsilon, \delta) \leq(1+\varepsilon) \cdot|\operatorname{Sol}(\varphi)|\right] \geq 1-\delta\)
- \(\operatorname{SMTApproxMC}(\varphi, \varepsilon, \delta)\) runs in time polynomial in \(|\varphi|, 1 / \varepsilon\) and \(\log (1 / \delta)\).


\section*{Domain-specific decomposition + Propositional MC}

Key idea:
- Decompose domain into finite union of hyper-rectangles
- Ensure that only a "small" number ( \(\nu\) ) of hyper-rectangles are "cut" by the solution space
- For most hyper-rectangles, either all points are solutions, or all points are non-solutions
- Let \(M=\) number of hyper-rectangles with at least one solution
- Let \(V=\) uniform measure weight of each hyper-rectaangle
- Then \((M-\nu) \times V \leq\) Required Count \(\leq M \times V\)

\section*{Counting in Bounded Integer+Rational Arithmetic [Chistikov et al 2015]}
- Constraints of the form \(\varphi(x)=\exists u, \Phi(x, u)\)
- Allows top-level existential quantifiers (projection)
- \(k\) free variables, each takes values in interval \([0, M]\)

\section*{Counting in Bounded Integer+Rational Arithmetic [Chistikov et al 2015]}
- Constraints of the form \(\varphi(x)=\exists u, \Phi(x, u)\)
- Allows top-level existential quantifiers (projection)
- \(k\) free variables, each takes values in interval \([0, M]\)
- Choose a "large" integer \(s\) and divide \([0, M]^{k}\) into \(s^{k}\) sub-cubes of side \(\rho=M / s\)

\section*{Counting in Bounded Integer+Rational Arithmetic [Chistikov et al 2015]}
- Constraints of the form \(\varphi(x)=\exists u, \Phi(x, u)\)
- Allows top-level existential quantifiers (projection)
- \(k\) free variables, each takes values in interval \([0, M\) ]
- Choose a "large" integer \(s\) and divide \([0, M]^{k}\) into \(s^{k}\) sub-cubes of side \(\rho=M / s\)
- \(y_{1}, \ldots y_{k}\) : new bounded integer variables, each with domain \(\{0,1, \ldots s-1\}\)
- Each valuation of \(y_{1}, \ldots y_{k}\) identifies a unique small cube \(C\left(y_{1}, \ldots y_{k}\right)\)

\section*{Counting in Bounded Integer+Rational Arithmetic [Chistikov et al 2015]}
- Constraints of the form \(\varphi(x)=\exists u, \Phi(x, u)\)
- Allows top-level existential quantifiers (projection)
- \(k\) free variables, each takes values in interval \([0, M\) ]
- Choose a "large" integer \(s\) and divide \([0, M]^{k}\) into \(s^{k}\) sub-cubes of side \(\rho=M / s\)
- \(y_{1}, \ldots y_{k}\) : new bounded integer variables, each with domain \(\{0,1, \ldots s-1\}\)
- Each valuation of \(y_{1}, \ldots y_{k}\) identifies a unique small cube \(C\left(y_{1}, \ldots y_{k}\right)\)
- Define \(\psi\left(y_{1}, \ldots y_{k}\right)\) as follows:
\(-\psi\left(y_{1}, \ldots y_{k}\right) \equiv \exists x\left(\varphi(x) \bigwedge_{i=1}^{k}\left(y_{i} \cdot \rho \leq x_{i} \leq\left(y_{j}+1\right) \cdot \rho\right)\right)\)
- \(\psi\left(y_{1}, \ldots y_{k}\right)=\) true iff at least one point in \(C\left(y_{1}, \ldots y_{k}\right)\) satisfies \(\varphi(x)\).

\section*{Counting in Bounded Integer+Rational Arithmetic [Chistikov et al 2015]}
- Constraints of the form \(\varphi(x)=\exists u, \Phi(x, u)\)
- Allows top-level existential quantifiers (projection)
- \(k\) free variables, each takes values in interval \([0, M\) ]
- Choose a "large" integer \(s\) and divide \([0, M]^{k}\) into \(s^{k}\) sub-cubes of side \(\rho=M / s\)
- \(y_{1}, \ldots y_{k}\) : new bounded integer variables, each with domain \(\{0,1, \ldots s-1\}\)
- Each valuation of \(y_{1}, \ldots y_{k}\) identifies a unique small cube \(C\left(y_{1}, \ldots y_{k}\right)\)
- Define \(\psi\left(y_{1}, \ldots y_{k}\right)\) as follows:
\(-\psi\left(y_{1}, \ldots y_{k}\right) \equiv \exists x\left(\varphi(x) \bigwedge_{i=1}^{k}\left(y_{i} . \rho \leq x_{i} \leq\left(y_{j}+1\right) \cdot \rho\right)\right)\)
- \(\psi\left(y_{1}, \ldots y_{k}\right)=\) true iff at least one point in \(C\left(y_{1}, \ldots y_{k}\right)\) satisfies \(\varphi(x)\).
- Assign uniform measure \(\rho=M / s\) to each \(y_{i} \in\{0, \ldots s-1\}\)

\section*{Counting in Bounded Integer+Rational Arithmetic [Chistikov et al 2015]}
- If at most \(J\) small cubes are "cut" by solution space, then \((|\operatorname{Sol}(\psi)|-J) \cdot \delta^{k} \leq\) ModelCount \(\leq|\operatorname{Sol}(\psi)| \cdot \delta^{k}\)

\section*{Counting in Bounded Integer+Rational Arithmetic [Chistikov et al 2015]}
- If at most \(J\) small cubes are "cut" by solution space, then \((|\operatorname{Sol}(\psi)|-J) \cdot \delta^{k} \leq\) ModelCount \(\leq|\operatorname{Sol}(\psi)| \cdot \delta^{k}\)
- Using a result from Dyer \& Frieze 1998, Chistikov et al showed
- If \(s \geq\left\lceil 2^{m+2 k} \cdot k^{2} \cdot M^{k} /(\varepsilon / 2)\right\rceil\), then \(J \leq\left(1 / \delta^{k}\right) \cdot(\varepsilon / 2)\), for \(\varepsilon>0\)

\section*{Counting in Bounded Integer+Rational Arithmetic [Chistikov et al 2015]}
- If at most \(J\) small cubes are "cut" by solution space, then \((|\operatorname{Sol}(\psi)|-J) \cdot \delta^{k} \leq\) ModelCount \(\leq|\operatorname{Sol}(\psi)| \cdot \delta^{k}\)
- Using a result from Dyer \& Frieze 1998, Chistikov et al showed
- If \(s \geq\left\lceil 2^{m+2 k} \cdot k^{2} \cdot M^{k} /(\varepsilon / 2)\right\rceil\), then \(J \leq\left(1 / \delta^{k}\right) \cdot(\varepsilon / 2)\), for \(\varepsilon>0\)
- Finally, \(\left|\operatorname{Sol}(\psi)\left(y_{1}, \ldots y_{k}\right)\right|\) is computed by
- Propositional encoding of finite domain
- Propositional universal hashing
- Invoking SMT solver (theory of integer + rational linear arithmetic) to determine if \(\psi\left(y_{1}, \ldots y_{k}\right)\) is true for a given \(y_{1}, \ldots y_{k}\).
- Generalizes weighted model counting
- Generalizes weighted model counting
- Formula \(\varphi(\mathbf{x}, \mathbf{A})\), where
- \(\mathbf{x}=\left(x_{1}, \ldots x_{n}\right)\) : real valued variables
- \(\mathbf{A}=\left(A_{1}, \ldots A_{m}\right)\) : atomic propositions
- Generalizes weighted model counting
- Formula \(\varphi(\mathbf{x}, \mathbf{A})\), where
- \(\mathbf{x}=\left(x_{1}, \ldots x_{n}\right)\) : real valued variables
- \(\mathbf{A}=\left(A_{1}, \ldots A_{m}\right)\) : atomic propositions
- Weight function \(w: \mathbb{R}^{n} \times\{0,1\}^{k} \rightarrow \mathbb{R}\)
- Generalizes weighted model counting
- Formula \(\varphi(\mathbf{x}, \mathbf{A})\), where
- \(\mathbf{x}=\left(x_{1}, \ldots x_{n}\right)\) : real valued variables
- \(\mathbf{A}=\left(A_{1}, \ldots A_{m}\right)\) : atomic propositions
- Weight function \(w: \mathbb{R}^{n} \times\{0,1\}^{k} \rightarrow \mathbb{R}\)
- \(W M I(\varphi, w)=\Sigma_{\sigma \in\{0,1\}^{m}} \int_{\varphi(\mathbf{x}, \sigma)} w(\mathbf{x}, \sigma) \mathrm{d} \mathbf{x}\).
- Generalizes weighted model counting
- Formula \(\varphi(\mathbf{x}, \mathbf{A})\), where
- \(\mathbf{x}=\left(x_{1}, \ldots x_{n}\right)\) : real valued variables
- \(\mathbf{A}=\left(A_{1}, \ldots A_{m}\right)\) : atomic propositions
- Weight function \(w: \mathbb{R}^{n} \times\{0,1\}^{k} \rightarrow \mathbb{R}\)
- \(W M I(\varphi, w)=\Sigma_{\sigma \in\{0,1\}^{m}} \int_{\varphi(\mathbf{x}, \sigma)} w(\mathbf{x}, \sigma) \mathrm{d} \mathbf{x}\).

Example
- \(\varphi(x, A) \equiv \leftrightarrow(x \geq 0)) \wedge(x \geq-1) \wedge(x \leq 1)\)
- \(w(x, A)=\) if \((A)\) then \(x\) else \(-x\)
- Generalizes weighted model counting
- Formula \(\varphi(\mathbf{x}, \mathbf{A})\), where
- \(\mathbf{x}=\left(x_{1}, \ldots x_{n}\right)\) : real valued variables
- \(\mathbf{A}=\left(A_{1}, \ldots A_{m}\right)\) : atomic propositions
- Weight function \(w: \mathbb{R}^{n} \times\{0,1\}^{k} \rightarrow \mathbb{R}\)
- \(\operatorname{WMI}(\varphi, w)=\Sigma_{\sigma \in\{0,1\}^{m}} \int_{\varphi(\mathbf{x}, \sigma)} w(\mathbf{x}, \sigma) \mathrm{d} \mathbf{x}\).

Example
(Belle2017):
- \(\varphi(x, A) \equiv \leftrightarrow(x \geq 0)) \wedge(x \geq-1) \wedge(x \leq 1)\)
- \(w(x, A)=\) if \((A)\) then \(x\) else \(-x\)
- \(\operatorname{WMI}(\varphi, w)=\int_{[-1,0)}(-x) \mathrm{d} x+\int_{[0,1]}(x) \mathrm{d} x=\frac{1}{2}+\frac{1}{2}=1\)

\section*{Outline}
Part 1: Applications
Part 2: Prior Work
Part 3: Overview of SAT Solving
Part 4: Hashing-based Approach for Uniform Distribution
Part 5: Beyond Propositional
Part 6: Challenges

Part VI

\section*{Challenges}

\section*{Constrained Counting}
- Given
- Boolean variables \(X_{1}, X_{2}, \cdots X_{n}\)
- Formula \(F\) over \(X_{1}, X_{2}, \cdots X_{n}\)
- Weight Function \(W:\{0,1\}^{n} \mapsto[0,1]\)
- ExactWeightedCount \((F)\) : Compute \(W(F)\) ?
- \#P-complete
(Valiant 1979)

\section*{Constrained Counting}
- Given
- Boolean variables \(X_{1}, X_{2}, \cdots X_{n}\)
- Formula \(F\) over \(X_{1}, X_{2}, \cdots X_{n}\)
- Weight Function \(W:\{0,1\}^{n} \mapsto[0,1]\)
- ExactWeightedCount \((F)\) : Compute \(W(F)\) ?
- \#P-complete
- ApproxWeightedCount \((F, W, \varepsilon, \delta)\) : Compute \(C\) such that
\[
\operatorname{Pr}\left[\frac{W(F)}{1+\varepsilon} \leq C \leq W(F)(1+\varepsilon)\right] \geq 1-\delta
\]

\section*{From Weighted to Uniform Counting}

Boolean Formula \(F\) and weight Boolean Formula \(F^{\prime}\) function \(W:\{0,1\}^{n} \rightarrow \mathbb{Q}^{\geq 0}\)
\[
W(F)=c(W) \times\left|\operatorname{Sol}\left(F^{\prime}\right)\right|
\]
- Key Idea: Encode weight function as a set of constraints

\section*{From Weighted to Uniform Counting}

Boolean Formula \(F\) and weight Boolean Formula \(F^{\prime}\) function \(W:\{0,1\}^{n} \rightarrow \mathbb{Q}^{\geq 0}\)
\[
W(F)=c(W) \times\left|\operatorname{Sol}\left(F^{\prime}\right)\right|
\]
- Key Idea: Encode weight function as a set of constraints
- Caveat: \(\left|F^{\prime}\right|=O(|F|+|W|)\)
- Increase in the number of variables \(\Longrightarrow\) Increase in the size of XORs
- \(\left|\operatorname{Sol}\left(F^{\prime}\right)\right|>|\operatorname{Sol}(F)|\) : Increase in number of solutions \(\Longrightarrow\) Increase in the number of XORs

Challenge Design better reductions that are amenable to hashing-based approximate techniques.

\section*{Summing up Mass of Dots}


\section*{Summing up Mass of Dots}


\section*{Summing up Mass of Dots}

Pick a random cell


Estimate \(=\) Mass in a cell \(\times\) Number of cells

\section*{Hashing-based Approach}

How does equal number of solutions translate to equal weight?
It does not!
- Let \(w_{\text {max }}\) : maximum weight of a solution; \(w_{\text {min }}\) : minimum weight of a solution
- Two cells with equal number of solutions, say \(t\), can have weights \(w_{\max } \times t\) and \(w_{\min } \times t\).

\section*{Hashing-based Approach}

How does equal number of solutions translate to equal weight?
It does not!
- Let \(w_{\text {max }}\) : maximum weight of a solution; \(w_{\text {min }}\) : minimum weight of a solution
- Two cells with equal number of solutions, say \(t\), can have weights \(w_{\max } \times t\) and \(w_{\min } \times t\).
- tilt \((F)=\frac{w_{\text {max }}}{w_{\text {min }}}\)

\section*{Hashing-based Approach}

How does equal number of solutions translate to equal weight?
It does not!
- Let \(w_{\text {max }}\) : maximum weight of a solution; \(w_{\text {min }}\) : minimum weight of a solution
- Two cells with equal number of solutions, say \(t\), can have weights \(w_{\max } \times t\) and \(w_{\min } \times t\).
- tilt \((F)=\frac{w_{\text {max }}}{w_{\text {min }}}\)
- The number of SAT calls increase by a factor of tilt

\section*{Hashing-based Approach}

How does equal number of solutions translate to equal weight?
It does not!
- Let \(w_{\text {max }}\) : maximum weight of a solution; \(w_{\text {min }}\) : minimum weight of a solution
- Two cells with equal number of solutions, say \(t\), can have weights \(w_{\max } \times t\) and \(w_{\min } \times t\).
- tilt \((F)=\frac{w_{\text {max }}}{w_{\text {min }}}\)
- The number of SAT calls increase by a factor of tilt

Divide into multiple problems with each of the problems with small tilt

\section*{Hashing-based Approach}

How does equal number of solutions translate to equal weight?
It does not!
- Let \(w_{\text {max }}\) : maximum weight of a solution; \(w_{\text {min }}\) : minimum weight of a solution
- Two cells with equal number of solutions, say \(t\), can have weights \(w_{\max } \times t\) and \(w_{\min } \times t\).
- tilt \((F)=\frac{w_{\text {max }}}{w_{\text {min }}}\)
- The number of SAT calls increase by a factor of tilt

Divide into multiple problems with each of the problems with small tilt
- Generate \(\log (\) tilt \()\) formulas: \(F^{i}=F \bigwedge \frac{w_{\text {max }}}{2^{i}} \leq w(\sigma) \leq \frac{w_{\text {max }}}{2^{i+1}}\)

\section*{Hashing-based Approach}

How does equal number of solutions translate to equal weight?
It does not!
- Let \(w_{\max }\) : maximum weight of a solution; \(w_{\text {min }}\) : minimum weight of a solution
- Two cells with equal number of solutions, say \(t\), can have weights \(w_{\max } \times t\) and \(w_{\min } \times t\).
- tilt \((F)=\frac{w_{\text {max }}}{w_{\text {min }}}\)
- The number of SAT calls increase by a factor of tilt

Divide into multiple problems with each of the problems with small tilt
- Generate \(\log (\) tilt \()\) formulas: \(F^{i}=F \bigwedge \frac{w_{\text {max }}}{2^{i}} \leq w(\sigma) \leq \frac{w_{\text {max }}}{2^{i+1}}\)
- tilt \(\left(F^{i}\right)=2\)

\section*{Hashing-based Approach}

How does equal number of solutions translate to equal weight?
It does not!
- Let \(w_{\text {max }}\) : maximum weight of a solution; \(w_{\text {min }}\) : minimum weight of a solution
- Two cells with equal number of solutions, say \(t\), can have weights \(w_{\max } \times t\) and \(w_{\min } \times t\).
- tilt \((F)=\frac{w_{\text {max }}}{w_{\text {min }}}\)
- The number of SAT calls increase by a factor of tilt

Divide into multiple problems with each of the problems with small tilt
- Generate \(\log (\) tilt \()\) formulas: \(F^{i}=F \bigwedge \frac{w_{\text {max }}}{2^{i}} \leq w(\sigma) \leq \frac{w_{\text {max }}}{2^{i+1}}\)
- tilt \(\left(F^{i}\right)=2\)
- Use Pseudo Boolean (PB) constraints to encode \(\frac{w_{\max }}{2^{i}} \leq w(\sigma) \leq \frac{w_{\text {max }}}{2^{i+1}}\) when weight function is implicitly described

\section*{Hashing-based Approach}

How does equal number of solutions translate to equal weight?
It does not!
- Let \(w_{\text {max }}\) : maximum weight of a solution; \(w_{\text {min }}\) : minimum weight of a solution
- Two cells with equal number of solutions, say \(t\), can have weights \(w_{\max } \times t\) and \(w_{\min } \times t\).
- tilt \((F)=\frac{w_{\text {max }}}{w_{\text {min }}}\)
- The number of SAT calls increase by a factor of tilt

Divide into multiple problems with each of the problems with small tilt
- Generate \(\log (\) tilt \()\) formulas: \(F^{i}=F \bigwedge \frac{w_{\max }}{2^{i}} \leq w(\sigma) \leq \frac{w_{\max }}{2^{i+1}}\)
- tilt \(\left(F^{i}\right)=2\)
- Use Pseudo Boolean (PB) constraints to encode \(\frac{w_{\max }}{2^{i}} \leq w(\sigma) \leq \frac{w_{\text {max }}}{2^{i+1}}\) when weight function is implicitly described No Good CNF + PB + XOR solver

\section*{Hashing-based Approach}

How does equal number of solutions translate to equal weight?
It does not!
- Let \(w_{\max }\) : maximum weight of a solution; \(w_{\text {min }}\) : minimum weight of a solution
- Two cells with equal number of solutions, say \(t\), can have weights \(w_{\max } \times t\) and \(w_{\min } \times t\).
- tilt \((F)=\frac{w_{\text {max }}}{w_{\text {min }}}\)
- The number of SAT calls increase by a factor of tilt

Divide into multiple problems with each of the problems with small tilt
- Generate \(\log (\) tilt \()\) formulas: \(F^{i}=F \bigwedge \frac{w_{\max }}{2^{i}} \leq w(\sigma) \leq \frac{w_{\max }}{2^{i+1}}\)
- tilt \(\left(F^{i}\right)=2\)
- Use Pseudo Boolean (PB) constraints to encode \(\frac{w_{\max }}{2^{i}} \leq w(\sigma) \leq \frac{w_{\text {max }}}{2^{i+1}}\) when weight function is implicitly described
No Good CNF+PB+XOR solver
Challenge Design solvers that can handle CNF \(+\mathrm{PB}+\mathrm{XOR}\)

\section*{WISH: Weighted Counting via MaxSAT}
- Let all the solutions be arranged in decreasing order of their weights: \(w_{1}, w_{2}, \cdots w_{\mid S o l}(F) \mid\)
- \(W(F)=\sum_{i \in[\mid \text { Sol }(F) \mid]} w_{i}\)
- Viewing this summation as discrete Riemann sums, we observe the following
\[
\frac{W(F)}{2} \leq \sum_{i \in \log |\operatorname{Sol}(F)|} w_{i} \times 2^{i+1} \leq 2 \times W(F)
\]
- Note that we only need to identify \(\log |\operatorname{Sol}(F)|\) many weights.

\section*{WISH: Weighted Counting via MaxSAT}
- Let all the solutions be arranged in decreasing order of their weights: \(w_{1}, w_{2}, \cdots w_{\mid S o l}(F) \mid\)
- \(W(F)=\sum_{i \in[\mid \text { Sol }(F) \mid]} w_{i}\)
- Viewing this summation as discrete Riemann sums, we observe the following
\[
\frac{W(F)}{2} \leq \sum_{i \in \log |\operatorname{Sol}(F)|} w_{i} \times 2^{i+1} \leq 2 \times W(F)
\]
- Note that we only need to identify \(\log |\operatorname{Sol}(F)|\) many weights.
- Solution: Use hashing to find these weights

\section*{WISH: Weighted Counting via MaxSAT}
\[
\frac{W(F)}{2} \leq \sum_{i \in \log |\operatorname{Sol}(F)|} w_{i} \times 2^{i+1} \leq 2 \times W(F)
\]

How do we get \(w_{i}\) ?
- \(w_{i}\) : ith largest weighted solution
- \(w_{1}=\operatorname{MaxWeight}(F, W)\)
- \(\mathrm{E}[\) MaxWeight \((F \wedge\) One Random XOR \()]=\)

\section*{WISH: Weighted Counting via MaxSAT}
\[
\frac{W(F)}{2} \leq \sum_{i \in \log |\operatorname{Sol}(F)|} w_{i} \times 2^{i+1} \leq 2 \times W(F)
\]

How do we get \(w_{i}\) ?
- \(w_{i}\) : ith largest weighted solution
- \(w_{1}=\operatorname{MaxWeight}(F, W)\)
- \(\mathrm{E}[\operatorname{MaxWeight}(F \wedge\) One Random XOR \()]=w_{2}\)
- \(\mathrm{E}[\operatorname{Max} \operatorname{Weight}(F \wedge\) Two Random XOR)] =

\section*{WISH: Weighted Counting via MaxSAT}
\[
\frac{W(F)}{2} \leq \sum_{i \in \log |\operatorname{Sol}(F)|} w_{i} \times 2^{i+1} \leq 2 \times W(F)
\]

How do we get \(w_{i}\) ?
- \(w_{i}\) : ith largest weighted solution
- \(w_{1}=\operatorname{MaxWeight}(F, W)\)
- \(\mathrm{E}[\operatorname{MaxWeight}(F \wedge\) One Random XOR \()]=w_{2}\)
- \(\mathrm{E}\left[\operatorname{MaxWeight}\left(F \wedge\right.\right.\) Two Random XOR)] \(=w_{3}\)
- \(\mathrm{E}[\operatorname{MaxWeight}(F \wedge \mathrm{i}\) Random XOR \()]=w_{i+1}\)
(Ermon et al 2014, 2016, Achlioptas et al 2017, 2018)

No Good solvers to handle MaxSAT+XOR

\section*{WISH: Weighted Counting via MaxSAT}
\[
\frac{W(F)}{2} \leq \sum_{i \in \log |\operatorname{Sol}(F)|} w_{i} \times 2^{i+1} \leq 2 \times W(F)
\]

How do we get \(w_{i}\) ?
- \(w_{i}\) : ith largest weighted solution
- \(w_{1}=\operatorname{MaxWeight}(F, W)\)
- \(\mathrm{E}[\operatorname{MaxWeight}(F \wedge\) One Random XOR \()]=w_{2}\)
- \(\mathrm{E}\left[\operatorname{MaxWeight}\left(F \wedge\right.\right.\) Two Random XOR)] \(=w_{3}\)
- \(\mathrm{E}[\operatorname{MaxWeight}(F \wedge \mathrm{i}\) Random XOR \()]=w_{i+1}\)

> (Ermon et al 2014, 2016, Achlioptas et al 2017, 2018)

No Good solvers to handle MaxSAT+XOR
Challenge: Design MaxSAT solvers that can handle XORs

\section*{2-Universal Hash Functions}
- I: Independent Support
- Variables: \(X_{1}, X_{2}, \cdots X_{\mathcal{I}}\)
- To construct \(h:\{0,1\}^{\mathcal{I}} \rightarrow\{0,1\}^{m}\), choose \(m\) random XORs
- Pick every \(X_{i}\) with prob. \(\frac{1}{2}\) and XOR them; XOR 0 or 1 with prob. \(\frac{1}{2}\)
\(-X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{\mathcal{I}-2} \oplus 1\)
- Expected size of each XOR: \(\frac{\mathcal{I}}{2}\)

\section*{2-Universal Hash Functions}
- I: Independent Support
- Variables: \(X_{1}, X_{2}, \cdots X_{\mathcal{I}}\)
- To construct \(h:\{0,1\}^{\mathcal{I}} \rightarrow\{0,1\}^{m}\), choose \(m\) random XORs
- Pick every \(X_{i}\) with prob. \(\frac{1}{2}\) and XOR them; XOR 0 or 1 with prob. \(\frac{1}{2}\)
\(-X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{\mathcal{I}-2} \oplus 1\)
- Expected size of each XOR: \(\frac{\mathcal{I}}{2}\)
- To choose \(\alpha \in\{0,1\}^{m}\), set every XOR equation to 0 or 1 randomly
\[
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{\mathcal{I}-2} \oplus 1=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{\mathcal{I}-1}=1 \tag{2}
\end{array}
\]
\[
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{\mathcal{I}-2} \oplus 1=1
\]
- \(h(X)=A X \oplus b\)
- A: \((0,1)\) matrix with every entry is 1 with prob. \(\frac{1}{2}\)
- b: \((0,1)\) vector with every entry is 1 with prob. \(\frac{1}{2}\)
- Solutions in a cell: \(F \wedge Q_{1} \cdots \wedge Q_{m}\)

\section*{2-Universal Hash Functions}
- I: Independent Support
- Variables: \(X_{1}, X_{2}, \cdots X_{\mathcal{I}}\)
- To construct \(h:\{0,1\}^{\mathcal{I}} \rightarrow\{0,1\}^{m}\), choose \(m\) random XORs
- Pick every \(X_{i}\) with prob. \(\frac{1}{2}\) and XOR them; XOR 0 or 1 with prob. \(\frac{1}{2}\)
\(-X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{\mathcal{I}-2} \oplus 1\)
- Expected size of each XOR: \(\frac{I}{2}\)
- To choose \(\alpha \in\{0,1\}^{m}\), set every XOR equation to 0 or 1 randomly
\[
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{\mathcal{I}-2} \oplus 1=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{\mathcal{I}-1}=1 \tag{2}
\end{array}
\]
\[
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{\mathcal{I}-2} \oplus 1=1
\]
- \(h(X)=A X \oplus b\)
- A: \((0,1)\) matrix with every entry is 1 with prob. \(\frac{1}{2}\)
- b: \((0,1)\) vector with every entry is 1 with prob. \(\frac{1}{2}\)
- Solutions in a cell: \(F \wedge Q_{1} \cdots \wedge Q_{m}\)
- Can we choose XORs with \(p<\frac{1}{2}\) ?

\section*{Low Density Parity Constraints}
\(h:\{0,1\}^{\mathcal{I}} \rightarrow\{0,1\}^{m}: h(X)=A X \oplus b\), where entries in b are chosen with \(p=\frac{1}{2}\)
- Let entries in A be chosen with \(p<\frac{1}{2}\)
- \(\mu=\frac{|\mathrm{Sol}(F)|}{2^{m}}\)
- \(\sigma^{2}=\sum_{y, z \in \operatorname{Sol}(F)} A(y-z)=0\)
- Based on analysis from Mackay et al, one can derive \(\sigma^{2} \leq \operatorname{Boost} \mu^{2}\)
- Remember for \(p=\frac{1}{2}\), we had \(\sigma^{2} \leq \mu\) (we have \(\mu>1\) )
(Ermon et al 2014, 2016, Achlioptas et al 2017, 2018)

\section*{Low Density Parity Constraints}
- Chebyshev Inequality: \(\operatorname{Pr}\left[\left||X-\mu| \geq \frac{\varepsilon}{(1+\varepsilon)} \mu\right] \leq \frac{\sigma^{2}}{\frac{\text { varepsilon}}{(1+\varepsilon)^{2}} \mu^{2}}\right.\)
- When \(\sigma^{2} \leq \mu\)
- For \(\varepsilon<1\), we choose appropriate \(m\) such \(\mu \times \frac{\text { varepsilon } n^{2}}{(1+\varepsilon)^{2}}>c\)
- For \(\sigma^{2} \leq\) Boost • \(\mu^{2}\)
- Boost leads to \(g\) (Boost) factor of more SAT calls
- The best result so far puts \(g\) (Boost) \(>10,000\) for \(p 0.2\)
- Significant slowdown due to large number of SAT calls.
- Challenge: Is there free lunch here, i.e. achieving low density without loss of runtime performance?
- Discrete Integration (Constrained Counting) and Sampling (Constrained Sampling) are important problems with wide variety of applications
- SAT revolution allows us to design techniques that can make smart usage of SAT solvers.
- Hashing-based paradigm provides sweet spot in terms of guarantees and performance
- For uniform distribution: From hundreds to hundreds of thousands of variables
- Future Challenges:
(1) Beyond propositional domain (take advantage of SMT solvers)
(2) Generalized weighted distributions
(3) Low density parity constraints

\section*{Thank You for being a wonderful audience this afternoon}

\section*{Acknowledgments:}

Joao Marques Silva (for sharing LATEX template and slides on SAT solving)

Collaborators: Jeffrey Dudek, Leonardo Duenas-Osorio, Alexander Ivrii,
Daniel Fremont, Dror Fried, William Hung, Sharad Malik, John Mellor-Crummey, Rakesh Mistry, Roger Parades, Sanjit Seshia, Mate Soos, Aditya Shrotri, and Moshe Vardi.

Researchers in Community for wonderful discussions over the years: Dimitris Achlioptas, Fahiem Bacchus, Vaishak Belle, Guy Van den Broek, Adnan Darwiche, Rina Dechter, Zayd Hammoudeh, Stefano Ermon, Carla Gomes, Rupak Majumdar, Mark Wegman, Ashish Sabharwal, and Bart Selman.

Slides will be available at https://tinyurl.com/ijcai18tutorial```

