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Notation
• Given 
� X1 ,  … Xn : variables with domains D1, … Dn
� Constraint (logical formula)  j over  X1 ,  … Xn
� Weight function  W: D1 ´ … Dn® Q³ 0

Sol(j) : set of assignments of X1 , … Xn satisfying j
� Determine W(j) = å y Î Sol(j) W(y)

If W(y) = 1 for all y, then W(j) = | Sol(j) |

� Randomly sample from Sol(j) such that Pr[y is sampled] µ W(y)
If W(y) = 1 for all y, then uniformly sample from Sol(j)   

For this tutorial: Initially, Di’s are {0,1} – Boolean variables
Later, we’ll consider Di’s as {0, 1}n , R, Z – Bit-vectors, reals, integers
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Closer Look At Some Applications
• Discrete Integration
� Probabilistic Inference
� Network (viz. electrical grid) reliability
� Quantitative Information flow
� And many more …

• Discrete Sampling
� Constrained random verification
� Automatic problem generation
� And many more …
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Application 1: Probabilistic Inference
� An alarm rings if it’s in a working state when an earthquake happens 

or a burglary happens
� The alarm can malfunction and ring without earthquake or burglary

happening

� Given that the alarm rang, what is the likelihood that an earthquake
happened?

� Given conditional dependencies (and conditional probabilities) 
calculate Pr[event | evidence]
� What is Pr [Earthquake | Alarm] ?
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Probabilistic Inference: Bayes’ Rule
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How do we represent conditional dependencies 
efficiently, and calculate these probabilities?
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Probablistic Inference: Graphical Models
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Conditional Probability Tables (CPT)
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Pr # ∗ Pr ¬) ∗ Pr % #,¬)

+ Pr # ∗ Pr ) ∗ Pr % #, )]

Probabilistic Inference: First Principle Calculation 

B E A Pr(A|E,B)



Probabilisitc Inference: Logical Formulation
V = {vA, v~A, vB, v~B, vE, v~E}                 Prop vars corresponding to events
T = {tA|B,E , t~A|B,E , tA|B,~E …}       Prop vars corresponding to CPT entries

Formula encoding probabilistic graphical model (jPGM):
(vA Å v~A) Ù (vB Å v~B) Ù (vE Å v~E)          Exactly one of vA and v~A is true

Ù
(tA|B,E Û vA Ù vB Ù vE)  Ù (t~A|B,E Û v~A Ù vB Ù vE) Ù …

If vA , vB , vE are true, so must  tA|B,E and vice versa
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Probabilistic Inference: Logic and Weights

V = {vA, v~A, vB, v~B, vE, v~E}
T = {tA|B,E , t~A|B,E , tA|B,~E …}

W(v~B) = 0.2, W(vB) = 0.8         Probabilities of indep events are weights of +ve literals

W(v~E) = 0.1, W(vE) = 0.9 
W(tA|B,E) = 0.3, W(t~A|B,E) = 0.7, …                     CPT entries are weights of +ve literals
W(vA) = W(v~A) = 1                       Weights of vars corresponding to dependent events
W(¬v~B) = W(¬vB) = W(¬ tA|B,E) … = 1                            Weights of -ve literals are all 1

Weight of assignment  (vA = 1, v~A = 0, tA|B,E = 1, …) = W(vA) * W(¬v~A)* W( tA|B,E)* … 
Product of weights of literals in assignment 9



Probabilistic Inference: Discrete Integration
V = {vA, v~A, vB, v~B, vE, v~E}
T = {tA|B,E , t~A|B,E , tA|B,~E …}

Formula encoding combination of events in probabilistic model 
(Alarm and Earthquake)    F =  jPGMÙ vA Ù vE

Set of satisfying assignments of F:  
RF = { (vA = 1, vE = 1, vB = 1, tA|B,E = 1, all else 0), (vA = 1, vE = 1, v~B = 1, tA|~B,E = 1, all else 0) }

Weight of satisfying assignments of F:
W(RF) = W(vA) * W(vE) * W(vB) * W(tA|B,E ) + W(vA) * W(vE) * W(v~B) * W(tA|~B,E ) 

= 1* Pr[E] * Pr[B] * Pr[A | B,E]  + 1* Pr[E] * Pr[~B] * Pr[A | ~B,E]  =  Pr[ A ∩ E] 10



Application 2: Network Reliability

Graph G = (V, E) represents a (power-grid) network 
• Nodes (V) are towns, villages, power stations
• Edges (E) are power lines
• Assume each edge e fails with prob g(e) Î [0,1] 
• Assume failure of edges statistically 

independent
• What is the probability that s and t become 

disconnected?
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Network Reliability: First Principles Modeling
p : E ® {0, 1}   … configuration of network

-- p(e) = 0 if edge e has failed, 1 otherwise

Prob of network being in configuration p

Pr[ p ]  = P g(e)   ´ P (1 - g(e))

Prob of s and t being disconnected

Pd
s,t = S Pr [p]
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e: p(e) = 0 e: p(e) = 1

s
t

p : s, t disconnected in p

May need to sum over numerous 
(> 2100) configurations



Network Reliability: Discrete Integration
• pv: Boolean variable for each v in V

• qe: Boolean variable for each e in E

• js,t (pv1, … pvn, qe1, … qem) : 
Boolean formula such that sat 
assignments  s of js,t have 1-1 
correspondence with configs p that 
disconnect s and t

- W(s) = Pr[ p ]
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Pd
s,t =    S Pr [p]                   =   S W(s)     =  W(j) 

p : s, t disconnected in p ! ⊨ #$, &



Application 3: Quantitative Information Flow
• A password-checker PC takes a secret password (SP) and a 
user input (UI) and returns “Yes” iff SP = UI [Bang et al 2016]
� Suppose passwords are 4 characters (‘0’ through ‘9’) long
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PC1 (char[] SP, char[] UI)  {
for (int i=0; i<SP.length(); i++) {
if(SP[i] != UI[i]) return “No”;

}
return “Yes”;
}

PC2 (char[] H, char[] L)  {
match = true;
for (int i=0; i<SP.length(); i++) {
if (SP[i] != UI[i]) match=false;
else match = match;

}
if match return “Yes”;
else return “No”;
}

Which of PC1 and PC2 is more likely to leak information about the 
secret key through side-channel observations?



QIF: Some Basics
• Program P receives some “high” input (H) and produces a 
“low” (L) output
� Password checking: H is SP, L is time taken to answer “Is SP = UI?”
� Side-channel observations: memory, time …

• Adversary may infer partial information about H on seeing L
� E.g. in password checking, infer: 1st char is password is not 9.

• Can we quantify “leakage of information”?
“initial uncertainty in H” = “info leaked” + “remaining uncertainty in H” 
[Smith 2009]

• Uncertainty and information leakage usually quantified using 
information theoretic measures, e.g. Shannon entropy
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QIF: First Principles Approach
• Password checking: Observed time to answer “Yes”/“No”
� Depends on # instructions executed

• E.g.  SP = 00700700
UI = N2345678, ! ≠ 0

PC1 executes for loop once
UI = 02345678

PC1 executes for loop at least twice
Observing time to “No” gives away whether 1st char is not N, ! ≠ 0

In 10 attempts, 1st char can of SP can be uniquely determined.
In max 40 attempts, SP can be cracked.
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PC1 (char[] SP, char[] UI)  {
for (int i=0; i<SP.length(); i++) {
if(SP[i] != UI[i]) return “No”;

}
return “Yes”;
}     



QIF: First Principles Approach
• Password checking: Observed time to answer “Yes”/“No”
� Depends on # instructions executed

• E.g.  SP = 00700700

UI = N2345678, ! ≠ 0
PC1 executes for loop 4 times

UI = 02345678

PC1 executes for loop 4 times

Cracking SP requires max 104 attempts !!!  (“less leakage”)
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PC2 (char[] H, char[] L)  {
match = true;
for (int i=0; i<SP.length(); i++) {
if (SP[i] != UI[i]) match=false;
else match = match;

}
if match return “Yes”;
else return “No”;
}



QIF: Partitioning Space of Secret Password
• Observable time effectively partitions values of SP [Bultan2016] 
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PC1 (char[] SP, char[] UI)  {
for (int i=0; i<SP.length(); i++) {

if(SP[i] != UI[i]) return “No”;
}
return “Yes”;

}     
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F
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SP[1] = UI[1]
SP[0] = UI[0]

t = 9

t = 11



QIF: Probabilities of Observed Times
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uniformly chosen



QIF: Probabilities of Observed Times
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QIF: Quantifying Leakage via Integration
�Exp information leakage = 
Shannon entropy of obs times =

� Information leakage in password checker example 
PC1: 0.52      (more “leaky”)
PC2: 0.0014  (less “leaky”)

Discrete integration crucial in obtaining Pr[t = k]
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Unweighted Counting Suffices in Principle

Weighted 
Model 
Counting

Roth 1996SBK 2005
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Weighted Model Counting        Unweighted Model Counting

Reduction polynomial in #bits representing weights
IJCAI 2015

Probabilistic Inference

Network Reliability

Quantified Information Flow

DMPV 2017

KML 1989, Karger 2000

BKR 2009, NMcCS 2009

KMM 2013, BAPPB 2016



Application 4: Constr Random Verification

Functional Verification
• Formal verification
�Challenges: formal requirements, scalability
�~10-15% of verification effort 

• Dynamic verification: dominant approach
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CRV: Dynamic Verification

§Design is simulated with test vectors
• Test vectors represent different verification scenarios 
§Results from simulation compared to intended results

§How do we generate test vectors?
Challenge: Exceedingly large test input space!

Can’t try all input combinations
2128 combinations for a 64-bit binary operator!!!
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CRV: Sources of Constraints 
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§ Test vectors: solutions of constraints

§ Proposed by Lichtenstein, Malka, Aharon (IAAI 94) 

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

• Designers: 
1. a +64 11 *32 b = 12
2. a <64 (b >> 4)

• Past Experience: 
1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200



CRV: Why Existing Solvers Don’t Suffice 
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a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Constraints
• Designers: 

1. a +64 11 *32 b = 12
2. a <64 (b >> 4)

• Past Experience: 
1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200

Modern SAT/SMT solvers are complex systems
Efficiency stems from the solver automatically “biasing”  search
Fails to give unbiased or user-biased distribution of  test vectors



CRV: Need To Go Beyond SAT Solvers
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Set of Constraints

Sample satisfying assignments 
uniformly at random

SAT Formula

Scalable Uniform Generation of SAT Witnesses

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Constrained Random Verification
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How Hard is it to Count/Sample? 
• Trivial if we could enumerate RF:  Almost always impractical

• Computational complexity of counting (discrete integration):

Exact unweighted counting: #P-complete [Valiant 1978]

Approximate unweighted counting:

Deterministic: Polynomial time det. Turing Machine with S2
p  oracle [Stockmeyer 1983]

Randomized: Poly-time probabilistic Turing Machine with NP oracle 

[Stockmeyer 1983; Jerrum,Valiant,Vazirani 1986]

Probably Approximately Correct (PAC) algorithm

Weighted versions of counting: Exact:  #P-complete [Roth 1996],               

Approximate: same class as unweighted version [follows from Roth 1996] 29
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How Hard is it to Count/Sample?
• Computational complexity of sampling:

Uniform sampling: Poly-time prob. Turing Machine with NP oracle  
[Bellare,Goldreich,Petrank 2000]

Almost uniform sampling: Poly-time prob. Turing Machine  with NP 
oracle [Jerrum,Valiant,Vazirani 1986, also from Bellare,Goldreich,Petrank 2000]
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Markov Chain Monte Carlo Techniques
• Rich body of theoretical work with applications to sampling and counting 

[Jerrum,Sinclair 1996]

• Some popular (and intensively studied) algorithms:
� Metropolis-Hastings [Metropolis et al 1953, Hastings 1970], Simulated Annealing 

[Kirkpatrick et al 1982]

• High-level idea:
� Start from a “state” (assignment of variables)
� Randomly choose next state using “local” biasing functions (depends on target 

distribution & algorithm parameters)
� Repeat for an appropriately large number (N) of steps
� After N steps, samples follow target distribution with high confidence

• Convergence to desired distribution guaranteed only after N (large) steps

• In practice, steps truncated early heuristically

Nullifies/weakens theoretical guarantees [Kitchen,Keuhlman 2007]
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Exact Counters
• DPLL based counters [CDP: Birnbaum,Lozinski 1999]
� DPLL branching search procedure, with partial truth assignments
� Once a branch is found satisfiable, if t out of n variables assigned, add 

2n-t to model count, backtrack to last decision point, flip decision and 
continue

� Requires data structure to check if all clauses are satisfied by partial 
assignment

Usually not implemented in modern DPLL SAT solvers
� Can output a lower bound at any time
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Exact Counters
• DPLL + component analysis [RelSat: Bayardo, Pehoushek 2000]
� Constraint graph G: 

Variables of F are vertices
An edge connects two vertices if corresponding variables appear in 
some clause of F

� Disjoint components of  G lazily identified during DPLL search
� F1, F2, … Fn : subformulas of F corresponding to components

|RF| = |RF1| * |RF2| * |RF3| * …
� Heuristic optimizations:

Solve most constrained sub-problems first
Solving sub-problems in interleaved manner
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Exact Counters
• DPLL + Caching [Bacchus et al 2003, Cachet: Sang et al 2004, 

sharpSAT: Thurley 2006]
If same sub-formula revisited multiple times during DPLL search, cache 
result and re-use it

“Signature” of the satisfiable sub-formula/component must be stored
Different forms of caching used:

Simple sub-formula caching
Component caching

Linear-space caching

Component caching can also be combined with clause learning and 
other reasoning techniques at each node of DPLL search tree

WeightedCachet:  DPLL + Caching for weighted assignments 34



Exact Counters
• Knowledge Compilation based
� Compile given formula to another form which allows counting models in time 

polynomial in representation size
� Reduced Ordered Binary Decision Diagrams (ROBDD)  [Bryant 1986]: 

Construction can blow up exponentially
� Deterministic Decomposable Negation Normal Form (d-DNNF) [c2d: 

Darwiche 2004]
Generalizes ROBDDs; can be significantly more succinct
Negation normal form with following restrictions:
Decomposability:  All AND operators have arguments with disjoint  

support
Determinizability:  All OR operators have arguments with disjoint 

solution sets
� Sentential Decision Diagrams (SDD) [Darwiche 2011]
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Exact Counters: How far do they go?
• Work reasonably well in small-medium sized problems, and 
in large problem instances with special structure

• Use them whenever possible
� #P-completeness hits back eventually – scalability suffers!
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Bounding Counters
[MBound: Gomes et al 2006; SampleCount: Gomes et al 
2007; BPCount: Kroc et al 2008]

� Provide lower and/or upper bounds of model count 
� Usually more efficient than exact counters
� No approximation guarantees on bounds

Useful only for limited applications
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Hashing-based Sampling
• Bellare, Goldreich, Petrank (BGP 2000)

• Uniform generator for SAT witnesses: 

• Polynomial time randomized algorithm with access to an NP oracle 

• Employs n-universal hash functions

• Works well for small values of n

• For high dimensions (large n), significant  computational overheads

38
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Approximate Integration and Sampling: 
Close Cousins

Almost-Uniform 
Generator

PAC 
Counter

Polynomial

reduction

• Yet, no practical algorithms that scale to large problem 
instances were derived from this work

• No scalable PAC counter or almost-uniform generator  
existed until a few years back

• The inter-reductions are practically computation intensive
•Think of O(n) calls to the counter when n = 100000 39

• Seminal paper by Jerrum, Valiant, Vazirani 1986



Prior Work
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Part III

Overview of SAT Solving

7 / 94



A Tale of Constraints

Boolean Satisfiability (SAT): Given a Boolean expression, using “and”
(∧), “or” (∨), and “not” (¬) is there a solution, i.e., an assignment of
0’s and 1’s to the variables that makes the expression equal 1?

Example: (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ ¬x3)

x1 = 1, x2 = 1, x3 = 1

Ernst Schroder, 1841-1902: “Getting a handle on the consequences of
any premises, or at least the fastest method for obtaining these
consequences, seems to me to be one of the noblest, if not the ultimate
goal of mathematics and logic.”

Cook, 1971; Levin, 1973: SAT is NP-complete
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The Tale of Triumph of SAT Solvers

Modern SAT solvers are able to deal routinely with practical
problems that involve many thousands of variables, although
such problems were regarded as hopeless just a few years ago.
(Donald Knuth, 2016)

Industrial usage of SAT Solvers: hardware verification, planning,
Genome Rearrangement, Telecom Feature Subscription, Resource
Constrained Scheduling, Noise Analysis, Games, · · ·
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Resolution

• Resolution rule: [DP60,R65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

– Complete proof system for propositional logic

– Extensively used with (CDCL) SAT solvers

• Self-subsuming resolution (with α′ ⊆ α): [E.g. SP04,EB05]

(α ∨ x) (α′ ∨ x̄)
(α)

– (α) subsumes (α ∨ x)
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Unit propagation

F = (r) ∧ (r̄ ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• What can we deduce?

• s = 1
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The DPLL algorithm

[DL60,DLL62]

Assign value
to variable

Unassigned
variables ?

Unit 
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable
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12 / 94



The DPLL algorithm

[DL60,DLL62]

Assign value
to variable

Unassigned
variables ?

Unit 
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)
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Level Dec. Unit Prop.

0

1

2

3

∅
x

ȳ
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What is a CDCL SAT solver?

• Extend DPLL SAT solver with: [DP60,DLL62]

– Clause learning & non-chronological backtracking [MSS96a,MSS99,BS97,Z97]

I Exploit UIPs [MSS96a,SSS12]

I Minimize learned clauses [SB09,VG09]

I Opportunistically delete clauses [MSS96a,MSS99,GN02]

– Search restarts [GSK98,BMS00,H07,B08]

– Lazy data structures

I Watched literals [MMZZM01]

– Conflict-guided branching

I Lightweight branching heuristics [MMZZM01]

I Phase saving [S00,PD07]

– ...
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Clause learning

(ā∨ b̄)∧(z̄∨b)∧(x̄ ∨ z̄∨a)∧(y ∨b)
Level Dec. Unit Prop.

0

1

2

3

∅
xx

y

zz a

b

⊥

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
I Decision variable & literals assigned at decision levels less than

current

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations
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(ā∨ b̄)∧(z̄∨b)∧(x̄ ∨ z̄∨a)∧(y ∨b)
Level Dec. Unit Prop.

0

1

2

3

∅
xx

y

zz a

b

⊥

• Analyze conflict [MSS96a,MSS96b,MSS96c,MSS96d,MSS99]

– Reasons: x and z
I Decision variable & literals assigned at decision levels less than

current

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

14 / 94



Clause learning
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Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅
x

y

zz aa

bb

⊥⊥

z

• Clause (x̄ ∨ z̄) is asserting at decision level 1

• Learned clauses are asserting (with exceptions) [MSS96a,MSS99]

• Backtracking differs from plain DPLL:

– Always bactrack after a conflict [ZMMM01]
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Search restarts

• Restart search after a number
of conflicts

• Increase cutoff after each
restart

– Guarantees completeness
– Different policies exist

• Learned clauses effective after
restart(s)

solutioncutoffcutoff
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Data structures basics

• Each literal l should access clauses containing l

– Why?

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses

I Worst-case size: O(n)
– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Keep track of only two literals per clause
– Watched literals are one example of lazy data structures

I But there are others
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Additional key techniques

• Lightweight branching [MMZZM01]

– Use conflict to bias variables to branch on, associate score with
each variable

– Prefer recent bias by regularly decreasing variable scores
– Recent promising ML-based branching [LGPC16a,LGPC16b]

• Clause deletion policies

– Not practical to keep all learned clauses
– Delete larger clauses [E.g. MSS96a,MSS99]

– Delete less used clauses [E.g. GN02,ES03]

• Other effective techniques:

– Phase saving [S00,PD07]

– Luby restarts [H07]

– Literal blocks distance [AS09]

– Preprocessing/inprocessing [E.g. JHB12,HJLSB15]
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Getting the maximum mileage from CDCL Solvers

Oracle vs Solver SAT Solvers 6= SAT oracle; The performance of solver
depends on the formulas

Incremental Solving It is often easier to solve F followed by G if we G
can be written as G = F ∧ H

• Clause Learning: If F → C then (F ∧ H) =⇒ C

Beyond CDCL Solver Just CDCL is not sufficient

• Need to handle CNF+XOR formulas
• XORs can be solved by Gaussian elimination
• CryptoMiniSAT: Solver designed to perform CDCL

and Gaussian Elimination in tandem
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Part IV

Hashing-based Approach for Uniform

Distribution
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Outline

1 Uniform Constrained Counting

2 Uniform Constrained Sampling
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Uniform Constrained Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ {1}
– W (F ) = |Sol(F )|

• ExactCount(F ): Compute |Sol(F )|?
– #P-complete (Valiant 1979)

• ApproxCount(F , ε, δ): Compute C such that

Pr[
|Sol(F )|

1 + ε
≤ C ≤ |Sol(F )|(1 + ε)] ≥ 1− δ
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Counting in Stockholm

How many people in Stockholm like coffee?

• Population of Stockholm = 952K

• Assign every person a unique (n =) 21 bit identifier (2n = 952K)

• Attempt #1: Pick 50 people and count how many of them like
coffee and multiple by 952K/50

– If only 5 people like coffee, it is unlikely that we will find anyone
who likes coffee in our sample of 50

• NP Query: Find a person who likes coffee

• A SAT solver can answer queries like:

– Q1: Find a person who likes coffee
– Q2: Find a person who likes coffee and is not person y

• Attempt #2: Enumerate every person who likes coffee

– Potentially 2n queries

Can we do with lesser # of SAT queries – O(n) or O(log n)?
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As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells
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Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(F ) ∩ {y | h(y) = α}

• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash

functions
Universal Hashing (Carter and Wegman 1977)
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Desired Properties

• Let h be randomly picked a family of hash function H and Z be
the number of solutions in a randomly chosen cell α

– What is E[Z ] and how much does Z deviate from E[Z ]?

• For every y ∈ Sol(F ), we define Iy =

{
1 h(y) = α(y is in cell)

0 otherwise

• Z =
∑

y∈Sol(F ) Iy

– Desired: E[Z ] = |Sol(F )|
2m and σ2[Z ] ≤ E[Z ]

– Pr
[
E[Z ]
2 ≤ Z ≤ E[Z ] · 2

]
≥ 1− 4σ2[Z ]

(E[Z ])2 ≥ 1− 4
(E[Z ])

– Having E[Z ] ≥ 4 · k provides 1− 1
k lower bound

• What kind of H would ensure the above properties

• 2-universal hash functions
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2-Universal Hashing

• Let H be family of 2-universal hash functions mapping {0, 1}n to
{0, 1}m

∀y1, y2 ∈ {0, 1}n, α1, α2 ∈ {0, 1}m, h R←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(
1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(
1

2m

)2
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2-Universal Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them; and XOR 1 with prob.

1
2

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 ⊕ 1
– Expected size of each XOR: n

2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 ⊕ 1 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · · )
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 ⊕ 1 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm
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The explanation for 2-universality

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Since every XOR is independently constructed, let us focus on the
first XOR (denoted by h1) and the first bit of the cell: α1

• We can view construction of h1 as choosing a1, a2 . . . an, b
randomly with prob 1

2 and then writing XOR as
a1 · x1 ⊕ a2 · x2 ⊕ . . . an · xn ⊕ b

• 1-universality, i.e. Pr[h1(y) = α1]

– For every choice of a1, a2, . . . an, there is a unique b such that
h1(y) = α1. Pr [h1(y) = α1] = 1

2
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– Pr[h1([1, 0, 0, . . . 0]) = 0] ≡ Pr[a1 = 0] = 1
2

– Now observe that set of all possible h1 is unchanged under rotation
and origin shift operation. Therefore, for all y , z ∈ {0, 1}n, one can
perform series of transformations such that
T (y)− T (z) = [1, 0, 0, . . . 0]

– Pr[h1(y − z) = 0] = 1
2
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Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Choose h randomly from a large family H of hash
functions
Universal Hashing (Carter and Wegman 1977)

Challenge 2 How many cells?
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Question 2: How many cells?

• A cell is small if it has less than thresh = 48 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F )|
thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh
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HashCount(F , δ)

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F )|
thresh

– Query 1: Is #(F ∧ Q1
1 ) ≤ thresh

– Query 2: Is #(F ∧ Q1
2 ∧ Q2

2 ≤ thresh
– · · ·
– Query n: Is #(F ∧ Q1

3 ∧ Q2
3 · · · ∧ Qn

n ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1

m ∧ Q2
m · · · ∧ Qm

m )× 2m

• To obtain confidence of 1− δ, repeat the above procedure O(log 1
δ )

• Will this work? Will the “m” where we stop be close to m∗?
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HashCount

Let 2m
∗

= |Sol(F )|
thresh (m∗ = log( |Sol(F )|thresh ))

Lemma (1)

For (F , ε, δ), the procedure terminates with m ∈ {m∗ − 1,m∗} with
probability ≥ 0.8

Lemma (2)

For m ∈ {m∗ − 1,m∗}, estimate obtained from a randomly picked cell
lies within a factor of 8 of |Sol(F )| with probability ≥ 0.8

Theorem (Correctness)

Pr
[
|Sol(F )|

8 ≤ HashCount(F , δ) ≤ |Sol(F )|(8)
]
≥ 1− δ

34 / 94



From Constant Factor to (1 + ε)

• G = F (X ) ∧ F (Y )

• |Sol(G )| = |Sol(F )|2

• |Sol(G)
8 ≤ C ≤ 8|Sol(G )| =⇒ |Sol(G)√

8
≤ C ≤

√
8|Sol(G )|

• Make O(1ε ) copies of F and then take 1
ε the root of the estimate to

obtain (1 + ε) factor approximation

35 / 94



From Constant Factor to (1 + ε)

• G = F (X ) ∧ F (Y )

• |Sol(G )| = |Sol(F )|2

• |Sol(G)
8 ≤ C ≤ 8|Sol(G )| =⇒ |Sol(G)√

8
≤ C ≤

√
8|Sol(G )|

• Make O(1ε ) copies of F and then take 1
ε the root of the estimate to

obtain (1 + ε) factor approximation

35 / 94



HashCount(F , ε, δ)

Theorem (Correctness)

Pr
[
|Sol(F )|
1+ε ≤ HashCount(F , ε, δ) ≤ |Sol(F )|(1 + ε)

]
≥ 1− δ

Theorem (Complexity)

HashCount(F , ε, δ) makes O(
n log n log( 1

δ
)

ε ) calls to SAT oracle
(Stockmeyer 1983)
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Scalability

HashCount fails to scale to formulas beyond few hundreds of variables

Challenges

Long XORs Expected size of each XOR added is n/2

Large Formulas HashCount is invoked on G, where |G | = 1
ε × |F |

No Incrementality The calls to SAT oracle do not allow incremental
solving

Too many calls The number of calls to SAT oracle is O(n log n)
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2-Universal Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2
– Expected size of each XOR: n

2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · · )
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• The performance of SAT solver degrades with increase in size of
XORs (SAT solver 6= SAT oracle)
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Improved Universal Hash Functions

• Not all variables are required to specify solution space of F

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(F ), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?
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Independent Support

• I ⊆ X is an independent support:
∀σ1, σ2 ∈ Sol(()ϕ), σ1 and σ2 agree on I then σ1 = σ2

• F (x1, · · · xn) ∧ F (y1, · · · yn) ∧∧i |xi∈I (xi = yi ) =⇒ ∧
i (xi = yi )

where F (y1, · · · yn) := F (x1 � y1, · · · xn � yn)

• QF ,I := F (x1, · · · xn) ∧ F (y1, · · · yn) ∧∧i |xi∈I (xi = yi ) ∧ ¬(
∧

i (xi =
yi ))

• Lemma: QF ,I is UNSAT if and only if I is independent support
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Independent Support

H1 := {x1 = y1},H2 := {x2 = y2}, · · ·Hn := {xn = yn}
Ω = F (x1, · · · xn) ∧ F (y1, · · · yn) ∧ ¬(

∧
i

(xi = yi ))

Lemma

I = {xi} is independent support iif H I ∧ Ω is UNSAT where
H I = {Hi |xi ∈ I}
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Minimal Unsatisfiable Subset

Given Ψ = H1 ∧ H2 · · · ∧ Hm ∧ Ω

Unsatisfiable Subset Find subset {Hi1,Hi2, · · ·Hik} of {H1,H2, · · ·Hm}
such that Hi1 ∧ Hi2 ∧ Hik ∧ Ω is UNSAT

Minimal Unsatisfiable Subset Find minimal subset {Hi1,Hi2, · · ·Hik}
of {H1,H2, · · ·Hm} such that Hi1 ∧ Hi2 ∧ Hik ∧ Ω is
UNSAT
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Minimal Independent Support

H1 := {x1 = y1},H2 := {x2 = y2}, · · ·Hn := {xn = yn}
Ω = F (x1, · · · xn) ∧ F (y1, · · · yn) ∧ ¬(

∧
i

(xi = yi ))

Lemma

I = {xi} is Minimal Independent Support iif H I is Minimal Unsatisfiable
Subset where H I = {Hi |xi ∈ I}

MIS MUS

Two orders of magnitude improvement in runtime
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Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Independent Support-based 2-Universal Hash
Functions

Challenge 2 How many cells?

44 / 94



Desired Properties

• Let h be randomly picked a family of hash function H and Z be
the number of solutions in a randomly chosen cell α

– What is E[Z ] and how much does Z deviate from E[Z ]?

• For every y ∈ Sol(F ), we define Iy =

{
1 h(y) = α(y is in cell)

0 otherwise

• Z =
∑

y∈Sol(F ) Iy

– Desired: E[Z ] = |Sol(F )|
2m and σ2[Z ] ≤ E[Z ]

– Pr
[
E[Z ]
1+ε ≤ Z ≤ E[Z ](1 + ε)

]
≥ 1− σ2[Z ]

( ε
1+ε )

2(E[Z ])2 ≥ 1− 1
( ε
1+ε )

2(E[Z ])

– Having E[Z ] ≥ k( 1+ε
ε )2 provides 1− 1

k lower bound

• A cell is small if it has less than thresh = 5(1+εε )2 solutions
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Question 2: How many cells?

• A cell is small if it has less than thresh = 5(1 + 1
ε )2 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F )|
thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh
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ApproxMC(F , ε, δ)

# of sols
≤ thresh?
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ApproxMC(F , ε, δ)

# of sols
≤ thresh?

# of sols
≤ thresh?

# of sols
≤ thresh?

Estimate =
# of sols ×
# of cells # of sols
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· · ·

No No

No
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ApproxMC(F , ε, δ)

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(F )|
thresh

– Query 1: Is #(F ∧ Q1) ≤ thresh
– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh
– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi )

– If Query i returns YES, then Query i + 1 must return YES

– Logarithmic search (# of SAT calls: O(log n))
– Incremental search

• Will this work? Will the “m” where we stop be close to m∗?
– Challenge Query i and Query j are not independent
– Independence crucial to analysis (Stockmeyer 1983, · · · )
– Key Insight: The probability of making a bad choice of Qi is very

small for i � m∗
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Taming the Curse of Dependence

Let 2m
∗

= |Sol(F )|
thresh (m∗ = log( |Sol(F )|thresh ))

Lemma (1)

ApproxMC (F , ε, δ) terminates with m ∈ {m∗ − 1,m∗} with probability
≥ 0.8

Lemma (2)

For m ∈ {m∗ − 1,m∗}, estimate obtained from a randomly picked cell
lies within a tolerance of ε of |Sol(F )| with probability ≥ 0.8
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ApproxMC(F , ε, δ)

Theorem (Correctness)

Pr
[
|Sol(F )|
1+ε ≤ ApproxMC(F , ε, δ) ≤ |Sol(F )|(1 + ε)

]
≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
log n log( 1

δ
)

ε2
) calls to SAT oracle.

• Prior work required O(
n log n log( 1

δ
)

ε ) calls to SAT oracle (Stockmeyer

1983)
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Summary of our Journey

HashCount fails to scale to formulas beyond few hundreds of variables

Challenges

Long XORs Expected size of each XOR added is n/2

Independent support-based XORs

Large Formulas HashCount is invoked on G, where |G | = 1
ε × |F |

Constant pivot to ε dependent pivot

No Incrementality The calls to SAT oracle do not allow incremental
solving

Too many calls The number of calls to SAT oracle is O(n log n)

Dependent XORs with new proof technique. Killed two
birds with one stone!
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Reliability of Critical Infrastructure Networks

Figure: Plantersville,
SC

• G = (V ,E );
source node: s

• Compute Pr[ t is
disconnected]?
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Highly Accurate Estimates

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Terminal

E
rr
or

Observed Geometric mean: 0.03
These results are good problem.

53 / 94



Highly Accurate Estimates

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Terminal

E
rr
or

Allowed

Observed Geometric mean: 0.03

These results are good problem.

53 / 94



Highly Accurate Estimates

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Terminal

E
rr
or

Allowed
ApproxMC

Observed Geometric mean: 0.03
These results are good

problem.

53 / 94



Highly Accurate Estimates

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Terminal

E
rr
or

Allowed
ApproxMC

Observed Geometric mean: 0.03
These results are good problem.

53 / 94



Outline

1 Uniform Constrained Counting

2 Uniform Constrained Sampling
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Constrained Sampling

• Given:

– Set of Constraints F over variables X1,X2, · · ·Xn

• Uniform Sampler

∀y ∈ Sol(F ),Pr[y is output] =
1

|Sol(F )|

• Almost-Uniform Sampler

∀y ∈ Sol(F ),
1

(1 + ε)|Sol(F )| ≤ Pr[y is output] ≤ (1 + ε)

|Sol(F )|
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Close Cousins: Counting and Sampling

• Approximate counting and almost-uniform sampling are
inter-reducible (Jerrum, Valiant and Vazirani, 1986)

• Is the reduction efficient?

– Almost-uniform sampler (JVV) require linear number of
approximate counting calls
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Key Ideas

• Check if a randomly picked cell is small

– If yes, pick a solution randomly from randomly picked cell

Challenge: How many cells?
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How many cells?

• Desired Number of cells: 2m
∗

= |Sol(F )|
thresh ( m∗ = log |Sol(F )|thresh )

– ApproxMC(F , ε, δ) returns C such that

Pr
[
|Sol(F )|
1+ε ≤ C ≤ |Sol(F )|(1 + ε)

]
≥ 1− δ

– m̃ = log C
thresh

– Check for m = m̃ − 1, m̃, m̃ + 1 if a randomly chosen cell is small
– Not just a practical hack required non-trivial proof
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Theoretical Guarantees

Theorem (Almost-Uniformity)

∀y ∈ Sol(F ), 1
(1+ε)|Sol(F )| ≤ Pr[y is output] ≤ 1+ε

|Sol(F )|

Theorem (Query)

For a formula F over n variables UniGen makes one call to
approximate counter

• Prior work required n calls to approximate counter (Jerrum, Valiant

and Vazirani, 1986)

Universality

• JVV employs 2-universal hash functions

• UniGen employs 3-universal hash functions

Random XORs are 3-universal
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Three Orders of Improvement

Relative Runtime

SAT Solver 1

Desired Uniform Generator 10

XORSample (2012 state of the art) 50000

UniGen (2015) 21

Experiments over 200+ benchmarks

Closer to technical transfer
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Quiz Time: Uniformity

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4× 106; Total Solutions : 16384
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Statistically Indistinguishable

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4× 106; Total Solutions : 16384
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Outline

Part 1: Applications
Part 2: Prior Work
Part 3: Overview of SAT Solving
Part 4: Hashing-based Approach for Uniform Distribution
Part 5: Beyond Propositional
Part 6: Challenges
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Part V

Beyond Propositional
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Why go beyond propositional?

• Lifted inference: first order (FO) logic + probabilistic reasoning
(Kersting2012, Poole2003)

– FO variables of non-binary type
– Reasoning about FO constraints directly key to scalability
– Inference reduces to counting models of these constraints

• Probabilistic program analysis

– Value problem: Pr[Accepting runs]/Pr[Terminating runs]
– Program variables of enumerated, integer or float type
– Encoded as model-counting of integer+rational arithmetic formulas

(Chistikov2015)

• Inference in continuous & hybrid Markov networks

– Mix of discrete and continuous random variables
– Encoded as model counting in theory of rationals + Booleans
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How do we go beyond propositional?

• For finite domains, binary encoding + propositional counting often
used

+ Leverage advances in propositional model counting
- Fails to exploit domain-specific propeties (e.g. linear algebraic

identities)
- Scalability a concern

I Count of variables and constraints increases with domain size

- Infinite domains out of reach

• Can we do better?
– Yes in some cases
– Not yet in general
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Overview: Three different approaches

• Domain-specific universal hash functions

– Not always easy to design
– Bit-vector model counting

• Domain-specific decomposition + prop model counting

– Estimating model volume in bounded integer+rational linear
arithmetic (Chistikov2015)

• Weighted model integration

– Generalizes weighted model counting
– Bootstraps on advances in SMT solvers & abstraction techniques

(Belle2015, Morettin2017)
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Bit-vector Model Counting

• Given constraint ϕ(x1, . . . xn), where

– x1, . . . xn are bit-vector variables

I Simplifying assumption: all k-bits wide
I Domain of xi = {0, 1}k

– Functions and predicates from theory of bit-vectors

I extract, concat, leftshift, +[k], ×k...

• Example:

– ϕ(x1, x2) ≡ (x +[3] y = 000) ∨ (extract(x , 1, 1) = 0)
– x1, x2: all 3-bits wide
– How many satisfying assignments does ϕ have?
– Sol(ϕ) = {(x1 = 000, x2 = 000), (x1 = 001, x2 = 111)}
– |Sol(ϕ)| = 2
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Bit-vector Model Counting

• Key idea: New 2-universal hash function hBV for bit-vectors

• Recall from propositional case

– Prop variables {x1, . . . xn}
– Example: h(x1, ...) = x1 ⊕ x4 ⊕ . . .⊕ 1
– Alternatively, h(x1, ...) = (1 · x1 + 0 · x2 + 0 · x3 + 1 · x4 + . . .+ 1)

mod 2
– Family of hash functions to choose from
H = {(a1 · x1 + . . .+ an · xn + b) mod 2 | a1, . . . an, b randomly
chosen from Z2 = {0, 1}}

• Generalizing to bit-vectors

– Bit-vector variables {x1, . . . xn}
– Use a suitable prime p instead of 2 for modulus

I Smallest p such that 2k ≤ p < 2nk

– First-cut HBV (linear modular hash functions):
{(a1 · x1 + . . .+ an · xn . . . b) mod p | ai , . . . an, b randomly chosen
from Zp = {0, 1, . . . p − 1}}

69 / 94



Bit-vector Model Counting

• Key idea: New 2-universal hash function hBV for bit-vectors

• Recall from propositional case

– Prop variables {x1, . . . xn}
– Example: h(x1, ...) = x1 ⊕ x4 ⊕ . . .⊕ 1

– Alternatively, h(x1, ...) = (1 · x1 + 0 · x2 + 0 · x3 + 1 · x4 + . . .+ 1)
mod 2

– Family of hash functions to choose from
H = {(a1 · x1 + . . .+ an · xn + b) mod 2 | a1, . . . an, b randomly
chosen from Z2 = {0, 1}}

• Generalizing to bit-vectors

– Bit-vector variables {x1, . . . xn}
– Use a suitable prime p instead of 2 for modulus

I Smallest p such that 2k ≤ p < 2nk

– First-cut HBV (linear modular hash functions):
{(a1 · x1 + . . .+ an · xn . . . b) mod p | ai , . . . an, b randomly chosen
from Zp = {0, 1, . . . p − 1}}

69 / 94



Bit-vector Model Counting

• Key idea: New 2-universal hash function hBV for bit-vectors

• Recall from propositional case

– Prop variables {x1, . . . xn}
– Example: h(x1, ...) = x1 ⊕ x4 ⊕ . . .⊕ 1
– Alternatively, h(x1, ...) = (1 · x1 + 0 · x2 + 0 · x3 + 1 · x4 + . . .+ 1)

mod 2

– Family of hash functions to choose from
H = {(a1 · x1 + . . .+ an · xn + b) mod 2 | a1, . . . an, b randomly
chosen from Z2 = {0, 1}}

• Generalizing to bit-vectors

– Bit-vector variables {x1, . . . xn}
– Use a suitable prime p instead of 2 for modulus

I Smallest p such that 2k ≤ p < 2nk

– First-cut HBV (linear modular hash functions):
{(a1 · x1 + . . .+ an · xn . . . b) mod p | ai , . . . an, b randomly chosen
from Zp = {0, 1, . . . p − 1}}

69 / 94



Bit-vector Model Counting

• Key idea: New 2-universal hash function hBV for bit-vectors

• Recall from propositional case

– Prop variables {x1, . . . xn}
– Example: h(x1, ...) = x1 ⊕ x4 ⊕ . . .⊕ 1
– Alternatively, h(x1, ...) = (1 · x1 + 0 · x2 + 0 · x3 + 1 · x4 + . . .+ 1)

mod 2
– Family of hash functions to choose from
H = {(a1 · x1 + . . .+ an · xn + b) mod 2 | a1, . . . an, b randomly
chosen from Z2 = {0, 1}}

• Generalizing to bit-vectors

– Bit-vector variables {x1, . . . xn}
– Use a suitable prime p instead of 2 for modulus

I Smallest p such that 2k ≤ p < 2nk

– First-cut HBV (linear modular hash functions):
{(a1 · x1 + . . .+ an · xn . . . b) mod p | ai , . . . an, b randomly chosen
from Zp = {0, 1, . . . p − 1}}

69 / 94



Bit-vector Model Counting

• Key idea: New 2-universal hash function hBV for bit-vectors

• Recall from propositional case

– Prop variables {x1, . . . xn}
– Example: h(x1, ...) = x1 ⊕ x4 ⊕ . . .⊕ 1
– Alternatively, h(x1, ...) = (1 · x1 + 0 · x2 + 0 · x3 + 1 · x4 + . . .+ 1)

mod 2
– Family of hash functions to choose from
H = {(a1 · x1 + . . .+ an · xn + b) mod 2 | a1, . . . an, b randomly
chosen from Z2 = {0, 1}}

• Generalizing to bit-vectors

– Bit-vector variables {x1, . . . xn}

– Use a suitable prime p instead of 2 for modulus

I Smallest p such that 2k ≤ p < 2nk

– First-cut HBV (linear modular hash functions):
{(a1 · x1 + . . .+ an · xn . . . b) mod p | ai , . . . an, b randomly chosen
from Zp = {0, 1, . . . p − 1}}

69 / 94



Bit-vector Model Counting

• Key idea: New 2-universal hash function hBV for bit-vectors

• Recall from propositional case

– Prop variables {x1, . . . xn}
– Example: h(x1, ...) = x1 ⊕ x4 ⊕ . . .⊕ 1
– Alternatively, h(x1, ...) = (1 · x1 + 0 · x2 + 0 · x3 + 1 · x4 + . . .+ 1)

mod 2
– Family of hash functions to choose from
H = {(a1 · x1 + . . .+ an · xn + b) mod 2 | a1, . . . an, b randomly
chosen from Z2 = {0, 1}}

• Generalizing to bit-vectors

– Bit-vector variables {x1, . . . xn}
– Use a suitable prime p instead of 2 for modulus

I Smallest p such that 2k ≤ p < 2nk

– First-cut HBV (linear modular hash functions):
{(a1 · x1 + . . .+ an · xn . . . b) mod p | ai , . . . an, b randomly chosen
from Zp = {0, 1, . . . p − 1}}

69 / 94



Bit-vector Model Counting

• Key idea: New 2-universal hash function hBV for bit-vectors

• Recall from propositional case

– Prop variables {x1, . . . xn}
– Example: h(x1, ...) = x1 ⊕ x4 ⊕ . . .⊕ 1
– Alternatively, h(x1, ...) = (1 · x1 + 0 · x2 + 0 · x3 + 1 · x4 + . . .+ 1)

mod 2
– Family of hash functions to choose from
H = {(a1 · x1 + . . .+ an · xn + b) mod 2 | a1, . . . an, b randomly
chosen from Z2 = {0, 1}}

• Generalizing to bit-vectors

– Bit-vector variables {x1, . . . xn}
– Use a suitable prime p instead of 2 for modulus

I Smallest p such that 2k ≤ p < 2nk

– First-cut HBV (linear modular hash functions):
{(a1 · x1 + . . .+ an · xn . . . b) mod p | ai , . . . an, b randomly chosen
from Zp = {0, 1, . . . p − 1}}

69 / 94



Closer look at HBV

ϕ(x1, . . . xn): Bit-vector formula

• Randomly choose h(x1, ...) : {0, 1}nk → Zp from HBV

– Partitions {0, 1}nk into p cells
– Expected # solutions per cell = |Sol(ϕ)|/p

• What if p is too small compared to |Sol(ϕ)|?
– Recall we’d like each cell to have “few” solutions of ϕ
– Choose h1, h2, . . . hc independently at random from HBV

– Choose α1, . . . αc independently at random from Zp

– Expected # models of ϕBV (...) ∧ (h1(...) = α1) ∧ · · · (hc(...) = αc)
is |Sol(ϕ)|/pc

• Works if pc is within a small factor of |Sol(ϕ)|.
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Closer look at HBV

• What if Sol(ϕ)/pc is < 1, but Sol(ϕBV )/pc−1 is too large?
– Can happen for large p
– Can we reduce p arbitrarily?

Need 2k ≤ p < 2nk

• Solution: Slice each x1, . . . xn into two equal slices
– Effectively halves k and doubles n
– Allows smaller prime q (< p) for modulus in additional hi ’s
– Expected # models in each cell is now Sol(ϕ)/(pc.q)

• Recursively apply this technique until cells are “small” enough

Illustration with non-prime modulus

h1 with k

h2 with k

h3 with k/2

h4 with k/2
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Closer look at HBV

• Let M = pc11 · pc22 · · · pcrr , where
– p1, . . . pr are primes such that

I 2k−i ≤ pi < 2nk for all i ∈ {1, . . . r}
– 1 < 2nk/M

• Final version of HBV

Every hash function in HBV is a tuple of c1 + c2 + . . . cr linear
modular hash functions

– c1 hash functions with modulus p1
– c2 hash functions with modulus p2
– ...
– cr hash functions with modulus pr

• Every hash function hBV ∈ HBV maps
{0, 1}nk to (Zp1)c1 × (Zp1)c1 × · · · × (Zpr )

cr
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Properties of HBV

Theorem: HBV is 2-universal

For every α1, α2 ∈ (Zp1)c1 × · · · × (Zpr )
cr , every X1,X2 ∈ {0, 1}nk , and

every hash function h chosen randomly from HBV ,
Pr[h(X1) = α1 ∧ h(X2) = α2] = Pr[h(X1) = α1] · Pr[h(X2) = α2] =
(1/p1)2c1 · (1/p2)2c2 · · · (1/pr )2cr .

HBV can be used for bit-vector model counting
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Putting it all together: SMTApproxMC

Illustration with non-prime modulus

(h1 with p1)

(h1, h2 with p1)

(h1, h2 with p1; h3 with p2)

(h1, h2 with p1; h3, h4 with p2)
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Putting it all together: SMTApproxMC

Illustration with non-prime modulus

(h1 with p1)

(h1, h2 with p1)

(h1, h2 with p1; h3 with p2)

(h1, h2 with p1; h3, h4 with p2)

• Given bit-vector constraint ϕ, ε (> 0), and δ ∈ (0, 1]

(1) Determine pivot from ε, repCount from δ and initial HBV

(2) Randomly choose h ∈ HBV and α ∈ range(h)
(3) Let κ = |Sol(ϕ(X) ∧ (h(X) = α))|
(4) If κ 6∈ (0, pivot] then

I Update HBV with next linear modular hash function
I Go to (2)

(5) Else, AddToListOfSolns(κ) and repeat (2)-(4) repCount times
(6) Return median of ListOfSolns
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Need for SMT solver

Step (3): Count # solutions of ϕ(X) ∧ (h(X) = α)

• Solution: Use Satisfiability Modulo Theories (SMT) solver for
theory of bit-vectors

• Uses axioms and inference rules from first-order theory of
bit-vectors as much as possible

– x[l ] + 0[l ] = x[l ]
– concat(extract(x[l], 0,m), extract(x[l],m + 1, l− 1) = x[l ], if

0 ≤ m < l − 1
– leftshift(x[l ], t) = x/2t

– ... plenty of well-studied rules

• Bit-blast only if no rule applies
• Desirable: efficient reasoning about ϕ + linear constraints modulo

primes
– Linear constraints modulo primes admit Gaussian elimination
– Need to integrate Gaussian elimination within existing SMT solvers

I Yet to be fully solved
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Theoretical guarantees and Performance

Theorem

• Pr[ |Sol(ϕ)|1+ε ≤ SMTApproxMC(ϕ, ε, δ) ≤ (1 + ε) · |Sol(ϕ)|] ≥ 1− δ
• SMTApproxMC(ϕ, ε, δ) runs in time polynomial in |ϕ|, 1/ε and

log(1/δ).
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Domain-specific decomposition + Propositional MC

Key idea:

• Decompose domain into finite union of hyper-rectangles

• Ensure that only a “small” number (ν) of hyper-rectangles are
“cut” by the solution space

– For most hyper-rectangles, either all points are solutions, or all
points are non-solutions

• Let M = number of hyper-rectangles with at least one solution

• Let V = uniform measure weight of each hyper-rectaangle

• Then (M − ν)× V ≤ Required Count ≤ M × V
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Counting in Bounded Integer+Rational Arithmetic
[Chistikov et al 2015]

• Constraints of the form ϕ(x) = ∃u,Φ(x , u)

– Allows top-level existential quantifiers (projection)

• k free variables, each takes values in interval [0,M]

• Choose a “large” integer s and divide [0,M]k into sk sub-cubes of
side ρ = M/s

• y1, . . . yk : new bounded integer variables, each with domain
{0, 1, . . . s − 1}

– Each valuation of y1, . . . yk identifies a unique small cube
C (y1, . . . yk)

• Define ψ(y1, . . . yk) as follows:

– ψ(y1, . . . yk) ≡ ∃x
(
ϕ(x)

∧k
i=1 (yi .ρ ≤ xi ≤ (yj + 1) · ρ)

)
– ψ(y1, . . . yk) = true iff at least one point in C (y1, . . . yk) satisfies
ϕ(x).

• Assign uniform measure ρ = M/s to each yi ∈ {0, . . . s − 1}
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Counting in Bounded Integer+Rational Arithmetic
[Chistikov et al 2015]

• If at most J small cubes are “cut” by solution space, then
(|Sol(ψ)| − J) · δk ≤ ModelCount ≤ |Sol(ψ)| · δk

• Using a result from Dyer & Frieze 1998, Chistikov et al showed

– If s ≥ d2m+2k .k2.Mk/(ε/2)e, then
J ≤ (1/δk) · (ε/2), for ε > 0

• Finally, |Sol(ψ)(y1, . . . yk)| is computed by

– Propositional encoding of finite domain
– Propositional universal hashing
– Invoking SMT solver (theory of integer + rational linear arithmetic)

to determine if ψ(y1, . . . yk) is true for a given y1, . . . yk .
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Weighted model integration (Belle2015, Belle2017)

• Generalizes weighted model counting

• Formula ϕ(x,A), where

– x = (x1, . . . xn): real valued variables
– A = (A1, . . .Am): atomic propositions

• Weight function w : Rn × {0, 1}k → R
• WMI (ϕ,w) = Σσ∈{0,1}m

∫
ϕ(x,σ) w(x, σ)dx.

Example (Belle2017):

• ϕ(x ,A) ≡↔ (x ≥ 0)) ∧ (x ≥ −1) ∧ (x ≤ 1)

• w(x ,A) = if (A) then x else − x

• WMI (ϕ,w) =
∫
[−1,0)(−x)dx +

∫
[0,1](x)dx = 1

2 + 1
2 = 1
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Constrained Counting

• Given

– Boolean variables X1,X2, · · ·Xn

– Formula F over X1,X2, · · ·Xn

– Weight Function W : {0, 1}n 7→ [0, 1]

• ExactWeightedCount(F ): Compute W (F )?

– #P-complete (Valiant 1979)

• ApproxWeightedCount(F ,W , ε, δ): Compute C such that

Pr[
W (F )

1 + ε
≤ C ≤W (F )(1 + ε)] ≥ 1− δ
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From Weighted to Uniform Counting

Boolean Formula F and weight
function W : {0, 1}n → Q≥0

Boolean Formula F ′

W (F ) = c(W )× |Sol(F ′)|
• Key Idea: Encode weight function as a set of constraints

• Caveat: |F ′| = O(|F |+ |W |)
• Increase in the number of variables =⇒ Increase in the size of

XORs

• |Sol(F ′)| > |Sol(F )|: Increase in number of solutions =⇒
Increase in the number of XORs

Challenge Design better reductions that are amenable to hashing-based
approximate techniques.
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Summing up Mass of Dots

Pick a random cell

Estimate = Mass in a cell × Number of cells

86 / 94



Summing up Mass of Dots

Pick a random cell

Estimate = Mass in a cell × Number of cells

86 / 94



Summing up Mass of Dots

Pick a random cell

Estimate = Mass in a cell × Number of cells

86 / 94



Hashing-based Approach

How does equal number of solutions translate to equal weight?
It does not!

• Let wmax : maximum weight of a solution;
wmin: minimum weight of a solution

• Two cells with equal number of solutions, say t, can have weights
wmax × t and wmin × t.

• tilt (F) = wmax
wmin

• The number of SAT calls increase by a factor of tilt

Divide into multiple problems with each of the problems with small tilt

• Generate log(tilt) formulas: F i = F
∧ wmax

2i
≤ w(σ) ≤ wmax

2i+1

• tilt (F i ) = 2

• Use Pseudo Boolean (PB) constraints to encode
wmax

2i
≤ w(σ) ≤ wmax

2i+1 when weight function is implicitly described

No Good CNF+PB+XOR solver
Challenge Design solvers that can handle CNF+PB+XOR

87 / 94



Hashing-based Approach

How does equal number of solutions translate to equal weight?
It does not!

• Let wmax : maximum weight of a solution;
wmin: minimum weight of a solution

• Two cells with equal number of solutions, say t, can have weights
wmax × t and wmin × t.

• tilt (F) = wmax
wmin

• The number of SAT calls increase by a factor of tilt

Divide into multiple problems with each of the problems with small tilt

• Generate log(tilt) formulas: F i = F
∧ wmax

2i
≤ w(σ) ≤ wmax

2i+1

• tilt (F i ) = 2

• Use Pseudo Boolean (PB) constraints to encode
wmax

2i
≤ w(σ) ≤ wmax

2i+1 when weight function is implicitly described

No Good CNF+PB+XOR solver
Challenge Design solvers that can handle CNF+PB+XOR

87 / 94



Hashing-based Approach

How does equal number of solutions translate to equal weight?
It does not!

• Let wmax : maximum weight of a solution;
wmin: minimum weight of a solution

• Two cells with equal number of solutions, say t, can have weights
wmax × t and wmin × t.

• tilt (F) = wmax
wmin

• The number of SAT calls increase by a factor of tilt

Divide into multiple problems with each of the problems with small tilt

• Generate log(tilt) formulas: F i = F
∧ wmax

2i
≤ w(σ) ≤ wmax

2i+1

• tilt (F i ) = 2

• Use Pseudo Boolean (PB) constraints to encode
wmax

2i
≤ w(σ) ≤ wmax

2i+1 when weight function is implicitly described

No Good CNF+PB+XOR solver
Challenge Design solvers that can handle CNF+PB+XOR

87 / 94



Hashing-based Approach

How does equal number of solutions translate to equal weight?
It does not!

• Let wmax : maximum weight of a solution;
wmin: minimum weight of a solution

• Two cells with equal number of solutions, say t, can have weights
wmax × t and wmin × t.

• tilt (F) = wmax
wmin

• The number of SAT calls increase by a factor of tilt

Divide into multiple problems with each of the problems with small tilt

• Generate log(tilt) formulas: F i = F
∧ wmax

2i
≤ w(σ) ≤ wmax

2i+1

• tilt (F i ) = 2

• Use Pseudo Boolean (PB) constraints to encode
wmax

2i
≤ w(σ) ≤ wmax

2i+1 when weight function is implicitly described

No Good CNF+PB+XOR solver
Challenge Design solvers that can handle CNF+PB+XOR

87 / 94



Hashing-based Approach

How does equal number of solutions translate to equal weight?
It does not!

• Let wmax : maximum weight of a solution;
wmin: minimum weight of a solution

• Two cells with equal number of solutions, say t, can have weights
wmax × t and wmin × t.

• tilt (F) = wmax
wmin

• The number of SAT calls increase by a factor of tilt

Divide into multiple problems with each of the problems with small tilt

• Generate log(tilt) formulas: F i = F
∧ wmax

2i
≤ w(σ) ≤ wmax

2i+1

• tilt (F i ) = 2

• Use Pseudo Boolean (PB) constraints to encode
wmax

2i
≤ w(σ) ≤ wmax

2i+1 when weight function is implicitly described

No Good CNF+PB+XOR solver
Challenge Design solvers that can handle CNF+PB+XOR

87 / 94



Hashing-based Approach

How does equal number of solutions translate to equal weight?
It does not!

• Let wmax : maximum weight of a solution;
wmin: minimum weight of a solution

• Two cells with equal number of solutions, say t, can have weights
wmax × t and wmin × t.

• tilt (F) = wmax
wmin

• The number of SAT calls increase by a factor of tilt

Divide into multiple problems with each of the problems with small tilt

• Generate log(tilt) formulas: F i = F
∧ wmax

2i
≤ w(σ) ≤ wmax

2i+1

• tilt (F i ) = 2

• Use Pseudo Boolean (PB) constraints to encode
wmax

2i
≤ w(σ) ≤ wmax

2i+1 when weight function is implicitly described

No Good CNF+PB+XOR solver
Challenge Design solvers that can handle CNF+PB+XOR

87 / 94



Hashing-based Approach

How does equal number of solutions translate to equal weight?
It does not!

• Let wmax : maximum weight of a solution;
wmin: minimum weight of a solution

• Two cells with equal number of solutions, say t, can have weights
wmax × t and wmin × t.

• tilt (F) = wmax
wmin

• The number of SAT calls increase by a factor of tilt

Divide into multiple problems with each of the problems with small tilt

• Generate log(tilt) formulas: F i = F
∧ wmax

2i
≤ w(σ) ≤ wmax

2i+1

• tilt (F i ) = 2

• Use Pseudo Boolean (PB) constraints to encode
wmax

2i
≤ w(σ) ≤ wmax

2i+1 when weight function is implicitly described

No Good CNF+PB+XOR solver
Challenge Design solvers that can handle CNF+PB+XOR

87 / 94



Hashing-based Approach

How does equal number of solutions translate to equal weight?
It does not!

• Let wmax : maximum weight of a solution;
wmin: minimum weight of a solution

• Two cells with equal number of solutions, say t, can have weights
wmax × t and wmin × t.

• tilt (F) = wmax
wmin

• The number of SAT calls increase by a factor of tilt

Divide into multiple problems with each of the problems with small tilt

• Generate log(tilt) formulas: F i = F
∧ wmax

2i
≤ w(σ) ≤ wmax

2i+1

• tilt (F i ) = 2

• Use Pseudo Boolean (PB) constraints to encode
wmax

2i
≤ w(σ) ≤ wmax

2i+1 when weight function is implicitly described

No Good CNF+PB+XOR solver

Challenge Design solvers that can handle CNF+PB+XOR

87 / 94



Hashing-based Approach

How does equal number of solutions translate to equal weight?
It does not!

• Let wmax : maximum weight of a solution;
wmin: minimum weight of a solution

• Two cells with equal number of solutions, say t, can have weights
wmax × t and wmin × t.

• tilt (F) = wmax
wmin

• The number of SAT calls increase by a factor of tilt

Divide into multiple problems with each of the problems with small tilt

• Generate log(tilt) formulas: F i = F
∧ wmax

2i
≤ w(σ) ≤ wmax

2i+1

• tilt (F i ) = 2

• Use Pseudo Boolean (PB) constraints to encode
wmax

2i
≤ w(σ) ≤ wmax

2i+1 when weight function is implicitly described

No Good CNF+PB+XOR solver
Challenge Design solvers that can handle CNF+PB+XOR

87 / 94



WISH: Weighted Counting via MaxSAT

• Let all the solutions be arranged in decreasing order of their
weights: w1,w2, · · ·w|Sol(F )|

• W (F ) =
∑

i∈[|Sol(F )|]
wi

• Viewing this summation as discrete Riemann sums, we observe the
following

W (F )

2
≤

∑
i∈log |Sol(F )|

wi × 2i+1 ≤ 2×W (F )

• Note that we only need to identify log |Sol(F )| many weights.

• Solution: Use hashing to find these weights
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WISH: Weighted Counting via MaxSAT

W (F )

2
≤

∑
i∈log |Sol(F )|

wi × 2i+1 ≤ 2×W (F )

How do we get wi?

• wi : ith largest weighted solution

• w1 = MaxWeight(F ,W )

• E[MaxWeight(F ∧ One Random XOR)] =

w2

• E[MaxWeight(F ∧ Two Random XOR)] = w3

• E[MaxWeight(F ∧ i Random XOR)] = wi+1

(Ermon et al 2014, 2016, Achlioptas et al 2017, 2018)

No Good solvers to handle MaxSAT+XOR
Challenge: Design MaxSAT solvers that can handle XORs
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2-Universal Hash Functions

• I: Independent Support
• Variables: X1,X2, · · ·XI
• To construct h : {0, 1}I → {0, 1}m, choose m random XORs
• Pick every Xi with prob. 1

2 and XOR them; XOR 0 or 1 with prob.
1
2

– X1 ⊕ X3 ⊕ X6 · · · ⊕ XI−2 ⊕ 1
– Expected size of each XOR: I2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ XI−2 ⊕ 1 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ XI−1 = 1 (Q2)

· · · (· · · )
X1 ⊕ X2 ⊕ X5 · · · ⊕ XI−2 ⊕ 1 = 1 (Qm)

• h(X ) = AX ⊕ b
– A: (0, 1) matrix with every entry is 1 with prob. 1

2
– b: (0, 1) vector with every entry is 1 with prob. 1

2

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• Can we choose XORs with p < 1
2 ?
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Low Density Parity Constraints

h : {0, 1}I → {0, 1}m : h(X ) = AX ⊕ b, where entries in b are chosen
with p = 1

2

• Let entries in A be chosen with p < 1
2

• µ = |Sol(F )|
2m

• σ2 =
∑

y ,z∈Sol(F )
A(y − z) = 0

• Based on analysis from Mackay et al, one can derive σ2 ≤ Boostµ2

• Remember for p = 1
2 , we had σ2 ≤ µ (we have µ > 1)

(Ermon et al 2014, 2016, Achlioptas et al 2017, 2018)
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Low Density Parity Constraints

• Chebyshev Inequality: Pr [||X − µ| ≥ ε
(1+ε)µ] ≤ σ2

varepsilon2

(1+ε)2
µ2

• When σ2 ≤ µ
– For ε < 1, we choose appropriate m such µ× varepsilon2

(1+ε)2 > c

• For σ2 ≤ Boost · µ2
– Boost leads to g(Boost) factor of more SAT calls
– The best result so far puts g(Boost) > 10, 000 for p 0.2
– Significant slowdown due to large number of SAT calls.

• Challenge: Is there free lunch here, i.e. achieving low density
without loss of runtime performance?
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Summary

• Discrete Integration (Constrained Counting) and Sampling
(Constrained Sampling) are important problems with wide variety
of applications

• SAT revolution allows us to design techniques that can make smart
usage of SAT solvers.

• Hashing-based paradigm provides sweet spot in terms of
guarantees and performance

• For uniform distribution: From hundreds to hundreds of thousands
of variables

• Future Challenges:
1 Beyond propositional domain (take advantage of SMT solvers)
2 Generalized weighted distributions
3 Low density parity constraints
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Slides will be available at https://tinyurl.com/ijcai18tutorial
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