# Discrete Sampling and Integration for the Al Practitioner 

Supratik Chakraborty, IIT Bombay Kuldeep S. Meel, Rice University

Moshe Y. Vardi, Rice University

## Agenda

Part 1: Boolean Satisfiability Solving (Vardi)
Part 2(a): Applications (Chakraborty)

Coffee Break

Part 2(b): Prior Work (Chakraborty)

Part 3: Hashing-based Approach (Meel)

# Discrete Sampling and Integration for the AI Practitioner <br> Part I: Boolean Satisfiability Solving 

Supratik Chakraborty, IIT Bombay Kuldeep S. Meel, Rice University<br>Moshe Y. Vardi, Rice University

## Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression $\varphi$, using "and" $(\wedge)$ "or", $(\vee)$ and "not" $(\neg)$, is there a satisfying solution (an assignment of 0's and 1's to the variables that makes the expression equal 1)? That is, is $\operatorname{Sol}(\varphi)$ nonempty?

Example:

$$
\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{1} \vee x_{4}\right)
$$

Solution: $x_{1}=0, x_{2}=0, x_{3}=1, x_{4}=1$

## Discrete Sampling and Integration

Discrete Sampling: Given a Boolean formula $\varphi$, sample from $\operatorname{Sol}(\varphi)$ uniformly at random?

Discrete Integration: Given a Boolean formula $\varphi$, compute $|\operatorname{Sol}(\varphi)|$.

Weighted Sampling and Integration: As above, but subject to a weight function $w: \operatorname{Sol}(\varphi) \mapsto R^{+}$

## Basic Theoretical Background

Discrete Integration: \#SAT
Known:

1. \#SAT is \#P-complete.
2. In practice, \#SAT is quite harder than SAT.
3. If you can solve \#SAT, then you can sample uniformly using selfreducibility.

Desideratum: Solve discrete sampling and integration using a SAT solver.

# Is This Time Different? The Opportunities and Challenges of Artificial Intelligence 

Jason Furman, Chair, Council of Economic Advisers, July 2016:
"Even though we have not made as much progress recently on other areas of AI, such as logical reasoning, the advancements in deep learning techniques may ultimately act as at least a partial substitute for these other areas."

## Pvs. NP: An Outstanding Open Problem

Does $P=N P$ ?

- The major open problem in theoretical computer science
- A major open problem in mathematics
- A Clay Institute Millennium Problem
- Million dollar prize!

What is this about? It is about computational complexity - how hard it is to solve computational problems.

Rally To Restore Sanity, Washington, DC, October 2010


## Computational Problems

Example: $G r a p h-G=(V, E)$

- $V$ - set of nodes
- $E$ - set of edges

Two notions:

- Hamiltonian Cycle: a cycle that visits every node exactly once.
- Eulerian Cycle: a cycle that visits every edge exactly once.

Question: How hard it is to find a Hamiltonian cycle? Eulerian cycle?

Figure 1: The Bridges of Königsburg


Figure 2: The Graph of The Bridges of Königsburg


Figure 3: Hamiltonian Cycle


## Computational Complexity

Measuring complexity: How many (Turing machine) operations does it take to solve a problem of size $n$ ?

- Size of $(V, E)$ : number of nodes plus number of edges.

Complexity Class $P$ : problems that can be solved in polynomial time $-n^{c}$ for a fixed $c$

## Examples:

- Is a number even?
- Is a number square?
- Does a graph have an Eulerian cycle?

What about the Hamiltonian Cycle Problem?

## Hamiltonian Cycle

- Naive Algorithm: Exhaustive search - run time is $n$ ! operations
- "Smart" Algorithm: Dynamic programming - run time is $2^{n}$ operations

Note: The universe is much younger than $2^{200}$ Planck time units!

Fundamental Question: Can we do better?

- Is HamiltonianCycle in $P$ ?


## Checking Is Easy!

Observation: Checking if a given cycle is a Hamiltonian cycle of a graph $G=(V, E)$ is easy!

Complexity Class $N P$ : problems where solutions can be checked in polynomial time.

## Examples:

- HamiltonianCycle
- Factoring numbers

Significance: Tens of thousands of optimization problems are in NP!!!

- CAD, flight scheduling, chip layout, protein folding, ...


## P vs. NP

- P: efficient discovery of solutions
- NP: efficient checking of solutions

The Big Question: Is $P=N P$ or $P \neq N P$ ?

- Is checking really easier than discovering?

Intuitive Answer: Of course, checking is easier than discovering, so $P \neq N P!!!$

- Metaphor: finding a needle in a haystack
- Metaphor: Sudoku
- Metaphor: mathematical proofs

Alas: We do not know how to prove that $P \neq N P$.

## $P \neq N P$

## Consequences:

- Cannot solve efficiently numerous important problems
- RSA encryption may be safe.

Question: Why is it so important to prove $P \neq N P$, if that is what is commonly believed?

## Answer:

- If we cannot prove it, we do not really understand it.
- May be $P=N P$ and the "enemy" proved it and broke RSA!

$$
P=N P
$$

S. Aaronson, MIT: "If $P=N P$, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in 'creative leaps,' no fundamental gap between solving a problem and recognizing the solution once it's found. Everyone who could appreciate a symphony would be Mozart; everyone who could follow a step-by-step argument would be Gauss."

## Consequences:

- Can solve efficiently numerous important problems.
- RSA encryption is not safe.

Question: Is it really possible that $P=N P$ ?
Answer: Yes! It'd require discovering a very clever algorithm, but it took 40 years to prove that LinearProgramming is in $P$.

## Sharpening The Problem

NP-Complete Problems: hardest problems is NP

- HamilatonianCycle is NP-complete! [Karp, 1972]

Corollary: $P=N P$ if and only if HamiltonianCycle is in $P$

There are thousands of $N P$-complete problems. To resolve the $P=N P$ question, it'd suffice to prove that one of them is or is not in $P$.

## History

- 1950-60s: Perebor Project - Futile effort to show hardness of search problems.
- Stephen Cook, 1971: Boolean Satisfiability is NP-complete.
- Richard Karp, 1972: 20 additional NP-complete problems- 0-1 Integer Programming, Clique, Set Packing, Vertex Cover, Set Covering, Hamiltonian Cycle, Graph Coloring, Exact Cover, Hitting Set, Steiner Tree, Knapsack, Job Scheduling, ...
- All NP-complete problems are polynomially equivalent!
- Leonid Levin, 1973 (independently): Six NP-complete problems
- M. Garey and D. Johnson, 1979: "Computers and Intractability: A Guide to NP-Completeness" - hundreds of NP-complete problems!
- Clay Institute, 2000: \$1M Award!


## Boole's Symbolic Logic

Boole's insight: Aristotle's syllogisms are about classes of objects, which can be treated algebraically.


#### Abstract

"If an adjective, as 'good', is employed as a term of description, let us represent by a letter, as $y$, all things to which the description 'good' is applicable, i.e., 'all good things', or the class of 'good things'. Let it further be agreed that by the combination $x y$ shall be represented that class of things to which the name or description represented by $x$ and $y$ are simultaneously applicable. Thus, if $x$ alone stands for 'white' things and $y$ for 'sheep', let $x y$ stand for 'white sheep'.


## Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using "and" $(\wedge)$ "or", $(\vee)$ and "not" $(\neg)$, is there a satisfying solution (an assignment of 0 's and 1 's to the variables that makes the expression equal 1 )?

Example:

$$
\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{1} \vee x_{4}\right)
$$

Solution: $x_{1}=0, x_{2}=0, x_{3}=1, x_{4}=1$

## Complexity of Boolean Reasoning

## History:

- William Stanley Jevons, 1835-1882: "I have given much attention, therefore, to lessening both the manual and mental labour of the process, and I shall describe several devices which may be adopted for saving trouble and risk of mistake."
- Ernst Schröder, 1841-1902: "Getting a handle on the consequences of any premises, or at least the fastest method for obtaining these consequences, seems to me to be one of the noblest, if not the ultimate goal of mathematics and logic."
- Cook, 1971, Levin, 1973: Boolean Satisfiability is NP-complete.


## Algorithmic Boolean Reasoning: Early History

- Newell, Shaw, and Simon, 1955: "Logic Theorist"
- Davis and Putnam, 1958: "Computational Methods in The Propositional calculus", unpublished report to the NSA
- Davis and Putnam, JACM 1960: "A Computing procedure for quantification theory"
- Davis, Logemman, and Loveland, CACM 1962: "A machine program for theorem proving"
DPLL Method: Propositional Satisfiability Test
- Convert formula to conjunctive normal form (CNF)
- Backtracking search for satisfying truth assignment
- Unit-clause preference


## Modern SAT Solving

CDCL $=$ conflict-driven clause learning

- Backjumping
- Smart unit-clause preference
- Conflict-driven clause learning
- Smart choice heuristic (brainiac vs speed demon)
- Restarts

Key Tools: GRASP, 1996; Chaff, 2001
Current capacity: millions of variables

## Some Experience with SAT Solving

Speed-up of 2012 solver over other solvers


## Knuth Gets His Satisfaction

SIAM News, July 26, 2016: "Knuth Gives Satisfaction in SIAM von Neumann Lecture"

Donald Knuth gave the 2016 John von Neumann lecture at the SIAM Annual Meeting. The von Neumann lecture is SIAM's most prestigious prize.
Knuth based the lecture, titled "Satisfiability and Combinatorics", on the latest part (Volume 4, Fascicle 6) of his The Art of Computer Programming book series. He showed us the first page of the fascicle, aptly illustrated with the quote "I can't get no satisfaction," from the Rolling Stones. In the preface of the fascicle Knuth says "The story of satisfiability is the tale of a triumph of software engineering, blended with rich doses of beautiful mathematics".

## SAT Heuristic - Backjumping

Backtracking: go up one level in the search tree when both Boolean values for a variable have been tested.

Backjumping [Stallman-Sussman, 1977]: jump back in the search tree, if jump is safe - use highest node to jump to.

Key: Distinguish between

- Decision variable: Variable is that chosen and then assigned first $c$ and then $1-c$.
- Implication variable: Assignment to variable is forced by a unit clause.

Implication Graph: directed acyclic graph describing the relationships between decision variables and implication variables.

## Smart Unit-Clause Preference

Boolean Constraint Propagation (BCP): propagating values forced by unit clauses.

- Empirical Observation: BCP can consume up to $80 \%$ of SAT solving time!

Requirement: identifying unit clauses

- Naive Method: associate a counter with each clause and update counter appropriately, upon assigning and unassigning variables.
- Two-Literal Watching [Moskewicz-Madigan-Zhao-Zhang-Malik, 2001]: "watch" two un-false literals in each unsatisfied clause - no overhead for backjumping.


## SAT Heuristic - Clause Learning

Conflict-Driven Clause Learning: If assignment $\left\langle l_{1}, \ldots, l_{n}\right\rangle$ is bad, then add clause $\neg l_{1} \vee \ldots \vee \neg l_{n}$ to block it.

Marques-Silva\&Sakallah, 1996: This would add very long clauses! Instead:

- Analyze implication graph for chain of reasoning that led to bad assignment.
- Add a short clause to block said chain.
- The "learned" clause is a resolvent of prior clauses.

Consequence:

- Combine search with inference (resolution).
- Algorithm uses exponential space; "forgetting" heuristics required.


## Smart Decision Heuristic

Crucial: Choosing decision variables wisely!
Dilemma: brainiac vs. speed demon

- Brainiac: chooses very wisely, to maximize BCP - decision-time overhead!
- Speed Demon: chooses very fast, to minimize decision time - many decisions required!

VSIDS [Moskewicz-Madigan-Zhao-Zhang-Malik, 2001]: Variable State Independent Decaying Sum - prioritize variables according to recent participation on conflicts - compromise between Brainiac and Speed Demon.

## Randomized Restarts

Randomize Restart [Gomes-Selman-Kautz, 1998]

- Stop search
- Reset all variables
- Restart search
- Keep learned clauses

Aggressive Restarting: restart every $\sim 50$ backtracks.

## SMT: Satisfiability Modulo Theory

SMT Solving: Solve Boolean combinations of constraints in an underlying theory, e.g., linear constraints, combining SAT techniques and domainspecific techniques.

- Tremendous progress since 2000!

Example: SMTLA
$(x>10) \wedge[((x>5) \vee(x<8)]$
Sample Application: Bounded Model Checking of Verilog programs SMT(BV).

## SMT Solving

General Approach: combine SAT-solving techniques with theory-solving techniques

- Consider formula as Boolean formula ove theory atoms.
- Solve Boolean formula; obtain conjunction of theory atoms.
- Use theory solver to check if conjunction is satisfiable.

Crux: Interaction between SAT solver and theory solver, e.g., conflict-clause learning - convert unsatisfiable theory-atom conjection to a new Boolean clause.

## Applications of SAT/SMT Solving in SW Engineering

Leonardo De Moura+Nikolaj Björner, 2012: Applications of Z3 at Microsoft

- Symbolic execution
- Model checking
- Static analysis
- Model-based design
- ...


## Reflection on $\mathbf{P}$ vs. NP

Old Cliché "What is the difference between theory and practice? In theory, they are not that different, but in practice, they are quite different."
$\mathbf{P}$ vs. NP in practice:

- P=NP: Conceivably, NP-complete problems can be solved in polynomial time, but the polynomial is $n^{1,000}$ - impractica!!
- $\mathrm{P} \neq$ NP: Conceivably, NP-complete problems can be solved by $n^{\log \log \log n}$ operations - practica!!

Conclusion: No guarantee that solving P vs. NP would yield practical benefits.

## Are NP-Complete Problems Really Hard?

- When I was a graduate student, SAT was a "scary" problem, not to be touched with a 10 -foot pole.
- Indeed, there are SAT instances with a few hundred variables that cannot be solved by any extant SAT solver.
- But today's SAT solvers, which enjoy wide industrial usage, routinely solve real-life SAT instances with millions of variables!

Conclusion We need a richer and broader complexity theory, a theory that would explain both the difficulty and the easiness of problems like SAT.

Question: Now that SAT is "easy" in practice, how can we leverage that?

- Is $B P P^{N P}$ the "new" PTIME?


## Notation

- Given
- $X_{1}, \ldots X_{n}$ : variables with finite discrete domains $D_{1}, \ldots D_{n}$
- Constraint (logical formula) $\varphi$ over $X_{1}, \ldots X_{n}$
- Weight function W: $\mathrm{D}_{1} \times \ldots \mathrm{D}_{\mathrm{n}} \rightarrow \mathrm{Q} \geq 0$

Sol $(\varphi)$ : set of assignments of $X_{1}, \ldots X_{n}$ satisfying $\varphi$

- Determine $\mathrm{W}(\varphi)=\sum_{y \in \operatorname{Sol}(\varphi)} \mathrm{W}(\mathrm{y})$ If $W(y)=1$ for all $y$, then $W(\varphi)=|\operatorname{Sol}(\varphi)|$

Discrete Integration (Model Counting)

- Randomly sample from $\operatorname{Sol}(\varphi)$ such that $\operatorname{Pr}[y$ is sampled $] \propto W(y)$ If $\mathrm{W}(\mathrm{y})=1$ for all y , then uniformly sample from $\operatorname{Sol}(\varphi)$

Discrete Sampling
For this tutorial: Initially, $\mathrm{D}_{\mathrm{D}}$ 's are $\{0,1\}$ - Boolean variables
Later, we'll consider $D_{i}$ 's as $\{0,1\}^{n}$ - Bit-vector variables

## Closer Look At Some Applications

- Discrete Integration
- Probabilistic Inference
- Network (viz. electrical grid) reliability
- Quantitative Information flow
- And many more ...
- Discrete Sampling
- Constrained random verification
- Automatic problem generation
- And many more ...


## Application 1: Probabilistic Inference

- An alarm rings if it's in a working state when an earthquake happens or a burglary happens
- The alarm can malfunction and ring without earthquake or burglary happening
- Given that the alarm rang, what is the likelihood that an earthquake happened?
- Given conditional dependencies (and conditional probabilities) calculate Pr[event | evidence]
- What is $\operatorname{Pr}$ [Earthquake | Alarm] ?


## Probabilistic Inference: Bayes' Rule

$\operatorname{Pr}\left[\right.$ event $_{i} \mid$ evidence $]=\frac{\operatorname{Pr}\left[\text { event }_{i} \cap \text { evidence }\right]}{\operatorname{Pr}[\text { evidence }]}=\frac{\operatorname{Pr}\left[\text { event }_{i} \cap \text { evidence }\right]}{\sum_{j}^{\operatorname{Pr}\left[\text { event }_{j} \cap \text { evidence }\right]}}$
$\operatorname{Pr}\left[\right.$ event $_{j} \cap$ evidence $]=\operatorname{Pr}\left[\right.$ evidence $\mid$ event $\left._{j}\right] \times \operatorname{Pr}\left[\right.$ event $\left._{j}\right]$

## How do we represent conditional dependencies efficiently, and calculate these probabilities?

## Probablistic Inference: Graphical Models



## Probabilistic Inference: First Principle Calculation

| $B$ | $\operatorname{Pr}$ |
| :---: | :---: |
| $T$ | 0.8 |
| $F$ | 0.2 |


| $\mathbf{B}$ | $\mathbf{E}$ | $\mathbf{A}$ | $\operatorname{Pr}(\mathbf{A} \mid \mathbf{E}, \mathbf{B})$ |
| :---: | :---: | :---: | :---: |
| $T$ | $T$ | $T$ | 0.3 |
| $T$ | $T$ | $F$ | 0.7 |
| $T$ | $F$ | $T$ | 0.4 |
| $T$ | $F$ | $F$ | 0.6 |
| $F$ | $T$ | $T$ | 0.2 |
| $F$ | $F$ | $F$ | 0.8 |
| $F$ | $F$ | $T$ | 0.1 |
| $F$ | $F$ | $F$ | 0.9 |

## Probabilisitc Inference: Logical Formulation

$\mathrm{V}=\left\{\mathrm{v}_{\mathrm{A}}, \mathrm{V}_{\sim \mathrm{A}}, \mathrm{v}_{\mathrm{B}}, \mathrm{V}_{\sim \mathrm{B}}, \mathrm{v}_{\mathrm{E}}, \mathrm{V}_{\sim \mathrm{E}}\right\}$
$T=\left\{t_{A \mid B, E}, t_{\sim A \mid B, E}, t_{A \mid B, \sim E} \cdots\right\}$

Prop vars corresponding to events Prop vars corresponding to CPT entries

Formula encoding probabilistic graphical model ( $\varphi_{\text {PGM }}$ ):
$\left(v_{A} \oplus v_{\sim A}\right) \wedge\left(v_{B} \oplus v_{\sim B}\right) \wedge\left(v_{E} \oplus v_{\sim E}\right)$
Exactly one of $v_{A}$ and $v_{\sim A}$ is true

$$
\left(t_{A \mid B, E} \Leftrightarrow v_{A} \wedge v_{B} \wedge v_{E}\right) \wedge\left(t_{\sim A \mid B, E} \Leftrightarrow v_{\sim A} \wedge v_{B} \wedge v_{E}\right) \wedge \ldots
$$

$$
\text { If } \mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}}, \mathrm{v}_{\mathrm{E}} \text { are true, so must } \mathrm{t}_{\mathrm{A} \mid \mathrm{B}, \mathrm{E}} \text { and vice versa }
$$

## Probabilistic Inference: Logic and Weights

$$
\begin{aligned}
& V=\left\{v_{A}, v_{\sim A}, v_{B}, v_{\sim B}, v_{E}, v_{\sim E}\right\} \\
& T=\left\{t_{A \mid B, E}, t_{\sim A \mid B, E}, t_{A \mid B, \sim E} \ldots\right\} \\
& W\left(v_{\sim B}\right)=0.2, W\left(v_{B}\right)=0.8 \quad \text { Probabilities of indep events are weights of +ve literals } \\
& W\left(v_{\sim E}\right)=0.1, W\left(v_{E}\right)=0.9 \\
& W\left(t_{A \mid B, E}\right)=0.3, W\left(t_{\sim A \mid B, E}\right)=0.7, \ldots \quad \text { CPT entries are weights of +ve literals } \\
& W\left(v_{A}\right)=W\left(v_{\sim A}\right)=1 \quad \text { Weights of vars corresponding to dependent events } \\
& W\left(\neg v_{\sim B}\right)=W\left(\neg v_{B}\right)=W\left(\neg t_{A \mid B, E}\right) \ldots=1 \quad \text { Weights of -ve literals are all } 1
\end{aligned}
$$

$$
\text { Weight of assignment }\left(\mathrm{v}_{\mathrm{A}}=1, \mathrm{v}_{\sim \mathrm{A}}=0, \mathrm{t}_{\mathrm{A} \mid \mathrm{B}, \mathrm{E}}=1, \ldots\right)=\mathrm{W}\left(\mathrm{v}_{\mathrm{A}}\right)^{*} \mathrm{~W}\left(\neg \mathrm{v}_{\sim A}\right)^{*} \mathrm{~W}\left(\mathrm{t}_{\mathrm{A} \mid \mathrm{B}, \mathrm{E}}\right)^{*} \ldots
$$

## Probabilistic Inference: Discrete Integration

$$
\begin{aligned}
& V=\left\{v_{A}, v_{\sim A}, v_{B}, v_{\sim B}, v_{E}, v_{\sim E}\right\} \\
& T=\left\{t_{A \mid B, E}, t_{\sim A \mid B, E}, t_{A \mid B, \sim E} \cdots\right\}
\end{aligned}
$$

Formula encoding combination of events in probabilistic model

$$
\text { (Alarm and Earthquake) } \quad F=\varphi_{P G M} \wedge v_{A} \wedge v_{E}
$$

Set of satisfying assignments of $F$ :

$$
R_{F}=\left\{\left(v_{A}=1, v_{E}=1, v_{B}=1, t_{A \mid B, E}=1 \text {, all else } 0\right),\left(v_{A}=1, v_{E}=1, v_{\sim B}=1, t_{A \mid B, E}=1 \text {, all else } 0\right)\right\}
$$

Weight of satisfying assignments of $F$ :

$$
\begin{aligned}
W\left(R_{F}\right) & =W\left(v_{A}\right) * W\left(v_{E}\right) * W\left(v_{B}\right) * W\left(t_{A \mid B, E}\right)+W\left(v_{A}\right) * W\left(v_{E}\right) * W\left(v_{\sim B}\right) * W\left(t_{A \mid \sim B, E}\right) \\
\quad= & 1^{*} \operatorname{Pr}[E] * \operatorname{Pr}[B] * \operatorname{Pr}[A \mid B, E]+1^{*} \operatorname{Pr}[E] * \operatorname{Pr}[\sim B] * \operatorname{Pr}[A \mid \sim B, E]=\operatorname{Pr}[A \cap E]
\end{aligned}
$$

## Application 2: Network Reliability

Graph $G=(V, E)$ represents a (power-grid) network

- Nodes (V) are towns, villages, power stations
- Edges (E) are power lines
- Assume each edge e fails with prob $g(e) \in[0,1]$
- Assume failure of edges statistically independent
- What is the probability that $s$ and $t$ become disconnected?


## Network Reliability: First Principles Modeling

$$
\begin{array}{r}
\pi: E \rightarrow\{0,1\} \quad . . \text { configuration of network } \\
--\pi(e)=0 \text { if edge e has failed, } 1 \text { otherwise }
\end{array}
$$



Prob of network being in configuration $\pi$

$$
\operatorname{Pr}[\pi]=\underset{e: \pi(e)=0}{\boldsymbol{g}(e)} \times \underset{e: \pi(e)=1}{\prod(1-g(e))}
$$

Prob of $s$ and $t$ being disconnected

$$
\mathrm{Pd}_{\mathrm{s}, \mathrm{t}}=\sum \operatorname{Pr}[\pi] \begin{aligned}
& \text { May need to sum over } \\
& \left(>2^{100}\right) \text { configurations }
\end{aligned}
$$

## Network Reliability: Discrete Integration

- $p_{\mathrm{v}}$ : Boolean variable for each v in V
- $q_{e}$ : Boolean variable for each e in $E$
- $\varphi_{\mathrm{s}, \mathrm{t}}\left(\mathrm{p}_{\mathrm{v} 1}, \ldots \mathrm{p}_{\mathrm{vn}}, \mathrm{q}_{\mathrm{e} 1}, \ldots \mathrm{q}_{\mathrm{em}}\right)$ :

Boolean formula such that sat assignments $\sigma$ of $\varphi_{s, t}$ have 1-1 correspondence with configs $\pi$ that disconnect s and $t$

$$
-W(\sigma)=\operatorname{Pr}[\pi]
$$

$$
\mathrm{P}_{\mathrm{s}, \mathrm{t}}=\sum_{\pi: \mathrm{s}, \mathrm{t} \text { disconnected in } \pi} \operatorname{Pr}[\pi] \quad=\sum_{\sigma \vDash \varphi_{s, t}} \mathrm{~W}(\sigma)=\mathrm{W}(\varphi)
$$

## Application 3: Quantitative Information Flow

- A password-checker PC takes a secret password (SP) and a user input (UI) and returns "Yes" iff SP = UI [Bang et al 2016]
- Suppose passwords are 4 characters (' 0 ' through ' 9 ') long

```
PC1 (char[] SP, char[] UI) {
    for (int i=0; i<SP.length(); i++) {
        if(SP[i] != UI[i]) return "No";
    }
    return "Yes";
}
```

```
PC2 (char[] H, char[] L) {
    match = true;
    for (int i=0; i<SP.length(); i++) {
        if (SP[i] != UI[i]) match=false;
        else match = match;
}
    if match return "Yes";
else return "No";
}
```

Which of PC1 and PC2 is more likely to leak information about the secret key through side-channel observations?

## QIF: Some Basics

- Program P receives some "high" input (H) and produces a "low" (L) output
- Password checking: H is SP, L is time taken to answer "lls SP = UI?"
- Side-channel observations: memory, time ...
- Adversary may infer partial information about $H$ on seeing $L$
- E.g. in password checking, infer: 1st char is password is not 9 .
- Can we quantify "leakage of information"?
"initial uncertainty in H" = "info leaked" + "remaining uncertainty in H" [Smith 2009]
- Uncertainty and information leakage usually quantified using information theoretic measures, e.g. Shannon entropy


## QIF: First Principles Approach

- Password checking: Observed time to answer "Yes"/"No"
- Depends on \# instructions executed
- E.g. SP = 00700700

$$
\mathrm{UI}=\mathrm{N} 2345678, N \neq 0
$$

PC1 executes for loop once

$$
\text { UI = } 02345678
$$

```
PC1 (char[] SP, char[] UI)
    for (int i=0; i<SP.length(); i++) {
        if(SP[i] != UI[i]) return "No";
}
    return "Yes";
}
```

PC1 executes for loop at least twice
Observing time to "No" gives away whether $1^{\text {st }}$ char is not $\mathrm{N}, N \neq 0$
In 10 attempts, $1^{\text {st }}$ char can of SP can be uniquely determined. In max 40 attempts, SP can be cracked.

## QIF: First Principles Approach

- Password checking: Observed time to answer "Yes"/"No"
- Depends on \# instructions executed
- E.g. $\mathrm{SP}=00700700$

$$
\mathrm{UI}=\mathrm{N} 2345678, N \neq 0
$$

PC1 executes for loop 4 times

$$
\mathrm{UI}=02345678
$$

```
PC2 (char[] H, char[] L) {
    match = true;
    for (int i=0; i<SP.length(); i++) {
        if (SP[i] != UI[i]) match=false;
        else match = match;
}
    if match return "Yes";
    else return "No";
}
```

PC1 executes for loop 4 times
Cracking SP requires max $10^{4}$ attempts !!! ("less leakage")

## QIF: Partitioning Space of Secret Password

- Observable time effectively partitions values of SP [Bultan2016]
return "Yes";
}

```
PC1 (char[] SP, char[] UI) {
PC1 (char[] SP, char[] UI) {
    for (int i=0; i<SP.length(); i++) {
    for (int i=0; i<SP.length(); i++) {
        if(SP[i] != UI[i]) return "No";
        if(SP[i] != UI[i]) return "No";
    }
    }

\section*{QIF: Probabilities of Observed Times}


\section*{QIF: Probabilities of Observed Times}


\section*{QIF: Quantifying Leakage via Integration}
- Exp information leakage = Shannon entropy of obs times \(=\sum_{k \in\{3,5,7,9,11\}} \operatorname{Pr}[t=k] . \log 1 / \operatorname{Pr}[t=k]\)
- Information leakage in password checker example
\[
\begin{array}{ll}
\text { PC1: } 0.52 \text { (more "leaky") } \\
\text { PC2: } 0.0014 \text { (less "leaky") }
\end{array}
\]

Discrete integration crucial in obtaining \(\operatorname{Pr}[t=k]\)

\section*{Unweighted Counting Suffices in Principle}


Weighted Model Counting \(\Rightarrow\) Unweighted Model Counting IJCAI 2015

Reduction polynomial in \#bits representing weights

\section*{Application 4: Constr Random Verification}


Functional Verification
- Formal verification
- Challenges: formal requirements, scalability
-~10-15\% of verification effort
- Dynamic verification: dominant approach

\section*{CRV: Dynamic Verification}
- Design is simulated with test vectors
- Test vectors represent different verification scenarios
-Results from simulation compared to intended results
- How do we generate test vectors?

Challenge: Exceedingly large test input space!
Can't try all input combinations
\(2^{128}\) combinations for a 64-bit binary operator!!!

\section*{CRV: Sources of Constraints}

- Designers:
1. \(a+{ }_{64} 11^{*}{ }_{32} \mathrm{~b}=12\)
2. \(a<64(b \gg 4)\)
- Past Experience:
1. \(40<_{64} 34+a<_{64} 5050\)
2. \(120<64 b<64230\)
- Users:
1. \(232{ }^{*}{ }_{32} \mathrm{a}+\mathrm{b}\) ! \(=1100\)
2. \(1020<64(b / 642)+{ }_{64} a<64200\)
- Test vectors: solutions of constraints

\section*{CRV: Why Existing Solvers Don’t Suffice}

\section*{Constraints}

- Designers:
1. \(a+{ }_{64} 11{ }^{*}{ }_{32} \mathrm{~b}=12\)
2. \(a<64(b \gg 4)\)
- Past Experience:
1. \(40<_{64} 34+a<645050\)
2. \(120<64 \mathrm{~b}<64230\)
- Users:
1. \(232{ }^{*}{ }_{32} a+b!=1100\)
2. \(1020<64(b / 642)+{ }_{64} a<642200\)

Modern SAT/SMT solvers are complex systems
Efficiency stems from the solver automatically "biasing" search Fails to give unbiased or user-biased distribution of test vectors

\section*{CRV: Need To Go Beyond SAT Solvers}

\section*{Constrained Random Verification}


Set of Constraints


Sample satisfying assignments uniformly at random

\section*{Scalable Uniform Generation of SAT Witnesses}

\section*{Application 5: Automated Problem Generation}
- Large class sizes, MOOC offerings require automated generation of related but randomly different problems
- Discourages plagiarism between students
- Randomness makes it hard for students to guess what the solution would be
- Allows instructors to focus on broad parameters of problems, rather than on individual problem instances
- Enables development of automated intelligent tutoring systems

\section*{Auto Prob Gen: Using Problem Templates}
- A problem template is a partial specification of a problem
- "Holes" in the template must be filled with elements from specified sets
- Constraints on elements chosen to fill various "holes" restricts problem instances so that undesired instances are eliminated
- Example:
- Non-deterministic finite automata to be generated for complementation Holes: States, alphabet size, transitions for (state, letter) pairs, final states, initial states

Constraints: Alphabet size \(=2\)
Min/max transitions for a (state, letter) pair = 0/4
\(\mathrm{Min} /\) max states \(=3 / 5\)
\(\mathrm{Min} / \mathrm{max}\) number of final states \(=1 / 3\)
\(\mathrm{Min} / \mathrm{max}\) initial states \(=1 / 2\)

\section*{Auto Prob Gen: An Illustration}
- Non-det finite automaton encoded as a formula on following variables
\[
\begin{array}{ll}
\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}, \mathrm{~s}_{5}: & \text { States } \\
\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \mathrm{f}_{4}, \mathrm{f}_{5}: & \text { Final states } \\
\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \mathrm{n}_{4}, \mathrm{n}_{5}: & \text { Initial states } \\
\mathrm{s}_{1} \mathrm{a}_{1} \mathrm{~s}_{2}, \mathrm{~s}_{1} \mathrm{a}_{2} \mathrm{~s}_{2}, \ldots: \text { Transitions }
\end{array}
\]
\[
\left.\begin{array}{c}
\varphi_{\{\text {init }\}}=\bigwedge_{\{i\}}\left(n_{i} \rightarrow s_{i}\right) \wedge\left(1 \leq \sum_{i} n_{i} \leq 2\right) \\
\varphi_{\{\text {trans }\}}=\bigwedge_{\{i\}}\left(s_{i} a_{j} s_{k} \rightarrow s_{i} \wedge s_{k}\right) \wedge \bigwedge_{\{i, j\}}\left(0 \leq \sum_{k} s_{i} a_{j} s_{k} \leq 4\right) \\
\varphi_{\{\text {\{tcount }\}}=3 \leq \sum_{i} s_{i} \leq 5 \\
\varphi_{\{\text {finst }\}}=\bigwedge_{i}\left(f_{i} \rightarrow s_{i}\right)
\end{array} \wedge\left(1 \leq \sum_{i} f_{i} \leq 3\right)\right)
\]

Every solution of
\(\varphi_{\{\text {init }\}} \wedge \varphi_{\{\text {trans }\}}\)
\(\wedge \varphi_{\{\text {stcount }\}} \wedge \varphi_{\{\text {finst }\}}\) gives an automaton satisfying specified constraints
constraints

\section*{Auto Prob Gen: An Illustration}
- Non-det finite automaton encoded as a formula on following variables
\[
\begin{array}{ll}
s_{1}=1, s_{2}=0, s_{3}=1, s_{4}=1, s_{5}=1: & \text { States } \\
f_{1}=0, f_{2}=0, f_{3}=1, f_{4}=1, f_{5}=0: & \text { Final states } \\
n_{1}=1, n_{2}=0, n_{3}=0, n_{4}=0, n_{5}=0: & \text { Initial states } \\
s_{1} a_{1} s_{3}=1, s_{1} a_{1} s_{4}=1, s_{4} a_{2} s_{4}=1, s_{4} a_{1} s_{5}=1, \ldots: \text { Transitions }
\end{array}
\]


\section*{Auto Prob Gen: Discrete Sampling}
- Uniform random generation of solutions of constraints gives automata satisfying constraints randomly
- Weighted random generation of solutions gives automata satisfying constraints with different priorities/weightages.

Examples: Weighing final state variables more gives automata with more final states
Weighing transitions on letter \(a_{1}\) more gives automata with more transitions labeled \(a_{1}\)

\title{
Discrete Sampling and Integration for the AI Practitioner Part 2b: Survey of Prior Work
}

Supratik Chakraborty, IIT Bombay
Kuldeep S. Meel, Rice University
Moshe Y. Vardi, Rice University

\section*{How Hard is it to Count/Sample?}
- Trivial if we could enumerate \(\mathrm{R}_{\mathrm{F}}\) : Almost always impractical
- Computational complexity of counting (discrete integration):

\section*{Exact unweighted counting: \#P-complete [Valiant 1978]}

\section*{Approximate unweighted counting:}

Deterministic: Polynomial time det. Turing Machine with \(\Sigma_{2}{ }^{\mathrm{p}}\) oracle [Stockmeyer 1983]
\[
\frac{\left|R_{F}\right|}{1+\varepsilon} \leq \operatorname{DetEstimate}(\mathrm{F}, \varepsilon) \leq\left|R_{F}\right| \times(1+\varepsilon), \text { for } \varepsilon>0
\]

Randomized: Poly-time probabilistic Turing Machine with NP oracle
[Stockmeyer 1983; Jerrum,Valiant,Vazirani 1986]
\(\operatorname{Pr}\left[\frac{\left|R_{F}\right|}{1+\varepsilon} \leq \operatorname{RandEstimate}(\mathrm{F}, \varepsilon, \delta) \leq\left|R_{F}\right| \cdot(1+\varepsilon)\right] \geq 1-\delta\), for \(\varepsilon>0,0<\delta \leq 1\)
Probably Approximately Correct (PAC) algorithm
Weighted versions of counting: Exact: \#P-complete [Roth 1996],
Approximate: same class as unweighted version [follows from Roth 1996]

\section*{How Hard is it to Count/Sample?}
- Computational complexity of sampling:

Uniform sampling: Poly-time prob. Turing Machine with NP oracle [Bellare,Goldreich,Petrank 2000]
\[
\operatorname{Pr}[y=\text { UniformGenerator }(\mathrm{F})]=c \text {, where }\left\{\begin{array}{l}
c=0 \text { if } y \notin \mathrm{R}_{\mathrm{F}} \\
c>0 \text { and indep of } y \text { if } y \in \mathrm{R}_{\mathrm{F}}
\end{array}\right.
\]

Almost uniform sampling: Poly-time prob. Turing Machine with NP oracle [Jerrum, Valiant, Vazirani 1986, also from Bellare,Goldreich,Petrank 2000]
\[
\frac{c}{1+\varepsilon} \leq \operatorname{Pr}[y=\operatorname{AUGenerator}(\mathrm{F}, \varepsilon)] \leq c \cdot(1+\varepsilon), \text { where }\left\{\begin{array}{l}
c=0 \text { if } y \notin \mathrm{R}_{\mathrm{F}} \\
c>0 \text { and indep of } y \text { if } y \in \mathrm{R}_{\mathrm{F}}
\end{array}\right.
\]
\(\operatorname{Pr}[\) Algorithm outputs some \(y] \geq 1 / 2\), if \(F\) is satisfiable

\section*{Markov Chain Monte Carlo Techniques}
- Rich body of theoretical work with applications to sampling and counting [Jerrum,Sinclair 1996]
- Some popular (and intensively studied) algorithms:
- Metropolis-Hastings [Metropolis et al 1953, Hastings 1970], Simulated Annealing [Kirkpatrick et al 1982]
- High-level idea:
- Start from a "state" (assignment of variables)
- Randomly choose next state using "local" biasing functions (depends on target distribution \& algorithm parameters)
- Repeat for an appropriately large number (N) of steps
- After N steps, samples follow target distribution with high confidence
- Convergence to desired distribution guaranteed only after N (large) steps
- In practice, steps truncated early heuristically

Nullifies/weakens theoretical guarantees [Kitchen,Keuhlman 2007]

\section*{Exact Counters}
- DPLL based counters [CDP: Birnbaum,Lozinski 1999]
- DPLL branching search procedure, with partial truth assignments
- Once a branch is found satisfiable, if \(t\) out of \(n\) variables assigned, add \(2^{n-t}\) to model count, backtrack to last decision point, flip decision and continue
- Requires data structure to check if all clauses are satisfied by partial assignment

Usually not implemented in modern DPLL SAT solvers
- Can output a lower bound at any time

\section*{Exact Counters}
- DPLL + component analysis [RelSat: Bayardo, Pehoushek 2000]
- Constraint graph G:

Variables of \(F\) are vertices
An edge connects two vertices if corresponding variables appear in some clause of \(F\)
- Disjoint components of G lazily identified during DPLL search
- F1, F2, .. Fn : subformulas of F corresponding to components \(\left|R_{F}\right|=\left|R_{F 1}\right|{ }^{*}\left|R_{F 2}\right| *\left|R_{F 3}\right| * \ldots\)
- Heuristic optimizations:

Solve most constrained sub-problems first
Solving sub-problems in interleaved manner

\section*{Exact Counters}
- DPLL + Caching [Bacchus et al 2003, Cachet: Sang et al 2004, sharpSAT: Thurley 2006]
If same sub-formula revisited multiple times during DPLL search, cache result and re-use it
"Signature" of the satisfiable sub-formula/component must be stored Different forms of caching used:
Simple sub-formula caching
Component caching
Linear-space caching
Component caching can also be combined with clause learning and other reasoning techniques at each node of DPLL search tree
WeightedCachet: DPLL + Caching for weighted assignments

\section*{Exact Counters}
- Knowledge Compilation based
- Compile given formula to another form which allows counting models in time polynomial in representation size
- Reduced Ordered Binary Decision Diagrams (ROBDD) [Bryant 1986]: Construction can blow up exponentially
- Deterministic Decomposable Negation Normal Form (d-DNNF) [c2d: Darwiche 2004]
Generalizes ROBDDs; can be significantly more succinct
Negation normal form with following restrictions:
Decomposability: All AND operators have arguments with disjoint support
Determinizability: All OR operators have arguments with disjoint solution sets
- Sentential Decision Diagrams (SDD) [Darwiche 2011]

\section*{Exact Counters: How far do they go?}
- Work reasonably well in small-medium sized problems, and in large problem instances with special structure
- Use them whenever possible
-\#P-completeness hits back eventually - scalability suffers!

\section*{Bounding Counters}
[MBound: Gomes et al 2006; SampleCount: Gomes et al 2007; BPCount: Kroc et al 2008]
- Provide lower and/or upper bounds of model count
- Usually more efficient than exact counters
- No approximation guarantees on bounds

Useful only for limited applications

\section*{Hashing-based Sampling}
- Bellare, Goldreich, Petrank (BGP 2000)
- Uniform generator for SAT witnesses:
- Polynomial time randomized algorithm with access to an NP oracle
\[
\operatorname{Pr}[y=\operatorname{BGP}(\mathrm{F})]=\left\{\begin{array}{l}
0 \text { if } y \notin \mathrm{R}_{\mathrm{F}} \\
c(>0) \text { if } y \in \mathrm{R}_{\mathrm{F}}, \text { where } c \text { is independent of } y
\end{array}\right.
\]
- Employs n-universal hash functions
- Works well for small values of \(n\)

Much more on this coming in Part 3
- For high dimensions (large n), significant computational overheads

\section*{Approximate Integration and Sampling: Close Cousins}
- Seminal paper by Jerrum, Valiant, Vazirani 1986

- Yet, no practical algorithms that scale to large problem instances were derived from this work
- No scalable PAC counter or almost-uniform generator existed until a few years back
- The inter-reductions are practically computation intensive
-Think of \(O(n)\) calls to the counter when \(n=100000\)

\section*{Prior Work}


\section*{Guarantees}

Performance

\section*{Techniques using XOR hash functions}
- Bounding counters MBound, SampleCount [Gomes et al. 2006, Gomes et al 2007] used random XORs
- Algorithms geared towards finding bounds without approximation guarantees
- Power of 2-universal hashing not exploited
- In a series of papers [2013: ICML, UAI, NIPS; 2014: ICML; 2015: ICML, UAI; 2016: AAAI, ICML, AISTATS, ...] Ermon et al used XOR hash functions for discrete counting/sampling
- Random XORs, also XOR constraints with specific structures
- 2-universality exploited to provide improved guarantees
- Relaxed constraints (like short XORs) and their effects studied

\section*{An Interesting Combination: XOR + MAP Optimization}
- WISH: Ermon et al 2013
- Given a weight function \(W:\{0,1\}^{n} \rightarrow \Re^{\geq 0}\)
- Use random XORs to partition solutions into cells
- After partitioning into 2, 4, 8, 16, ... cells

Use Max Aposteriori Probability (MAP) optimizer to find solution
with max weight in a cell (say, \(a_{2}, a_{4}, a_{8}, a_{16}, \ldots\) )
- Estimated \(W\left(R_{F}\right)=W\left(a_{2}\right)^{*} 1+W\left(a_{4}\right)^{*} 2+W\left(a_{8}\right)^{*} 4+\ldots\)
- Constant factor approximation of \(W\left(R_{F}\right)\) with high confidence
- MAP oracle needs repeated invokation O(n. \(\log _{2} n\) )
- MAP is NP-complete
- Being optimization (not decision) problem), MAP is harder to solve in practice than SAT

\section*{XOR-based Counting and Sampling}
- Remainder of tutorial
- Deeper dive into XOR hash-based counting and sampling
- Discuss theoretical aspects and experimental observations
- Based on work published in [2013: CP, CAV; 2014: DAC, AAAI; 2015: IJCAI, TACAS; 2016: AAAI, IJCAI, 2017: AAAI]

\section*{Discrete Sampling and Integration for the AI Practitioner}

Part III: Hashing-based Approach to Sampling and Integration

\author{
Supratik Chakraborty, IIT Bombay Kuldeep S. Meel, Rice University Moshe Y. Vardi, Rice University
}

\section*{Discrete Integration and Sampling}
- Given
- Variables \(X_{1}, X_{2}, \cdots X_{n}\) over finite discrete domains \(D_{1}, D_{2}, \cdots D_{n}\)
- Formula \(\varphi\) over \(X_{1}, X_{2}, \cdots X_{n}\)
- Weight Function \(W: D_{1} \times D_{2} \cdots \times D_{n} \mapsto[0,1]\)
- \(\operatorname{Sol}(\varphi)=\{\) solutions of F\(\}\)
- Discrete Integration: Determine \(W(\varphi)=\Sigma_{y \in \operatorname{Sol}(\varphi)} W(y)\)
- If \(W(y)=1\) for all \(y\), then \(W(\varphi)=|\operatorname{Sol}(\varphi)|\)
- Discrete Sampling: Randomly sample from \(\operatorname{Sol}(\varphi)\) such that \(\operatorname{Pr}[y\) is sampled \(] \propto W(y)\)
- If \(W(y)=1\) for all \(y\), then uniformly sample from \(\operatorname{Sol}(\varphi)\)

Part I

\section*{Discrete Integration}

\section*{From Weighted to Unweighted Integration}

Boolean Formula \(\varphi\) and weight function \(W:\{0,1\}^{n} \rightarrow \mathbb{Q}^{\geq 0}\)

\section*{From Weighted to Unweighted Integration}

Boolean Formula \(\varphi\) and weight function \(W:\{0,1\}^{n} \rightarrow \mathbb{Q}^{\geq 0}\)


Boolean Formula \(F^{\prime}\)
\[
W(\varphi)=c(W) \times\left|\operatorname{Sol}\left(F^{\prime}\right)\right|
\]

\section*{From Weighted to Unweighted Integration}

Boolean Formula \(\varphi\) and weight function \(W:\{0,1\}^{n} \rightarrow \mathbb{Q}^{\geq 0}\)


Boolean Formula \(F^{\prime}\)
\[
W(\varphi)=c(W) \times\left|\operatorname{Sol}\left(F^{\prime}\right)\right|
\]
- Key Idea: Encode weight function as a set of constraints
(CFMV, IJCAI15)

\section*{From Weighted to Unweighted Integration}

Boolean Formula \(\varphi\) and weight function \(W:\{0,1\}^{n} \rightarrow \mathbb{Q}^{\geq 0}\)

Boolean Formula \(F^{\prime}\)
\[
W(\varphi)=c(W) \times\left|\operatorname{Sol}\left(F^{\prime}\right)\right|
\]
- Key Idea: Encode weight function as a set of constraints
(CFMV, IJCAI15)
How do we estimate \(\left|\operatorname{Sol}\left(F^{\prime}\right)\right|\) ?

\section*{As Simple as Counting Dots}


\section*{As Simple as Counting Dots}


\section*{As Simple as Counting Dots}

Pick a random cell


Estimate \(=\) Number of solutions in a cell \(\times\) Number of cells

\section*{Challenges}

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

\section*{Challenges}

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenge 2 How large is a "small" cell?

\section*{Challenges}

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Challenge 2 How large is a "small" cell?
Challenge 3 How many cells?

\section*{Challenges}

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?
- Designing function \(h\) : assignments \(\rightarrow\) cells (hashing)
- Solutions in a cell \(\alpha\) : \(\operatorname{Sol}(\varphi) \cap\{y \mid h(y)=\alpha\}\)

\section*{Challenges}

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?
- Designing function \(h\) : assignments \(\rightarrow\) cells (hashing)
- Solutions in a cell \(\alpha\) : \(\operatorname{Sol}(\varphi) \cap\{y \mid h(y)=\alpha\}\)
- Deterministic \(h\) unlikely to work

\section*{Challenges}

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?
- Designing function \(h\) : assignments \(\rightarrow\) cells (hashing)
- Solutions in a cell \(\alpha\) : \(\operatorname{Sol}(\varphi) \cap\{y \mid h(y)=\alpha\}\)
- Deterministic \(h\) unlikely to work
- Choose \(h\) randomly from a large family \(H\) of hash functions
Universal Hashing (Carter and Wegman 1977)

\section*{r-Universal Hashing}
- Let \(H\) be family of \(r\)-universal hash functions mapping \(\{0,1\}^{n}\) to \(\{0,1\}^{m}\)
\[
\begin{array}{r}
\forall y_{1}, y_{2}, \cdots y_{r} \in\{0,1\}^{n}, \alpha_{1}, \alpha_{2}, \cdots \alpha_{r} \in\{0,1\}^{m}, h \stackrel{R}{\leftarrow} H \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1}\right]=\cdots \operatorname{Pr}\left[h\left(y_{r}\right)=\alpha_{r}\right]=\left(\frac{1}{2^{m}}\right)^{r} \\
\operatorname{Pr}\left[h\left(y_{1}\right)=\alpha_{1} \wedge \cdots \wedge h\left(y_{r}\right)=\alpha_{r}\right]=\left(\frac{1}{2^{m}}\right)^{r}
\end{array}
\]

\section*{Desired Properties}
- Let \(h\) be randomly picked a family of hash function \(H\) and \(Z\) be the number of solutions in a randomly chosen cell \(\alpha\)
- What is \(\mathrm{E}[Z]\) and how much does \(Z\) deviate from \(\mathrm{E}[Z]\) ?
- For every \(y \in \operatorname{Sol}(\varphi)\), we define \(I_{y}= \begin{cases}1 & h(y)=\alpha(y \text { is in cell }) \\ 0 & \text { otherwise }\end{cases}\)
- \(Z=\sum_{y \in \operatorname{Sol}(\varphi)} I_{y}\)
- Desired: \(\mathrm{E}[Z]=\frac{|\mathrm{Sol}(\varphi)|}{2^{m}}\) and \(\sigma^{2}[Z] \leq \mathrm{E}[Z]\)

\section*{Desired Properties}
- Let \(h\) be randomly picked a family of hash function \(H\) and \(Z\) be the number of solutions in a randomly chosen cell \(\alpha\)
- What is \(\mathrm{E}[Z]\) and how much does \(Z\) deviate from \(\mathrm{E}[Z]\) ?
- For every \(y \in \operatorname{Sol}(\varphi)\), we define \(I_{y}= \begin{cases}1 & h(y)=\alpha(y \text { is in cell }) \\ 0 & \text { otherwise }\end{cases}\)
- \(Z=\sum_{y \in \operatorname{Sol}(\varphi)} I_{y}\)
- Desired: \(\mathrm{E}[Z]=\frac{|\mathrm{Sol}(\varphi)|}{2^{m}}\) and \(\sigma^{2}[Z] \leq \mathrm{E}[Z]\)
- It suffices to have \(H\) to be 2-universal

\section*{Desired Properties}
- Let \(h\) be randomly picked a family of hash function \(H\) and \(Z\) be the number of solutions in a randomly chosen cell \(\alpha\)
- What is \(\mathrm{E}[Z]\) and how much does \(Z\) deviate from \(\mathrm{E}[Z]\) ?
- For every \(y \in \operatorname{Sol}(\varphi)\), we define \(I_{y}= \begin{cases}1 & h(y)=\alpha(y \text { is in cell }) \\ 0 & \text { otherwise }\end{cases}\)
- \(Z=\sum_{y \in \operatorname{Sol}(\varphi)} I_{y}\)
- Desired: \(\mathrm{E}[Z]=\frac{|\mathrm{Sol}(\varphi)|}{2^{m}}\) and \(\sigma^{2}[Z] \leq \mathrm{E}[Z]\)
- It suffices to have \(H\) to be 2-universal
\(-\operatorname{Pr}\left[\frac{\mathrm{E}[Z]}{1+\varepsilon} \leq Z \leq \mathrm{E}[Z](1+\varepsilon)\right] \geq 1-\frac{\sigma^{2}[Z]}{\left(\frac{\varepsilon^{2}}{1+\varepsilon}\right)^{2}(\mathrm{E}[Z])^{2}}\)

\section*{Desired Properties}
- Let \(h\) be randomly picked a family of hash function \(H\) and \(Z\) be the number of solutions in a randomly chosen cell \(\alpha\)
- What is \(\mathrm{E}[Z]\) and how much does \(Z\) deviate from \(\mathrm{E}[Z]\) ?
- For every \(y \in \operatorname{Sol}(\varphi)\), we define \(I_{y}= \begin{cases}1 & h(y)=\alpha(y \text { is in cell }) \\ 0 & \text { otherwise }\end{cases}\)
- \(Z=\sum_{y \in \operatorname{Sol}(\varphi)} I_{y}\)
- Desired: \(\mathrm{E}[Z]=\frac{|\mathrm{Sol}(\varphi)|}{2^{m}}\) and \(\sigma^{2}[Z] \leq \mathrm{E}[Z]\)
- It suffices to have \(H\) to be 2-universal
\(-\operatorname{Pr}\left[\frac{\mathrm{E}[Z]}{1+\varepsilon} \leq Z \leq \mathrm{E}[Z](1+\varepsilon)\right] \geq 1-\frac{\sigma^{2}[Z]}{\left(\frac{\varepsilon}{1+\varepsilon}\right)^{2}(\mathrm{E}[Z])^{2}} \geq 1-\frac{1}{\left(\frac{\varepsilon}{1+\varepsilon}\right)^{2}(\mathrm{E}[Z])}\)

\section*{Desired Properties}
- Let \(h\) be randomly picked a family of hash function \(H\) and \(Z\) be the number of solutions in a randomly chosen cell \(\alpha\)
- What is \(\mathrm{E}[Z]\) and how much does \(Z\) deviate from \(\mathrm{E}[Z]\) ?
- For every \(y \in \operatorname{Sol}(\varphi)\), we define \(I_{y}= \begin{cases}1 & h(y)=\alpha(y \text { is in cell }) \\ 0 & \text { otherwise }\end{cases}\)
- \(Z=\sum_{y \in \operatorname{Sol}(\varphi)} I_{y}\)
- Desired: \(\mathrm{E}[Z]=\frac{|\mathrm{Sol}(\varphi)|}{2^{m}}\) and \(\sigma^{2}[Z] \leq \mathrm{E}[Z]\)
- It suffices to have \(H\) to be 2-universal
\(-\operatorname{Pr}\left[\frac{\mathrm{E}[Z]}{1+\varepsilon} \leq Z \leq \mathrm{E}[Z](1+\varepsilon)\right] \geq 1-\frac{\sigma^{2}[Z]}{\left(\frac{\varepsilon}{1+\varepsilon}\right)^{2}(\mathrm{E}[Z])^{2}} \geq 1-\frac{1}{\left(\frac{\varepsilon}{1+\varepsilon}\right)^{2}(\mathrm{E}[Z])}\)

\section*{2-Universal Hash Functions}
- Variables: \(X_{1}, X_{2}, \cdots X_{n}\)
- To construct \(h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\), choose \(m\) random XORs
- Pick every \(X_{i}\) with prob. \(\frac{1}{2}\) and XOR them
- \(X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2} \oplus 1\)
- Expected size of each XOR: \(\frac{n}{2}\)

\section*{2-Universal Hash Functions}
- Variables: \(X_{1}, X_{2}, \cdots X_{n}\)
- To construct \(h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\), choose m random XORs
- Pick every \(X_{i}\) with prob. \(\frac{1}{2}\) and XOR them
- \(X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2} \oplus 1\)
- Expected size of each XOR: \(\frac{n}{2}\)
- To choose \(\alpha \in\{0,1\}^{m}\), set every XOR equation to 0 or 1 randomly
\[
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2} \oplus 1=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1} \oplus 1=1 \\
\cdots \\
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
\]
- Solutions in a cell: \(F \wedge Q_{1} \cdots \wedge Q_{m}\)

\section*{2-Universal Hash Functions}
- Variables: \(X_{1}, X_{2}, \cdots X_{n}\)
- To construct \(h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\), choose m random XORs
- Pick every \(X_{i}\) with prob. \(\frac{1}{2}\) and XOR them
- \(X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2} \oplus 1\)
- Expected size of each XOR: \(\frac{n}{2}\)
- To choose \(\alpha \in\{0,1\}^{m}\), set every XOR equation to 0 or 1 randomly
\[
\begin{align*}
& X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2} \oplus 1=0  \tag{1}\\
& X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1} \oplus 1=1 \tag{2}
\end{align*}
\]
\[
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\]
- Solutions in a cell: \(F \wedge Q_{1} \cdots \wedge Q_{m}\)
- Finding a solution is NP-complete

\section*{2-Universal Hash Functions}
- Variables: \(X_{1}, X_{2}, \cdots X_{n}\)
- To construct \(h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\), choose m random XORs
- Pick every \(X_{i}\) with prob. \(\frac{1}{2}\) and XOR them
- \(X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2} \oplus 1\)
- Expected size of each XOR: \(\frac{n}{2}\)
- To choose \(\alpha \in\{0,1\}^{m}\), set every XOR equation to 0 or 1 randomly
\[
\begin{array}{r}
X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2} \oplus 1=0 \\
X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1} \oplus 1=1 \\
\cdots \\
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\end{array}
\]
- Solutions in a cell: \(F \wedge Q_{1} \cdots \wedge Q_{m}\)
- Finding a solution is NP-complete

Modern SAT solvers are able to deal routinely with practical problems that involve many thousands of variables, although such problems were regarded as hopeless just a few years ago.
(Knuth, 2016)

\section*{2-Universal Hash Functions}
- Variables: \(X_{1}, X_{2}, \cdots X_{n}\)
- To construct \(h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\), choose m random XORs
- Pick every \(X_{i}\) with prob. \(\frac{1}{2}\) and XOR them
- \(X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2} \oplus 1\)
- Expected size of each XOR: \(\frac{n}{2}\)
- To choose \(\alpha \in\{0,1\}^{m}\), set every XOR equation to 0 or 1 randomly
\[
\begin{align*}
& X_{1} \oplus X_{3} \oplus X_{6} \cdots \oplus X_{n-2} \oplus 1=0  \tag{1}\\
& X_{2} \oplus X_{5} \oplus X_{6} \cdots \oplus X_{n-1} \oplus 1=1 \tag{2}
\end{align*}
\]
\[
X_{1} \oplus X_{2} \oplus X_{5} \cdots \oplus X_{n-2}=1
\]
- Solutions in a cell: \(F \wedge Q_{1} \cdots \wedge Q_{m}\)
- Finding a solution is NP-complete
- Performance of state of the art SAT solvers degrade with increase in the size of XORs (SAT Solvers != SAT oracles)

\section*{Improved Universal Hash Functions}
- Not all variables are required to specify solution space of \(\varphi\)
\(-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)\)
- \(X_{1}\) and \(X_{2}\) uniquely determines rest of the variables (i.e., \(X_{3}\) )
- Formally: if \(I\) is independent support, then \(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(\varphi)\), if \(\sigma_{1}\) and \(\sigma_{2}\) agree on \(/\) then \(\sigma_{1}=\sigma_{2}\)
- \(\left\{X_{1}, X_{2}\right\}\) is independent support but \(\left\{X_{1}, X_{3}\right\}\) is not

\section*{Improved Universal Hash Functions}
- Not all variables are required to specify solution space of \(\varphi\)
\(-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)\)
- \(X_{1}\) and \(X_{2}\) uniquely determines rest of the variables (i.e., \(X_{3}\) )
- Formally: if \(I\) is independent support, then \(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(\varphi)\), if \(\sigma_{1}\) and \(\sigma_{2}\) agree on \(/\) then \(\sigma_{1}=\sigma_{2}\)
- \(\left\{X_{1}, X_{2}\right\}\) is independent support but \(\left\{X_{1}, X_{3}\right\}\) is not
- Random XORs need to be constructed only over I

\section*{Improved Universal Hash Functions}
- Not all variables are required to specify solution space of \(\varphi\)
\(-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)\)
- \(X_{1}\) and \(X_{2}\) uniquely determines rest of the variables (i.e., \(X_{3}\) )
- Formally: if \(I\) is independent support, then \(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(\varphi)\), if \(\sigma_{1}\) and \(\sigma_{2}\) agree on \(/\) then \(\sigma_{1}=\sigma_{2}\)
- \(\left\{X_{1}, X_{2}\right\}\) is independent support but \(\left\{X_{1}, X_{3}\right\}\) is not
- Random XORs need to be constructed only over I
- Typically I is 1-2 orders of magnitude smaller than \(X\)
- Auxiliary variables introduced during encoding phase are dependent
(Tseitin 1968)
- Not all variables are required to specify solution space of \(\varphi\)
\(-F:=X_{3} \Longleftrightarrow\left(X_{1} \vee X_{2}\right)\)
- \(X_{1}\) and \(X_{2}\) uniquely determines rest of the variables (i.e., \(X_{3}\) )
- Formally: if \(I\) is independent support, then \(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(\varphi)\), if \(\sigma_{1}\) and \(\sigma_{2}\) agree on \(/\) then \(\sigma_{1}=\sigma_{2}\)
- \(\left\{X_{1}, X_{2}\right\}\) is independent support but \(\left\{X_{1}, X_{3}\right\}\) is not
- Random XORs need to be constructed only over I
- Typically I is \(1-2\) orders of magnitude smaller than \(X\)
- Auxiliary variables introduced during encoding phase are dependent
(Tseitin 1968)
Algorithmic procedure to determine \(I\) ?

\section*{Independent Support}
- \(I \subseteq X\) is an independent support:
\(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(\varphi), \sigma_{1}\) and \(\sigma_{2}\) agree on \(I\) then \(\sigma_{1}=\sigma_{2}\)

\section*{Independent Support}
- \(I \subseteq X\) is an independent support:
\(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(\varphi), \sigma_{1}\) and \(\sigma_{2}\) agree on \(I\) then \(\sigma_{1}=\sigma_{2}\)
- \(F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \Longrightarrow \bigwedge_{i}\left(x_{i}=y_{i}\right)\) where \(F\left(y_{1}, \cdots y_{n}\right):=F\left(x_{1} \mapsto y_{1}, \cdots x_{n} \mapsto y_{n}\right)\)

\section*{Independent Support}
- \(I \subseteq X\) is an independent support:
\(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(\varphi), \sigma_{1}\) and \(\sigma_{2}\) agree on \(I\) then \(\sigma_{1}=\sigma_{2}\)
- \(F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \Longrightarrow \bigwedge_{i}\left(x_{i}=y_{i}\right)\) where \(F\left(y_{1}, \cdots y_{n}\right):=F\left(x_{1} \mapsto y_{1}, \cdots x_{n} \mapsto y_{n}\right)\)
- \(Q_{F, I}:=F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \wedge \neg\left(\bigwedge_{i}\left(x_{i}=\right.\right.\) \(\left.y_{i}\right)\) )

\section*{Independent Support}
- \(I \subseteq X\) is an independent support:
\(\forall \sigma_{1}, \sigma_{2} \in \operatorname{Sol}(\varphi), \sigma_{1}\) and \(\sigma_{2}\) agree on \(I\) then \(\sigma_{1}=\sigma_{2}\)
- \(F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \Longrightarrow \bigwedge_{i}\left(x_{i}=y_{i}\right)\) where \(F\left(y_{1}, \cdots y_{n}\right):=F\left(x_{1} \mapsto y_{1}, \cdots x_{n} \mapsto y_{n}\right)\)
- \(Q_{F, I}:=F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \bigwedge_{i \mid x_{i} \in I}\left(x_{i}=y_{i}\right) \wedge \neg\left(\bigwedge_{i}\left(x_{i}=\right.\right.\) \(\left.y_{i}\right)\) )
- Lemma: \(Q_{F, I}\) is UNSAT if and only if \(I\) is independent support

\section*{Independent Support}
\[
\begin{aligned}
H_{1}:= & \left\{x_{1}=y_{1}\right\}, H_{2}:=\left\{x_{2}=y_{2}\right\}, \cdots H_{n}:=\left\{x_{n}=y_{n}\right\} \\
& \Omega=F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \neg\left(\bigwedge_{i}\left(x_{i}=y_{i}\right)\right)
\end{aligned}
\]

\section*{Lemma}
\(I=\left\{x_{i}\right\}\) is independent support iif \(H^{\prime} \wedge \Omega\) is UNSAT where \(H^{\prime}=\left\{H_{i} \mid x_{i} \in I\right\}\)

\section*{Minimal Unsatisfiable Subset}

Given \(\Psi=H_{1} \wedge H_{2} \cdots \wedge H_{m} \wedge \Omega\)
Unsatisfiable Subset Find subset \(\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}\) of \(\left\{H_{1}, H_{2}, \cdots H_{m}\right\}\) such that \(H_{i 1} \wedge H_{i 2} \wedge H_{i k} \wedge \Omega\) is UNSAT

\section*{Minimal Unsatisfiable Subset}

Given \(\Psi=H_{1} \wedge H_{2} \cdots \wedge H_{m} \wedge \Omega\)
Unsatisfiable Subset Find subset \(\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}\) of \(\left\{H_{1}, H_{2}, \cdots H_{m}\right\}\) such that \(H_{i 1} \wedge H_{i 2} \wedge H_{i k} \wedge \Omega\) is UNSAT
Minimal Unsatisfiable Subset Find minimal subset \(\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}\) of \(\left\{H_{1}, H_{2}, \cdots H_{m}\right\}\) such that \(H_{i 1} \wedge H_{i 2} \wedge H_{i k} \wedge \Omega\) is UNSAT

\section*{Minimal Unsatisfiable Subset}

Given \(\Psi=H_{1} \wedge H_{2} \cdots \wedge H_{m} \wedge \Omega\)
Unsatisfiable Subset Find subset \(\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}\) of \(\left\{H_{1}, H_{2}, \cdots H_{m}\right\}\) such that \(H_{i 1} \wedge H_{i 2} \wedge H_{i k} \wedge \Omega\) is UNSAT
Minimal Unsatisfiable Subset Find minimal subset \(\left\{H_{i 1}, H_{i 2}, \cdots H_{i k}\right\}\) of \(\left\{H_{1}, H_{2}, \cdots H_{m}\right\}\) such that \(H_{i 1} \wedge H_{i 2} \wedge H_{i k} \wedge \Omega\) is UNSAT

\section*{Minimal Independent Support}
\[
\begin{aligned}
H_{1}:= & \left\{x_{1}=y_{1}\right\}, H_{2}:=\left\{x_{2}=y_{2}\right\}, \cdots H_{n}:=\left\{x_{n}=y_{n}\right\} \\
& \Omega=F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \neg\left(\bigwedge\left(x_{i}=y_{i}\right)\right)
\end{aligned}
\]

\section*{Lemma}
\(I=\left\{x_{i}\right\}\) is Minimal Independent Support iif \(H^{\prime}\) is Minimal Unsatisfiable Subset where \(H^{\prime}=\left\{H_{i} \mid x_{i} \in I\right\}\)

\section*{MIS \(\Rightarrow\) MUS}

\section*{Minimal Independent Support}
\[
\begin{aligned}
H_{1}:= & \left\{x_{1}=y_{1}\right\}, H_{2}:=\left\{x_{2}=y_{2}\right\}, \cdots H_{n}:=\left\{x_{n}=y_{n}\right\} \\
& \Omega=F\left(x_{1}, \cdots x_{n}\right) \wedge F\left(y_{1}, \cdots y_{n}\right) \wedge \neg\left(\bigwedge\left(x_{i}=y_{i}\right)\right)
\end{aligned}
\]

\section*{Lemma}
\(I=\left\{x_{i}\right\}\) is Minimal Independent Support iif \(H^{\prime}\) is Minimal Unsatisfiable Subset where \(H^{\prime}=\left\{H_{i} \mid x_{i} \in I\right\}\)

\section*{MIS \(\Rightarrow\) MUS}

Two orders of magnitude improvement in runtime

\section*{Challenges}

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?
- Independent Support-based 2-Universal Hash Functions
Challenge 2 How large is a "small" cell?
Challenge 3 How many cells?

\section*{Challenge 2: How large is a "small" cell}
- Too large \(\hookrightarrow\) Hard to enumerate

\section*{Challenge 2: How large is a "small" cell}
- Too large \(\longmapsto\) Hard to enumerate
- Too small \(\longmapsto\) Weaker probabilistic guarantees

\section*{Challenge 2: How large is a "small" cell}
- Too large \(\mapsto\) Hard to enumerate
- Too small \(\longmapsto\) Weaker probabilistic guarantees
\(-\operatorname{Pr}\left[\frac{\mathrm{E}[Z]}{1+\varepsilon} \leq Z \leq \mathrm{E}[Z](1+\varepsilon)\right] \geq 1-\frac{1}{\left(\frac{\varepsilon}{1+\varepsilon}\right)^{2}(\mathrm{E}[Z])}\)

\section*{Challenge 2: How large is a "small" cell}
- Too large \(\hookrightarrow\) Hard to enumerate
- Too small \(\longmapsto\) Weaker probabilistic guarantees
\[
-\operatorname{Pr}\left[\frac{\mathrm{E}[Z]}{1+\varepsilon} \leq Z \leq \mathrm{E}[Z](1+\varepsilon)\right] \geq 1-\frac{1}{\left(\frac{\varepsilon}{1+\varepsilon}\right)^{2}(\mathrm{E}[Z])}
\]

We want a "small" cell to have roughly thresh solutions, where
\[
\text { thresh }=5\left(1+\frac{1}{\varepsilon^{2}}\right)
\]

\section*{Challenges}

Challenge 1 How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?
- Independent Support-based 2-Universal Hash Functions
Challenge 2 How large is a "small" cell?
- Independent Support-based 2-Universal Hash Functions
Challenge 3 How many cells?

\section*{Challenge 3: How many cells?}
- A cell is small if it has less than thresh \(=5\left(1+\frac{1}{\varepsilon}\right)^{2}\) solutions
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{|\operatorname{Sol}(\varphi)|}{\text { thresh }}\)

\section*{Challenge 3: How many cells?}
- A cell is small if it has less than thresh \(=5\left(1+\frac{1}{\varepsilon}\right)^{2}\) solutions
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(\varphi) \mid}{\text { thresh }}\)
- Check for every \(m=0,1, \cdots n\) if the number of solutions \(\leq\) thresh

\section*{Challenge 3: How many cells?}
- A cell is small if it has less than thresh \(=5\left(1+\frac{1}{\varepsilon}\right)^{2}\) solutions
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{|\operatorname{Sol}(\varphi)|}{\text { thresh }}\)
- Check for every \(m=0,1, \cdots n\) if the number of solutions \(\leq\) thresh
- XORs for each \(m\) must be independently chosen

\section*{Challenge 3: How many cells?}
- A cell is small if it has less than thresh \(=5\left(1+\frac{1}{\varepsilon}\right)^{2}\) solutions
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(\varphi) \mid}{\text { thresh }}\)
- Check for every \(m=0,1, \cdots n\) if the number of solutions \(\leq\) thresh
- XORs for each \(m\) must be independently chosen
- Query 1: Is \(\#\left(F \wedge Q_{1}^{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1}^{2} \wedge Q_{2}^{2}\right) \leq\) thresh
- Query n: Is \(\#\left(F \wedge Q_{1}^{n} \cdots \wedge Q_{n}^{n}\right) \leq\) thresh

\section*{Challenge 3: How many cells?}
- A cell is small if it has less than thresh \(=5\left(1+\frac{1}{\varepsilon}\right)^{2}\) solutions
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(\varphi) \mid}{\text { thresh }}\)
- Check for every \(m=0,1, \cdots n\) if the number of solutions \(\leq\) thresh
- XORs for each \(m\) must be independently chosen
- Query 1: Is \(\#\left(F \wedge Q_{1}^{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1}^{2} \wedge Q_{2}^{2}\right) \leq\) thresh
- Query n: Is \(\#\left(F \wedge Q_{1}^{n} \cdots \wedge Q_{n}^{n}\right) \leq\) thresh
- Stop at the first \(m\) where Query \(m\) returns YES and return estimate as \(\#\left(F \wedge Q_{1}^{m} \cdots \wedge Q_{m}^{m}\right) \times 2^{m}\)

\section*{Challenge 3: How many cells?}
- A cell is small if it has less than thresh \(=5\left(1+\frac{1}{\varepsilon}\right)^{2}\) solutions
- We want to partition into \(2^{m^{*}}\) cells such that \(2^{m^{*}}=\frac{\mid \text { Sol }(\varphi) \mid}{\text { thresh }}\)
- Check for every \(m=0,1, \cdots n\) if the number of solutions \(\leq\) thresh
- XORs for each \(m\) must be independently chosen
- Query 1: Is \(\#\left(F \wedge Q_{1}^{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1}^{2} \wedge Q_{2}^{2}\right) \leq\) thresh
- Query n: Is \(\#\left(F \wedge Q_{1}^{n} \cdots \wedge Q_{n}^{n}\right) \leq\) thresh
- Stop at the first \(m\) where Query \(m\) returns YES and return estimate as \(\#\left(F \wedge Q_{1}^{m} \cdots \wedge Q_{m}^{m}\right) \times 2^{m}\)
- Number of SAT calls is \(\mathcal{O}(n)\)
(CMV, CP13)
(CFMSV, AAAI14)

\section*{ApproxMC(F, \(\varepsilon, \delta)\)}


\section*{ApproxMC( \(F, \varepsilon, \delta)\)}

\section*{Theoretical Guarantees}

Theorem (Correctness)
\[
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(\varphi)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(\varphi)|(1+\varepsilon)\right] \geq 1-\delta
\]

\section*{Theorem (Complexity)}

ApproxMC \((F, \varepsilon, \delta)\) makes \(\mathcal{O}\left(\frac{n \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)\) calls to SAT oracle.
- Prior work required \(\mathcal{O}\left(\frac{n \log n \log \left(\frac{1}{\delta}\right)}{\varepsilon}\right)\) calls to SAT oracle (Stockmeyer 1983)

\section*{ApproxMC( \(F, \varepsilon, \delta)\)}

\section*{Theoretical Guarantees}

Theorem (Correctness)
\[
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(\varphi)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(\varphi)|(1+\varepsilon)\right] \geq 1-\delta
\]

\section*{Theorem (Complexity)}

ApproxMC \((F, \varepsilon, \delta)\) makes \(\mathcal{O}\left(\frac{n \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)\) calls to SAT oracle.
- Prior work required \(\mathcal{O}\left(\frac{n \log n \log \left(\frac{1}{\delta}\right)}{\varepsilon}\right)\) calls to SAT oracle (Stockmeyer 1983)

Runtime performance

\section*{ApproxMC( \(F, \varepsilon, \delta)\)}

\section*{Theoretical Guarantees}

Theorem (Correctness)
\[
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(\varphi)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(\varphi)|(1+\varepsilon)\right] \geq 1-\delta
\]

\section*{Theorem (Complexity)}

ApproxMC \((F, \varepsilon, \delta)\) makes \(\mathcal{O}\left(\frac{n \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)\) calls to SAT oracle.
- Prior work required \(\mathcal{O}\left(\frac{n \log n \log \left(\frac{1}{\delta}\right)}{\varepsilon}\right)\) calls to SAT oracle (Stockmeyer 1983)

\section*{Runtime performance}

Handles thousands of variables in few hours but insufficient to solve practical applications

\section*{ApproxMC(F, \(\varepsilon, \delta)\)}

\section*{Theoretical Guarantees}

Theorem (Correctness)
\[
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(\varphi)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(\varphi)|(1+\varepsilon)\right] \geq 1-\delta
\]

\section*{Theorem (Complexity)}

ApproxMC \((F, \varepsilon, \delta)\) makes \(\mathcal{O}\left(\frac{n \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)\) calls to SAT oracle.
- Prior work required \(\mathcal{O}\left(\frac{n \log n \log \left(\frac{1}{\delta}\right)}{\varepsilon}\right)\) calls to SAT oracle (Stockmeyer 1983)

\section*{Runtime performance}

Handles thousands of variables in few hours but insufficient to solve practical applications

How to scale to hundreds of thousands of variables and beyond?

\section*{ApproxMC( \(F, \varepsilon, \delta)\)}

\section*{Theoretical Guarantees}

Theorem (Correctness)
\[
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(\varphi)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(\varphi)|(1+\varepsilon)\right] \geq 1-\delta
\]

\section*{Theorem (Complexity)}

ApproxMC(F, \(\varepsilon, \delta)\) makes \(\mathcal{O}\left(\frac{n \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)\) calls to SAT oracle.
- Prior work required \(\mathcal{O}\left(\frac{n \log n \log \left(\frac{1}{\delta}\right)}{\varepsilon}\right)\) calls to SAT oracle (Stockmeyer 1983)

\section*{Runtime performance}

Handles thousands of variables in few hours but insufficient to solve practical applications

How to scale to hundreds of thousands of variables and beyond? Efficient SAT oracle calls?

\section*{Beyond ApproxMC}
- Query 1: Is \(\#\left(F \wedge Q_{1}^{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1}^{2} \wedge Q_{2}^{2}\right) \leq\) thresh
- Query n: Is \(\#\left(F \wedge Q_{1}^{n} \cdots \wedge Q_{n}^{n}\right) \leq\) thresh

Classical View
- Every NP query requires equal amount of time

\section*{Beyond ApproxMC}
- Query 1: Is \(\#\left(F \wedge Q_{1}^{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1}^{2} \wedge Q_{2}^{2}\right) \leq\) thresh
- ...
- Query n: Is \(\#\left(F \wedge Q_{1}^{n} \cdots \wedge Q_{n}^{n}\right) \leq\) thresh

Classical View
- Every NP query requires equal amount of time

Practitioner's View
- Solving \(\left(F \wedge Q_{1}^{1}\right)\) followed by \(\left(F \wedge Q_{1}^{2} \wedge Q_{2}^{2}\right)\) requires larger runtime than solving \(\left(F \wedge Q_{1}^{1}\right)\) followed by \(\left(F \wedge Q_{1}^{1} \wedge Q_{2}^{2}\right)\)

\section*{Beyond ApproxMC}
- Query 1: Is \(\#\left(F \wedge Q_{1}^{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1}^{2} \wedge Q_{2}^{2}\right) \leq\) thresh
- ...
- Query n: Is \(\#\left(F \wedge Q_{1}^{n} \cdots \wedge Q_{n}^{n}\right) \leq\) thresh

Classical View
- Every NP query requires equal amount of time

Practitioner's View
- Solving \(\left(F \wedge Q_{1}^{1}\right)\) followed by \(\left(F \wedge Q_{1}^{2} \wedge Q_{2}^{2}\right)\) requires larger runtime than solving \(\left(F \wedge Q_{1}^{1}\right)\) followed by \(\left(F \wedge Q_{1}^{1} \wedge Q_{2}^{2}\right)\)
\[
\text { - If }\left(F \wedge Q_{1}^{1}\right) \Longrightarrow L \text { then }\left(F \wedge Q_{1}^{1} \wedge Q_{2}^{2}\right) \Longrightarrow L
\]
- But, If \(\left(F \wedge Q_{1}^{1}\right) \Longrightarrow L\) then it is not always the case that \(\left(F \wedge Q_{1}^{2} \wedge Q_{2}^{2}\right) \Longrightarrow L\)

\section*{Beyond ApproxMC}
- What if we modify our queries to:
- Query 1: Is \(\#\left(F \wedge Q_{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq\) thresh
- ...
- Query \(n\) : Is \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq\) thresh
- Stop at the first \(m\) where Query \(m\) returns YES and return estimate as \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}\)
- Observation: \(\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)\)
- If Query \(i\) returns YES, then Query \(i+1\) must return YES

\section*{Beyond ApproxMC}
- What if we modify our queries to:
- Query 1: Is \(\#\left(F \wedge Q_{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq\) thresh
- ...
- Query \(n\) : Is \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq\) thresh
- Stop at the first \(m\) where Query \(m\) returns YES and return estimate as \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}\)
- Observation: \(\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)\)
- If Query \(i\) returns YES, then Query \(i+1\) must return YES
- Galloping search (\# of SAT calls: \(\mathcal{O}(\log n)\) )
- Incremental solving

\section*{Beyond ApproxMC}
- What if we modify our queries to:
- Query 1: Is \(\#\left(F \wedge Q_{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq\) thresh
- ...
- Query \(n\) : Is \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq\) thresh
- Stop at the first \(m\) where Query \(m\) returns YES and return estimate as \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}\)
- Observation: \(\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)\)
- If Query \(i\) returns YES, then Query \(i+1\) must return YES
- Galloping search (\# of SAT calls: \(\mathcal{O}(\log n)\) )
- Incremental solving
- But Query \(i\) and Query \(j\) are no longer independent

\section*{Beyond ApproxMC}
- What if we modify our queries to:
- Query 1: Is \(\#\left(F \wedge Q_{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq\) thresh
- ...
- Query \(n\) : Is \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq\) thresh
- Stop at the first \(m\) where Query \(m\) returns YES and return estimate as \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}\)
- Observation: \(\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)\)
- If Query \(i\) returns YES, then Query \(i+1\) must return YES
- Galloping search (\# of SAT calls: \(\mathcal{O}(\log n)\) )
- Incremental solving
- But Query \(i\) and Query \(j\) are no longer independent
- Independence crucial to analysis (Stockmeyer 1983, ...)

\section*{Beyond ApproxMC}
- What if we modify our queries to:
- Query 1: Is \(\#\left(F \wedge Q_{1}\right) \leq\) thresh
- Query 2: Is \(\#\left(F \wedge Q_{1} \wedge Q_{2}\right) \leq\) thresh
- ...
- Query \(n\) : Is \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{n}\right) \leq\) thresh
- Stop at the first \(m\) where Query \(m\) returns YES and return estimate as \(\#\left(F \wedge Q_{1} \wedge Q_{2} \cdots \wedge Q_{m}\right) \times 2^{m}\)
- Observation: \(\#\left(F \wedge Q_{1} \cdots \wedge Q_{i} \wedge Q_{i+1}\right) \leq \#\left(F \wedge Q_{1} \cdots \wedge Q_{i}\right)\)
- If Query \(i\) returns YES, then Query \(i+1\) must return YES
- Galloping search (\# of SAT calls: \(\mathcal{O}(\log n)\) )
- Incremental solving
- But Query \(i\) and Query \(j\) are no longer independent
- Independence crucial to analysis (Stockmeyer 1983, ...)
- Key Insight: The probability of making a bad choice of \(Q_{i}\) is very small for \(i \ll m^{*}\)
- Dependence of Query j upon Query \(i(i<j)\) does not hurt

\section*{Taming the Curse of Dependence}

Let \(2^{m^{*}}=\frac{\mid \text { Sol }(\varphi) \mid}{\text { thresh }}\)
Lemma (1)
ApproxMC \((F, \varepsilon, \delta)\) terminates with \(m \in\left\{m^{*}-1, m^{*}\right\}\) with probability \(\geq 0.8\)

\section*{Lemma (2)}

For \(m \in\left\{m^{*}-1, m^{*}\right\}\), estimate obtained from a randomly picked cell lies within a tolerance of \(\varepsilon\) of \(|\operatorname{Sol}(\varphi)|\) with probability \(\geq 0.8\)

\section*{Optimized ApproxMC(F, \(\varepsilon, \delta)\)}

\section*{Theorem (Correctness)}
\[
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(\varphi)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(\varphi)|(1+\varepsilon)\right] \geq 1-\delta
\]

\section*{Theorem (Complexity)}

ApproxMC(F, \(\varepsilon, \delta)\) makes \(\mathcal{O}\left(\frac{\log n \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)\) calls to SAT oracle.

\section*{Optimized ApproxMC( \(F, \varepsilon, \delta)\)}

\section*{Theorem (Correctness)}
\[
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(\varphi)|}{1+\varepsilon} \leq \operatorname{ApproxMC}(F, \varepsilon, \delta) \leq|\operatorname{Sol}(\varphi)|(1+\varepsilon)\right] \geq 1-\delta
\]

\section*{Theorem (Complexity)}

ApproxMC \((F, \varepsilon, \delta)\) makes \(\mathcal{O}\left(\frac{\log n \log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}\right)\) calls to SAT oracle.

\section*{Theorem (FPRAS for DNF)}

If \(\varphi\) is a DNF formula, then ApproxMC is FPRAS - fundamentally different from the only other known FPRAS for DNF (Karp, Luby 1983)

\section*{Beyond Boolean: Handling bit-vectors}
- Bit-vector: fixed-width integers
- Bit-vector constraints can be translated into a Boolean formula
- Significant advancements in bit-vector solving over the past decade
- Challenge: Hash functions for bit vectors
- Lifting hashing from \((\bmod 2)\) to \((\bmod p)\) constraints
- p: smallest prime grater than domain of variables

\section*{Beyond Boolean: Handling bit-vectors}
- Bit-vector: fixed-width integers
- Bit-vector constraints can be translated into a Boolean formula
- Significant advancements in bit-vector solving over the past decade
- Challenge: Hash functions for bit vectors
- Lifting hashing from \((\bmod 2)\) to \((\bmod p)\) constraints
- p: smallest prime grater than domain of variables
- Linear equality \((\bmod p)\) constraints to hash into cells
- Amenable to Gaussian Elimination

\section*{Beyond Boolean: Handling bit-vectors}
- Bit-vector: fixed-width integers
- Bit-vector constraints can be translated into a Boolean formula
- Significant advancements in bit-vector solving over the past decade
- Challenge: Hash functions for bit vectors
- Lifting hashing from \((\bmod 2)\) to \((\bmod p)\) constraints
- p: smallest prime grater than domain of variables
- Linear equality \((\bmod p)\) constraints to hash into cells
- Amenable to Gaussian Elimination
- Number of cells: \(p^{m}\)
- Large \(p\) does not give finer control on the number of cells
- Few cells \(\rightarrow\) too many solutions in a cell
- Too many cells \(\hookrightarrow\) No solutions in most of the cells

\section*{\(H_{S M T}\) : Efficient word-level Hash Function}
- Use different primes to control the number of cells
- Choose appropriate \(N\) and express as product of preferred primes, i.e., \(N=p_{1}^{c_{1}} p_{2}^{c_{2}} p_{3}^{c_{3}} \cdots p_{n}^{c_{n}}\)
- \(H_{S M T}\) :
- \(c_{1}(\bmod p)\) constraints
- \(c_{2}(\bmod p)\) constraints
- ...
- \(H_{S M T}\) satisfies guarantees of 2-universality

\section*{From Timeouts to under 40 seconds}


Performance of RDA


Performance of ApproxMC
(DMPV, AAAI17)

\section*{Highly Accurate Estimates}

\[
(\varepsilon=0.8, \delta=0.1)
\]

\section*{Beyond Network Reliability}
(CFMSV, AAAI14), (IMMV,
CP15), (CFMV, IJCAI15), (CMMV,
AAAI16), (CMV, IJCAI16)


\section*{Part II}

\section*{Discrete Sampling}

\section*{Discrete Sampling}
- Given
- Boolean Variables \(X_{1}, X_{2}, \cdots X_{n}\)
- Formula \(\varphi\) over \(X_{1}, X_{2}, \cdots X_{n}\)
- Uniform Generator
\[
\operatorname{Pr}[\mathrm{y} \text { is output }]=\frac{1}{|\operatorname{Sol}(\varphi)|}
\]
- Almost-Uniform Generator
\[
\frac{1}{(1+\varepsilon)|\operatorname{Sol}(\varphi)|} \leq \operatorname{Pr}[\mathrm{y} \text { is output }]=\frac{1+\varepsilon}{|\operatorname{Sol}(\varphi)|}
\]

\section*{As simple as sampling dots}


\section*{As simple as sampling dots}


\section*{As simple as sampling dots}

Pick a random cell


Enumerate all the solutions and pick a random solution

\section*{As simple as sampling dots}

Pick a random cell


Enumerate all the solutions and pick a random solution Challenge: How many cells?

\section*{How many cells?}
- Desired Number of cells: \(2^{m^{*}}=\frac{\mid \text { Sol }(\varphi) \mid}{\text { thresh }}\)
- But determining \(|\operatorname{Sol}(\varphi)|\) is expensive
- ApproxMC( \(F, \varepsilon, \delta)\) returns \(C\) such that
\[
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(\varphi)|}{1+\varepsilon} \leq C \leq|\operatorname{Sol}(\varphi)|(1+\varepsilon)\right] \geq 1-\delta
\]
- \(\tilde{m}=\log \frac{C}{\text { thresh }}\left(m^{*}=\log \frac{|\operatorname{Sol}(\varphi)|}{\text { thresh }}\right)\)
- Check for \(m=\tilde{m}-1, \tilde{m}, \tilde{m}+1\) if a randomly chosen cell is small

\section*{How many cells?}
- Desired Number of cells: \(2^{m^{*}}=\frac{\mid \text { Sol }(\varphi) \mid}{\text { thresh }}\)
- But determining \(|\operatorname{Sol}(\varphi)|\) is expensive
- ApproxMC( \(F, \varepsilon, \delta)\) returns \(C\) such that
\[
\operatorname{Pr}\left[\frac{|\operatorname{Sol}(\varphi)|}{1+\varepsilon} \leq C \leq|\operatorname{Sol}(\varphi)|(1+\varepsilon)\right] \geq 1-\delta
\]
- \(\tilde{m}=\log \frac{C}{\text { thresh }}\left(m^{*}=\log \frac{|\operatorname{Sol}(\varphi)|}{\text { thresh }}\right)\)
- Check for \(m=\tilde{m}-1, \tilde{m}, \tilde{m}+1\) if a randomly chosen cell is small
- Not just a practical hack required non-trivial proof

\section*{Theoretical Guarantees}

\section*{Theorem (Almost-Uniformity)}
\[
\forall y \in \operatorname{Sol}(\varphi), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(\varphi)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(\varphi)|}
\]

Theoretical Guarantees

Theorem (Almost-Uniformity)
\[
\forall y \in \operatorname{Sol}(\varphi), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(\varphi)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(\varphi)|}
\]

\section*{Theorem (Query)}

For a formula \(\varphi\) over \(n\) variables, to generate \(m\) samples, UniGen makes one call to approximate counter

Theoretical Guarantees

Theorem (Almost-Uniformity)
\[
\forall y \in \operatorname{Sol}(\varphi), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(\varphi)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(\varphi)|}
\]

\section*{Theorem (Query)}

For a formula \(\varphi\) over \(n\) variables, to generate \(m\) samples, UniGen makes one call to approximate counter
- JVV (Jerrum, Valiant and Vazirani 1986) makes \(n \times m\) calls

\section*{Theoretical Guarantees}

\section*{Theorem (Almost-Uniformity)}
\[
\forall y \in \operatorname{Sol}(\varphi), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(\varphi)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(\varphi)|}
\]

\section*{Theorem (Query)}

For a formula \(\varphi\) over \(n\) variables, to generate \(m\) samples, UniGen makes one call to approximate counter
- JVV (Jerrum, Valiant and Vazirani 1986) makes \(n \times m\) calls

Universality
- JVV employs 2-universal hash functions
- UniGen employs 3-universal hash functions

\section*{Theoretical Guarantees}
```

Theorem (Almost-Uniformity)

$$
\forall y \in \operatorname{Sol}(\varphi), \frac{1}{(1+\varepsilon)|\operatorname{Sol}(\varphi)|} \leq \operatorname{Pr}[y \text { is output }] \leq \frac{1+\varepsilon}{|\operatorname{Sol}(\varphi)|}
$$

```

\section*{Theorem (Query)}

For a formula \(\varphi\) over \(n\) variables, to generate \(m\) samples, UniGen makes one call to approximate counter
- JVV (Jerrum, Valiant and Vazirani 1986) makes \(n \times m\) calls

Universality
- JVV employs 2-universal hash functions
- UniGen employs 3-universal hash functions

Random XORs are 3-universal
\begin{tabular}{|c|l|}
\hline & Relative Runtime \\
\hline SAT Solver & 1 \\
\hline Desired Uniform Generator & 10 \\
\hline UniGen & 20 \\
\hline XORSample (2012 state of the art) & 50000 \\
\hline
\end{tabular}

Experiments over 200+ benchmarks

\section*{Three Orders of Improvement}
\begin{tabular}{|c|l|}
\hline & Relative Runtime \\
\hline SAT Solver & 1 \\
\hline Desired Uniform Generator & 10 \\
\hline UniGen & 20 \\
\hline XORSample (2012 state of the art) & 50000 \\
\hline
\end{tabular}

Experiments over 200+ benchmarks
UniGen is highly parallelizable - achieves linear speedup i.e., runtime decreases linearly with number of processors.

\section*{Three Orders of Improvement}
\begin{tabular}{|c|l|}
\hline & Relative Runtime \\
\hline SAT Solver & 1 \\
\hline Desired Uniform Generator & 10 \\
\hline UniGen (two cores) & \(\mathbf{1 0}\) \\
\hline XORSample (2012 state of the art) & 50000 \\
\hline
\end{tabular}

Experiments over 200+ benchmarks
UniGen is highly parallelizable - achieves linear speedup i.e., runtime decreases linearly with number of processors.
Closer to technical transfer

\section*{Uniformity}

- Benchmark: case110.cnf; \#var: 287; \#clauses: 1263
- Total Runs: \(4 \times 10^{6}\); Total Solutions : 16384

\section*{Statistically Indistinguishable}

- Benchmark: case110.cnf; \#var: 287; \#clauses: 1263
- Total Runs: \(4 \times 10^{6}\); Total Solutions : 16384

\section*{Beyond Verification}


\section*{Towards Discrete Sampling and Integration Revolution}

\section*{Towards Discrete Sampling and Integration Revolution}
- Tighter integration between solvers and algorithms

\section*{Towards Discrete Sampling and Integration Revolution}
- Tighter integration between solvers and algorithms
- Exploring solution space structure of CNF+XOR formulas
(DMV, IJCAI16)


\section*{Towards Discrete Sampling and Integration Revolution}
- Tighter integration between solvers and algorithms
- Exploring solution space structure of CNF+XOR formulas
(DMV, IJCAI16)

- Can we handle real variables without discretization?
- Counting and Sampling are fundamental problems in Computer Science
- Applications from network reliability, probabilistic inference, side-channel attacks to hardware verification
- Hashing-based approaches provide theoretical guarantees and demonstrate scalability
- From problems with tens of variables to hundreds of thousands of variables
\begin{tabular}{|c|l|}
\hline Generator & \begin{tabular}{l} 
Relative \\
Runtime
\end{tabular} \\
\hline SAT Solver & 1 \\
\hline Desired Uniform Generator & 10 \\
\hline UniGen & 20 \\
\hline UniGen (two cores) & 10 \\
\hline XORSample & 50000 \\
\hline
\end{tabular}
```

