
Discrete	Sampling	and	Integration	
for	the	AI	Practitioner

Supratik Chakraborty,	IIT	Bombay
Kuldeep	S.	Meel,	Rice	University
Moshe	Y.	Vardi,	Rice	University



Agenda

Part	1:	Boolean	Satisfiability Solving	(Vardi)	

Part	2(a):	Applications		(Chakraborty)

Coffee	Break

Part	2(b):	Prior	Work			(Chakraborty)

Part	3:	Hashing-based	Approach	(Meel)



Discrete Sampling and Integration for the AI
Practitioner

Part I: Boolean Satisfiability Solving

Supratik Chakraborty, IIT Bombay
Kuldeep S. Meel, Rice University

Moshe Y. Vardi, Rice University



Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression ϕ, using “and”
(∧) “or”, (∨) and “not” (¬), is there a satisfying solution (an assignment
of 0’s and 1’s to the variables that makes the expression equal 1)? That is,
is Sol(ϕ) nonempty?

Example:

(¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x3 ∨ x1 ∨ x4)

Solution: x1 = 0, x2 = 0, x3 = 1, x4 = 1

1



Discrete Sampling and Integration

Discrete Sampling: Given a Boolean formula ϕ, sample from Sol(ϕ)
uniformly at random?

Discrete Integration: Given a Boolean formula ϕ, compute |Sol(ϕ)|.

Weighted Sampling and Integration: As above, but subject to a
weight function w : Sol(ϕ) 7→ R+

2



Basic Theoretical Background

Discrete Integration: #SAT

Known:

1. #SAT is #P-complete.

2. In practice, #SAT is quite harder than SAT.

3. If you can solve #SAT, then you can sample uniformly using self-
reducibility.

Desideratum: Solve discrete sampling and integration using a SAT solver.

3



Is This Time Different? The Opportunities and
Challenges of Artificial Intelligence

Jason Furman, Chair, Council of Economic Advisers, July 2016:

“Even though we have not made as much progress recently on other
areas of AI, such as logical reasoning, the advancements in deep
learning techniques may ultimately act as at least a partial substitute
for these other areas.”

4



P vs. NP : An Outstanding Open Problem

Does P = NP?

• The major open problem in theoretical computer science

• A major open problem in mathematics

– A Clay Institute Millennium Problem
– Million dollar prize!

What is this about? It is about computational complexity – how hard it is
to solve computational problems.

5



Rally To Restore Sanity, Washington, DC, October 2010

6



Computational Problems

Example: Graph – G = (V,E)

• V – set of nodes
• E – set of edges

Two notions:

• Hamiltonian Cycle: a cycle that visits every node exactly once.
• Eulerian Cycle: a cycle that visits every edge exactly once.

Question: How hard it is to find a Hamiltonian cycle? Eulerian cycle?

7



Figure 1: The Bridges of Königsburg

8



Figure 2: The Graph of The Bridges of Königsburg

9



Figure 3: Hamiltonian Cycle

10



Computational Complexity

Measuring complexity: How many (Turing machine) operations does it
take to solve a problem of size n?

• Size of (V,E): number of nodes plus number of edges.

Complexity Class P : problems that can be solved in polynomial time – nc

for a fixed c

Examples:

• Is a number even?
• Is a number square?
• Does a graph have an Eulerian cycle?

What about the Hamiltonian Cycle Problem?

11



Hamiltonian Cycle

• Naive Algorithm: Exhaustive search – run time is n! operations

• “Smart” Algorithm: Dynamic programming – run time is 2n operations

Note: The universe is much younger than 2200 Planck time units!

Fundamental Question: Can we do better?

• Is HamiltonianCycle in P?

12



Checking Is Easy!

Observation: Checking if a given cycle is a Hamiltonian cycle of a
graph G = (V,E) is easy!

Complexity Class NP : problems where solutions can be checked in
polynomial time.

Examples:

• HamiltonianCycle
• Factoring numbers

Significance: Tens of thousands of optimization problems are in NP!!!

• CAD, flight scheduling, chip layout, protein folding, . . .

13



P vs. NP

• P : efficient discovery of solutions
• NP : efficient checking of solutions

The Big Question: Is P = NP or P 6= NP?

• Is checking really easier than discovering?

Intuitive Answer: Of course, checking is easier than discovering, so
P 6= NP !!!

• Metaphor: finding a needle in a haystack
• Metaphor: Sudoku
• Metaphor: mathematical proofs

Alas: We do not know how to prove that P 6= NP .

14



P 6= NP

Consequences:

• Cannot solve efficiently numerous important problems
• RSA encryption may be safe.

Question: Why is it so important to prove P 6= NP , if that is what is
commonly believed?

Answer:

• If we cannot prove it, we do not really understand it.
• May be P = NP and the “enemy” proved it and broke RSA!

15



P = NP

S. Aaronson, MIT: “If P = NP , then the world would be a profoundly
different place than we usually assume it to be. There would be no special
value in ‘creative leaps,’ no fundamental gap between solving a problem and
recognizing the solution once it’s found. Everyone who could appreciate
a symphony would be Mozart; everyone who could follow a step-by-step
argument would be Gauss.”

Consequences:

• Can solve efficiently numerous important problems.
• RSA encryption is not safe.

Question: Is it really possible that P = NP?

Answer: Yes! It’d require discovering a very clever algorithm, but it
took 40 years to prove that LinearProgramming is in P .

16



Sharpening The Problem

NP -Complete Problems: hardest problems is NP

• HamilatonianCycle is NP -complete! [Karp, 1972]

Corollary: P = NP if and only if HamiltonianCycle is in P

There are thousands of NP -complete problems. To resolve the P = NP
question, it’d suffice to prove that one of them is or is not in P .

17



History

• 1950-60s: Perebor Project – Futile effort to show hardness of search
problems.

• Stephen Cook, 1971: Boolean Satisfiability is NP-complete.
• Richard Karp, 1972: 20 additional NP-complete problems– 0-1 Integer

Programming, Clique, Set Packing, Vertex Cover, Set Covering,
Hamiltonian Cycle, Graph Coloring, Exact Cover, Hitting Set, Steiner
Tree, Knapsack, Job Scheduling, ...
– All NP-complete problems are polynomially equivalent!

• Leonid Levin, 1973 (independently): Six NP-complete problems
• M. Garey and D. Johnson, 1979: “Computers and Intractability: A Guide

to NP-Completeness” - hundreds of NP-complete problems!
• Clay Institute, 2000: $1M Award!

18



Boole’s Symbolic Logic

Boole’s insight: Aristotle’s syllogisms are about classes of objects, which
can be treated algebraically.

“If an adjective, as ‘good’, is employed as a term of description, let us
represent by a letter, as y, all things to which the description ‘good’
is applicable, i.e., ‘all good things’, or the class of ‘good things’. Let
it further be agreed that by the combination xy shall be represented
that class of things to which the name or description represented by
x and y are simultaneously applicable. Thus, if x alone stands for
‘white’ things and y for ‘sheep’, let xy stand for ‘white sheep’.

19



Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using “and”
(∧) “or”, (∨) and “not” (¬), is there a satisfying solution (an assignment
of 0’s and 1’s to the variables that makes the expression equal 1)?

Example:

(¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x3 ∨ x1 ∨ x4)

Solution: x1 = 0, x2 = 0, x3 = 1, x4 = 1

20



Complexity of Boolean Reasoning

History:

• William Stanley Jevons, 1835-1882: “I have given much attention,
therefore, to lessening both the manual and mental labour of the process,
and I shall describe several devices which may be adopted for saving trouble
and risk of mistake.”

• Ernst Schröder, 1841-1902: “Getting a handle on the consequences
of any premises, or at least the fastest method for obtaining these
consequences, seems to me to be one of the noblest, if not the ultimate
goal of mathematics and logic.”

• Cook, 1971, Levin, 1973: Boolean Satisfiability is NP-complete.

21



Algorithmic Boolean Reasoning: Early History

• Newell, Shaw, and Simon, 1955: “Logic Theorist”

• Davis and Putnam, 1958: “Computational Methods in The
Propositional calculus”, unpublished report to the NSA

• Davis and Putnam, JACM 1960: “A Computing procedure for
quantification theory”

• Davis, Logemman, and Loveland, CACM 1962: “A machine program
for theorem proving”

DPLL Method: Propositional Satisfiability Test

• Convert formula to conjunctive normal form (CNF)

• Backtracking search for satisfying truth assignment

• Unit-clause preference

22



Modern SAT Solving

CDCL = conflict-driven clause learning

• Backjumping

• Smart unit-clause preference

• Conflict-driven clause learning

• Smart choice heuristic (brainiac vs speed demon)

• Restarts

Key Tools: GRASP, 1996; Chaff, 2001

Current capacity: millions of variables

23



S. A. Seshia 1 

Some Experience with SAT Solving 
Sanjit A. Seshia 

Speed-up of 2012 solver over other solvers 

1 

10 

100 

1,000 

Solver 

S
p

e
e

d
-u

p
 (

lo
g

 s
c

a
le

) 

Figure 4: SAT Solvers Performance
%labelfigure

24



Knuth Gets His Satisfaction

SIAM News, July 26, 2016: “Knuth Gives Satisfaction in SIAM von
Neumann Lecture”

Donald Knuth gave the 2016 John von Neumann lecture at the SIAM
Annual Meeting. The von Neumann lecture is SIAM’s most prestigious
prize.

Knuth based the lecture, titled ”Satisfiability and Combinatorics”, on
the latest part (Volume 4, Fascicle 6) of his The Art of Computer
Programming book series. He showed us the first page of the fascicle,
aptly illustrated with the quote ”I can’t get no satisfaction,” from the
Rolling Stones. In the preface of the fascicle Knuth says ”The story of
satisfiability is the tale of a triumph of software engineering, blended
with rich doses of beautiful mathematics”.

25



SAT Heuristic – Backjumping

Backtracking: go up one level in the search tree when both Boolean
values for a variable have been tested.

Backjumping [Stallman-Sussman, 1977]: jump back in the search tree,
if jump is safe – use highest node to jump to.

Key: Distinguish between

• Decision variable: Variable is that chosen and then assigned first c and
then 1− c.

• Implication variable: Assignment to variable is forced by a unit clause.

Implication Graph: directed acyclic graph describing the relationships
between decision variables and implication variables.

26



Smart Unit-Clause Preference

Boolean Constraint Propagation (BCP): propagating values forced by
unit clauses.

• Empirical Observation: BCP can consume up to 80% of SAT solving
time!

Requirement: identifying unit clauses

• Naive Method: associate a counter with each clause and update counter
appropriately, upon assigning and unassigning variables.

• Two-Literal Watching [Moskewicz-Madigan-Zhao-Zhang-Malik, 2001]:
“watch” two un-false literals in each unsatisfied clause – no overhead for
backjumping.

27



SAT Heuristic – Clause Learning

Conflict-Driven Clause Learning: If assignment 〈l1, . . . , ln〉 is bad, then
add clause ¬l1 ∨ . . . ∨ ¬ln to block it.

Marques-Silva&Sakallah, 1996: This would add very long clauses! Instead:

• Analyze implication graph for chain of reasoning that led to bad
assignment.

• Add a short clause to block said chain.
• The “learned” clause is a resolvent of prior clauses.

Consequence:

• Combine search with inference (resolution).
• Algorithm uses exponential space; “forgetting” heuristics required.

28



Smart Decision Heuristic

Crucial: Choosing decision variables wisely!

Dilemma: brainiac vs. speed demon

• Brainiac: chooses very wisely, to maximize BCP – decision-time overhead!
• Speed Demon: chooses very fast, to minimize decision time – many

decisions required!

VSIDS [Moskewicz-Madigan-Zhao-Zhang-Malik, 2001]: Variable State
Independent Decaying Sum – prioritize variables according to recent
participation on conflicts – compromise between Brainiac and Speed Demon.

29



Randomized Restarts

Randomize Restart [Gomes-Selman-Kautz, 1998]

• Stop search
• Reset all variables
• Restart search
• Keep learned clauses

Aggressive Restarting: restart every ∼50 backtracks.

30



SMT: Satisfiability Modulo Theory

SMT Solving: Solve Boolean combinations of constraints in an underlying
theory, e.g., linear constraints, combining SAT techniques and domain-
specific techniques.

• Tremendous progress since 2000!

Example: SMTLA
(x > 10) ∧ [((x > 5) ∨ (x < 8)]

Sample Application: Bounded Model Checking of Verilog programs –
SMT(BV).

31



SMT Solving

General Approach: combine SAT-solving techniques with theory-solving
techniques

• Consider formula as Boolean formula ove theory atoms.

• Solve Boolean formula; obtain conjunction of theory atoms.

• Use theory solver to check if conjunction is satisfiable.

Crux: Interaction between SAT solver and theory solver, e.g., conflict-clause
learning – convert unsatisfiable theory-atom conjection to a new Boolean
clause.

32



Applications of SAT/SMT Solving in SW Engineering

Leonardo De Moura+Nikolaj Björner, 2012: Applications of Z3 at Microsoft

• Symbolic execution

• Model checking

• Static analysis

• Model-based design

• . . .

33



Reflection on P vs. NP

Old Cliché “What is the difference between theory and practice? In theory,
they are not that different, but in practice, they are quite different.”

P vs. NP in practice:

• P=NP: Conceivably, NP-complete problems can be solved in polynomial
time, but the polynomial is n1,000 – impractical!

• P6=NP: Conceivably, NP-complete problems can be solved by nlog log log n

operations – practical!

Conclusion: No guarantee that solving P vs. NP would yield practical
benefits.

34



Are NP-Complete Problems Really Hard?

• When I was a graduate student, SAT was a “scary” problem, not to be
touched with a 10-foot pole.

• Indeed, there are SAT instances with a few hundred variables that cannot
be solved by any extant SAT solver.

• But today’s SAT solvers, which enjoy wide industrial usage, routinely
solve real-life SAT instances with millions of variables!

Conclusion We need a richer and broader complexity theory, a theory that
would explain both the difficulty and the easiness of problems like SAT.

Question: Now that SAT is “easy” in practice, how can we leverage that?

• Is BPPNP the “new” PTIME?

35



Notation
• Given 
� X1 ,  … Xn : variables with finite discrete domains D1, … Dn
� Constraint (logical formula)  ϕ over  X1 ,  … Xn
� Weight function  W: D1 × … Dn→ Q≥ 0

Sol(ϕ) : set of assignments of X1 , … Xn satisfying ϕ
� Determine W(ϕ) = ∑ y ∈ Sol(ϕ) W(y)

If W(y) = 1 for all y, then W(ϕ) = | Sol(ϕ) |

� Randomly sample from Sol(ϕ) such that Pr[y is sampled] ∝ W(y)
If W(y) = 1 for all y, then uniformly sample from Sol(ϕ)   

For this tutorial: Initially, Di’s are {0,1} – Boolean variables
Later, we’ll consider Di’s as {0, 1}n – Bit-vector variables 1

Discrete Integration  
(Model Counting)

Discrete Sampling



Closer Look At Some Applications
• Discrete Integration
� Probabilistic Inference
� Network (viz. electrical grid) reliability
� Quantitative Information flow
� And many more …

• Discrete Sampling
� Constrained random verification
� Automatic problem generation
� And many more …

2



Application 1: Probabilistic Inference
� An alarm rings if it’s in a working state when an earthquake happens 

or a burglary happens
� The alarm can malfunction and ring without earthquake or burglary

happening

� Given that the alarm rang, what is the likelihood that an earthquake
happened?

� Given conditional dependencies (and conditional probabilities) 
calculate Pr[event | evidence]
� What is Pr [Earthquake | Alarm] ?

3



Probabilistic Inference: Bayes’ Rule

4

How do we represent conditional dependencies 
efficiently, and calculate these probabilities?

]Pr[]|Pr[]Pr[

]Pr[
]Pr[

]Pr[
]Pr[]|Pr[

jjj

j
j

ii
i

eventeventevidenceevidenceevent

evidenceevent
evidenceevent

evidence
evidenceeventevidenceevent

×=∩

∩
∩=∩=

∑



Probablistic Inference: Graphical Models

5

B E

A

B E A Pr(A|E,B)

Conditional Probability Tables (CPT)



6

B E

A

Pr 𝐸 ∩ 𝐴 =		
							Pr 𝐸 ∗ Pr ¬𝐵 ∗ Pr 𝐴	 	𝐸, ¬𝐵

+ Pr 𝐸 ∗ Pr 𝐵 ∗ Pr 𝐴	 𝐸, 𝐵]

Probabilistic Inference: First Principle Calculation 

B E A Pr(A|E,B)



Probabilisitc Inference: Logical Formulation
V = {vA, v~A, vB, v~B, vE, v~E}                 Prop vars corresponding to events
T = {tA|B,E , t~A|B,E , tA|B,~E …}       Prop vars corresponding to CPT entries

Formula encoding probabilistic graphical model (ϕPGM):
(vA ⊕ v~A) ∧ (vB ⊕ v~B) ∧ (vE ⊕ v~E)          Exactly one of vA and v~A is true

∧
(tA|B,E ⇔ vA ∧ vB ∧ vE)  ∧ (t~A|B,E ⇔ v~A ∧ vB ∧ vE) ∧ …

If vA , vB , vE are true, so must  tA|B,E and vice versa

7



Probabilistic Inference: Logic and Weights

V = {vA, v~A, vB, v~B, vE, v~E}
T = {tA|B,E , t~A|B,E , tA|B,~E …}

W(v~B) = 0.2, W(vB) = 0.8         Probabilities of indep events are weights of +ve literals

W(v~E) = 0.1, W(vE) = 0.9 
W(tA|B,E) = 0.3, W(t~A|B,E) = 0.7, …                     CPT entries are weights of +ve literals
W(vA) = W(v~A) = 1                       Weights of vars corresponding to dependent events
W(¬v~B) = W(¬vB) = W(¬ tA|B,E) … = 1                            Weights of -ve literals are all 1

Weight of assignment  (vA = 1, v~A = 0, tA|B,E = 1, …) = W(vA) * W(¬v~A)* W( tA|B,E)* … 
Product of weights of literals in assignment 8



Probabilistic Inference: Discrete Integration
V = {vA, v~A, vB, v~B, vE, v~E}
T = {tA|B,E , t~A|B,E , tA|B,~E …}

Formula encoding combination of events in probabilistic model 
(Alarm and Earthquake)    F =  ϕPGM∧ vA ∧ vE

Set of satisfying assignments of F:  
RF = { (vA = 1, vE = 1, vB = 1, tA|B,E = 1, all else 0), (vA = 1, vE = 1, v~B = 1, tA|~B,E = 1, all else 0) }

Weight of satisfying assignments of F:
W(RF) = W(vA) * W(vE) * W(vB) * W(tA|B,E ) + W(vA) * W(vE) * W(v~B) * W(tA|~B,E ) 

= 1* Pr[E] * Pr[B] * Pr[A | B,E]  + 1* Pr[E] * Pr[~B] * Pr[A | ~B,E]  =  Pr[ A ∩ E] 9



Application 2: Network Reliability

Graph G = (V, E) represents a (power-grid) network 
• Nodes (V) are towns, villages, power stations
• Edges (E) are power lines
• Assume each edge e fails with prob g(e) ∈ [0,1] 
• Assume failure of edges statistically 

independent
• What is the probability that s and t become 

disconnected?

10

s
t



Network Reliability: First Principles Modeling
π : E → {0, 1}   … configuration of network

-- π(e) = 0 if edge e has failed, 1 otherwise

Prob of network being in configuration π

Pr[ π ]  = Π g(e)   × Π (1 - g(e))

Prob of s and t being disconnected

Pd
s,t = Σ Pr [π]

11

e: π(e) = 0 e: π(e) = 1

s
t

π : s, t disconnected in π

May need to sum over numerous 
(> 2100) configurations



Network Reliability: Discrete Integration
• pv: Boolean variable for each v in V
• qe: Boolean variable for each e in E

• ϕs,t (pv1, … pvn, qe1, … qem) : 
Boolean formula such that sat 
assignments  σ of ϕs,t have 1-1 
correspondence with configs π that 
disconnect s and t

- W(σ) = Pr[ π ]

12

s
t

Pd
s,t = Σ Pr [π]                   =   Σ W(σ)     =  W(ϕ) 

π : s, t disconnected in π 𝜎 ⊨ 𝜑𝑠, 𝑡



Application 3: Quantitative Information Flow
• A password-checker PC takes a secret password (SP) and a 
user input (UI) and returns “Yes” iff SP = UI [Bang et al 2016]
� Suppose passwords are 4 characters (‘0’ through ‘9’) long

13

PC1 (char[] SP, char[] UI)  {
for (int i=0; i<SP.length(); i++) {

if(SP[i] != UI[i]) return “No”;
}
return “Yes”;

}

PC2 (char[] H, char[] L)  {
match = true;
for (int i=0; i<SP.length(); i++) {

if (SP[i] != UI[i]) match=false;
else match = match;

}
if match return “Yes”;
else return “No”;

}

Which of PC1 and PC2 is more likely to leak information about the 
secret key through side-channel observations?



QIF: Some Basics
• Program P receives some “high” input (H) and produces a 
“low” (L) output
� Password checking: H is SP, L is time taken to answer “Is SP = UI?”
� Side-channel observations: memory, time …

• Adversary may infer partial information about H on seeing L
� E.g. in password checking, infer: 1st char is password is not 9.

• Can we quantify “leakage of information”?
“initial uncertainty in H” = “info leaked” + “remaining uncertainty in H” 
[Smith 2009]

• Uncertainty and information leakage usually quantified using 
information theoretic measures, e.g. Shannon entropy

14



QIF: First Principles Approach
• Password checking: Observed time to answer “Yes”/“No”

� Depends on # instructions executed

• E.g.  SP = 00700700
UI = N2345678, 𝑁 ≠ 0

PC1 executes for loop once
UI = 02345678

PC1 executes for loop at least twice
Observing time to “No” gives away whether 1st char is not N, 𝑁 ≠ 0

In 10 attempts, 1st char can of SP can be uniquely determined.
In max 40 attempts, SP can be cracked.

15

PC1 (char[] SP, char[] UI)  {
for (int i=0; i<SP.length(); i++) {

if(SP[i] != UI[i]) return “No”;
}
return “Yes”;

}     



QIF: First Principles Approach
• Password checking: Observed time to answer “Yes”/“No”
� Depends on # instructions executed

• E.g.  SP = 00700700

UI = N2345678, 𝑁 ≠ 0

PC1 executes for loop 4 times

UI = 02345678

PC1 executes for loop 4 times

Cracking SP requires max 104 attempts !!!  (“less leakage”)
16

PC2 (char[] H, char[] L)  {
match = true;
for (int i=0; i<SP.length(); i++) {

if (SP[i] != UI[i]) match=false;
else match = match;

}
if match return “Yes”;
else return “No”;

}



QIF: Partitioning Space of Secret Password
• Observable time effectively partitions values of SP [Bultan2016] 

17

T

PC1 (char[] SP, char[] UI)  {
for (int i=0; i<SP.length(); i++) {

if(SP[i] != UI[i]) return “No”;
}
return “Yes”;

}     

SP[0] != 
UI[0]

“No”

F

SP[0] != UI[0]

t = 3

SP[1] != 
UI[1]

“No”

F

T

SP[1] != UI[1]
SP[0] = UI[0]

t = 5

SP[2] != 
UI[2]

“No”

F

T

SP[2] != UI[2]
SP[1] = UI[1]
SP[0] = UI[0]

t = 7

SP[3] != 
UI[3]

“No”
T

“Yes”

SP[3] = UI[3]   SP[1] = UI[1]
SP[2] = UI[2]    SP[0] = UI[0]

F

SP[3] != UI[3]
SP[2] = UI[2]
SP[1] = UI[1]
SP[0] = UI[0]

t = 9

t = 11



QIF: Probabilities of Observed Times

18

SP[0] != 
UI[0]

SP[1] != 
UI[1]

SP[2] != 
UI[2]

SP[3] != 
UI[3]

“No” “No” “No” “No”

F F F

T T T T

SP[0] != UI[0]

“Yes”

SP[3] = UI[3]   SP[1] = UI[1]
SP[2] = UI[2]    SP[0] = UI[0]

F

SP[1] != UI[1]
SP[0] = UI[0]

SP[2] != UI[2]
SP[1] = UI[1]
SP[0] = UI[0]

SP[3] != UI[3]
SP[2] = UI[2]
SP[1] = UI[1]
SP[0] = UI[0]

t = 3 t = 5 t = 7 t = 9

t = 11

𝜑567 ∶ 		 𝑆𝑃 1 ≠ 𝑈𝐼 1 ∧ 𝑆𝑃 0 = 𝑈𝐼 0

Pr [ t = 5 ] =  |@AB CDEF |
GHI

		
Model Counting if UI 

uniformly chosen



QIF: Probabilities of Observed Times

19

SP[0] != 
UI[0]

SP[1] != 
UI[1]

SP[2] != 
UI[2]

SP[3] != 
UI[3]

“No” “No” “No” “No”

F F F

T T T T

SP[0] != UI[0]

“Yes”

SP[3] = UI[3]   SP[1] = UI[1]
SP[2] = UI[2]    SP[0] = UI[0]

F

SP[1] != UI[1]
SP[0] = UI[0]

SP[2] != UI[2]
SP[1] = UI[1]
SP[0] = UI[0]

SP[3] != UI[3]
SP[2] = UI[2]
SP[1] = UI[1]
SP[0] = UI[0]

t = 3 t = 5 t = 7 t = 9

t = 11

𝜑567 ∶ 		 𝑆𝑃 1 ≠ 𝑈𝐼 1 ∧ 𝑆𝑃 0 = 𝑈𝐼 0

Pr [ t = 5 ]  =  W(𝜑567) Discrete Integration if UI 
chosen according to 

weight function



QIF: Quantifying Leakage via Integration
�Exp information leakage = 

Shannon entropy of obs times =

� Information leakage in password checker example 
PC1: 0.52      (more “leaky”)
PC2: 0.0014  (less “leaky”)

Discrete integration crucial in obtaining Pr[t = k]

20

K Pr 𝑡 = 𝑘 . log1/Pr	[𝑡 = 𝑘]
S∈{V,7,W,X,GG}	



Unweighted Counting Suffices in Principle

Weighted 
Model 
Counting

21

Weighted Model Counting      Unweighted Model Counting

Reduction polynomial in #bits representing weights
IJCAI 2015

Probabilistic Inference

Network Reliability

Quantified Information Flow

DMPV 2017

KML 1989, Karger 2000



Application 4: Constr Random Verification

Functional Verification
• Formal verification
�Challenges: formal requirements, scalability
�~10-15% of verification effort 

• Dynamic verification: dominant approach

22



CRV: Dynamic Verification

§Design is simulated with test vectors
• Test vectors represent different verification scenarios 
§Results from simulation compared to intended results

§How do we generate test vectors?
Challenge: Exceedingly large test input space!

Can’t try all input combinations
2128 combinations for a 64-bit binary operator!!!

23



CRV: Sources of Constraints 

24
§ Test vectors: solutions of constraints

§ Proposed by Lichtenstein, Malka, Aharon (IAAI 94) 

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

• Designers: 
1. a +64 11 *32 b = 12
2. a <64 (b >> 4)

• Past Experience: 
1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200



CRV: Why Existing Solvers Don’t Suffice 

25

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Constraints
• Designers: 

1. a +64 11 *32 b = 12
2. a <64 (b >> 4)

• Past Experience: 
1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200

Modern SAT/SMT solvers are complex systems
Efficiency stems from the solver automatically “biasing”  search
Fails to give unbiased or user-biased distribution of  test vectors



CRV: Need To Go Beyond SAT Solvers

26

Set of Constraints

Sample satisfying assignments 
uniformly at random

SAT Formula

Scalable Uniform Generation of SAT Witnesses

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Constrained Random Verification



Application 5: Automated Problem 
Generation
• Large class sizes, MOOC offerings require automated 
generation of related but randomly different problems

• Discourages plagiarism between students

• Randomness makes it hard for students to guess what the 
solution would be

• Allows instructors to focus on broad parameters of problems, 
rather than on individual problem instances

• Enables development of automated intelligent tutoring 
systems

27



Auto Prob Gen: Using Problem Templates
• A problem template is a partial specification of a problem

� “Holes” in the template must be filled with elements from specified sets
� Constraints on elements chosen to fill various “holes” restricts problem 

instances so that undesired instances are eliminated

• Example:
� Non-deterministic finite automata to be generated for complementation

Holes: States, alphabet size, transitions for (state, letter) pairs, 
final states, initial states

Constraints: Alphabet size = 2
Min/max transitions for a (state, letter) pair = 0/4
Min/max states = 3/5
Min/max number of final states = 1/3
Min/max initial states = 1/2

28



Auto Prob Gen: An Illustration
� Non-det finite automaton encoded as a formula on following variables

s1, s2, s3, s4, s5 :    States 
f1, f2, f3, f4, f5:         Final states
n1, n2, n3, n4, n5:    Initial states
s1a1s2, s1a2s2, … : Transitions

𝜑 Z[Z5 = \ 𝑛Z → 𝑠Z ∧ 1 ≤K𝑛Z
Z

≤ 2
Z

𝜑 5ab[c = \ 𝑠Z𝑎e𝑠S → 𝑠Z ∧ 𝑠S ∧\ 0 ≤K𝑠Z𝑎e𝑠S ≤ 4
SZ,eZ

																																																																		𝜑 c5gAh[5 = 3 ≤ 	∑ 𝑠Z		Z ≤ 5

𝜑 lZ[c5 =\ 𝑓Z → 𝑠Z 				∧ 					 1 ≤ 	K𝑓Z		
Z

≤ 3
 Z

29

Every solution of 
𝜑 Z[Z5 ∧ 𝜑 5ab[c
∧ 𝜑 c5gAh[5 ∧ 𝜑 lZ[c5
gives an automaton 
satisfying specified 

constraints



Auto Prob Gen: An Illustration
� Non-det finite automaton encoded as a formula on following variables

s1 = 1, s2 = 0, s3 = 1, s4 = 1, s5 = 1:     States 
f1 = 0, f2 = 0, f3 = 1, f4 = 1, f5 = 0:         Final states
n1 = 1, n2 = 0, n3 = 0, n4 = 0, n5 = 0:     Initial states
s1a1s3 = 1, s1a1s4 = 1, s4a2s4 = 1, s4a1s5 = 1, … : Transitions

30

s1

s3

s4

s5

a1

a1
a1

a5



Auto Prob Gen: Discrete Sampling
• Uniform random generation of solutions of constraints gives 
automata satisfying constraints randomly

• Weighted random generation of solutions gives automata 
satisfying constraints with different priorities/weightages.

Examples:  Weighing final state variables more gives automata with 
more final states
Weighing transitions on letter a1 more gives automata
with more transitions labeled a1

31



Discrete Sampling and 
Integration 

for the AI Practitioner

Supratik Chakraborty, IIT Bombay

Kuldeep S. Meel, Rice University
Moshe Y. Vardi, Rice University

Part 2b: Survey of Prior Work



How Hard is it to Count/Sample? 
• Trivial if we could enumerate RF:  Almost always impractical

• Computational complexity of counting (discrete integration):

Exact unweighted counting: #P-complete [Valiant 1978]

Approximate unweighted counting:

Deterministic: Polynomial time det. Turing Machine with Σ2
p  oracle [Stockmeyer 1983]

Randomized: Poly-time probabilistic Turing Machine with NP oracle 

[Stockmeyer 1983; Jerrum,Valiant,Vazirani 1986]

Probably Approximately Correct (PAC) algorithm

Weighted versions of counting: Exact:  #P-complete [Roth 1996],               

Approximate: same class as unweighted version [follows from Roth 1996] 33

0for ),1(||) e(F,DetEstimat 
1

|| >+×≤≤
+

εεε
ε F
F RR

10,0for ,1)1(||), te(F,RandEstima
1

||Pr ≤<>−≥⎥⎦
⎤

⎢⎣
⎡ +⋅≤≤
+

δεδεδε
ε F
F RR



How Hard is it to Count/Sample?
• Computational complexity of sampling:

Uniform sampling: Poly-time prob. Turing Machine with NP oracle  
[Bellare,Goldreich,Petrank 2000]

Almost uniform sampling: Poly-time prob. Turing Machine  with NP 
oracle [Jerrum,Valiant,Vazirani 1986, also from Bellare,Goldreich,Petrank 2000]

34

 
R  if of indep and0

R  if 0  
  where,  erator(F)]UniformGenPr[

F

F

⎩
⎨
⎧

∈>
∉=

==
y yc

yc
cy

⎩
⎨
⎧

∈>
∉=

+⋅≤=≤
+ F

F

R  if of indep and0
R  if 0  

  where,)1( )] r(F,AUGeneratoPr[
1 y yc

yc
cyc εε

ε

Pr[Algorithm outputs some y] ≥ ½, if F is satisfiable



Markov Chain Monte Carlo Techniques
• Rich body of theoretical work with applications to sampling and counting 

[Jerrum,Sinclair 1996]
• Some popular (and intensively studied) algorithms:

� Metropolis-Hastings [Metropolis et al 1953, Hastings 1970], Simulated Annealing 
[Kirkpatrick et al 1982]

• High-level idea:
� Start from a “state” (assignment of variables)
� Randomly choose next state using “local” biasing functions (depends on target 

distribution & algorithm parameters)
� Repeat for an appropriately large number (N) of steps
� After N steps, samples follow target distribution with high confidence

• Convergence to desired distribution guaranteed only after N (large) steps
• In practice, steps truncated early heuristically

Nullifies/weakens theoretical guarantees [Kitchen,Keuhlman 2007]
35



Exact Counters
• DPLL based counters [CDP: Birnbaum,Lozinski 1999]
� DPLL branching search procedure, with partial truth assignments
� Once a branch is found satisfiable, if t out of n variables assigned, add 

2n-t to model count, backtrack to last decision point, flip decision and 
continue

� Requires data structure to check if all clauses are satisfied by partial 
assignment

Usually not implemented in modern DPLL SAT solvers
� Can output a lower bound at any time

36



Exact Counters
• DPLL + component analysis [RelSat: Bayardo, Pehoushek 2000]
� Constraint graph G: 

Variables of F are vertices
An edge connects two vertices if corresponding variables appear in 
some clause of F

� Disjoint components of  G lazily identified during DPLL search
� F1, F2, … Fn : subformulas of F corresponding to components

|RF| = |RF1| * |RF2| * |RF3| * …
� Heuristic optimizations:

Solve most constrained sub-problems first
Solving sub-problems in interleaved manner

37



Exact Counters
• DPLL + Caching [Bacchus et al 2003, Cachet: Sang et al 2004, 

sharpSAT: Thurley 2006]
If same sub-formula revisited multiple times during DPLL search, cache 
result and re-use it
“Signature” of the satisfiable sub-formula/component must be stored
Different forms of caching used:

Simple sub-formula caching
Component caching
Linear-space caching

Component caching can also be combined with clause learning and 
other reasoning techniques at each node of DPLL search tree

WeightedCachet:  DPLL + Caching for weighted assignments 38



Exact Counters
• Knowledge Compilation based

� Compile given formula to another form which allows counting models in time 
polynomial in representation size

� Reduced Ordered Binary Decision Diagrams (ROBDD)  [Bryant 1986]: 
Construction can blow up exponentially

� Deterministic Decomposable Negation Normal Form (d-DNNF) [c2d: 
Darwiche 2004]

Generalizes ROBDDs; can be significantly more succinct
Negation normal form with following restrictions:
Decomposability:  All AND operators have arguments with disjoint  

support
Determinizability:  All OR operators have arguments with disjoint 

solution sets
� Sentential Decision Diagrams (SDD) [Darwiche 2011]

39



Exact Counters: How far do they go?
• Work reasonably well in small-medium sized problems, and 
in large problem instances with special structure

• Use them whenever possible
� #P-completeness hits back eventually – scalability suffers!

40



Bounding Counters
[MBound: Gomes et al 2006; SampleCount: Gomes et al 
2007; BPCount: Kroc et al 2008]

� Provide lower and/or upper bounds of model count 
� Usually more efficient than exact counters
� No approximation guarantees on bounds

Useful only for limited applications

41



Hashing-based Sampling
• Bellare, Goldreich, Petrank (BGP 2000)

• Uniform generator for SAT witnesses: 

• Polynomial time randomized algorithm with access to an NP oracle 

• Employs n-universal hash functions

• Works well for small values of n

• For high dimensions (large n), significant  computational overheads

42

⎩
⎨
⎧

∈>
∉

==
ycyc 

y
y

 oft independen is   where,R   if)0(
R   if 0

  BGP(F)]Pr[
F

F

Much more on this 
coming in Part 3



Approximate Integration and Sampling: 
Close Cousins

Almost-Uniform 
Generator

PAC 
Counter

Polynomial

reduction

• Yet, no practical algorithms that scale to large problem 
instances were derived from this work

• No scalable PAC counter or almost-uniform generator  
existed until a few years back

• The inter-reductions are practically computation intensive
•Think of O(n) calls to the counter when n = 100000 43

• Seminal paper by Jerrum, Valiant, Vazirani 1986



Prior Work

44Performance

G
ua

ra
nt

ee
s 

MCMC

SAT-
Based

BGP

BDD/
other 
exact 
tech.



Techniques using XOR hash functions
• Bounding counters MBound, SampleCount [Gomes et al. 
2006, Gomes et al 2007] used random XORs
� Algorithms geared towards finding bounds without approximation 

guarantees
� Power of 2-universal hashing not exploited

• In a series of papers [2013: ICML, UAI, NIPS; 2014: ICML; 
2015: ICML, UAI; 2016: AAAI, ICML, AISTATS, …] Ermon et 
al used XOR hash functions for discrete counting/sampling
� Random XORs, also XOR constraints with specific structures
� 2-universality exploited to provide improved guarantees
� Relaxed constraints (like short XORs) and their effects studied

45



An Interesting Combination: 
XOR + MAP Optimization
• WISH: Ermon et al 2013
• Given a weight function W: {0,1}n → ℜ≥0

� Use random XORs to partition solutions into cells
� After partitioning into 2, 4, 8, 16, … cells

Use Max Aposteriori Probability (MAP) optimizer to find solution 
with max weight in a cell (say, a2, a4, a8, a16, …)

� Estimated  W(RF)  = W(a2)*1 + W(a4)*2 + W(a8)* 4 + …

• Constant factor approximation of W(RF) with high confidence
• MAP oracle needs repeated invokation O(n.log2n)

� MAP is NP-complete
� Being optimization (not decision) problem), MAP is harder to solve in 

practice than SAT 

46



XOR-based Counting and Sampling
• Remainder of tutorial
� Deeper dive into XOR hash-based counting and sampling
� Discuss theoretical aspects and experimental observations

� Based on work published in [2013: CP, CAV; 2014:  DAC, AAAI; 2015: 
IJCAI, TACAS; 2016: AAAI, IJCAI, 2017: AAAI]

47



Discrete Sampling and Integration for the AI
Practitioner

Part III: Hashing-based Approach to Sampling and
Integration

Supratik Chakraborty, IIT Bombay
Kuldeep S. Meel, Rice University
Moshe Y. Vardi, Rice University

1 / 41



Discrete Integration and Sampling

• Given

– Variables X1,X2, · · ·Xn over finite discrete domains D1,D2, · · ·Dn

– Formula ϕ over X1,X2, · · ·Xn

– Weight Function W : D1 × D2 · · · × Dn 7→ [0, 1]

• Sol(ϕ) = {solutions of F}

• Discrete Integration: Determine W (ϕ) = Σy∈Sol(ϕ)W (y)

– If W (y) = 1 for all y , then W (ϕ) = |Sol(ϕ)|

• Discrete Sampling: Randomly sample from Sol(ϕ) such that
Pr[y is sampled] ∝W (y)

– If W (y) = 1 for all y , then uniformly sample from Sol(ϕ)

2 / 41



Part I

Discrete Integration

3 / 41



From Weighted to Unweighted Integration

Boolean Formula ϕ and weight
function W : {0, 1}n → Q≥0

4 / 41



From Weighted to Unweighted Integration

Boolean Formula ϕ and weight
function W : {0, 1}n → Q≥0 Boolean Formula F ′

W (ϕ) = c(W )× |Sol(F ′)|

4 / 41



From Weighted to Unweighted Integration

Boolean Formula ϕ and weight
function W : {0, 1}n → Q≥0 Boolean Formula F ′

W (ϕ) = c(W )× |Sol(F ′)|

• Key Idea: Encode weight function as a set of constraints

(CFMV, IJCAI15)

4 / 41



From Weighted to Unweighted Integration

Boolean Formula ϕ and weight
function W : {0, 1}n → Q≥0 Boolean Formula F ′

W (ϕ) = c(W )× |Sol(F ′)|

• Key Idea: Encode weight function as a set of constraints

(CFMV, IJCAI15)

How do we estimate |Sol(F ′)|?

4 / 41



As Simple as Counting Dots



As Simple as Counting Dots



As Simple as Counting Dots

Pick a random cell

Estimate = Number of solutions in a cell × Number of cells

5 / 41



Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

6 / 41



Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

Challenge 2 How large is a “small” cell?

6 / 41



Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

Challenge 2 How large is a “small” cell?

Challenge 3 How many cells?

6 / 41



Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(ϕ) ∩ {y | h(y) = α}

6 / 41



Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(ϕ) ∩ {y | h(y) = α}
• Deterministic h unlikely to work

6 / 41



Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Designing function h : assignments → cells (hashing)
• Solutions in a cell α: Sol(ϕ) ∩ {y | h(y) = α}
• Deterministic h unlikely to work
• Choose h randomly from a large family H of hash
functions
Universal Hashing (Carter and Wegman 1977)

6 / 41



r-Universal Hashing

• Let H be family of r−universal hash functions mapping {0, 1}n to
{0, 1}m

∀y1, y2, · · · yr ∈ {0, 1}
n, α1, α2, · · ·αr ∈ {0, 1}

m, h
R
←− H

Pr[h(y1) = α1] = · · ·Pr[h(yr ) = αr ] =

(

1

2m

)

Pr[h(y1) = α1 ∧ · · · ∧ h(yr ) = αr ] =

(

1

2m

)r

7 / 41



Desired Properties

• Let h be randomly picked a family of hash function H and Z be
the number of solutions in a randomly chosen cell α

– What is E[Z ] and how much does Z deviate from E[Z ]?

• For every y ∈ Sol(ϕ), we define Iy =

{

1 h(y) = α(y is in cell)

0 otherwise

• Z =
∑

y∈Sol(ϕ) Iy

– Desired: E[Z ] = |Sol(ϕ)|
2m and σ2[Z ] ≤ E[Z ]

8 / 41



Desired Properties

• Let h be randomly picked a family of hash function H and Z be
the number of solutions in a randomly chosen cell α

– What is E[Z ] and how much does Z deviate from E[Z ]?

• For every y ∈ Sol(ϕ), we define Iy =

{

1 h(y) = α(y is in cell)

0 otherwise

• Z =
∑

y∈Sol(ϕ) Iy

– Desired: E[Z ] = |Sol(ϕ)|
2m and σ2[Z ] ≤ E[Z ]

– It suffices to have H to be 2-universal

8 / 41



Desired Properties

• Let h be randomly picked a family of hash function H and Z be
the number of solutions in a randomly chosen cell α

– What is E[Z ] and how much does Z deviate from E[Z ]?

• For every y ∈ Sol(ϕ), we define Iy =

{

1 h(y) = α(y is in cell)

0 otherwise

• Z =
∑

y∈Sol(ϕ) Iy

– Desired: E[Z ] = |Sol(ϕ)|
2m and σ2[Z ] ≤ E[Z ]

– It suffices to have H to be 2-universal
– Pr

[

E[Z ]
1+ε
≤ Z ≤ E[Z ](1 + ε)

]

≥ 1− σ
2[Z ]

( ε

1+ε
)2(E[Z ])2

8 / 41



Desired Properties

• Let h be randomly picked a family of hash function H and Z be
the number of solutions in a randomly chosen cell α

– What is E[Z ] and how much does Z deviate from E[Z ]?

• For every y ∈ Sol(ϕ), we define Iy =

{

1 h(y) = α(y is in cell)

0 otherwise

• Z =
∑

y∈Sol(ϕ) Iy

– Desired: E[Z ] = |Sol(ϕ)|
2m and σ2[Z ] ≤ E[Z ]

– It suffices to have H to be 2-universal
– Pr

[

E[Z ]
1+ε
≤ Z ≤ E[Z ](1 + ε)

]

≥ 1− σ
2[Z ]

( ε

1+ε
)2(E[Z ])2 ≥ 1− 1

( ε

1+ε
)2(E[Z ])

8 / 41



Desired Properties

• Let h be randomly picked a family of hash function H and Z be
the number of solutions in a randomly chosen cell α

– What is E[Z ] and how much does Z deviate from E[Z ]?

• For every y ∈ Sol(ϕ), we define Iy =

{

1 h(y) = α(y is in cell)

0 otherwise

• Z =
∑

y∈Sol(ϕ) Iy

– Desired: E[Z ] = |Sol(ϕ)|
2m and σ2[Z ] ≤ E[Z ]

– It suffices to have H to be 2-universal
– Pr

[

E[Z ]
1+ε
≤ Z ≤ E[Z ](1 + ε)

]

≥ 1− σ
2[Z ]

( ε

1+ε
)2(E[Z ])2 ≥ 1− 1

( ε

1+ε
)2(E[Z ])

8 / 41



2-Universal Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 ⊕ 1
– Expected size of each XOR: n

2

9 / 41



2-Universal Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 ⊕ 1
– Expected size of each XOR: n

2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 ⊕ 1 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 ⊕ 1 = 1 (Q2)

· · · (· · · )

X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

9 / 41



2-Universal Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 ⊕ 1
– Expected size of each XOR: n

2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 ⊕ 1 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 ⊕ 1 = 1 (Q2)

· · · (· · · )

X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• Finding a solution is NP-complete

9 / 41



2-Universal Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs
• Pick every Xi with prob. 1

2 and XOR them
– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 ⊕ 1
– Expected size of each XOR: n

2
• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 ⊕ 1 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 ⊕ 1 = 1 (Q2)

· · · (· · · )

X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• Finding a solution is NP-complete
Modern SAT solvers are able to deal routinely with practical
problems that involve many thousands of variables, although such
problems were regarded as hopeless just a few years ago.

(Knuth, 2016)

9 / 41



2-Universal Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2 and XOR them

– X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 ⊕ 1
– Expected size of each XOR: n

2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 ⊕ 1 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 ⊕ 1 = 1 (Q2)

· · · (· · · )

X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Solutions in a cell: F ∧ Q1 · · · ∧ Qm

• Finding a solution is NP-complete

• Performance of state of the art SAT solvers degrade with increase
in the size of XORs (SAT Solvers != SAT oracles)

9 / 41



Improved Universal Hash Functions

• Not all variables are required to specify solution space of ϕ

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(ϕ), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

10 / 41



Improved Universal Hash Functions

• Not all variables are required to specify solution space of ϕ

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(ϕ), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I (CMV DAC14)

10 / 41



Improved Universal Hash Functions

• Not all variables are required to specify solution space of ϕ

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(ϕ), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I (CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

10 / 41



Improved Universal Hash Functions

• Not all variables are required to specify solution space of ϕ

– F := X3 ⇐⇒ (X1 ∨ X2)
– X1 and X2 uniquely determines rest of the variables (i.e., X3)

• Formally: if I is independent support, then ∀σ1, σ2 ∈ Sol(ϕ), if σ1
and σ2 agree on I then σ1 = σ2

– {X1,X2} is independent support but {X1,X3} is not

• Random XORs need to be constructed only over I (CMV DAC14)

• Typically I is 1-2 orders of magnitude smaller than X

• Auxiliary variables introduced during encoding phase are
dependent (Tseitin 1968)

Algorithmic procedure to determine I?

10 / 41



Independent Support

• I ⊆ X is an independent support:
∀σ1, σ2 ∈ Sol(ϕ), σ1 and σ2 agree on I then σ1 = σ2

11 / 41



Independent Support

• I ⊆ X is an independent support:
∀σ1, σ2 ∈ Sol(ϕ), σ1 and σ2 agree on I then σ1 = σ2

• F (x1, · · · xn) ∧ F (y1, · · · yn) ∧
∧

i |xi∈I
(xi = yi ) =⇒

∧

i (xi = yi )
where F (y1, · · · yn) := F (x1 ֌ y1, · · · xn ֌ yn)

11 / 41



Independent Support

• I ⊆ X is an independent support:
∀σ1, σ2 ∈ Sol(ϕ), σ1 and σ2 agree on I then σ1 = σ2

• F (x1, · · · xn) ∧ F (y1, · · · yn) ∧
∧

i |xi∈I
(xi = yi ) =⇒

∧

i (xi = yi )
where F (y1, · · · yn) := F (x1 ֌ y1, · · · xn ֌ yn)

• QF ,I := F (x1, · · · xn) ∧ F (y1, · · · yn) ∧
∧

i |xi∈I
(xi = yi ) ∧ ¬(

∧

i (xi =
yi ))

11 / 41



Independent Support

• I ⊆ X is an independent support:
∀σ1, σ2 ∈ Sol(ϕ), σ1 and σ2 agree on I then σ1 = σ2

• F (x1, · · · xn) ∧ F (y1, · · · yn) ∧
∧

i |xi∈I
(xi = yi ) =⇒

∧

i (xi = yi )
where F (y1, · · · yn) := F (x1 ֌ y1, · · · xn ֌ yn)

• QF ,I := F (x1, · · · xn) ∧ F (y1, · · · yn) ∧
∧

i |xi∈I
(xi = yi ) ∧ ¬(

∧

i (xi =
yi ))

• Lemma: QF ,I is UNSAT if and only if I is independent support

11 / 41



Independent Support

H1 := {x1 = y1},H2 := {x2 = y2}, · · ·Hn := {xn = yn}

Ω = F (x1, · · · xn) ∧ F (y1, · · · yn) ∧ ¬(
∧

i

(xi = yi ))

Lemma

I = {xi} is independent support iif H
I ∧ Ω is UNSAT where

H I = {Hi |xi ∈ I}

12 / 41



Minimal Unsatisfiable Subset

Given Ψ = H1 ∧ H2 · · · ∧ Hm ∧ Ω

Unsatisfiable Subset Find subset {Hi1,Hi2, · · ·Hik} of {H1,H2, · · ·Hm}
such that Hi1 ∧ Hi2 ∧ Hik ∧ Ω is UNSAT

13 / 41



Minimal Unsatisfiable Subset

Given Ψ = H1 ∧ H2 · · · ∧ Hm ∧ Ω

Unsatisfiable Subset Find subset {Hi1,Hi2, · · ·Hik} of {H1,H2, · · ·Hm}
such that Hi1 ∧ Hi2 ∧ Hik ∧ Ω is UNSAT

Minimal Unsatisfiable Subset Find minimal subset {Hi1,Hi2, · · ·Hik}
of {H1,H2, · · ·Hm} such that Hi1 ∧ Hi2 ∧ Hik ∧ Ω is
UNSAT

13 / 41



Minimal Unsatisfiable Subset

Given Ψ = H1 ∧ H2 · · · ∧ Hm ∧ Ω

Unsatisfiable Subset Find subset {Hi1,Hi2, · · ·Hik} of {H1,H2, · · ·Hm}
such that Hi1 ∧ Hi2 ∧ Hik ∧ Ω is UNSAT

Minimal Unsatisfiable Subset Find minimal subset {Hi1,Hi2, · · ·Hik}
of {H1,H2, · · ·Hm} such that Hi1 ∧ Hi2 ∧ Hik ∧ Ω is
UNSAT

13 / 41



Minimal Independent Support

H1 := {x1 = y1},H2 := {x2 = y2}, · · ·Hn := {xn = yn}

Ω = F (x1, · · · xn) ∧ F (y1, · · · yn) ∧ ¬(
∧

i

(xi = yi ))

Lemma

I = {xi} is Minimal Independent Support iif H I is Minimal Unsatisfiable
Subset where H I = {Hi |xi ∈ I}

MIS MUS

14 / 41



Minimal Independent Support

H1 := {x1 = y1},H2 := {x2 = y2}, · · ·Hn := {xn = yn}

Ω = F (x1, · · · xn) ∧ F (y1, · · · yn) ∧ ¬(
∧

i

(xi = yi ))

Lemma

I = {xi} is Minimal Independent Support iif H I is Minimal Unsatisfiable
Subset where H I = {Hi |xi ∈ I}

MIS MUS
Two orders of magnitude improvement in runtime

14 / 41



Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Independent Support-based 2-Universal Hash
Functions

Challenge 2 How large is a “small” cell?

Challenge 3 How many cells?

15 / 41



Challenge 2: How large is a “small” cell

• Too large ֌ Hard to enumerate

16 / 41



Challenge 2: How large is a “small” cell

• Too large ֌ Hard to enumerate

• Too small ֌ Weaker probabilistic guarantees

16 / 41



Challenge 2: How large is a “small” cell

• Too large ֌ Hard to enumerate

• Too small ֌ Weaker probabilistic guarantees

– Pr
[

E[Z ]
1+ε
≤ Z ≤ E[Z ](1 + ε)

]

≥ 1− 1
( ε

1+ε
)2(E[Z ])

16 / 41



Challenge 2: How large is a “small” cell

• Too large ֌ Hard to enumerate

• Too small ֌ Weaker probabilistic guarantees

– Pr
[

E[Z ]
1+ε
≤ Z ≤ E[Z ](1 + ε)

]

≥ 1− 1
( ε

1+ε
)2(E[Z ])

We want a “small” cell to have roughly thresh solutions, where
thresh = 5

(

1 + 1
ε2

)

16 / 41



Challenges

Challenge 1 How to partition into roughly equal small cells of solutions
without knowing the distribution of solutions?

• Independent Support-based 2-Universal Hash
Functions

Challenge 2 How large is a “small” cell?

• Independent Support-based 2-Universal Hash
Functions

Challenge 3 How many cells?

17 / 41



Challenge 3: How many cells?

• A cell is small if it has less than thresh = 5(1 + 1
ε
)2 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(ϕ)|
thresh

18 / 41



Challenge 3: How many cells?

• A cell is small if it has less than thresh = 5(1 + 1
ε
)2 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(ϕ)|
thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh

18 / 41



Challenge 3: How many cells?

• A cell is small if it has less than thresh = 5(1 + 1
ε
)2 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(ϕ)|
thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh
– XORs for each m must be independently chosen

18 / 41



Challenge 3: How many cells?

• A cell is small if it has less than thresh = 5(1 + 1
ε
)2 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(ϕ)|
thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh
– XORs for each m must be independently chosen

◮ Query 1: Is #(F ∧ Q1
1 ) ≤ thresh

◮ Query 2: Is #(F ∧ Q2
1 ∧ Q2

2 ) ≤ thresh

◮ · · ·

◮ Query n: Is #(F ∧ Qn
1 · · · ∧ Qn

n ) ≤ thresh

18 / 41



Challenge 3: How many cells?

• A cell is small if it has less than thresh = 5(1 + 1
ε
)2 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(ϕ)|
thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh
– XORs for each m must be independently chosen

◮ Query 1: Is #(F ∧ Q1
1 ) ≤ thresh

◮ Query 2: Is #(F ∧ Q2
1 ∧ Q2

2 ) ≤ thresh

◮ · · ·

◮ Query n: Is #(F ∧ Qn
1 · · · ∧ Qn

n ) ≤ thresh

– Stop at the first m where Query m returns YES and return estimate
as #(F ∧ Qm

1 · · · ∧ Qm
m )× 2m

18 / 41



Challenge 3: How many cells?

• A cell is small if it has less than thresh = 5(1 + 1
ε
)2 solutions

• We want to partition into 2m
∗

cells such that 2m
∗

= |Sol(ϕ)|
thresh

– Check for every m = 0, 1, · · · n if the number of solutions ≤ thresh
– XORs for each m must be independently chosen

◮ Query 1: Is #(F ∧ Q1
1 ) ≤ thresh

◮ Query 2: Is #(F ∧ Q2
1 ∧ Q2

2 ) ≤ thresh

◮ · · ·

◮ Query n: Is #(F ∧ Qn
1 · · · ∧ Qn

n ) ≤ thresh

– Stop at the first m where Query m returns YES and return estimate
as #(F ∧ Qm

1 · · · ∧ Qm
m )× 2m

• Number of SAT calls is O(n) (CMV, CP13) (CFMSV, AAAI14)

18 / 41



ApproxMC(F , ε, δ)

# of sols
≤ thresh?

19 / 41



ApproxMC(F , ε, δ)

# of sols
≤ thresh?

# of sols
≤ thresh?

No

19 / 41



ApproxMC(F , ε, δ)

# of sols
≤ thresh?

# of sols
≤ thresh?

No No

19 / 41



ApproxMC(F , ε, δ)

# of sols
≤ thresh?

# of sols
≤ thresh?

# of sols
≤ thresh?

# of sols
≤ thresh?

· · ·

No No

No

19 / 41



ApproxMC(F , ε, δ)

# of sols
≤ thresh?

# of sols
≤ thresh?

# of sols
≤ thresh?

Estimate =
# of sols ×
# of cells # of sols

≤ thresh?

· · ·

No No

No

Yes

19 / 41



ApproxMC(F , ε, δ)

Theoretical Guarantees

Theorem (Correctness)

Pr
[

|Sol(ϕ)|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(ϕ)|(1 + ε)
]

≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
n log( 1

δ
)

ε2
) calls to SAT oracle.

• Prior work required O(
n log n log( 1

δ
)

ε
) calls to SAT oracle (Stockmeyer

1983)

20 / 41



ApproxMC(F , ε, δ)

Theoretical Guarantees

Theorem (Correctness)

Pr
[

|Sol(ϕ)|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(ϕ)|(1 + ε)
]

≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
n log( 1

δ
)

ε2
) calls to SAT oracle.

• Prior work required O(
n log n log( 1

δ
)

ε
) calls to SAT oracle (Stockmeyer

1983)

Runtime performance

20 / 41



ApproxMC(F , ε, δ)

Theoretical Guarantees

Theorem (Correctness)

Pr
[

|Sol(ϕ)|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(ϕ)|(1 + ε)
]

≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
n log( 1

δ
)

ε2
) calls to SAT oracle.

• Prior work required O(
n log n log( 1

δ
)

ε
) calls to SAT oracle (Stockmeyer

1983)

Runtime performance
Handles thousands of variables in few hours but insufficient to solve
practical applications

20 / 41



ApproxMC(F , ε, δ)

Theoretical Guarantees

Theorem (Correctness)

Pr
[

|Sol(ϕ)|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(ϕ)|(1 + ε)
]

≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
n log( 1

δ
)

ε2
) calls to SAT oracle.

• Prior work required O(
n log n log( 1

δ
)

ε
) calls to SAT oracle (Stockmeyer

1983)

Runtime performance
Handles thousands of variables in few hours but insufficient to solve
practical applications

How to scale to hundreds of thousands of variables and beyond?

20 / 41



ApproxMC(F , ε, δ)

Theoretical Guarantees

Theorem (Correctness)

Pr
[

|Sol(ϕ)|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(ϕ)|(1 + ε)
]

≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
n log( 1

δ
)

ε2
) calls to SAT oracle.

• Prior work required O(
n log n log( 1

δ
)

ε
) calls to SAT oracle (Stockmeyer

1983)

Runtime performance
Handles thousands of variables in few hours but insufficient to solve
practical applications

How to scale to hundreds of thousands of variables and beyond?
Efficient SAT oracle calls?

20 / 41



Beyond ApproxMC

• Query 1: Is #(F ∧ Q1
1 ) ≤ thresh

• Query 2: Is #(F ∧ Q2
1 ∧ Q2

2 ) ≤ thresh

• · · ·

• Query n: Is #(F ∧ Qn
1 · · · ∧ Qn

n ) ≤ thresh

Classical View

• Every NP query requires equal amount of time

21 / 41



Beyond ApproxMC

• Query 1: Is #(F ∧ Q1
1 ) ≤ thresh

• Query 2: Is #(F ∧ Q2
1 ∧ Q2

2 ) ≤ thresh

• · · ·

• Query n: Is #(F ∧ Qn
1 · · · ∧ Qn

n ) ≤ thresh

Classical View

• Every NP query requires equal amount of time

Practitioner’s View

• Solving (F ∧ Q1
1 ) followed by (F ∧ Q2

1 ∧ Q2
2 ) requires larger

runtime than solving (F ∧ Q1
1 ) followed by (F ∧ Q1

1 ∧ Q2
2 )

21 / 41



Beyond ApproxMC

• Query 1: Is #(F ∧ Q1
1 ) ≤ thresh

• Query 2: Is #(F ∧ Q2
1 ∧ Q2

2 ) ≤ thresh

• · · ·

• Query n: Is #(F ∧ Qn
1 · · · ∧ Qn

n ) ≤ thresh

Classical View

• Every NP query requires equal amount of time

Practitioner’s View

• Solving (F ∧ Q1
1 ) followed by (F ∧ Q2

1 ∧ Q2
2 ) requires larger

runtime than solving (F ∧ Q1
1 ) followed by (F ∧ Q1

1 ∧ Q2
2 )

– If (F ∧ Q1
1 ) =⇒ L then (F ∧ Q1

1 ∧ Q2
2 ) =⇒ L

– But, If (F ∧ Q1
1 ) =⇒ L then it is not always the case that

(F ∧ Q2
1 ∧ Q2

2 ) =⇒ L

21 / 41



Beyond ApproxMC

• What if we modify our queries to:
– Query 1: Is #(F ∧ Q1) ≤ thresh

– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh

– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi )
– If Query i returns YES, then Query i + 1 must return YES

22 / 41



Beyond ApproxMC

• What if we modify our queries to:
– Query 1: Is #(F ∧ Q1) ≤ thresh

– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh

– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi )
– If Query i returns YES, then Query i + 1 must return YES
– Galloping search (# of SAT calls: O(log n))
– Incremental solving

22 / 41



Beyond ApproxMC

• What if we modify our queries to:
– Query 1: Is #(F ∧ Q1) ≤ thresh

– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh

– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi )
– If Query i returns YES, then Query i + 1 must return YES
– Galloping search (# of SAT calls: O(log n))
– Incremental solving

• But Query i and Query j are no longer independent

22 / 41



Beyond ApproxMC

• What if we modify our queries to:
– Query 1: Is #(F ∧ Q1) ≤ thresh

– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh

– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi )
– If Query i returns YES, then Query i + 1 must return YES
– Galloping search (# of SAT calls: O(log n))
– Incremental solving

• But Query i and Query j are no longer independent
– Independence crucial to analysis (Stockmeyer 1983, · · · )

22 / 41



Beyond ApproxMC

• What if we modify our queries to:
– Query 1: Is #(F ∧ Q1) ≤ thresh

– Query 2: Is #(F ∧ Q1 ∧ Q2) ≤ thresh

– · · ·
– Query n: Is #(F ∧ Q1 ∧ Q2 · · · ∧ Qn) ≤ thresh

• Stop at the first m where Query m returns YES and return
estimate as #(F ∧ Q1 ∧ Q2 · · · ∧ Qm)× 2m

• Observation: #(F ∧ Q1 · · · ∧ Qi ∧ Qi+1) ≤ #(F ∧ Q1 · · · ∧ Qi )
– If Query i returns YES, then Query i + 1 must return YES
– Galloping search (# of SAT calls: O(log n))
– Incremental solving

• But Query i and Query j are no longer independent
– Independence crucial to analysis (Stockmeyer 1983, · · · )

• Key Insight: The probability of making a bad choice of Qi is very
small for i ≪ m∗

– Dependence of Query j upon Query i (i < j) does not hurt

(CMV, IJCAI16)

22 / 41



Taming the Curse of Dependence

Let 2m
∗

= |Sol(ϕ)|
thresh

Lemma (1)

ApproxMC (F , ε, δ) terminates with m ∈ {m∗ − 1,m∗} with probability
≥ 0.8

Lemma (2)

For m ∈ {m∗ − 1,m∗}, estimate obtained from a randomly picked cell
lies within a tolerance of ε of |Sol(ϕ)| with probability ≥ 0.8

23 / 41



Optimized ApproxMC(F , ε, δ)

Theorem (Correctness)

Pr
[

|Sol(ϕ)|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(ϕ)|(1 + ε)
]

≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
log n log( 1

δ
)

ε2
) calls to SAT oracle.

24 / 41



Optimized ApproxMC(F , ε, δ)

Theorem (Correctness)

Pr
[

|Sol(ϕ)|
1+ε

≤ ApproxMC(F , ε, δ) ≤ |Sol(ϕ)|(1 + ε)
]

≥ 1− δ

Theorem (Complexity)

ApproxMC(F , ε, δ) makes O(
log n log( 1

δ
)

ε2
) calls to SAT oracle.

Theorem (FPRAS for DNF)

If ϕ is a DNF formula, then ApproxMC is FPRAS – fundamentally
different from the only other known FPRAS for DNF (Karp, Luby 1983)

24 / 41



Beyond Boolean: Handling bit-vectors

• Bit-vector: fixed-width integers

– Bit-vector constraints can be translated into a Boolean formula

• Significant advancements in bit-vector solving over the past decade

• Challenge: Hash functions for bit vectors

• Lifting hashing from (mod 2) to (mod p) constraints

• p: smallest prime grater than domain of variables

25 / 41



Beyond Boolean: Handling bit-vectors

• Bit-vector: fixed-width integers

– Bit-vector constraints can be translated into a Boolean formula

• Significant advancements in bit-vector solving over the past decade

• Challenge: Hash functions for bit vectors

• Lifting hashing from (mod 2) to (mod p) constraints

• p: smallest prime grater than domain of variables

• Linear equality (mod p) constraints to hash into cells

• Amenable to Gaussian Elimination

25 / 41



Beyond Boolean: Handling bit-vectors

• Bit-vector: fixed-width integers

– Bit-vector constraints can be translated into a Boolean formula

• Significant advancements in bit-vector solving over the past decade

• Challenge: Hash functions for bit vectors

• Lifting hashing from (mod 2) to (mod p) constraints

• p: smallest prime grater than domain of variables

• Linear equality (mod p) constraints to hash into cells

• Amenable to Gaussian Elimination

• Number of cells: pm

• Large p does not give finer control on the number of cells

– Few cells ֌ too many solutions in a cell
– Too many cells ֌ No solutions in most of the cells

25 / 41



HSMT : Efficient word-level Hash Function

• Use different primes to control the number of cells

• Choose appropriate N and express as product of preferred primes,
i.e., N = pc11 pc22 pc33 · · · p

cn
n

• HSMT :

– c1 (mod p) constraints
– c2 (mod p) constraints
– · · ·

• HSMT satisfies guarantees of 2-universality

26 / 41



From Timeouts to under 40 seconds

Performance of RDA

Performance of ApproxMC

(DMPV, AAAI17)

27 / 41



Highly Accurate Estimates

Observed relative error (G5)

10 20 30 40 50 60

Terminal Node

10

20

30

40

50

60

S
ou

rc
e

N
o
d
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
el

at
iv

e 
E

rr
or

(ε = 0.8, δ = 0.1)

28 / 41



Beyond Network Reliability

ApproxMC

Network
Reliability

Probabilistic
Inference

Decision
Making
Under

Uncertainty

Quantified
Information

Flow

Program
Synthesis

(DMPV,
AAAI17)

(CFMSV, AAAI14), (IMMV,
CP15), (CFMV, IJCAI15), (CMMV,

AAAI16), (CMV, IJCAI16) (CMV,
IJCAI16)

Fremont,
Rabe and
Seshia 2017

(CFMSV, AAAI14), Fremont
et al 2017, Ellis et al 2017

29 / 41



Part II

Discrete Sampling

30 / 41



Discrete Sampling

• Given

– Boolean Variables X1,X2, · · ·Xn

– Formula ϕ over X1,X2, · · ·Xn

• Uniform Generator

Pr[y is output] =
1

|Sol(ϕ)|

• Almost-Uniform Generator

1

(1 + ε)|Sol(ϕ)|
≤ Pr[y is output] =

1 + ε

|Sol(ϕ)|

31 / 41



As simple as sampling dots



As simple as sampling dots



As simple as sampling dots

Pick a random cell

Enumerate all the solutions and pick a random solution

32 / 41



As simple as sampling dots

Pick a random cell

Enumerate all the solutions and pick a random solution
Challenge: How many cells?

32 / 41



How many cells?

• Desired Number of cells: 2m
∗

= |Sol(ϕ)|
thresh

– But determining |Sol(ϕ)| is expensive
– ApproxMC(F , ε, δ) returns C such that

Pr
[

|Sol(ϕ)|
1+ε

≤ C ≤ |Sol(ϕ)|(1 + ε)
]

≥ 1− δ

– m̃ = log C
thresh

( m∗ = log |Sol(ϕ)|
thresh

)
– Check for m = m̃ − 1, m̃, m̃ + 1 if a randomly chosen cell is small

33 / 41



How many cells?

• Desired Number of cells: 2m
∗

= |Sol(ϕ)|
thresh

– But determining |Sol(ϕ)| is expensive
– ApproxMC(F , ε, δ) returns C such that

Pr
[

|Sol(ϕ)|
1+ε

≤ C ≤ |Sol(ϕ)|(1 + ε)
]

≥ 1− δ

– m̃ = log C
thresh

( m∗ = log |Sol(ϕ)|
thresh

)
– Check for m = m̃ − 1, m̃, m̃ + 1 if a randomly chosen cell is small
– Not just a practical hack required non-trivial proof

(CMV, CAV13)

(CMV, DAC14)

(CFMSV, TACAS15)

33 / 41



Theoretical Guarantees

Theorem (Almost-Uniformity)

∀y ∈ Sol(ϕ), 1
(1+ε)|Sol(ϕ)| ≤ Pr[y is output] ≤ 1+ε

|Sol(ϕ)|

34 / 41



Theoretical Guarantees

Theorem (Almost-Uniformity)

∀y ∈ Sol(ϕ), 1
(1+ε)|Sol(ϕ)| ≤ Pr[y is output] ≤ 1+ε

|Sol(ϕ)|

Theorem (Query)

For a formula ϕ over n variables, to generate m samples, UniGen makes
one call to approximate counter

34 / 41



Theoretical Guarantees

Theorem (Almost-Uniformity)

∀y ∈ Sol(ϕ), 1
(1+ε)|Sol(ϕ)| ≤ Pr[y is output] ≤ 1+ε

|Sol(ϕ)|

Theorem (Query)

For a formula ϕ over n variables, to generate m samples, UniGen makes
one call to approximate counter

• JVV (Jerrum, Valiant and Vazirani 1986) makes n ×m calls

34 / 41



Theoretical Guarantees

Theorem (Almost-Uniformity)

∀y ∈ Sol(ϕ), 1
(1+ε)|Sol(ϕ)| ≤ Pr[y is output] ≤ 1+ε

|Sol(ϕ)|

Theorem (Query)

For a formula ϕ over n variables, to generate m samples, UniGen makes
one call to approximate counter

• JVV (Jerrum, Valiant and Vazirani 1986) makes n ×m calls

Universality

• JVV employs 2-universal hash functions

• UniGen employs 3-universal hash functions

34 / 41



Theoretical Guarantees

Theorem (Almost-Uniformity)

∀y ∈ Sol(ϕ), 1
(1+ε)|Sol(ϕ)| ≤ Pr[y is output] ≤ 1+ε

|Sol(ϕ)|

Theorem (Query)

For a formula ϕ over n variables, to generate m samples, UniGen makes
one call to approximate counter

• JVV (Jerrum, Valiant and Vazirani 1986) makes n ×m calls

Universality

• JVV employs 2-universal hash functions

• UniGen employs 3-universal hash functions

Random XORs are 3-universal

34 / 41



Three Orders of Improvement

Relative Runtime

SAT Solver 1

Desired Uniform Generator 10

UniGen 20

XORSample (2012 state of the art) 50000

Experiments over 200+ benchmarks

35 / 41



Three Orders of Improvement

Relative Runtime

SAT Solver 1

Desired Uniform Generator 10

UniGen 20

XORSample (2012 state of the art) 50000

Experiments over 200+ benchmarks
UniGen is highly parallelizable – achieves linear speedup i.e., runtime
decreases linearly with number of processors.

35 / 41



Three Orders of Improvement

Relative Runtime

SAT Solver 1

Desired Uniform Generator 10

UniGen (two cores) 10

XORSample (2012 state of the art) 50000

Experiments over 200+ benchmarks
UniGen is highly parallelizable – achieves linear speedup i.e., runtime
decreases linearly with number of processors.
Closer to technical transfer

36 / 41



Uniformity

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4× 106; Total Solutions : 16384

37 / 41



Statistically Indistinguishable

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4× 106; Total Solutions : 16384

38 / 41



Beyond Verification

UniGen

Hardware
Validation

Music
Improvisation Probabilistic

Reasoning

Program
Analysis

Problem
Generation

39 / 41



Towards Discrete Sampling and Integration

Revolution

40 / 41



Towards Discrete Sampling and Integration

Revolution

• Tighter integration between solvers and algorithms

40 / 41



Towards Discrete Sampling and Integration

Revolution

• Tighter integration between solvers and algorithms

• Exploring solution space structure of CNF+XOR formulas
(DMV, IJCAI16)

0 1 2 3 4 5 6

r: Density of 3-clauses

0.0

0.2

0.4

0.6

0.8

1.0

1.2

s:
D
en
si
ty

o
f
X
O
R
-c
la
u
se
s

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.00

40 / 41



Towards Discrete Sampling and Integration

Revolution

• Tighter integration between solvers and algorithms

• Exploring solution space structure of CNF+XOR formulas
(DMV, IJCAI16)

0 1 2 3 4 5 6

r: Density of 3-clauses

0.0

0.2

0.4

0.6

0.8

1.0

1.2

s:
D
en
si
ty

o
f
X
O
R
-c
la
u
se
s

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.00

• Can we handle real variables without discretization?

40 / 41



Summary

• Counting and Sampling are fundamental problems in Computer
Science

– Applications from network reliability, probabilistic inference,
side-channel attacks to hardware verification

• Hashing-based approaches provide theoretical guarantees and
demonstrate scalability

– From problems with tens of variables to hundreds of thousands of
variables

Generator Relative
Runtime

SAT Solver 1
Desired Uniform Generator 10

UniGen 20
UniGen (two cores) 10

XORSample 50000

41 / 41


	Discrete Integration
	Discrete Sampling

