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Abstract

Towards Practical Distribution Testing
by

Yash Pote

As systems that employ samplers are deployed in safety-critical software, there is
a need for tests that can verify the samplers’ statistical correctness. This raises the
question: For a sampler P and a target distribution Q, can we practically test whether P
samples from a distribution close to Q?

Samplers can be accessed in a black-box manner, where one can only observe
samples drawn from the sampler. Samplers can also be accessed in a white-box
manner, where the code is available and can be reasoned about. In the high-
dimensional setting, where the domain is {0, 1}N for a large N , testing with black-
box access is known to be statistically intractable; and in the white-box setting,
testing is known to be computationally intractable. Consequently, richer "grey-box"
models, such as those allowing conditional sampling, have emerged as promising
alternatives.

In this thesis, we develop grey-box algorithms that are fast in theory and
practice. In the first part, we focus on the decision variant of the problem, where
we develop algorithms that can distinguish between close and far distributions.
To this end, we develop a technique that uses pairwise conditioning to improve
the query complexity from exponential to linear in N . In our experiments we use
this algorithm to design a testing tool for combinatorial samplers.

In the second part, we address the estimation variant, where we estimate the
distance between distributions. We first tackle this for distributions with tractable
representations, such as probabilistic circuits. We then extend our approach to the
broad class of self-reducible models, for which we build the first polynomial query
distance estimator. Together, these algorithms provide a toolkit for the practical
statistical verification of combinatorial samplers.
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Chapter 1

Introduction
There is nothing like looking, if
you want to find something.
You certainly usually find
something if you look, but it is
not always quite the something
you were after.

J.R.R. Tolkien, The Hobbit

In this thesis, we study the problem of distribution testing, which can be framed
as: Given two distributions P and Q, determine whether P is close to Q.

Distribution testing is one of the main topics of study in statistics and has been
studied in several different contexts over the last two centuries [66]. Classically,
the analysis of the testing problem has been asymptotic, i.e., where the number
of samples drawn from the distribution is assumed to go to infinity. In modern
settings, we encounter high-dimensional distributions, i.e., distributions over n-
dimensional objects such as texts or images, where n is the size of the object and
is assumed to be large. To simplify things, we can consider the distributions to
be over {0, 1}n. Since these high-dimensional distributions have extremely large
support, the classical asymptotic results fall short, and recent work in the area has
focused on tests that provide finite-sample non-asymptotic guarantees.

The first such non-asymptotic test was devised by Goldreich and Ron [52] for
the problem of uniformity testing, where one has to determine whether P is the
uniform distribution or ε-far from uniform1. The test was black-box in the sense
that the only way to interact with the distribution was via the drawing of samples.

1In total variation distance, defined later in Section 2
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The sample complexity of the test was Ω(2n/2), and this dependence was shown to
be tight by Paninski [77].

The exponential lower bound on the sample complexity gave an impetus to
research into opening up the black box and exploiting the fact that, in practice,
distributions frequently offer more powerful access. One of the directions taken
was in the study of conditional oracle models of accessing distributions.

1.1 Oracles for Faster Distribution Testing

Conditional Oracles To sidestep the exponential lower bounds on testing, the
conditional samplingmodel, orCOND, was introduced independently byChakraborty
et al. [27] and Canonne et al. [23], as a more powerful way to access distributions.
A COND oracle for distribution D over {0, 1}n takes as input a set S ⊆ {0, 1}n with
D(S) > 0, and returns a sample i ∈ S with probability D(i)/D(S). It has been
shown that the use of the COND oracle and its variants drastically reduces the
sample complexity of many tasks in distribution testing [1, 51, 23, 27, 12, 61, 13, 36,
24, 74]. An extensive treatment of the subject can be found in a survey by Canonne
[21].

In this thesis, we consider two restricted variants of COND:

1. Pair-conditioning (PCOND): a special case of the COND oracle, introduced
by [20] with the restriction that |S| = 2, i.e., the size of the conditioning set
has to be two. As we will see later in the thesis, the PCOND model is suitable
for testing of SAT samplers.

2. Subcube Conditioning (SUBCOND): the SUBCOND model allows condition-
ing only on sets that are subcubes of the domain. With a view towards plausi-
ble conditional models, Canonne et al. [23], Bhattacharyya and Chakraborty
[12] introduced the SUBCOND model, which is particularly suited to the
Boolean hypercube {0, 1}n.

Other Oracles With the same goal of designing tests with polynomial sample
complexity, a different kind of oracle, known as the DUAL oracle, was proposed

2



by Canonne et al. [23]. The DUAL oracle allows one to sample from a given distri-
bution and also query the distribution for the probability of arbitrary elements
of the domain. A weaker form of DUAL is the APPROXDUAL oracle which allows
approximate sampling and returns the approximate probability. In this thesis, we
will consider distributions that offer DUAL, and APPROXDUAL access.

A similar oracle, not considered in this thesis, is the probability revealing PR
oracle introduced by Onak and Sun [75]. Unlike the DUAL oracle, the PR oracle
only returns the probability of the elements that have been sampled rather than
arbitrary elements.

Oracles and Costs Our choice of oracles is motivated by practical considerations.
While COND is the most flexible, and therefore useful oracle to query, it is also
the most expensive to implement, requiring 2n random bits merely to describe
a single conditional set, in the worst case. Even for the restricted oracles we use,
we find that in practice the oracle calls are significantly more expensive than
sampling. Hence, wherever possible we try to minimise the number of queries
to the expensive oracles, while accepting a trade-off of an increased number of
queries to the cheap oracles.

Bhattacharya and Valiant [8] studied the trade-off problem for equivalence
testing, in which one has to determine whether P = Q or dT V (P,Q) ≥ ε, having
sample access to both P , and Q. In their setting, the cost to draw samples from P

and Q are unequal, hence they show the optimal trade-off where one can draw
fewer samples from P while drawing a greater number fromQ. We do not explore
the trade-off formally in this thesis, and we leave it for future work.

1.2 Problem Statements
The main problemwe are interested in is: Given two distributions P andQ, determine
whether P is close to Q. We will make this question more formal and split the
investigation into two themes: decision and estimation.

3



1.2.1 The Decision Problem

Given as input two distributions P andQ over {0, 1}n , along with parameters ε, η
such that 0 < ε < η < 1, and 0 < δ ≤ 0.5,

1. With probability > 1− δ return Accept if d∞(P ,Q) < ε

2. With probability > 1− δ return Reject if dT V (P ,Q) > η

We will define dT V and d∞ distance functions, and discuss the motivations behind
the choice later in Chapter 2.2. However, to provide an intuition, we visualize the
problem statement in the following diagram.

dT V (P ,Q) > η

d∞(P ,Q) < ε

P
d∞(P ,Q) > ε,

dT V (P ,Q) < η

At the center, we have the distribution P , and the green disk represents all
the distributions that are ε-close in d∞ to P , while the red region represents the
distributions that are η-far from P . As in the definition, we want to, with high
probability, return Accept for allQ that are in the green region and return Reject for
allQ in the red. Notice that there is also a band of yellow in between that represents
the distributions for which we do not guarantee correctness. This band is essential
for the decision problem and, as discussed later more formally, determines the
query complexity of the test.
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The first part of the thesis deals with the decision problem, and we present two
algorithms designed to solve the problem, Barbarik2 and Barbarik3, in Chapters 3
and 4 respectively. Barbarik2 generalizes the tolerant uniformity test Barbarik [26]
to arbitrary discrete distributions, and like Barbarik, uses the PCOND oracle to
achieve scalability in practice.

To scale further and to show a polynomial query complexity, we present
Barbarik3, another PCOND based algorithm that uses bucketing to split the prob-
lem into individually tractable parts. Barbarik3 requiresO(n) oracle queries to solve
the decision problem in the worst case, where n is the number of dimensions of
the domain.

We focus on combinatorial samplers as the objects of experimental investigation,
and we conduct a detailed evaluation of these two algorithms, providing the
complete data later in the appendix sections A.1 and A.2.

1.2.2 The Estimation Problem

Estimation is a quantitative generalization of the decision problem, where instead
of a 0-1 decision, we provide an estimate of how far P and Q are. Formally, given
as input two distributions P andQ over {0, 1}n , along with parameter ε such that
0 < ε < 1, and 0 < δ ≤ 0.5, return est such that

Pr[dT V (P ,Q)− ε ≤ est ≤ dT V (P ,Q) + ε] ≥ 1− δ

In the second part of the thesis, we deal with the estimation question, and we
present our contribution in two chapters. The first chapter (Chapter 5) deals with
our research into distance estimation in probabilistic circuits, which are a class of
ML models that offer tractable DUAL access. Here, we analyze the computational
complexity of distance estimation and present some lower and upper bounds with
respect to the underlying distribution representation. Furthermore, we design and
implement the estimator for the models that allow polynomial time estimation.
We present the complete set of results in appendix section A.3.

Then, in the second chapter (Chapter 6), we tackle the longstanding open
problem of distance estimation in the conditional sampling model. Although there
are many polynomial query algorithms known for the decision problem, to date,
the best-known algorithm for distance estimation, even with full COND access,

5



is exponential in n. We present a part of our ongoing work in designing the first
polynomial time distance estimation algorithm that uses SUBCOND, a restricted
variant of COND that has the advantage of being computationally plausible to
implement.
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Chapter 2

Preliminaries
A probability distribution D over the domain Ω is a function D : Ω→ [0, 1] such
that∑σ∈ΩD(σ) = 1. In particular, we will focus on distributions over the Boolean
hypercube {0, 1}n. We useD(σ) to denote the probability of an element σ ∈ {0, 1}n,
for a distribution D. For a set S ⊆ {0, 1}n, we use the notation D(S) to denote the
probability of the set S, i.e. D(S) = ∑

σ∈S D(σ).
We will use DS to indicate the conditional distribution generated when D is

conditioned on S. Formally,

Definition 1 (Conditioning). For D(S) > 0, and for some σ ∈ {0, 1}n,

DS(σ) = 1
D(S)


0 if σ ̸∈ S
D(σ) if σ ∈ S

We denote by [n] the set {1, . . . , n}. For a random variable v, the expectation is
defined as E[v] and the variance as V[v].

2.1 Complexity Basics
The polynomial hierarchy (PH) contains the classes ΣP

1 (NP) and ΠP
1 (co-NP)

along with generalizations of the form ΣP
i and ΠP

i where ΠP
i+1 = co-NPΠP

i and
ΣP

i+1 = NPΣP
i [90]. The classes ΣP

i and ΠP
i are said to be at level i. If it is shown that

two classes on the same or consecutive levels are equal, the hierarchy collapses to
that level. Such a collapse is considered unlikely, and hence is used as the basic
assumption for showing many hardness results, including the ones we present in
Chapter 5.

7



2.2 Distance Measures for Distributions
Our goal is to design a program that can test the quality of a distribution with
respect to an ideal reference. The total variation distance between distributions is
central in this thesis.

Definition 2. The total variation distance between distributions P and Q is

dT V (P ,Q) = 1
2

∑
σ∈{0,1}n

|Q(σ)− P(σ)|

We also use the notion of pointwise distance.

Definition 3. The pointwise distance between distributions P and Q is

d∞(P ,Q) = max
σ∈{0,1}n

(
Q(σ)
P(σ) ,

P(σ)
Q(σ)

)
− 1

We will also use the notion of Hellinger distance.

Definition 4. The Hellinger distance between distributions P and Q is

dH(P ,Q) = 1√
2

√√√√ ∑
σ∈{0,1}n

(√
Q(σ)−

√
P(σ)

)2

2.2.1 Relevance to Applications

Since the available off-the-shelf samplers that come with theoretical guarantees
all provide pointwise (d∞)-closeness guarantees, we are interested in accepting a
sampler that is ε-close in d∞ [54, 50, 28, 30].

In contrast, we would like to be more forgiving to the samplers without guar-
antees and would like to reject only if they are η-far in TV distance, a notion
more relaxed than d∞ closeness. This has an operational meaning in the context
of testing: A randomized program that draws a single sample from P , and after
further processing outputs a distribution D. If, P were to be replaced with Q then
the new output distribution is D′. The replacement could be for the purpose of
optimisation, or due to programmer error. Using total variation we can upper
bound the change in the output caused by the replacement as follows:

dT V (D,D′) ≤ dT V (P ,Q)

8



In the following definition we capture the mentioned ideas, and we will use
this definition throughout Chapters 3 and 4.

Definition 5 (ε-closeness and η-farness). A distribution P is ε-close to an ideal Q, if
we have

d∞(P ,Q) < ε

P is η-far from the ideal Q, if

dT V (P ,Q) > η

2.3 Some Useful Tools

Concentration Bounds

Proposition 1 (Hoeffding). For i.i.d. 0-1 random variables Xi, X = ∑k
i=1 Xi, and

t ≥ 0,
Pr(X − E[X] > t) ≤ exp

(
−2t2
k

)
and

Pr(E[X]−X > t) ≤ exp
(
−2t2
k

)

When the true mean E[Yi] is unknown, the following Chernoff-type bounds
can be applied using a known value θ that acts as a lower bound (for case 1) or
upper bound (for case 2) for E[Yi]:

Corollary 1. Let Y1, Y2, . . . , Yn be i.i.d 0-1 random variables.

1. If E[Yi] ≥ θ ≥ 0, then for any t ≤ θ,

Pr
∑

j∈[n]

Yj

n
≤ t

 < exp
(
−(θ − t)2n

2θ

)

2. If E[Yi] ≤ θ, then for any t ≥ θ,

Pr
∑

j∈[n]

Yj

n
≥ t

 < exp
(
−(t− θ)2n

2t

)

Proposition 2 (Chebyshev). Given bounded r.v. X , we have

Pr(|X − E[X]| < E[X]) > E[X]2
E[X2]

9



Sample complexity of learning a distribution. Ifwe are given samples {s1, s2, . . . , sk}
from a distribution D over [n], then the empirical distribution D̂ is defined to be
D̂(i) = 1

k

k∑
j=1
1{sj=i}. The following proposition provides a bound on the number of

samples required to learn a distribution to accuracy ε in TV with confidence 1− δ.

Proposition 3 (See [22] for a simple proof). Suppose D is a distribution over [n], and
D̂ is constructed using max

(
n
η2 ,

2ln(2/δ)
η2

)
samples from D. Then dT V (D, D̂) ≤ η with

probability at least 1− δ.

2.4 Access Oracles
Our algorithms will interact with distributions only via oracles. We consider a
range of oracles, and they can be thought of as variants of three main archetypes,
SAMP, EVAL, and COND, which can be informally described as:

1. SAMP(D): the sampling oracle, returns a single sample σ from D.

2. EVAL(D, σ): the evaluation oracle, returns the probability of element σ in the
distribution D.

3. COND(D, S): the conditional oracle, returns a sample from theD conditioned
on set S, where S ⊆ {0, 1}n.

In the rest of the thesis, we investigate the practicality of various models by
implementing them and testing their efficiency and applicability on real-world
sampling benchmarks.

10



11

Part I

Decision Problems
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This chapter is based on the following publications:

1. On Testing of Samplers
Kuldeep S. Meel rO Yash Pote rO Sourav Chakraborty.
In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2020.1

2. On Scalable Testing of Samplers
Yash Pote rO Kuldeep S. Meel.
In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2022.

We focus on the decision problem in this part of the thesis, and we divide it
into two chapters. Chapter 3 focuses on Barbarik2, the first practical algorithm for
the decision problem. In this chapter, we present a detailed recipe to implement
conditional access into samplers, i.e. randomised programs that return samples
from a given distribution.

Chapter 4 then presents Barbarik3, a linear query algorithm that improves upon
Barbarik2’s worst-case performance. In this chapter we focus on purely algorithmic
improvements and hence to simplify matters, we only deal with distributions and
not samplers.

1 rO indicates randomly chosen author ordering.
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Chapter 3

Barbarik2: an Algorithm Based on Pair-
Conditioning

3.1 Introduction
Motivated by the success of statistical techniques, automated decision-making
systems are increasingly employed in critical domains such as medical [40], aero-
nautics [72], criminal sentencing [45], and military [3]. The potential long-term
impact of the ensuing decisions has led to research in the correct-by-construction
design of AI-based decision systems. There has been a call for the design of ran-
domised and quantitative formal methods [87] to verify the basic building blocks
of the modern AI systems. In this chapter, we focus on one such core building
block: constrained sampling.

Given a set of constraints φ over a set of variables X and a weight function
wt over assignments to X , the problem of constrained sampling is to sample a
satisfying assignment σ of φ with probability proportional to wt(σ). Constrained
sampling is a fundamental problem that encapsulates a wide range of sampling
formulations [54, 50, 28, 67, 30]. For example, wt can be used to capture a given
prior distribution often represented implicitly through probabilistic models, and φ
can be used to capture the evidence arising from the observed data, then the prob-
lem of constrained sampling models the problem of sampling from the resulting
posterior distribution.

The problem of constrained sampling is computationally hard [60], even for
the problems where the corresponding search problem is easy. Consequently,
sampling has witnessed a sustained interest from theoreticians and practitioners,
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resulting in the proposal of several approximation techniques. Of these, Monte
Carlo Markov Chain (MCMC)-based methods form the backbone of modern
sampling techniques [4, 15]. The runtime of these techniques depends on the
length of the random walk, and the Markov chains that require polynomial walks
are called rapidly mixing Markov chains. Unfortunately, for most distributions of
practical interest, it is infeasible to design rapidly mixing Markov chains [58], and
the practical implementations of such techniques have to resort to the usage of
heuristics that violate theoretical guarantees. The developers of such techniques,
often and rightly so, strive to demonstrate their effectiveness via empirical behavior
in practice [16].

The need for the usage of heuristics to achieve scalability is not restricted to
just MCMCmethods but is widely observed for other methods such as variational
methods [39], hashing-based techniques [28, 50, 29, 70], and simulated annealing
techniques [63]. Consequently, a fundamental problem for the designers of sam-
pling techniques is: how can one efficiently test whether a given technique samples from
the desired distribution?Most of the existing approaches rely on the computations of
statistical metrics such as variation distance and KL-divergence by drawing sam-
ples and perform hypothesis testing with a preset p-value. Sound computations
of statistical metrics require a large number of samples that is proportional to the
support of the posterior distribution [7, 92], which is prohibitively large; it is not
uncommon for the distribution support to be significantly larger than 270. Conse-
quently, the existing approaches tend to estimate the desired quantities using a
fraction of the required samples, and such estimates are often without the required
confidence. The usage of unsound metrics may lead to unsound conclusions, as
demonstrated by a recent study where the usage of unsound metric would lead
one to conclude that two samplers were indistinguishable (it is worth mentioning
that the authors of the study clearly warn the reader about the unsoundness of
the underlying metrics) [46].

The researchers in the sub-field of property testing within theoretical com-
puter science have analyzed the sample complexity of testing under different
models of samplers and computation. The resulting frameworks have not wit-
nessedwidespread adoption to practice due to a lack of samplers that can precisely
fit the models under which results are obtained. In a recent work, Chakraborty
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and Meel [26], building on the concepts developed in the condition sampling
model (rf. [1]), designed the first practical algorithmic procedure, called Barbarik,
that can rigorously test whether a given sampler produces the uniform distri-
bution using a constant number of samples assuming that the given sampler is
subquery-consistent (see Definition 14). Empirically, Barbarik was shown to be able
to distinguish samplers that were indistinguishable in prior studies based on un-
sound metrics. While Barbarik made significant progress, it is marred by its ability
to handle only the uniform distribution. Therefore, one wonders: Can we design
an algorithmic framework to test whether the distribution generated by a given sampler is
close to a desired (but arbitrary) posterior distribution of interest?

This chapter’s primary contribution is the first efficient algorithmic framework,
Barbarik2, to test whether the distribution generated by a sampler is ε-close or η-far
from the desired distribution specified by the set of constraints φ and a weight
function wt. In contrast to statistical techniques that require an exponential or sub-
exponential number of samples for samplers whose support can be represented
by n bits, the number of samples required by Barbarik2 depends on the tilt of the
distribution, where tilt is defined as the maximum ratio of non-zero weights of
two solutions of φ. Like Barbarik, the key technical idea of Barbarik2 sits at the
intersection of property testing and formal methods and uses ideas from conditional
sampling and employs chain formulas. However, the key algorithmic framework
of Barbarik2 differs significantly from Barbarik, and, as demonstrated, the proof of
its correctness and sample complexity requires an entirely new set of technical
arguments.

Given access to an ideal sampler P , Barbarik2 accepts every sampler that is
ε-close to P while its ability to reject a sampler that is η-far from P assumes that
the sampler under test is subquery-consistent. Since Barbarik2 assumes access to
an ideal sampler, one might wonder if a tester such as Barbarik2 is needed when
we already have access to an ideal sampler. Since sampling is computationally
intractable, it is almost always the case that an ideal sampler P is significantly
slow and one would prefer to use some other efficient sampler Q instead of P , if
Q can be certified to be close to P .

To demonstrate the practical efficiency of Barbarik2, we developed a prototype
implementation in Python and performed an experimental evaluation with several
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samplers. While our framework does not put a restriction on the representation of
wt, we perform empirical validation with weight distributions corresponding to
log-linear models, a widely used class of distributions. Our empirical evaluation
shows that Barbarik2 returns Accept for the samplers with formal guarantees but
returns Reject for other samplers that are without formal guarantees. Our ability
to reject samplers providence evidence in support of our assumption of subquery
consistency of samplers. We believe our formalization of testing of samplers and
the design of the algorithmic procedure, Barbarik2, contributes to the design of
randomised formal methods for verified AI, a principle argued by Seshia et al [87].

3.2 Notations and Preliminaries
A Boolean variable is denoted by a lowercase letter. For a Boolean formula φ, the
set of variables appearing in φ, called the support of φ, is denoted by Supp(φ).
An assignment σ ∈ {0, 1}|Supp(φ)| to the variables of φ is a satisfying assignment or
witness if it makes φ evaluate to 1. We denote the set of all satisfying assignments
of φ as Rφ.

Definition 6 (Projection of an Assignment). Let σ be an assignment for the variables in
Supp(φ) and let S ⊆ Supp(φ). The projection of σ onto S, denoted σ↓S , is an assignment
over the variables in S such that for every variable v ∈ S, the value of v under σ↓S is
identical to its value under σ.

We denote the set of all unique projections of the witnesses of φ onto S as Rφ↓S
,

where Rφ↓S
= {σ↓S | σ ∈ Rφ}.

Definition 7 (Weight Function). For a set S of Boolean variables, a weight function
wt : {0, 1}|S| → (0, 1) maps each assignment to some weight.

Definition 8 (Sampler). A sampler Q(φ, S, wt) is a randomised algorithm that takes in
a Boolean formula φ, a weight function wt, a set S ⊆ Supp(φ), and outputs a sample from
Rφ↓S

. For brevity of notation, we may sometimes refer to a sampler as Q(φ) or simply, Q.
For any σ ∈ {0, 1}|S| the probability of the sampler Q outputting σ is denoted by

Q(φ, σ) or Q(σ) if φ is clear from context.
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We use Q(φ, S) to represent the distribution induced by Q on Rφ↓S
. When the

set S is understood from the context, we will denote Q(φ, S) by Q(φ).

Example 3.1 (Illustration of Notations). Let’s consider a simple Boolean formula
φ ≡ (x1 ∨ x2) ∧ x3.

• Support: The set of variables is Supp(φ) = {x1, x2, x3}.

• Witnesses: The set of satisfying assignments, Rφ, consists of all assignments
where x3 = 1 and (x1 ∨ x2) = 1.

Rφ = {(1, 1, 1)︸ ︷︷ ︸
σ1

, (1, 0, 1)︸ ︷︷ ︸
σ2

, (0, 1, 1)︸ ︷︷ ︸
σ3

}

• Projection: Let’s choose the projection set S = {x1, x3}. We find the set of
projected witnesses,Rφ↓S

, by projecting each witness inRφ onto the variables
x1 and x3.

(σ1)↓S = (1, 1)

(σ2)↓S = (1, 1)

(σ3)↓S = (0, 1)

Note that two distinct witnesses, σ1 and σ2, project to the same assignment
(1, 1). The set of unique projected witnesses is therefore smaller:

Rφ↓S
= {(1, 1), (0, 1)}

• Weight Function: We can define a weight function wt over all possible as-
signments for S = {x1, x3}. For instance:

wt(1, 1) = 5, wt(1, 0) = 2,

wt(0, 1) = 2, wt(0, 0) = 1

• Sampler:A samplerQ(φ, S, wt) would produce samples from the set Rφ↓S
=

{(1, 1), (0, 1)}. An ideal sampler would output each sample τ ∈ Rφ↓S
with

probability proportional to its weight wt(τ).
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The normalization constant Z is the sum of weights for the elements in Rφ↓S
:

Z = wt(1, 1) + wt(0, 1) = 5 + 2 = 7

The distribution Q(φ, S) induced by the sampler is:

Q(1, 1) = wt(1, 1)
Z

= 5
7

Q(0, 1) = wt(0, 1)
Z

= 2
7

Definition 9 (Ideal Sampler). For a weight function wt, a sampler P(φ, S, wt) is called
an ideal sampler w.r.t. weight function wt if for all σ ∈ Rφ↓S

:

P(φ, S, wt)(σ) = wt(σ)∑
σ′∈Rφ↓S

wt(σ′)
.

In the rest of the chapter, P(·, ·, ·) denotes the ideal sampler, and we will use
P(φ) wherever the set S and function wt is clear from context. If

∀σ∈Rφ , wt(σ) = 1
|Rφ|

then the ideal sampler is called a uniform sampler.

Definition 10 (Tilt). For a Boolean formula φ and weight function wt, we define

tilt(wt, φ) = max
σ1,σ2∈Rφ

wt(σ1)
wt(σ2)

Our goal is to design a program that can test the quality of a sampler with
respect to an ideal sampler.

Definition 11 ((ε, η, δ)-tester for samplers). A (ε, η, δ)-tester for samplers is a ran-
domised algorithm that takes a sampler Q, an ideal sampler P , a tolerance parameter ε,
an intolerance parameter η, a guarantee parameter δ and a CNF formula φ such that (1)
If Q(φ) is ε-close to P(φ), then the tester returns Accept with probability at least 1− δ,
and (2) IfQ(φ) is η-far from P(φ), then the tester returns Reject with probability at least
1− δ.
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3.2.1 Chain Formulas

A crucial component in our algorithm is the chain formula. Chain formulas, intro-
duced in [31], are a special class of Boolean formulas. Given a positive integer k
andm, chain formulas provide an efficient construction of a Boolean formula ψk,m

with exactly k satisfying assignments with log(k) ≤ m variables. We employ chain
formulas for inverse transform sampling and in the subroutine Kernel.

Definition 12. [31] Let c1c2 · · · cm be the m-bit binary representation of k, where cm

is the least significant bit. We then construct a chain formula φk,m(·) on m variables
a1, . . . am as follows. For every j in {1, . . .m− 1}, let Cj be the connector “∨” if cj = 1,
and the connector “∧” if cj = 0. Define

φk,m(a1, · · · am) = a1 C1 (a2 C2(· · · (am−1 Cm−1 am) · · · ))

For example, consider k = 11 andm = 4. The binary representation of 11 using
4 bits is 1011. Therefore, φ5,4(a1, a2, a3, a4) = a1 ∨ (a2 ∧ (a3 ∨ a4)).

Lemma 3.1 ([31]). Letm > 0 be a natural number, k < 2m , and φk,m as defined above.
Then |φk,m| is linear in m and φk,m has exactly k satisfying assignments. Every chain
formula ψ on n variables is equivalent to a CNF formula ψCNF having at most n clauses.
In addition, |ψCNF | is in O(n2).

3.2.2 Kernel and the Subquery Consistency Assumption

Kernel is a crucial subroutine that we use in our algorithm to help us draw condi-
tional samples from Rφ↓S

.

Definition 13. Kernel(φ, S, σ1, σ2) is a function that takes a Boolean formula φ, a set
of variables S ⊆ Supp(φ), and two assignments σ1, σ2 ∈ Rφ↓S , and returns φ̂ such that
Rφ̂↓S = {σ1, σ2}.

The notion of subquery consistency plays a crucial role in our analysis. Since
each subquery can be viewed as conditioning and given that conditioning is
a fundamental operation, one would expect that off-the-shelf samplers would
be subquery consistent. At the same time, in contrast to practical applications,
the set T is arbitrarily chosen, and therefore, it is possible that certain samplers
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do not satisfy the property of subquery consistency. It is, however, not known
how to test whether a sampler is subquery consistent w.r.t a particular Kernel.
While our empirical evaluation provides weak evidence to our claim that off the
shelf samplers are subquery consistent, we believe checking whether a sampler is
subquery consistent is an interesting and important problem for future work.

Definition 14. A sampler D is subquery consistent w.r.t. the target distribution D∗, and
Kernel(φ, S, σ1, σ2) for φ if the following conditions hold:

• ∀(S ⊆ Supp(φ)), σ1, σ2 ∈ Rφ↓S

• let φ̂ ← Kernel(φ, S, σ1, σ2) then D(φ̂, wt, S) = D∗(φ, wt, S)|T , where T =
{σ1, σ2}.

Example 3.2. Let there be a functionφ := x3∧(x1∨x2), and a set S = {x1, x2}. Then,
for a given pair of assignments σ1 = {x1 = 0, x2 = 1}, and σ2 = {x1 = 1, x2 = 0}, a
possible output of Kernel(φ, S, σ1, σ2) is the following function:

φ̂ = (x1 → x4) ∧ (x1 ⊕ x2)

It can be verified that Rφ̂↓S = {{x1 = 0, x2 = 1}, {x1 = 1, x2 = 0}}.

3.2.3 Log-Linear Distributions and Inverse Transform Sampling

Log-linear models capture wide class of distributions of interest including those
arising from graphical models, conditional random fields, skip-gram models [73].
Formally, for σ ∈ {0, 1}n, we define

Pr[σ|θ] ∝ eθ·σ

Following Chavira and Darwiche [34], we describe the following equivalent rep-
resentation, called literal-weighted functions, of log-linear models.

Definition 15 (Literal-Weighted Functions). For a CNF formula φ and set S ⊆
Supp(φ), a weight function wt : {0, 1}|S| → (0, 1) is called a literal-weighted function if
there is a map W : S → (0, 1) such that for any assignment σ ∈ Rφ↓S

wt(σ) =
∏
x∈σ


W(x) if x = 1

1− W(x) if x = 0
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In this case we call wt a literal-weighted function w.r.t. W. Note that we have Pr[σ] ∝ wt(σ).

We now discuss the standard technique of inverse transform sampling for
completeness. For completeness, we follow the description due to Chakraborty et
al [31].

Lemma 3.2. For any ε-close to uniform sampler V , any CNF formula φ with support S
and a literal-weighted function wt : {0, 1}|S| → (0, 1), we can construct a φ̂ s.t.

∀σ∈Rφ ,
(1− ε)wt(σ)∑

σ′∈Rφ
wt(σ′) ≤ V(φ̂, S, σ) ≤ (1 + ε)wt(σ)∑

σ′∈Rφ
wt(σ′)

Proof. Let Si = {xi,1, · · · , xi,mi
} be a set ofmi “fresh” variables (i.e. variables that

were not used before) for each xi ∈ S. Given any integer mi > 0 and a positive
odd number ki < 2mi , we construct φki,mi

(xi,1, · · ·xi,mi
) using the chain formula

construction in [31] such that |Rφki,mi
| = k. For notational clarity, we simply write

φki,mi
when the arguments of the chain formula are clear from context. For each

variable xi ∈ S, such that W(x1
i ) = ki

2mi
, and W(x0

i ) = 1 − W(xi), let (xi ↔ φki,mi
) be

the representative clause. Thus let φCNF = ∧
i∈S(xi ↔ φki,mi

). We then define the
formula φ̂ as follows:

φ̂ = φ ∧ φCNF

We can see that model count of the formula |Rφ̂| can be given by:

|Rφ̂| =
∑

σ̂∈Rφ̂

1 =
∑

σ∈Rφ

∑
(σ̂∈Rφ̂:σ̂↓S=σ)

1 (3.1)

Since the representative formula of every variable uses a fresh set of variables, we
have from the structure of φ̂ that if σ is a witness of φ then:

∑
(σ̂∈Rφ̂:σ̂↓S=σ)

1 =
∏

i∈σ0

(2mi − ki)
∏

i∈σ1

ki (3.2)
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For any σ ∈ Rφ:

U(φ̂, S, σ) =
∑

(σ̂∈Rφ̂:σ̂↓S=σ)
U(φ̂, Ŝ, σ̂)

=
∑

(σ̂∈Rφ̂:σ̂↓S=σ)

1
|Rφ̂|

=
∑

(σ̂∈Rφ̂:σ̂↓S=σ) 1∑
σ′∈Rφ

∑
(σ̂∈Rφ̂:σ̂↓S=σ′) 1 Using (3.1)

=
∏

i∈σ0(2mi − ki)
∏

i∈σ1 ki∑
σ′∈Rφ

∏
i∈σ′0(2mi − ki)

∏
i∈σ′1 ki

Using (3.2)

=
∏

i∈σ0(2mi − ki)
∏

i∈σ1 ki∏
i∈S 2mi

·
∏

i∈S 2mi∑
σ′∈Rφ

∏
i∈σ′0(2mi − ki)

∏
i∈σ′1 ki

=
∏

i∈S W(σ↓xi
)∑

σ′∈Rφ

∏
i∈S W(σ′

↓xi
)

= wt(σ)∑
σ′∈Rφ

wt(σ′) (3.3)

From the definition of ε-additive closeness (Def. 5) we have:

(1 + ε)−1U(φ, S, σ) ≤ V(φ, S, σ) ≤ (1 + ε)U(φ, S, σ)

Substituting into 3.3, we get:

∀σ∈Rφ ,
(1 + ε)−1wt(σ)∑

σ′∈Rφ
wt(σ′) ≤ V(φ̂, S, σ) ≤ (1 + ε)wt(σ)∑

σ′∈Rφ
wt(σ′)

Remark 1. Lemma 3.2 implies that if V is ε-close to being a uniform sampler, then
it can be used as a blackbox to obtain an ε-close-to-ideal sampler Vwt w.r.t any
literal-weighted function wt. It should also be noted that Lemma 3.2 does not imply
that if V is η-far from a uniform sampler, then the new sampler (obtained using the
above transformation) is also far from the ideal sampler w.r.t wt. Thus, Lemma 3.2
by itself, does not allow us to reduce the problem to testing the uniformity of V .
Reduction to uniformity is not ruled out in general, but only in our transformation
framework.

3.3 An Overview of the Barbarik2 Algorithm
In this section, we present the algorithmic framework of Barbarik2, the pseudocode,
presented as Algorithm 1, and then the theoretical justification for the algorithm.
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Barbarik2 takes as input a blackbox sampler Q, a Boolean formula φ with the
associated weight function wt and three parameters (ε, η, δ). It also has access to
an ideal sampler P . Barbarik2 is an (ε, η, δ)-tester for samplers. Also if Barbarik2
returns Reject (that is, when Q is η-far from P), it provides as witness a new
formula φ̂ which is similar to φ, except that φ̂ has only two assignments to the
variables in S (namely σ1 and σ2) that can be extended to satisfying assignments
of φ̂ and the relative probability masses of σ1 and σ2 inQ are significantly different
from that in P .

The core idea of Barbarik2 is that for verifying the quality of the sampler Q(φ),
we can proceed in two stages. In the first stage, if the sampler is far from the ideal
sampler P , we hope to find a witness (in the form of two satisfying assignments)
for farness with good probability. This can be guaranteed by drawing one sample
each from Q(φ) and P(φ). In the second stage, we confirm whether the witness is
indeed far. That is, if the witness is the (σ1, σ2) pair, we check that the probability
of σ1 and σ2 in Q(φ) and P(φ) are similar or not.

HereBarbarik2 differs fromBarbarik in a significant way.WhileBarbarik employs
a bucketing strategy, Barbarik2 chooses a simpler yet equally effective method to
check the similarity between σ1 and σ2. This is also the most difficult stage of
the tester as one may have to draw a exponential number of samples to confirm
this similarity. We manage by drawing samples from the conditional distribution
Q(φ) | {σ1, σ2} instead of Q(φ). Since Q(φ) | {σ1, σ2} is supported on a set of size
only two, estimating the distance of Q(φ) | {σ1, σ2} from P(φ) | {σ1, σ2} can be
done with constant number of samples.

Now since we do not have direct access to the distribution Q(φ) | {σ1, σ2}we
circumvent the problem by drawing samples from a new distribution Q(φ̂) where
φ̂ is obtained from φ and has similar structure as φ (with Supp(φ) ⊆ Supp(φ̂))
and there are only two assignments (namely σ1 and σ2 to the variables in Supp(φ)
that can be extended to satisfying assignments of φ̂. The subroutine Kernel helps
us to simulate the drawing of samples fromQ(φ) | {σ1, σ2} by drawing of samples
from Q(φ̂). The subroutine Bias helps to estimate the distance of Q(φ̂) from P(φ̂).

Finally, we repeat the whole process for a certain number of rounds, and we
argue that if the sampler is indeed far, then, with high probability, in at least one
round, we will find a witness of farness. On the other hand, if the sampler is close
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to ideal, then there does not exist any such witness of farness.
Barbarik2 accesses two subroutines, Bias and Kernel: Bias(σ̂,Γ, S) takes as input

an assignment σ̂, a list Γ of assignments and a sampling set S. It returns the fraction
of assignments of Γ whose projections on S is equal to σ̂.

Kernel(φ, σ1, σ2) is a subroutine (Definition 13) that aims to create a φ̂ such the
behaviour of the sampler on φ̂ is similar to its behaviour on φ, i.e.Q(φ) | {σ1, σ2} ≈
Q(φ̂).

In Barbarik2, in the for loop (in lines 7−20), in each round, the algorithm draws
one sample σ1 according to the distribution Q(φ) and one sample σ2 according
to the ideal distribution on Rφ (line 8). In the case that σ1 = σ2, it moves to the
next iteration (in line 9-10). In line 16, the subroutine Kernel uses φ and the two
samples σ1 and σ2, to output a new formula φ̂ such that Supp(φ) ⊆ Supp(φ̂). In
line 17, Barbarik2 draws a list, Γ3, of N samples according to the distribution Q(φ̂).
Kernel ensures that for all σ ∈ Γ3, σ↓S is either σ1 or σ2. In line 18 Barbarik2 uses
Bias to compute the fraction of samples that are equal to σ1 (on the variable set S),
and if the fraction is greater than the threshold, then Barbarik2 returns Reject (in
line 20).
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Algorithm 1 Barbarik2(Q,P , ε, η, δ, φ, S, wt)
1: t← loge(1/δ) loge

(
5

5−η(η−3ε)

)−1 {t iterations boost the confidence to 1− δ}
2: n← 8 loge (t/δ)
3: lo = (1 + ε)2

4: hi = 1 + (η + 3ε)/2
5: Γ1 ← Q(φ, S, t); {Γ1 gets t samples from Q }
6: Γ2 ← P(φ, S, t); {Γ2 gets t samples from P }
7: for i = 1 to t do
8: σ1 ← Γ1[i]; σ2 ← Γ2[i];
9: if σ1 = σ2 then
10: continue
11: α← wt(σ1)/wt(σ2) {α is the ratio of probabilities in P}
12: L← (α · lo) / (1 + α · lo)
13: H ← (α · hi) / (1 + α · hi)
14: T = (H + L)/2
15: N ← n ·H/(H − L)2

16: φ̂← Kernel(φ, σ1, σ2)
17: Γ3 ← Q(φ̂, S,N)
18: Bias← Bias(σ1,Γ3, S) {Bias compares the ratio of probs. in P and Q }
19: if Bias > T then
20: return Reject
21: return Accept

Algorithm 2 Kernel(φ, σ1, σ2)
1: m← 12, k ← 2m − 1
2: Lits1 ← (σ1 \ σ2)
3: Lits2 ← (σ2 \ σ1)
4: V← NewV ars(φ,m);
5: φ̂← φ ∧ (σ1 ∨ σ2)
6: l ∼ Lits1 ∪ Lits2
7: φ̂← φ̂ ∧ (¬l→ ψk,m(V))
8: φ̂← φ̂ ∧ (l→ ψk,m(V))
9: return φ̂

Algorithm 3 Bias(σ̂, Γ, S)
1: count = 0
2: for σ ∈ Γ do
3: if σ↓S = σ̂ then
4: count← count+ 1
5: return count

|Γ|
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Algorithm 2 presents the pseudocode of subroutine Kernel. As stated above,
Kernel takes in a Boolean formula φ, a set S ⊆ Supp(φ) and two partial assignments
σ1, σ2 ∈ Rφ↓S . Since the set S is implicit from σ1 and σ2, it may not be explicitly
given as an input. Kernel assumes access to a subroutine NewV ars which takes
in two parameters, a formula φ and a number m, and returns a set of m fresh
variables that do not appear in φ. Kernel first constructs two sets of literals, denoted
by Lits1 (resp. Lits2), which appear in σ1 (resp. σ2) but not σ2 (resp. σ1). The
algorithm then constructs the formula φ̂. First it generates φ ∧ (σ1 ∨ σ2) on Line 5,
a formula with exactly two solutions. Next, it randomly chooses a literal l from
Lits1 ∪ Lits2 and constructs a chain formula (l → ψk,m) over the fresh Boolean
variables V[1],V[2] · · · ,V[m] where k is the number of satisfying assignments the
formula has. Conjuncting the two generated formulas, we get φ̂ ≡ φ ∧ (σ1 ∨ σ2).
Therefore, at the end of Kernel, i.e. line 8, φ̂ has 2k solutions. We choose the value
of k such that it is odd (see [31]). The chain formula is linked to a random Boolean
literal from the given set of literals for two reasons,

1. An ideal or ε-close to ideal sampler would not be affected by the random-
ization and would generate the same distribution over φ̂ as it does over
φ ∧ (σ1 ∨ σ2).

2. If the sampler under test Q is η-far from ideal, then we want to construct a
formula which cannot be easily guessed by P . We wish to avoid the scenario
whereP , an η-far sampler onφ, somehow behaves as an almost-ideal sampler
over φ̂ and hence manages to fool Barbarik2.

3.3.1 Theoretical Analysis

The following theorem gives the mathematical guarantee about the correctness of
Barbarik2. Note that the weight function wt is used to implement EVAL access toQ.

Theorem 3.1. Given PCOND+SAMP access to sampler Q, and ideal sampler P , η > 3ε,
δ, φ, and weight function wt, Barbarik2 draws Õ

(
tilt(wt,φ)2

η(η−3ε)3

)
samples, where Õ hides a

poly logarithmic factor of 1/δ. With probability at least 1− δ:

• If Q is ε-close to P , then Barbarik2 returns Accept
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• If the distribution Q(φ) is η-far from P(φ), then Barbarik2 returns Reject.

Remark 2. For the Reject case we assume subquery-consistency, to account for
adversarial samplers that may behave differently on the Kernel, and on other
inputs. We have not observed any such adversarial samplers, and it hence it is
possible that we can do without the assumption; we don’t have a proof in either
direction. On the other hand, if Q is ε-close to P then Barbarik2 accepts (with high
probability) even if the sampler Q is not subquery consistent w.r.t Kernel.

It is also worth noting that Barbarik2 terminates with Reject as soon as the check
in line 19 succeeds. Therefore, we expect Barbarik2 to require significantly less
number of samples when it returns Reject. Furthermore, in the case of Accept, the
bound on N calculated in line 15 in terms of tilt is pessimistic as the probability
of observing σ1 and σ2 such that α ≈ tilt for a sampler close to ideal sampler is
very small when the tilt is large. We defer detailed discussion of observed sample
complexity to Section 3.5.

3.4 Proof of Correctness of Barbarik2
In this section, we present the theoretical analysis of Barbarik2, and the proof of
Theorem 3.1. The proof clearly follows from the the following three lemmas.

Lemma 3.3. If a sampler Q is ε-close 1 to the ideal sampler P , then Barbarik2 returns
Accept with probability at least 1− δ.

Lemma 3.4. If Q is subquery consistent w.r.t Kernel and if the distribution Q(φ) is η-far
from the ideal sampler, then Barbarik2 returns Reject with probability at least 1− δ.

Lemma 3.5. Given ε, η and δ, Barbarik2 needs at most Õ
(

tilt(wt,φ)2

η(η−3ε)3

)
samples for any

input formula φ and weight function wt, where the tilde hides a poly logarithmic factor of
1/δ, 1/η and 1/(η − 3ε).

We will present the proofs of Lemma 3.3, Lemma 3.4 and Lemma 3.5 in Sec-
tion 3.4, Section 3.4 and Section 3.4 respectively. In the rest of this section we will
use the following notations:

1for any ε and η > 3ε
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• We use 1(E) to represent the indicator variable for the event E.

• We use Ri to denote the event that Barbarik2 returns Reject in iteration i.

We are now ready to present the proofs of Lemma3.3, Lemma3.4 andLemma3.5.

Proof of Lemma 3.3

Lemma 3.3. If a sampler Q is ε-close 2 to the ideal sampler P , then Barbarik2 returns
Accept with probability at least 1− δ.

For the proof of Lemma 3.3 we will firstly show (in Lemma 3.6) that in each
iteration of the loop, the probability that Barbarik2 returns Reject is less than δ/t
and then the proof of Lemma 3.3 follows by the application of the Chernoff Bound.
Recall that Ri denotes the event that Barbarik2 returns Reject in iteration i.

Lemma 3.6. If sampler Q is ε-close to an ideal sampler P , then the probability that
Barbarik2 returns Reject in any particular iteration of the loop, is no more than δ/t. Then

Pr
Ri |

∧
j∈[i−1]

Rj

 ≥ (1− δ

t

)

Proof. (of Lemma 3.6) Barbarik2 returns Reject in the ith iteration if the Bias (in
the ith iteration) is more than T , where T = L+H

2 with

L = (1 + ε)P(φ, S, σ1)
(1 + ε)P(φ, S, σ1) + (1 + ε)−1P(φ, S, σ2)

And since, by definition, all the elements in Γ1, Γ2 and Γ3 are obtained by drawing
independent samples from Q(φ), P(φ) and Q(φ̂) respectively so

Pr
Ri |

∧
j∈[i−1]

Rj

 = Pr [ Bias ≤ T in the ith iteration]

= 1− Pr [ Bias > T in the ith iteration]

= 1− Pr
 ∑

j∈[N ]

1(Γ3[j]↓S = σ1)
N

> T


Note that the random variables 1(Γ3[j]↓S = σ1) are i.i.d 0-1. Since the samplerQ is
assumed to be ε-close to the ideal sampler we have

(1 + ε)−1P(φ̂,Γ3[j]) ≤ Q(φ̂,Γ3[j]) ≤ (1 + ε)P(φ̂,Γ3[j]).
2for any ε and η > 3ε
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Since the random variable 1(Γ3[j]↓S = σ1) takes value 1 when we draw σ1 ∼
Q(φ̂, S), we have,

E[1(Γ3[j]↓S = σ1)] = Q(φ̂, S, σ1) ≤ (1 + ε)P(φ̂, S, σ1)

We first note that

P(φ̂, S, σ1) = P(φ, S, σ1)
P(φ, S, σ1) + P(φ, S, σ2)

(3.4)

Now we consider two cases depending on whether P(φ, S, σ1) is greater or lesser
than P(φ, S, σ2). If P(φ, S, σ1) ≤ P(φ, S, σ2) then we have

E[1(Γ3[j]↓S = σ1)] = Q(φ̂, S, σ1)

(From Equation 3.4) = (1 + ε)P(φ, S, σ1)
(1 + ε)P(φ, S, σ1) + (1 + ε)P(φ, S, σ2)

≤ (1 + ε)P(φ, S, σ1)
(1 + ε)P(φ, S, σ1) + (1 + ε)−1P(φ, S, σ2)

= L (3.5)

However if P(φ, S, σ1) ≥ P(φ, S, σ2) then again from Equation 3.4 we have

E[1(Γ3[j]↓S = σ2)] = Q(φ̂, S, σ2)

= (1 + ε)−1P(φ, S, σ2)
(1 + ε)−1P(φ, S, σ1) + (1 + ε)−1P(φ, S, σ2)

≥ (1 + ε)−1P(φ, S, σ2)
(1 + ε)P(φ, S, σ1) + (1 + ε)−1P(φ, S, σ2)

In that case since P(φ̂, S, σ1) + P(φ̂, S, σ2) = 1 we have

E[1(Γ3[j]↓S = σ1)] = Q(φ̂, S, σ1)

= 1−Q(φ̂, S, σ2)

≤ 1−
(

(1 + ε)−1P(φ, S, σ2)
(1 + ε)P(φ, S, σ1) + (1 + ε)−1P(φ, S, σ2)

)

≤ (1 + ε)P(φ, S, σ1)
(1 + ε)P(φ, S, σ1) + (1 + ε)−1P(φ, S, σ2)

= L (3.6)

Thus in either case, from Equation (3.5) and Equation (3.6) we have E[1(Γ3[j]↓S =
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σ1)] ≤ L. Now applying the Chernoff bound from Cor. 1 we have

Pr [Bias ≥ T ] = Pr
 ∑

j∈[N ]

1(Γ3[j]↓S = σ1)
N

> T


= exp

(
−(T − L)2N

2L

)
= exp

(
−(H − L)2N

8L

)

≤ exp
(
−(H − L)2N

8H

)
(Because H ≥ L) (3.7)

≤ δ

t
, (3.8)

where the inequality in line (3.7) follows because H ≥ Lwhen3 η ≥ 3ε and last
inequality follows because N = n.H/(H − L)2 where n = 8 log(t/δ).

Proof. (of Lemma 3.3) Let Ri denote the event that Barbarik2 returns Reject in
iteration i and R denote the event that Barbarik2 returns Accept. Thus R = ∩iRi.

In the ith iteration if the bias is less than the threshold, Barbarik2 fails to Reject.
Thus from Lemma 3.6 if the sampler Q is ε-close to the ideal sampler P then

Pr
Ri|

∧
j∈[i−1]

Rj

 ≥ 1− δ

t

IfBarbarik2 has not returnedReject in any of the iteration then after the last iteration
Barbarik2 returns Accept. The probability of Barbarik2 returning Accept (event R) is

Pr
[
R
]
≥
∏
i∈[t]

Pr
Ri|

∧
j∈[i−1]

Rj

 ≥ (1− δ

t

)t

≥ 1− δ

Proof of Lemma 3.4

Lemma 3.4. If Q is subquery consistent w.r.t Kernel and if the distribution Q(φ) is η-far
from the ideal sampler, then Barbarik2 returns Reject with probability at least 1− δ.

Proof. To prove the Lemma,wewill start by splitting the setRφ into disjoint subsets
depending on the distribution DQ(φ).

Definition 16. We define the following sets for use in the soundness proof:
3H ≥ L if hi ≥ lo that is η ≥ 2ε2 + ε
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• D = {x ∈ Rφ : Q(x) ≤ P(x)}

• U = Rφ \D

• U0 = {x ∈ Rφ : P(x) < Q(x) ≤
(
1 + η+3ε

2

)
P(x)}.

• U1 = {x ∈ Rφ :
(
1 + η+3ε

2

)
P(x) < Q(x)}

Recall, Ri is the event that Barbarik2 returns Reject in the ith iteration of the
for loop. Then the following lemmas helps us to lower bound the probability
of Γ1[i] ∈ U1 ∧ Γ2[i] ∈ D and the probability of Ri under the condition that
Γ1[i] ∈ U1 ∧ Γ2[i] ∈ D.

Lemma 3.7. If the sampler Q is η-far from the ideal sampler then

Pr
Ri | (

∧
j∈[i−1]

Rj) ∧ (Γ1[i] ∈ U1 ∧ Γ2[i] ∈ D)
 ≥ 4

5 .

Lemma 3.8. If the sampler Q is η-far from the ideal sampler on input φ then

Pr [Γ1[i] ∈ U1 ∧ Γ2[i] ∈ D] ≥ η(η − 3ε)
4 .

Now using Lemmas 3.8 and 3.7 we can complete the proof of soundness. The
probability that Barbarik2 returns Reject in the ith iteration of the for loop is

Pr
Ri |

∧
j∈[i−1]

Rj


≥Pr

Ri | (
∧

j∈[i−1]
Rj) ∧ (Γ1[i] ∈ U1 ∧ Γ2[i] ∈ D)

 · Pr[Γ1[i] ∈ U1 ∧ Γ2[i] ∈ D]

≥
(4

5

)
η(η − 3ε)

4 (From Lemma 3.8 and Lemma 3.7) (3.9)

The probability of Barbarik2 returning Reject in any iteration (event R) is given by

Pr [∪iRi] = 1−
∏
i∈[t]

Pr
Ri |

∧
j∈[i−1]

Rj


≥ 1−

∏
i∈[t]

(
1− η(η − 3ε)

5

)
(Using Equation (3.9))

≥ 1−
(

1− η(η − 3ε)
5

)t

≥ 1− δ (Substituting t)
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Now to complete the proof of Lemma 3.4 we have to prove the Lemma 3.7 and
Lemma 3.8. They are presented next.

Lemma 3.7. If the sampler Q is η-far from the ideal sampler then

Pr
Ri | (

∧
j∈[i−1]

Rj) ∧ (Γ1[i] ∈ U1 ∧ Γ2[i] ∈ D)
 ≥ 4

5 .

Proof. Let us assume Γ1[i] ∈ U1 and Γ2[i] ∈ D. That is, we have Q(φ, S,Γ2[i]) ≤
P(φ, S,Γ2[i]) and Q(φ, S,Γ1[i]) >

(
1 + η+3ε

2

)
P(φ, S,Γ1[i]). It follows that

Q(φ, S,Γ1[i])
Q(φ, S,Γ2[i])

≥
(

1 + 3ε+ η

2

)
· P(φ, S,Γ1[i])
P(φ, S,Γ2[i])

(3.10)

Since ∀x > 0, a/b > x =⇒ a/(a+ b) > x/(x+ 1), we have from Equation 3.10

Q(φ, S,Γ1[i])
Q(φ, S,Γ2[i]) +Q(φ, S,Γ1[i])

≥
(

1 + 3ε+ η

2

)
· P(φ, S,Γ1[i])
P(φ, S,Γ2[i])

·
(

1 +
(

1 + 3ε+ η

2

)
· P(φ, S,Γ1[i])
P(φ, S,Γ2[i])

)−1

Thus we have

E[1(Γ3[j]↓S = σ1)] = Q(φ̂, S,Γ1[i])

= Q(φ, S,Γ1[i])
Q(φ, S,Γ2[i]) +Q(φ, S,Γ1[i])

[ by the subquery consistent sampler assumption]

≥
(

1 + 3ε+ η

2

)
· P(φ, S,Γ1[i])
P(φ, S,Γ2[i])

·
(

1 +
(

1 + 3ε+ η

2

)
· P(φ, S,Γ1[i])
P(φ, S,Γ2[i])

)−1

=H [By definition of H] (3.11)

Barbarik2 returns Reject in the ith iteration if the Bias (in the ith iteration) is more
than T , where T = L+H

2 with

H =
(1 + 3ε+η

2 )P(φ, S, σ1)
(1 + 3ε+η

2 )P(φ, S, σ1) + P(φ, S, σ2)
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As defined, all the elements in Γ1, Γ2 and Γ3 are obtained by drawing independent
samples from Q(φ), P(φ), and Q(φ̂) respectively so we have

Pr
Ri | (

∧
j∈[i−1]

Rj)
∧

(Γ1[i] ∈ U1 ∧ Γ2[i] ∈ D)


= Pr [ Bias > T in the ith iteration | (Γ1[i] ∈ U1 ∧ Γ2[i] ∈ D)]

= Pr
 ∑

j∈[N ]

1(Γ3[j]↓S = σ1)
N

≥ T | (Γ1[i] ∈ U1 ∧ Γ2[i] ∈ D)


Now since 1(Γ3[j]↓S = σ1) are i.i.d 0-1 random variables and since Γ1[i] ∈ U1

and Γ2[i] ∈ D implies E[1(Γ3[j]↓S = σ1)] ≥ H (from Equation 3.11) by applying
Chernoff bound from Cor. 1 we have:

Pr
 1
N

∑
j∈[N ]

1(Γ3[j]↓S = σ1) ≥ T

 ≤ exp

(
−(H − T )2N

8H

)

by the choice of N ≤ δ

t

since δ < 0.5 and t ≥ 3 ≤ 1/5

Lemma 3.8. If the sampler Q is η-far from the ideal sampler on input φ then

Pr [Γ1[i] ∈ U1 ∧ Γ2[i] ∈ D] ≥ η(η − 3ε)
4 .

Proof. Since the sampler Q is ε-far from the ideal sampler on input φ so, the TV
distance betweenQ(φ) and P(φ) is at least η. By the definition of sets U andD we
have,

∑
x∈U

(Q(x)− P(x)) =
∑
x∈D

(P(x)−Q(x)) ≥ η (3.12)

Now by definition of U0, we have
∑

x∈U0

(Q(x)− P(x)) < η + 3ε
2

∑
x∈U0

P(x) < η + 3ε
2 (3.13)

As U = U0 ∪ U1,
∑

x∈U1

(Q(x)− P(x)) =
∑
x∈U

(Q(x)− P(x))−
∑

x∈U0

(Q(x)− P(x)) (3.14)
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Substituting Equation (3.13) and Equation (3.12) in Equation (3.14) we get:-∑
x∈U1

(Q(x)− P(x)) ≥ η − η + 3ε
2 = η − 3ε

2

Therefore,
∑

x∈U1

Q(x) ≥ η − 3ε
2

Thus we have,

Pr [Γ1[i] ∈ U1] =
∑

x∈U1

Q(x) ≥ η − 3ε
2 (3.15)

From Equation (3.12) we know that,

Pr [Γ2[i] ∈ D] =
∑
x∈D

P(x) ≥ η (3.16)

Since Γ1[i] ∈ U1 and Γ2[i] ∈ D are independent events, putting together Equation
(3.15) and Equation (3.16), we see that

Pr [Γ1[i] ∈ U1 ∧ Γ2[i] ∈ D] ≥ η(η − 3ε)
2

Proof of Lemma 3.5

Lemma 3.5. Given ε, η and δ, Barbarik2 needs at most Õ
(

tilt(wt,φ)2

η(η−3ε)3

)
samples for any

input formula φ and weight function wt, where the tilde hides a poly logarithmic factor of
1/δ, 1/η and 1/(η − 3ε).

Proof. From Algorithm 1, line 1, we see that the number of trials is:

t = loge(1/δ)
loge

(
5

5−η(η−3ε)

)
(loge(x) ≤ x− 1) t ≤ loge(1/δ)

5
(η(η − 3ε))

In every iteration we calculate a value N according to the expression:

N = 8 loge

(
t

δ

)
· α · hi

1 + α · hi
·
(

α · hi
1 + α · hi

− α · lo
1 + α · lo

)−2

= 8 loge

(
t

δ

)
·
( 1
hi− lo

)2
· hi · 1 + α · hi

α
· (1 + α · lo)2

(1 < lo < hi < 2) < 8 loge

(
t

δ

)
·
( 1
hi− lo

)2
· 2 · 1 + α · 2

α
· (1 + α · 2)2
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On Line (11) in Algorithm 1 we define:

α = wt(σ1)
wt(σ2)

tilt(wt, φ) = max
σ1,σ2∈Rφ

wt(σ1)
wt(σ2)

(Definition 10)

Thus, α ≤ tilt(wt, φ). Substituting the values of α, lo and hi, we get:

N < 2 loge

(
t

δ

)
·
(
tilt(wt, φ)
η − 3ε

)2

The maximum number of samples drawn after t trials is:

2t+ tN < 2tN

(Substituting for t,N) < 2 loge

(
1
δ
· 5 · loge(1/δ)
η(η − 3ε)

)
+ 5 · loge(1/δ)

η(η − 3ε) ×
tilt(wt, φ)2

(η − 3ε)2

= Õ

(
tilt(wt, φ)2

η(η − 3ε)3

)

3.5 Evaluation
The objective of our evaluation was to answer the following questions:

RQ1. Is Barbarik2 able to distinguish between off-the-shelf samplers by returning
Accept for samplers ε-close to the ideal distribution and Reject for the η-far
samplers?

RQ2. What improvements do we observe over the baseline?

RQ3. How does the required number of samples scale with the tilt(wt, φ) of the
distribution?

To evaluate the runtime performance of Barbarik2 and test the quality of some
state of the art samplers, we implemented a prototype of Barbarik2 in Python. Our
algorithm utilizes an ideal sampler, for which we use the state of the art sampler
WAPS [56]. All experiments were conducted on a high performance computing
cluster with 600 E5-2690 v3 @2.60GHz CPU cores. For each benchmark, we use a
single core with a timeout of 24 hours.
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We focus on the log-linear distributions given their ubiquity of usage in ma-
chine learning; a formal description is provided in Section 3.2.3 for completeness.
Observe that Barbarik2 does not put any restrictions on the representation of the
weight distribution. We conducted our experiments on 72 publicly available bench-
marks, which have been employed in the evaluation of samplers proposed in the
past [29, 46]. The tilt of the benchmarks spansmany orders of magnitude, between
1 and 1011.

Samplers Tested The past few years have witnessed a multitude of sampling
techniques ranging from variational methods [95], MCMC-based techniques [59,
68], mutation-based sampling [46], importance sampling-based methods [49],
knowledge-compilation techniques [56] and the like. The conceptual simplicity of
uniform samplers encourages designers to tune their algorithms for uniform sam-
pling, and the standard technique for weighted sampling employs the well-known
method of the inverse transform. For the sake of completeness, we provide a de-
tailed discussion of the transformation technique in Section 3.2.3. We perform em-
pirical evaluation with the three state of the art samplers wUnigen, wQuicksampler,
and wSTS constructed by augmenting inverse sampling with underlying samplers
Unigen [29], Quicksampler [46] and STS(SearchTreeSampler) [49] respectively.

While wUnigen is known to have theoretical guarantees of ε−closeness, there is
no theoretical analysis of the distributions generated by wQuicksampler and wSTS.
Of the 72 instances, wUnigen can handle only 35 instances while wQuicksampler and
wSTS can handle all the 72 instances. The variation in the number of instances that
are amenable to sampling for a particular sampler highlights the trade-off between
the runtime performance and theoretical guarantees. It is perhaps worth empha-
sizing that wQuicksampler and wSTS are significantly more efficient in runtime
performance than the ideal sampler WAPS.

Test Parameters We set tolerance parameter ε, intolerance parameter η, and
confidence δ for Barbarik2 to be and 0.1, 0.8 and 0.2 respectively. The chosen setting
of parameters implies that for a given Boolean formula φ, if the sampler under test
G(φ) is ε-close to the ideal sampler, then Barbarik2 returns Accept with probability
at least 0.8, otherwise if the sampler is η-far from ideal sampler then Barbarik2
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returns Reject with probability at least 0.8. Note that, the number of samples
required for Accept depends only on the parameters (ε, η, δ) and tilt(wt, φ). We
instantiate Kernel with the valuesm = 12 and k = 2m−1. Observe that Theorem 3.1
does not put restrictions on k andm.

Description of the table We present the experimental results in Table 3.1. Due
to lack of space, we present results for a subset of benchmarks while the extended
table is presented in the Appendix. The first column indicates the name of the
benchmark, the second the tilt, and the following columns indicate the outcome
of the experiments with wUnigen, wSTS and wQuicksampler in that order. Every
cell in the table has two entries. In the second column, the first entry shows the
value of tilt for the corresponding benchmark, while in the other columns, it
contains “A” and “R" to indicate the output of Barbarik2 for the corresponding
sampler. The second entry for the cells in the column corresponding to tilt indicates
the theoretical upper bound on the samples required for Barbarik2 to terminate,
while for rest of the columns, the second entry indicates the number of samples
consumed by Barbarik2 for the corresponding instance and the sampler.

RQ1 Our experiments demonstrate thatBarbarik2 returnsReject forwQuicksampler
on 68 benchmarks and Accept on the remaining four benchmarks. For wSTS we
found Barbarik2 returned Reject on 62 of the benchmarks and Accept on the seven
while it times out on the remaining three. Since wSTS and wQuicksampler are sam-
plers with no formal guarantees and therefore one may expect them to generation
distributions away from the ideal distributions. In this context, the results in
Table 3.1 provide strong evidence for the reasonableness of the non-adversarial
assumption in practice.

In contrast, Barbarik2 returned Accept for wUnigen on all the 35 benchmarks for
which wUnigen could sample. Recall, wUnigen formally guarantees ε-closeness of
the samples to the required distribution, hence Barbarik2 returning Accept on all
the benchmarks provides evidence in support of soundness of Barbarik2.

RQ2 We also computed the number of samples required by the baseline ap-
proach owing to [7]. Since the number of samples is so large that exhaustive
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Barbarik2

Benchmark tilt
(maxSamp)

wUnigen
(samples)

wSTS
(samples)

wQuicksampler
(samples)

s349_3_2 28
(3e+07)

A
(1e+05)

A
(1e+05)

R
(22854)

s820a_3_2 37
(5e+07)

A
(96212)

R
(87997)

A
(2e+05)

UserServiceImpl.sk 140
(6e+08)

A
(1e+05)

R
(1e+05)

R
(4393)

LoginService2.sk 232
(2e+09)

A
(1e+05)

R
(38044)

R
(13350)

s349_7_4 603
(1e+10)

A
(75555)

R
(4284)

R
(5150)

s344_3_2 3300
(3e+11)

A
(1e+05)

R
(59952)

R
(5150)

s420_new_7_4 3549
(4e+11)

A
(82312)

A
(96659)

R
(49955)

54.sk_12_97 4e+11
(6e+27) DNS R

(14012)
R

(4627)

s641_7_4 9e+07
(3e+20) DNS R

(8747)
A

(1e+06)

s838_3_2 2e+08
(1e+21) DNS R

(9504)
R

(4627)

Table 3.1: “A"(resp. “R") represents Barbarik2 returning Accept(resp. Reject).
maxSamp represents the upper bound on the number of samples required by
Barbarik2 to return Accept/Reject.

experimentation is infeasible, we had to resort to estimating the average time taken
by a sampler for a given instance. Based on the estimated time, we can estimate
the time taken by the baseline for our benchmark set. We observe that the time
taken by the baseline would be over 106 seconds for 43, 42 and 16 benchmarks
for wQuicksampler, wSTS and wUnigen respectively. In this context, it is worth high-
lighting that Barbarik2 terminates within 24 hours for all the instances for all the
samplers. We observe that the geometric means of the speedups over the baseline
approach are 105.0, 1020.2 and 58 for wSTS, wQuicksampler and, wUnigen respectively.
The lower speedup in the case of wUnigen owes to its ability to handle only small
benchmarks, for which the number of models was not very large. The extended
results are available in appendix A.1.
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RQ3 The number of trials required (indicated by the the variable t as on Line 7
of Algorithm 1) depends only on (ε, η, δ), so for the values we use, (0.1, 0.8, 0.2),
we find that we require t = 14 trials. The analysis of the algorithm reveals an upper
bound on the sample complexity of the tester (See Section 3.3, Theorem 3.1) which
is quadratic in terms of the tilt(wt, φ). We now return to Table 3.1 and observe
that the number of samples required by Barbarik2 before returning Accept were
significantly lower than the theoretical bound provided in the second column. Fur-
thermore, as noted earlier, the number of samples required beforeBarbarik2 returns
Reject is typically significantly less than the worst case – a trend demonstrated in
Table 3.1.
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Chapter 4

Scalability via Bucketing
In the previous chapter Barbarik2, could test a given sampler while providing
(ε, η, δ) guarantees, using Õ

(
tilt(P)2

η(η−3ε)3

)
queries, where

tilt(P) := max
σ1,σ2∈{0,1}n

P(σ1)
P(σ2)

for P(σ2) > 0. Since the tilt(P) can take arbitrary values, we observed that the
query complexity could be prohibitively large1. On the other hand, the best known
lower bound for the problem, derived from [74], is Ω̃

(√
n/ log(n)

η2

)
. In this chapter,

we take a step towards bridging this gapwith our algorithm, Barbarik3, which has a
query complexity of Õ

( √
n log n

(η−11.6ε)η3 + n
η2

)
, representing an exponential improvement

over the state of the art.
To be of any real value, testing tools must be able to scale to larger instances.

In the case of constrained samplers, the only existing testing tool, Barbarik2, is not
scalable owing to its query complexity. The lack of scalability is illustrated by the
following fact: product distributions are the simplest possible constrained distri-
butions, and given a union of two n-dimensional product distributions, Barbarik2
requiresmore than 108 queries for n > 30. On the other hand, the query complexity
of Barbarik3 scales linearly with n, the number of dimensions, thus making it more
appropriate for practical use.

We implement Barbarik3 and compare it against Barbarik2 to determine their
relative performance. In our experiments, we consider two sets of problems, (1)
constrained sampling benchmarks, (2) scalable benchmarks and two constrained
samplers wSTS and wUnigen. We found that to complete the test Barbarik3 required
at least 450× fewer samples from wSTS and 10× fewer samples from wUnigen as

1A simple modification reveals that in terms of n, η, ε, the bound is Õ
(

4n

η(η−3ε)3

)
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compared to Barbarik2. Moreover, Barbarik3 terminates with a result on at least 3×
more benchmarks than Barbarik2 in each experiment.

Our contributions can be summarised as follows:

1. For the problem of testing of samplers, we provide an exponential improve-
ment in query complexity over the current state of the art test Barbarik2. Our
test, Barbarik3, makes a total of Õ

( √
n log n

(η−11.6ε)η3 + n
η2

)
queries, where Õ hides

polylog factors of ε, η and δ.

2. We present an extensive empirical evaluation of Barbarik3 and contrast it
with Barbarik2. The results indicate that Barbarik3 requires far fewer samples
and terminates on more benchmarks when compared to Barbarik2.

We then present the main contribution of the chapter, the test Barbarik3, and
its proof of correctness in Section 4.1. We present our experimental findings in
Section 4.2 We defer the full experimental results to the appendix section A.2.

4.1 Barbarik3: an Linear Query Algorithm for the Deci-
sion Problem

We start by providing a brief overview of our testing algorithm before providing
the full analysis.

Algorithm 4 Barbarik3(P ,Q, η, ε, δ)
1: k ← n+ ⌈log2(100/η)⌉
2: for i = 1 to k do
3: Si = {b : 2−i < P(b) ≤ 2−i+1}
4: S0 = {0, 1}n \ ⋃i∈[k] Si

5: BP is the distribution over [k] ∪ {0} where we sample i ∼ BP if we sample
j ∼ P and j ∈ Si

6: BQ is the distribution over [k] ∪ {0} where we sample i ∼ BQ if we sample
j ∼ Q and j ∈ Si

7: θ ← η/20
8: d̂← OutBucket(BP , BQ, k, θ, δ/2)
9: if d̂ > ε/2 + θ then
10: Return Reject
11: ε2 ← d̂+ θ
12: Return InBucket(P ,Q, k, ε, ε2, η, δ/2)
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4.1.1 Algorithm Outline

The pseudocode of Barbarik3 is given in Algorithm 4. We adapt the definition of
bucketing of distributions from [74] for use in our analysis.

Definition 17. For a given k ∈ N>0, the bucketing of {0, 1}n with respect toP is defined as
follows: For 1 ≤ i ≤ k, let Si = {b : 2−i < P(b) ≤ 2−i+1} and let S0 = {0, 1}n\⋃i∈[k] Si.
Given any distribution D over {0, 1}n, we define a distribution BD over [k] ∪ {0} as: for
0 ≤ i ≤ k, BD(i) = D(Si). We call BD the bucket distribution of D and Si the ith bucket.

Barbarik3 takes as input two distributions P and Q defined over the support
{0, 1}n, along with the parameters for closeness(ε), farness(η), and confidence(δ).
On Line 1,Barbarik3 computes the value of k using η and the number of dimensions
n. Then, using DUAL access to P , and SAMP access to Q, Barbarik3 creates bucket
distributions BP and BQ as in Defn. 17, in the following way: To sample from
BP , Barbarik3 first draws a sample j ∼ P , then using the DUAL oracle, determines
the value of P(j). Then, if j lies in the ith bucket i.e., 2−i < P(j) ≤ 2−i+1, the
algorithm takes sample i as the sample from BP . Similarly, to draw a sample from
BQ, Barbarik3 draws a sample j ∼ Q and then, using the DUAL oracle to find P(j),
finds i such that j lies in the ith bucket, and then uses i as the sample.

Barbarik3 then calls two subroutines, OutBucket (Section 4.1.4) and InBucket
(Section 4.1.3). The OutBucket subroutine returns a θ-additive estimate of the TV
distance between BP and BQ, the two bucket distributions of P and Q, with an
error probability of at most δ/2. If it is found on Line 9 that the estimate d̂ is greater
than ε/2 + θ, we know that dT V (P ,Q) > ε/2 and also that d∞(P ,Q) > ε, and
hence the algorithm returns Reject. Otherwise, the algorithm calls the InBucket
subroutine.

Now suppose that dT V (P ,Q) ≥ η. Then, for ε2 (Line 11), it is either the case
that dT V (BP , BQ) > ε2 or else dT V (BP , BQ) ≤ ε2. In the former case, the algorithm
returns Reject on Line 10, and in the latter case the InBucket subroutine returns
Reject. In both cases, the failure probability is at most δ/2. Thus Barbarik3 returns
Reject on given η-far input distributions with probability at least 1− δ.

We will prove the following theorem:
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Theorem4.1. Barbarik3(P ,Q, η, ε, δ) takes in distributionsP andQ defined over {0, 1}n,
and parameters η ∈ (0, 1], ε ∈ [0, η/11.6) and δ ∈ (0, 1/2]. Barbarik3 has DUAL access
to P , and PCOND+SAMP access toQ. With probability at least 1− δ, Barbarik3 returns

• Accept if d∞(P ,Q) ≤ ε

• Reject if dT V (P ,Q) > η

Barbarik3 has query complexity Õ
( √

n log(n)
η3(η−11.6ε) + n

η2

)
, where Õ hides polylog factors of ε, η

and δ.

We will use the following proposition in our analysis.

Proposition 4. Given distributionsP andQ supported on {0, 1}n, and a set S ⊆ {0, 1}n,
∑
i∈S

P(i)Q(i) > (P(S) +Q(S)− 2dT V (S)(P ,Q))2

4|S|

Proof. The Hellinger distance of distributions P ,Q restricted to a set S ⊆ {0, 1}n,
is defined as dH(S)(P ,Q) = 1√

2

√∑
i∈S(

√
Q(i)−

√
P(i))2,

dH(S)(P ,Q) = 1√
2

√∑
i∈S

(
√
Q(i)−

√
P(i))2

d2
H(S)(P ,Q) = 1

2
∑
i∈S

(
√
Q(i)−

√
P(i))2

= 1
2
∑
i∈S

(
Q(i) + P(i)− 2

√
P(i)Q(i)

)

= P(S) +Q(S)
2 −

∑
i∈S

√
P(i)Q(i)

Then using the fact that d2
H(S)(P ,Q) ≤ dT V (S)(P ,Q) we see that,∑i∈S

√
P(i)Q(i) ≥

P(S)+Q(S)
2 − dT V (S)(P ,Q). Then we use the Cauchy-Schwarz inequality:

∑
i∈S

P(i)Q(i) ≥ (P(S) +Q(S)− 2dT V (S)(P ,Q))2

4|S|

4.1.2 Lower Bound

The lower bound comes from the paper of Narayanan [74], where it appears in
Theorem 1.6. Phrased in the jargon of our paper, the lower bound states that dis-
tinguishing between dT V (P ,Q) > η and d∞(P ,Q) = 0 requires Ω̃(

√
n/ log(n)/η2)

43



samples. Note that the lower bound is shown on a special case (ε = 0) of our
problem. Hence the lower bound applies to our problem as well. Furthermore,
the lower bound is shown for the case where distribution P provides full access,
i.e., the algorithm can make arbitrary queries to P . This is a stronger access model
than DUAL. Since the lower bound is for a stronger access model, again it extends
to our problem.

4.1.3 The InBucket Subroutine

In this section, we present the InBucket subroutine, whose behavior is stated in the
following lemma.

Lemma 1. InBucket(P ,Q, k, ε, ε2, η, δ) takes as input two distributions P ,Q, an integer
k and parameters ε, ε2, η, δ. If d∞(P ,Q) ≤ ε, InBucket returns Accept. If dT V (P ,Q) ≥ η

and dT V (BP , BQ) < ε2, then InBucket returns Reject. InBucket errs with probability at
most δ .

Before we dig into the analysis, we will present a high-level overview of the
InBucket subroutine. The main task of InBucket is to take in two distributions P
andQ and distinguish between the case where the distributions are ε-close to each
other, and the case where the distributions are η-far with the added promise that
if the distributions are far, there are sufficiently many witness pairs. A witness
pair is a pair of elements {σ1, σ2} such that their relative probabilities under P and
Q are different, i.e.

P(σ1)/P(σ2)
Q(σ1)/Q(σ2)

= 1 +O(ε)

To find such a pair, our algorithm requires the elements to be from the same
bucket, incurring a sample complexity of O(

√
k), reflected on Lines 6 and 8. Then,

given such a witness pair is found, InBucket makes use of the Bias subroutine to
determine the relative probabilities, and we describe the same in the following
subsection.

The Bias subroutine The Bias subroutine takes in distribution Q, two elements
p, q and a positive integer r. Then, using the PCOND oracle, Bias draws r samples
from the conditional distribution Q{p,q} and returns the number of times it sees p
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Algorithm 5 InBucket(P ,Q, k, ε, ε2, η, δ)
1: ε1 ← (0.99η − 3.25ε2 − 2ε/(1− ε))/1.05 + 2ε/(1− ε)
2: m← ⌈

√
k/(0.99η − 3.25ε2 − ε1)⌉

3: α← (ε1 + 2ε/(1− ε))/2
4: t←

⌈
loge(4/δ)

loge(10/(10−ε1+α))

⌉
5: for t iterations do
6: ΓP ←m samples from P
7: ∀i∈[k]Γi

P ← ΓP ∩ Si {Si is defined in Defn. 17}
8: ΓQ ←m samples from Q
9: ∀i∈[k]Γi

Q ← ΓQ ∩ Si

10: for all j ∈ [k] s.t. |Γj
P |, |Γ

j
Q| > 0 do

11: p← Γj
P {p is an arbitrary element from the set Γj

P}
12: q ← Γj

Q {q is an arbitrary element from the set Γj
Q}

13: h← P(p)
P(p)+P(q)(1+ 2ε

1−ε
)

14: ℓ← P(p)
P(p)+P(q)(1+α)

15: r ←
⌈

2 loge(4mt/δ)
(h−ℓ)2

⌉
16: ĉ← Bias(Q, p, q, r)
17: if ĉ ≤ (h+ ℓ)/2 then
18: Return Reject
19: Return Accept

Algorithm 6 Bias(Q, p, q, r)
1: if p and q are identical then
2: Return 0.5
3: ΓQ{p,q} ← r samples from Q{p,q}
4: Return the fraction of times p appears in ΓQ{p,q}

in the r samples. It can be seen that the returned value is an empirical estimate of
Q(p)

Q(p)+Q(q) . Let the estimate be ĉpq. We use the Hoeffding bound in Cor. 1, and the
value of r from Line 15 of Alg. (5) to show that:

Pr
[

Q(p)
Q(p) +Q(q) − ĉpq ≥

h− ℓ
2

]
≤ δ

4mt Pr
[
ĉpq −

Q(p)
Q(p) +Q(q) ≥

h− ℓ
2

]
≤ δ

4mt

Here t represents the number of iterations of the outer loop (Line 4), and m is
the number of samples drawn from BP and BQ. Together, there are at most mt
pairs of samples that are passed to the Bias oracle. Since in each invocation of
Bias, the probability of error is δ/4mt, using the union bound we find that the
probability that allmt Bias calls return correctly is at least 1− δ/4 and thus with
probability at least 1 − δ/4, the empirical estimate ĉpq is closer than (h − ℓ)/2 to

45



Q(p)
Q(p)+Q(q) . Henceforth we assume:

∣∣∣∣∣ĉpq −
Q(p)

Q(p) +Q(q)

∣∣∣∣∣ ≤ h− ℓ
2 (4.1)

4.1.3.1 The Accept case

In this section we will provide an analysis of the case when d∞(P ,Q) < ε. We will
now prove a proposition required for the remaining proofs.

Proposition 5. Let P ,Q be distributions and let p ∼ P and q ∼ Q. Then,

1. If d∞(P ,Q) < ε then

Q(p)
Q(p) +Q(q) ≥

P(p)
P(p) + (1 + 2ε

1−ε
)P(q)

2. If dT V (P ,Q) > ε1, then for 0 ≤ α < ε1, with probability at least (dT V (P ,Q) −
α)/2,

Q(p)
Q(p) +Q(q) <

P(p)
P(p) + (1 + α)P(q)

Proof. If d∞(P ,Q) < ε then

Q(p)
Q(p) +Q(q) ≥

P(p)(1− ε)
P(p)(1− ε) + (1 + ε)P(q)

= P(p)
P(p) + (1 + 2ε

1−ε
)P(q)

and hence we show the first part of the claim.
For the second part of the proof we introduce the some sets. Let H0 = {h|1 ≤

Q(h)
P(h) < 1 + α} and H1 = {h|1 + α ≤ Q(h)

P(h)} and H = H0 ∪ H1. Similarly define,
L0 = {ℓ|1− α < Q(ℓ)

P(ℓ) < 1}, L1 = {ℓ|Q(ℓ)
P(ℓ) ≤ 1− α} and L = L0 ∪ L1.

Now consider that we have a pair of samples, p ∼ P and q ∼ Q. We know that
either P(L) ≥ 1/2 or P(H) > 1/2.

P(L) ≥ 1/2: We see that Pr[p ∈ L] ≥ 1/2. Then from the definition of H0,
Q(H0)−P(H0) < α and recall thatQ(H)−P(H) = dT V (P ,Q). Thus we have that
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Q(H1)− P(H1) > dT V (P ,Q)− α and hence Pr[q ∈ H1] > dT V (P ,Q)− α. We can
now confirm that q ∈ H1∧ p ∈ Lwith probability at least (dT V (P ,Q)−α)/2. Then,

Q(p)
Q(p) +Q(q) <

P(p)
P(p) +Q(q) (From P(p) > Q(p))

<
P(p)

P(p) + (1 + α)P(q) (Since q ∈ H1)

P(H) > 1/2: We see that Pr[q ∈ H] ≥ 1/2. Then we have that P(L0)−Q(L0) < α

and also thatP(L)−Q(L) = dT V (P ,Q), we have thatP(L1)−Q(L1) < dT V (P ,Q)−
α. Then, we deduce that probability at least (dT V (P ,Q) − α)/2, q ∈ H ∧ p ∈ L1.
Then,

Q(p)
Q(p) +Q(q) <

Q(p)
Q(p) + P(q) (From P(q) < Q(q))

<
P(p)(1− α)

P(p)(1− α) + P(q) (Since p ∈ L1)

<
P(p)

P(p) + (1 + α)P(q)

From our assumption (4.1), we know that for all invocations of Bias, with
probability at least 1− δ/4,

∣∣∣ĉpq − Q(p)
Q(p)+Q(q)

∣∣∣ ≤ (h− ℓ)/2. Using Prop. 5, and using
the value of h given on Line 13, we can see that Q(p)

Q(p)+Q(q) > h. From this we can
observe that for all invocations of Bias, ĉpq > (h+ ℓ)/2 and the test does not return
Reject in any iteration, hence eventually returning Accept. Thus, in the case that
d∞(P ,Q) < ε, the InBucket subroutine returns Accept with probability at least
1− δ/4.

4.1.3.2 The Reject case

In this section we analyse the case when dT V (P ,Q) ≥ η and dT V (BP , BQ) ≤ ε2

and we will show that the algorithm returns Reject with probability at least 1− δ.
For the purpose of the proof we will define a set of bad buckets Bad ⊆ [k]. Note
that bucket {0} is not in Bad.

Definition 18. Bad = {i ∈ [k] : dT V (PSi
,QSi

) > ε1 ∧BP(i)/BQ(i) ∈ [0.2, 2]}
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Suppose we have an indicator variable Xr,s constructed as follows: draw m

samples from P and Q, and if the rth sample from P and the sth sample from Q
both belong to some bucket b ∈ Bad, then Xr,s = 1 else Xr,s = 0. Then,

E[Xr,s] =
∑

b∈Bad

BP(b)BQ(b) > (BP(Bad) +BQ(Bad)− 2dT V (Bad)(BP , BQ))2

4k (4.2)

The inequality is by the application of Prop. 4.
We analyse the expression that appears in the expectation bound above in the

following lemma.

Lemma 2.

BQ(Bad) +BP(Bad)− 2dT V (Bad)(BQ, BP) > 2
(

0.99η − 13
4 ε2 − ε1

)
Proof. Let PQ be a distribution constructed from P and Q, where we first sample
j ∼ BQ and then sample i ∼ PSj

, thus PQ(i) = ∑
j∈[k]∪{0}

BQ(j)PSj
(i). We know that

if i ∈ Sj , then i ̸∈ Sj′ for j′ ̸= j. This allows us to simplify and write PQ(i) =
BQ(j)PSj

(i). Then,

dT V (BP , BQ) = 1
2

∑
j∈[k]∪{0}

|BP(j)−BQ(j)|

= 1
2

∑
j∈[k]∪{0}

∑
i∈Sj

PSj
(i)|BP(j)−BQ(j)|

= 1
2

∑
j∈[k]∪{0}

∑
i∈Sj

|P(i)− PQ(i)|

= 1
2

∑
i∈{0,1}n

|P(i)− PQ(j)| = dT V (P ,PQ)

Since dT V (BP , BQ) < ε2, we have dT V (P ,PQ) < ε2.
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From the definition of TV, we have

dT V (Q,PQ) =1
2

∑
i∈{0,1}n

|Q(i)− PQ(i)|

=1
2

∑
j∈[k]∪{0}

∑
i∈Sj

|Q(i)− PQ(i)|

=1
2

∑
j∈[k]∪{0}

∑
i∈Sj

|BQ(j)QSj
(i)−BQ(j)PSj

(i)|

=1
2

∑
j∈[k]∪{0}

BQ(j)
∑
i∈Sj

|QSj
(i)− PSj

(i)|

=
∑

j∈([k]∪{0})
BQ(j)dT V (PSj

,QSj
)

=
∑

j∈([k]∪{0})\Bad

BQ(j)dT V (PSj
,QSj

) +
∑

j∈Bad

BQ(j)dT V (PSj
,QSj

)

We will need the following sets:

R1 = {j : BP(j) > 2BQ(j)} R2 = {j : BQ(j) > 5BP(j)}

From the triangle inequality we have dT V (P ,Q) ≤ dT V (P ,PQ) + dT V (PQ,Q).
We also know that dT V (P ,PQ) < ε2 and dT V (P ,Q) > η. Thus we have:

η − ε2 < dT V (Q,PQ)

η − ε2 <
∑

j∈([k]∪{0})\Bad

BQ(j)dT V (PSj
,QSj

) +
∑

j∈Bad

BQ(j)dT V (PSj
,QSj

)

η − ε2 <
∑

j∈{0}∪R1∪R2

BQ(j)dT V (PSj
,QSj

) +
∑

j∈[k]\{R1∪R2∪Bad}
BQ(j)dT V (PSj

,QSj
)

+
∑

j∈Bad

BQ(j)dT V (PSj
,QSj

)

Since from the definition, we know that if j ∈ [k] \ {R1 ∪ R2 ∪ Bad}, then
dT V (PSj

,QSj
) ≤ ε1, we have

η − ε2 <
∑

j∈{0}∪R1∪R2

BQ(j) +
∑

j∈[k]\{R1∪R2∪Bad}
BQ(j)ε1 +

∑
j∈Bad

BQ(j)

η − ε2 − ε1 < BQ({0} ∪R1 ∪R2) +BQ(Bad)

η − ε2 − ε1 −BQ({0} ∪R1 ∪R2) < BQ(Bad) (4.3)

If i ∈ R1, then BP(i) > 2BQ(i), and thus BP(i)−BQ(i) > BQ(i). Thus,

BQ(R1) <
∑

i∈R1

(BP(i)−BQ(i)) (4.4)
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If i ∈ R2, then BQ(i) > 5BP(i), and thus BQ(i)−BP(i) > 4BP(i), giving

BP(R2) <
1
4
∑

i∈R2

(BQ(i)−BP(i))

BP(R2) +
∑

i∈R2

(BQ(i)−BP(i)) < 5
4
∑

i∈R2

(BQ(i)−BP(i))

BQ(R2) <
5
4
∑

i∈R2

(BQ(i)−BP(i)) (4.5)

Since |S0| ≤ 2n and all elements i ∈ S0 satisfy P(i) ≤ 2−k , we have BP(0) ≤ 2n−k,
where we substitute k = n+ log2(100/η) to get

BP(0) ≤ η

100 (4.6)

Then,

BQ({0} ∪R1 ∪R2) = BQ({0}) +BQ(R1) +BQ(R2)

≤ η

100 +
∑

i∈{0}
(BQ(i)−BP(i)) +

∑
i∈R1

(BP(i)−BQ(i)) + 5
4
∑

i∈R2

(BQ(i)−BP(i))

(4.7)

The last inequality is from the use of inequations (4.4),( 4.5) and (4.6). Here we
partition the set Bad ∪ {0} into two sets Bad+ and Bad−, where Bad+ = {i ∈
Bad ∪ {0}|BP(i) ≥ BQ(i)} and similarly Bad− = {i ∈ Bad ∪ {0}|BP(i) < BQ(i)}.

BQ(Bad)+BP(Bad)− 2dT V (Bad)(BQ, BP)

≥ 2(BQ(Bad)− 2dT V (Bad)(BP , BQ))

(From 4.3) > 2
η − ε2 − ε1 −BQ({0} ∪R1 ∪R2)−

∑
i∈Bad

|BP(i)−BQ(i)|


(From 4.7) > 2
.99η − ε2 − ε1 −

∑
i∈R1∪Bad+

(BP(i)−BQ(i))− 5
4

∑
i∈R2∪Bad−

(BQ(i)−BP(i))


Using the following two facts

dT V (BP , BQ) =
∑

i:BP (i)≤BQ(i)
(BQ(i)−BP(i)) =

∑
i:BP (i)>BQ(i)

(BP(i)−BQ(i)) = ε2

and
∀i∈R1BP(i) > BQ(i) ∀i∈R2BQ(i) > BP(i)
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we have,

BQ(Bad) +BP(Bad)− 2dT V (Bad)(BQ, BP) > 2
(

0.99η − 13
4 ε2 − ε1

)

Using Equation 4.2 along with Lemma 2 we derive the fact that

E[Xr,s] >
(

0.99η − 13
4 ε2 − ε1

)2
/k

LetX = ∑
r,s∈[m] Xr,s. Givenm samples fromP andQ, Pr(X ≥ 1) is the probability

that there is at least one bucket in Bad(among k buckets) that is sampled at least
once each in both sets of samples.

Lemma 3. E[X] ≥ 1

Proof. Recall that we defined the value ofm on Line 2 of Alg. 5

m = ⌈
√
k/(0.99η − 3.25ε2 − ε1)⌉

Thus we have that,

E[X] = E

 ∑
r,s∈[m]

Xr,s

 = m2E[Xr,s] ≥ 1

Lemma 4. Pr(X ≥ 1) > 1/5

Proof. Recall that for all r, s ∈ [m], E[Xr,s] = ∑
b∈Bad BP(b)BQ(b). Then since X =∑

r,s∈[m] Xr,s,
E[X] =

∑
r,s∈[m]

E[Xr,s] = m2E[Xr,s]

Then for i, j, k, l ∈ [m],

• if i = k, j = l then E[Xi,jXk,l] = ∑
b∈Bad BP(b)BQ(b) = E[Xr,s]

• if i = k, j ̸= l then E[Xi,jXk,l] = ∑
b∈Bad BP(b)B2

Q(b)

• if i ̸= k, j = l then E[Xi,jXk,l] = ∑
b∈Bad B

2
P(b)BQ(b)

• if i ̸= k, j ̸= l then E[Xi,jXk,l] = (∑b∈Bad BP(b)BQ(b))2 = E[Xr,s]2
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E[X2] = E

 ∑
i,j,k,l∈[m]

Xi,jXk,l



= E

 ∑
a̸=c,b ̸=d

i,j,k,l∈[m]

Xi,jXk,l

+ E

 ∑
a=c,b ̸=d

i,j,k,l∈[m]

Xi,jXk,l



+ E

 ∑
a̸=c,b=d

i,j,k,l∈[m]

Xi,jXk,l

+ E

 ∑
a=c,b=d

i,j,k,l∈[m]

Xi,jXk,l


= m2(m− 1)2E[Xr,s]2 +m2(m− 1)

 ∑
b∈Bad

(BP(b) +BQ(b))BP(i)BQ(i)
+m2E[Xr,s]

≤ m4E[Xr,s]2 +m3

 ∑
b∈Bad

(BP(b) +BQ(b))BP(b)BQ(b)
+m2E[Xr,s]

Then,
E[X]2
E[X2] >

m4E[Xr,s]2
m4E[Xr,s]2 +m3 (∑b∈Bad(BP(b) +BQ(i))BP(i)BQ(b)) +m2E[Xr,s]

= 1

1 +m−1

(∑
b∈Bad

(BP (b)+BQ(b))BP (b)BQ(b)

(∑b∈Bad
BP (b)BQ(b))2

)
+m−2E[Xr,s]−1

Wewill now focus on finding themaxima for the large ratio in the denominator:

∑
b∈Bad(BP(b) +BQ(b))BP(b)BQ(b)

(∑b∈Bad BP(b)BQ(b))2 =

∑
b∈Bad

(√
BP (b)
BQ(b) +

√
BQ(b)
BP (b)

)
(BP(b)BQ(b))3/2

(∑b∈Bad BP(b)BQ(b))2

(b ∈ Bad =⇒ BP(b)/BQ(b) ∈ [0.2, 2]) ≤
(
√

1/5 +
√

5) ∑
b∈Bad

(BP(b)BQ(b))3/2

(∑b∈Bad BP(b)BQ(b))2

< 3 ·

∑
b∈Bad

(BP(b)BQ(b))3/2

(∑b∈Bad BP(b)BQ(b))3/2 · (∑b∈Bad BP(b)BQ(b))1/2

(Using the monotonicity of ℓp norms) ≤ 3
(∑b∈Bad BP(b)BQ(b))1/2 = 3E[Xr,s]−1/2

Thus,
E[X]2
E[X2] >

1
1 + 3m−1E[Xr,s]−1/2 +m−2E[Xr,s]−1

>
1
5 (Sincem2E[Xr,s] ≥ 1)
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The Chebyshev bound (Proposition 2) tells us that

Pr[|X − E[X]| < E[X]] > E[X]2/E[X2] > 1
5

Recall that from Lemma 3, we have E[X] ≥ 1 which lets draw the following
implication

|X − E[X]| < E[X] =⇒ X > 0

which finally gives us the claim:

Pr[X > 0] > 1
5

Pr[X ≥ 1] > 1
5 (Since X takes only integer values)

Henceforth we will condition on the the event that X ≥ 1. In such a case, we
know that for some k ∈ Bad, there is a sample p ∼ PSk

and a sample q ∼ QSk
. Then

for such a pair of samples (p, q), and some α, Prop. 5 tells us that with probability
at least (dT V (P ,Q)− α)/2 we have

Q(p)
Q(p) +Q(q) <

P(p)
P(p) + (1 + α)P(q)

Using the assumptionmade in (4.1), we immediately have that ĉpq ≤ Q(p)
Q(p)+Q(q) +

h−ℓ
2 . From Prop. 5 we have that Q(p)

Q(p)+Q(q) < ℓ and hence ĉpq < (h + ℓ)/2. Since
dT V (P ,Q) ≥ ε1, we see that if X ≥ 1, then with probability at least (ε1 − α)/2, the
iteration returns Reject.

Then, using Lemma 4 we see that in every iteration, with probability at least
(ε1−α)/10, InBucket returns Reject. There are t iterations, where t (line 4) is chosen
such that the overall probability of the test returning Reject is at least 1− δ/2.

4.1.4 The OutBucket Subroutine

Algorithm 7 OutBucket(BP , BQ, k, θ, δ)
1: Sample max

(
4(k+1)

θ2 , 8 loge(4/δ)
θ2

)
times from BP and BQ and construct empirical

distributions B̂P and B̂Q.
2: Return dT V (B̂P , B̂Q)
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The OutBucket subroutine takes as input two distributions D1,D2 over k + 1
elements and two parameters θ and δ. Then with probability at least 1− δ, InBucket
returns a θ-additive estimate for dT V (D1,D2).

The OutBucket starts by drawing max
(

4(k+1)
θ2 , 8 loge(4/δ)

θ2

)
samples from the two

distributionsD1 andD2, and constructs the empirical distributions D̂1 and D̂2. Then
from Prop. 3, we know that with probability at least 1− δ, both dT V (D1, D̂1) ≤ θ/2
and dT V (D2, D̂2) ≤ θ/2.

From the triangle inequality we have that,

dT V (D̂1, D̂2) ≤ dT V (D1, D̂1) + dT V (D2, D̂2) + dT V (D1,D2) < θ + dT V (D1,D2)

and also that,

dT V (D1,D2) ≤ dT V (D1, D̂1) + dT V (D2, D̂2) + dT V (D̂1, D̂2) < θ + dT V (D̂1, D̂2)

Thus with probability at least 1 − δ, the returned estimate dT V (D̂1, D̂2) satisfies
|dT V (D̂1, D̂2)− dT V (D1,D2)| < θ.

Query and runtime complexity The number of queries made by OutBucket to P
andQ is given by Õ

(
n
η2

)
, where Õ hides polylog factors of ε, η and δ. The number of

queries required by InBucket is given bymtr. Bounding the terms individually, we
see that m = Õ

( √
n

η−11.6ε

)
, t = Õ

(
1
η

)
and r = Õ

(
log n
η2

)
. Thus mtr = Õ

( √
n log n

(η−11.6ε)η3

)
and hence the total query complexity is Õ

( √
n log n

(η−11.6ε)η3 + n
η2

)
.

4.2 Evaluation
To evaluate the performance of Barbarik3 and test the quality of publicly available
samplers, we implemented Barbarik3 in Python. Our evaluation took inspiration
from the experiments presented in previous work [26, 71], and we used the same
framework to evaluate our proposed algorithm.

In the previous chapter we provided and analysed an algorithm that could
test whether an input distribution Qwas close to the target P , where the target
distribution was expected to have EVAL and SAMP accesses implemented. In
our experiments, the role of the target distribution P was played by WAPS2 [56].

2https://github.com/meelgroup/WAPS
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WAPS compiles the input Boolean formula into a representation that allows exact
sampling and exact probability computation, thereby implementing the SAMP
and EVAL oracles needed for our test.

For the role of samplerQ(φ, w), we used the state-of-the-art samplers wSTS and
wUnigen. wUnigen [88] is a hashing-based sampler that provides (ε, δ) guarantees
on the quality of the samples. wSTS [49] is a sampler designed for sampling
over challenging domains such as energy barriers and highly asymmetric spaces.
wSTS generates samples much faster than wUnigen, albeit without any guarantees
on the quality of the samples. In our previous experiments we had evaluated
wQuicksampler, however we chose to not evaluate wQuicksampler in this series of
experiments, as wQuicksampler was rejected immediately in all cases.

To implement PCOND access, we use the Kernel construction from [26]. Kernel
takes in φ and two assignments σ1, σ2, and returns a function φ̂ on m variables,
such that: (1)m > n, (2) φ and φ̂ are similar in structure, and (3) for σ ∈ φ̂−1(1),
it holds that σ↓supp(φ) ∈ {σ1, σ2}. Here σ↓supp(φ) denotes the projection of σ on the
variables of φ.

For the closeness(ε), farness(η), and confidence(δ) parameters, we choose the
values 0.05, 0.9 and 0.2. This setting implies that for a given distribution P , and
for a given sampler Q(φ, w), Barbarik3 returns (1) Accept if d∞(P ,Q(φ, w)) < 0.05,
and (2) Reject if dT V (P ,Q(φ, w)) > 0.9, with probability at least 0.8. Our empirical
evaluation sought to answer the question: How does the performance of Barbarik3
compare with the state-of-the-art tester Barbarik2?

Our experiments were conducted on a high-performance compute cluster with
Intel Xeon(R) E5-2690v3@2.60GHz CPU cores. We use a single core with 4GB
memory with a timeout of 16 hours for each benchmark. We set a sample limit of
108 samples for our experiments due to our limited computational resources. The
complete experimental data along with the running time of instances, is presented
in the Appendix A.2.

4.2.1 Setting A - scalable benchmarks

Dataset Our dataset consists of the union of two n-dimensional product distri-
butions, for n ∈ {4, 7, 10, . . . , 118}. We have 39 problems in the dataset.
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We represent the union of two product distributions as the constraint: φ(σ) =∧2k
i=1(σ3k+1∨σi)∧

∧3k
i=2k+1(¬σ3k+1∨σi), and the weight function: w(σ) = ∏3k

i=2k+1 3σi ,
where σi is the value of σ at position i.

Results We observe that in the case of wSTS, Barbarik2 can handle only 12 in-
stances within the sample limit of 108. On the other hand, Barbarik3 can handle all
39 instances using at the most 106 samples. In the case of wUnigen, Barbarik2 solves
5 instances, and Barbarik3 can handle 17 instances.

Figure 4.1 shows a cactus plot comparing the sample requirement of Barbarik3
and Barbarik2. The x-axis represents the number of benchmarks and y-axis repre-
sents the number of samples, a point (x, y) implies that the relevant tester took
less than y number of samples to distinguish between dT V (P ,Q(φ, w)) > η and
d∞(P ,Q(φ, w)) < ε, for xmany benchmarks. We display the set of benchmarks for
which at least one of the two tools terminated within the sample limit of 108. We
want to highlight that the y-axis is in log-scale, thus showing the sample efficiency
of Barbarik3 compared to Barbarik2. For every benchmark, we compute the ratio
of the number of samples required by Barbarik2 to test a sampler and the number
of samples required by Barbarik3. The geometric mean of these ratios indicates
the mean speedup. We find that the Barbarik3’s speedup on wSTS is 451× and on
wUnigen is 10×.

4.2.2 Setting B - real-life benchmarks

Dataset We experiment on 87 constraints drawn from a collection of publicly
available benchmarks arising from sampling and counting tasks3. We use distribu-
tions from the log-linear family. In a log-linear distribution, the probability of an
element σ ∈ φ−1(1) is given as: Pr[σ] ∝ exp (∑n

i=1 σiθi), where θi ∈ Rn
>0. We found

that wUnigen was not able to sample from most of the benchmarks in the dataset
within the given time limit, and hence we present the results only for wSTS.

Results We find that Barbarik3 terminated with a result on all 87 instances from
the set of real-life benchmarks, while Barbarik2 could only terminate on 16. We

3https://zenodo.org/record/3793090
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Figure 4.1: Cactus plot: Barbarik3 vs. Barbarik2. We set the sample limit to be 108,
and our dataset consists of 39 benchmarks. The plot shows all the instances where
at least one of the two tools terminated within the time limit of 16 hours and
sample limit of 108.

present the results of our experiments in Table 4.1. The first column indicates
the benchmark’s name, and the second column has the number of dimensions
of the space the distribution is defined on. The third and fifth columns indicate
the number of samples required by Barbarik2 and Barbarik3. The fourth and sixth
columns report the output of Barbarik2 and Barbarik3.
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Barbarik2 Barbarik3
Benchmark Dimensions Result # of samples Result # of samples
SetTest.sk_9_21 21 R 2817 R 58000
Pollard.sk_1_10 10 R 7606 R 36000
s444_3_2 24 R 848148 R 64000
s526a_3_2 24 R 848148 R 64000
s510_15_7 25 R 12708989 R 66000
s27_new_7_4 7 A 23997012 R 30000
s298_15_7 17 R 38126967 R 50000
s420_3_2 34 TO - R 83000
s382_3_2 24 TO - R 64000
s641_3_2 54 TO - R 123000
111.sk_2_36 36 TO - R 87000
7.sk_4_50 50 TO - R 115000
56.sk_6_38 38 TO - R 91000
s820a_15_7 23 TO - R 62000
ProjectService3.sk 55 TO - R 125000

Table 4.1: Runtime performance of Barbarik3. We experiment with 87 benchmarks,
and out of the 87 benchmarks we display 15 in the table and we display the full
data in Appendix A.2 . In the table ‘A’ represents Accept, ‘R’ represents Reject and
‘TO’ represents that the tester either asked for more than 108 samples or did not
terminate in the given time limit of 16 hours.
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Part II

Estimation Problems
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This chapter is based on the following publications:

1. Testing Probabilistic Circuits
Yash Pote rO Kuldeep S. Meel.
In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2021.

2. Distance Estimation for High-Dimensional Discrete Distributions
Gunjan Kumar rO Kuldeep S. Meel rO Yash Pote
In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS), 2025.

This part will focus on the estimation problem. The first chapter of this part,
Chapter 5 will focus on the estimation of distance between distributions encoded
as probabilistic circuits(PCs).

Then in Chapter 6 we extend our estimation framework to a larger class of
distributions beyond PCs, namely all distributions that allow conditioning. Prior
to our work no polynomial query distance estimator was known, and our work
paves
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Chapter 5

Probabilistic Circuits
Probabilistic modeling is at the heart of modern computer science, with appli-
cations ranging from image recognition and generation [82, 84] to weather fore-
casting [19]. Probabilistic models have a multitude of representations, such as
probabilistic circuits (PCs) [37], graphical models [64], generative networks [55],
and determinantal point processes [65]. Of particular interest to us are PCs, which
are known to support guaranteed inference and thus have applications in safety-
critical fields such as healthcare [6, 76].

Determining the closeness of models has applications in AI planning [43],
bioinformatics [85, 89, 96] and probabilistic program verification [47]. Equivalence
testing is a special case of closeness testing, where one tests if dT V (P,Q) = 0.
Darwiche and Huang [43] initiated the study of equivalence testing of PCs by
designing an equivalence test for d-DNNFs. An equivalence test is, however, of
little use in contexts where the PCs under test encode non-identical distributions
that are nonetheless close enough for practical purposes. Such situations may
arise due to the use of approximate PC compilation [38] and sampling-based
learning of PCs [79, 80]. As a concrete example, consider PCs that are learned via
approximate methods such as stochastic gradient descent [80]. In such a case, PCs
are likely to converge to close but non-identical distributions. Given two such PCs,
we would like to know whether they have converged to distributions close to each
other. Thus, we raise the question: Does there exist an efficient algorithm to test the
closeness of two PC distributions?

In this chapter, we design the first closeness test for PCs with respect to TV dis-
tance, called Teq. Assuming the tested PCs allow poly-time approximate weighted
model counting and sampling, Teq runs in polynomial time. Formally, given
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two PC distributions P and Q, and three parameters (ε,η,δ), for closeness(ε),
farness(η), and tolerance(δ), Teq returns Accept if dT V (P,Q) ≤ ε and Reject if
dT V (P,Q) ≥ η with probability at least 1− δ. Teq makes O((η− ε)−2 log(δ−1)) calls
to the sampler and exactly two calls to the counter.

Teq builds on a general distance estimation technique of Canonne and Ru-
binfeld [20] that estimates the distance between two distributions with a small
number of samples. In the context of PCs, the algorithm requires access to an
exact sampler and an exact counter. Since not all PCs support exact sampling and
counting, we modify existing techniques to allow for approximate samples and
counts. Furthermore, we implement and test Teq on a dataset of publicly available
PCs arising from applications in the testing of circuits. Our results show that
closeness testing can be accurate and scalable in practice.

For some NNF fragments, such as DNNF, no sampling algorithm is known, and
for fragments such as PI, sampling is known to be NP-hard [86]. Since Teq requires
access to approximate weighted counters and samplers to achieve tractability,
the question of determining the closeness of the PCs mentioned above remains
unanswered. Thus, we investigate further and characterize the complexity of
closeness testing for a broad range of PCs. Our characterization reveals that PCs
from the fragments d-DNNFs and SDNNFs can be tested for closeness in poly-
time via Teq, owing to the algorithms of Darwiche [41] and Arenas et al. [5].
We show that the SDNNF approximate counting algorithm of Arenas et al. [5]
can be extended to log-linear SDNNFs using chain formulas [31]. Then, using
previously known results, we also find that there are no poly-time equivalence tests
for PCs from PI and DNNF, conditional on widely believed complexity-theoretic
conjectures. Our characterization also reveals some open questions regarding the
complexity of closeness and equivalence testing of PCs.

The rest of the chapter is organized as follows:we present themain contribution,
the closeness test Teq, and the associated proof of correctness in Section 5.2. We
present our experimental findings in Section 5.3 and then discuss the complexity
landscape of closeness testing in Section 5.4.
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5.1 Preliminaries
Let φ : {0, 1}n → {0, 1} be a circuit over n Boolean variables. An assignment
σ ∈ {0, 1}n to the variables of φ is a satisfying assignment if φ(σ) = 1. The set of all
satisfying assignments of φ is Rφ. If |Rφ| > 0, then φ is said to be satisfiable and
if |Rφ| = 2n, then φ is said to be valid. We use |φ| to denote the size of circuit φ,
where the size is the total number of vertices and edges in the circuit DAG.

5.1.1 Probability distributions

A weight function w : {0, 1}n → Q+ assigns a positive rational weight to each
assignment σ. We extend the definition of w to also allow circuits as input: w(φ) =∑
σ∈Rφ

w(σ). For weight function w and circuit φ, w(φ) is the weighted model count
(WMC) of φw.r.t. w.

In this chapter, we focus on log-linear weight functions as they capture a wide
class of distributions, including those arising from graphical models, conditional
random fields, and skip-gram models [73]. Log-linear models are represented as
literal-weighted functions, defined as:

Definition 19. For a set X of n variables, a weight function w is called literal-weighted
if there is a poly-time computable map w : X → Q ∩ (0, 1) such that for any assignment
σ ∈ {0, 1}n :

w(σ) =
∏
x∈σ


w(x) if x = 1

1− w(x) if x = 0

For all circuits φ, and log-linear weight functions w, w(φ) can be represented in
size polynomial in the input.

PC’s are a very broad class of distributional representations (see survey by Choi
et al.), and in this chapter, we focus on a fragment of the Negation Normal Form
(NNF).

Definition 20 (Probabilistic circuits). A probabilistic circuit is a satisfiable circuit φ
along with a weight function w. φ and w together define a discrete probability distribution
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on the set {0, 1}n that is supported over Rφ. We denote the p.m.f. of this distribution as:

P (φ, w)(σ) =


0 φ(σ) = 0

w(σ)/w(φ) φ(σ) = 1

A circuit φ in NNF is a rooted, directed acyclic graph (DAG), where each leaf
node is labeled with true, false, v or ¬v; and each internal node is labeled with a ∧
or ∨ and can have arbitrarily many children. We focus on four fragments of NNF,
namely, Decomposable NNF(DNNF), deterministic-DNNF(d-DNNF), Structured
DNNF(SDNNF), and Prime Implicates(PI). For further information regarding cir-
cuits in NNF, refer to the survey [44] and the paper [81].

5.2 Teq: a Tractable Algorithm for Closeness Testing
In this section, we present our main contribution: a closeness test for PCs, Teq. The
pseudocode of Teq is given in Algorithm 8.

Given satisfiable circuits φ1, φ2 and weight functions w1, w2 along with parame-
ters (ε, η, δ), Teq decides whether the TV distance between P (φ1, w1) and P (φ2, w2)
is lesser than ε or greater than ηwith confidence at least 1−δ.Teq assumes access to
an approximate weighted counter Awct(α, β, φ, w), and an approximate weighted
sampler Samp(α, β, φ, w). We define their behavior in the following two definitions.

Definition 21. Awct(α, β, φ, w) takes a circuit φ, a weight function w, a tolerance pa-
rameter α > 0 and a confidence parameter β > 0 as input and returns the approximate
weighted model count of φ w.r.t. w such that

Pr
[

w(φ)
1 + α

≤ Awct(α, β, φ, w) ≤ (1 + α)w(φ)
]
≥ 1− β

Tractable approximate counting algorithms for PCs are known as Fully Polynomial Ran-
domised Approximation Schemes (FPRAS). The running time of an FPRAS is given by
T (α, β, φ) = poly(α−1, log(β−1), |φ|).

Definition 22. Samp(α, β, φ, w) takes a circuit φ, a weight function w, a tolerance param-
eter α > 0 and a confidence parameter β > 0 as input and returns either (1) a satisfying
assignment σ sampled approximately w.r.t. weight function w with probability ≥ 1− β or
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(2) a symbol ⊥ indicating failure with probability < β. In other words,
P (φ, w)(σ)

1 + α
≤ Pr[Samp(α, β, φ, w) = σ|σ ̸= ⊥] ≤ (1 + α)P (φ, w)(σ)

The running time for a call to Samp(α, β, φ, w) is given by

T (α, β, φ) = poly(α−1, log(β−1), |φ|)

The algorithm Our algorithm follows from a result by Bhattacharyya et al.
[9][Theorem 2.3]. Specifically, the theorem states that given approximate EVAL
access to two distributions, one can estimate the TV distance upto additive ε
in O(ε−2). On a high-level we will use O(ε−2) Samp and Awct oracle accesses to
simulate the a single approximate EVAL access. Thuswith only a constant overhead
we can implement their distance approximation algorithm.

Teq starts by computing constants γ andm. Then it queries the Awct routine
with circuit φ1 and weight function w1 to obtain a

√
1 + γ/4 − 1 approximation

of w1(φ1) with confidence at least 1− δ/8. A similar query is made for φ2 and w2

to obtain an approximate value for w2(φ2). These values are stored in k1 and k2,
respectively. Teq maintains am-sized array Γ, to store the estimates for r(σi). Teq
now iterates m times. In each iteration, it generates one sample σi through the
Samp call on line 7. There is a small probability of at most δ/4m that this call fails
and returns ⊥. Teq only samples from one of the two PCs.

The algorithm then proceeds to compute the weight of assignment σi w.r.t.
the weight functions w1 and w2 and stores it in s1 and s2, respectively. Using the
weights and approximate weighted counts stored in k1, k2 the algorithm computes
the value r(σi) on line 10, where r(σi) is an approximation of the ratio of the
probability of σi in the distribution P (φ2, w2) to its probability in P (φ1, w1). Since σi

was sampled from P (φ1, w1), its probability in P (φ1, w1) cannot be 0, ensuring that
there is no division by 0. If the ratio r(σi) is less than 1, then Γ[i] is updated with
the value 1 − r(σi) otherwise the value of Γ[i] remains 0. After the m iterations,
Teq sums up the values in the array Γ. If the sum is found to be less than threshold
m(ε+ γ), Teq returns Accept and otherwise returns Reject.

The following theorem asserts the correctness of Teq. To improve readability,
we use P1 to refer to the distribution P (φ1, w1) and P2 to refer to P (φ2, w2).
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Algorithm 8 Teq(φ1, w1, φ2, w2, ε, η, δ)
1: γ ← (η − ε)/2
2: m← ⌈2 log(4/δ)/γ2⌉
3: Γ← [0] ∗m
4: k1 ← Awct(

√
1 + γ/4− 1, δ/8, φ1, w1)

5: k2 ← Awct(
√

1 + γ/4− 1, δ/8, φ2, w2) {Awct(·) > 0 for satisfiable formula}
6: for all i ∈ {1, 2 . . . ,m} do
7: σi ← Samp(γ/(4η − 2γ), δ/4m,φ1, w1)
8: if σi ̸=⊥ then
9: s1 ← w1(σi), s2 ← w2(σi)
10: r(σi)← s2

k2
· k1

s1
11: if r(σi) < 1 then
12: Γ[i]← 1− r(σi)
13: if ∑i∈[m] Γ[i] ≤ m(ε+ γ) then
14: Return Accept
15: else
16: Return Reject

Theorem 5.1. Given two satisfiable probabilistic circuits φ1, φ2 and weight functions
w1, w2, along with parameters ε < η < 1 and δ < 1,

A. If dT V (P (φ1, w1), P (φ2, w2)) ≤ ε, then Teq(φ1, w1, φ2, w2, ε, η, δ) returns Accept
with probability at least (1− δ).

B. If dT V (P (φ1, w1), P (φ2, w2)) ≥ η, then Teq(φ1, w1, φ2, w2, ε, η, δ) returns Reject
with probability at least (1− δ).

5.2.1 Proving the correctness of Teq

In this subsection, we present the theoretical analysis of Teq, and the proofs of
Theorem 5.1(A) and 5.1(B).

For the purpose of the proof, we will first define events Pass1, Pass2 and Good.
Events Pass1 and Pass2 are defined w.r.t. the function calls Awct(

√
1 + γ/4 −

1, δ/8, φ1, w1) and Awct(
√

1 + γ/4 − 1, δ/8, φ2, w2), respectively (as on lines 4, 5
of Algorithm 8). Pass1 and Pass2 represent the events that the two calls cor-
rectly return

√
1 + γ/4 approximations of the weighted model counts of φ1 and φ2

i.e. w1(φ1)√
1+γ/4

≤ Awct(
√

1 + γ/4 − 1, δ/8, φ1, w1) ≤ (
√

1 + γ/4)w1(φ1), and w2(φ2)√
1+γ/4

≤
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Awct(
√

1 + γ/4 − 1, δ/8, φ2, w2) ≤ (
√

1 + γ/4)w2(φ2). From the definition of Awct,
we have Pr[Pass1],Pr[Pass2] ≥ 1− δ/8.

Let Faili denote the event that Samp (Algorithm 8, line 7) returns the sym-
bol ⊥ in the ith iteration of the loop. By the definition of Samp we know that
alli∈[m] Pr[Faili] < δ/4m.

The analysis of Teq requires that all m Samp calls and both Awct calls return
correctly. We denote this super-event as Good = ⋂

i∈[m] Faili ∩ Pass1 ∩ Pass2.
Applying the union bound we see that the probability of all calls to Awct and Samp
returning without error is at least 1− δ/2:

Pr[Good] = 1− Pr
 ⋃

i∈[m]
Faili ∪ Pass1 ∪ Pass2


≥ 1−m · δ/4m− 2 · δ/8

= 1− δ/2 (5.1)

Lemma 5. Good→
∣∣∣r(σ)− P2(σ)

P1(σ)

∣∣∣ ≤ γ/4 · P2(σ)
P1(σ)

Proof. The quantity r(σ) (line 10 from Algorithm 8) conditioned on the event
Faili ⊂ Good:

r(σ) = w2(σ)
Awct(

√
1 + γ/4− 1, δ/8, φ2, w2)

·
Awct(

√
1 + γ/4− 1, δ/8, φ1, w1)

w1(σ)

Conditioned on the events Pass1, Pass2 ⊂ Good, we know that with probability 1:
w2(σ)w1(φ1)
w2(φ2)w1(σ)(

√
1 + γ/4)−2 < r(σ) < (

√
1 + γ/4)2 w2(σ)w1(φ1)

w2(φ2)w1(σ)

Which gives us:
P2(σ)
P1(σ)(1 + γ/4)−1 < r(σ) < (1 + γ/4)P2(σ)

P1(σ)

and therefore,∣∣∣∣∣r(σ)− P2(σ)
P1(σ)

∣∣∣∣∣ ≤ P2(σ)
P1(σ) · max0<γ<1

(
γ/4, 1− 1

1 + γ/4

)
≤ P2(σ)
P1(σ) · γ/4

We now prove the lemma critical for our proof of correctness of Teq.
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Lemma 6. Assuming the event Good, let A = ∑
σ∈{0,1}n 1 (r(σ) < 1) (1− r(σ))P1(σ) ,

then

1. If dT V (P1, P2) ≤ ε , then A ≤ ε+ γ/4

2. If dT V (P1, P2) ≥ η , then A ≥ η − γ/4

Proof. If ∑x (P1(x)− P2(x)) = 0, then 1
2
∑

x |P1(x)−P2(x)| = ∑
x:P1(x)−P2(x)>0

(P1(x)−

P2(x)). Using this fact we see that,

dT V (P1, P2) =
∑

σ:P2(σ)<P1(σ)
P1(σ)− P2(σ) =

∑
σ: P2(σ)

P1(σ) <1

(
1− P2(σ)

P1(σ)

)
P1(σ)

=
∑

σ∈{0,1}n

1

(
P2(σ)
P1(σ) < 1

)(
1− P2(σ)

P1(σ)

)
P1(σ)

= A+
∑

σ∈{0,1}n

1

(
P2(σ)
P1(σ) < 1

)(
1− P2(σ)

P1(σ)

)
P1(σ)− A

︸ ︷︷ ︸
B

Thus we have that dT V (P1, P2) − A = B. We now divide the set of assignments
σ ∈ {0, 1}n into three disjoint partition S1, S2 and S3 as following: S1 = {σ :
1(P2(σ)

P1(σ) < 1) = 1(r(σ) < 1)}; S2 = {σ : 1(P2(σ)
P1(σ) < 1) > 1(r(σ) < 1)}; S3 = {σ :

1(P2(σ)
P1(σ) < 1) < 1(r(σ) < 1)}. The definition implies that the indicator 1(r(σ) < 1)

is 0 for all assignments in the set S2, and is 1 for all assignments in S3. Similarly
1(P2(σ)

P1(σ) < 1) takes value 1 and 0 for all elements in S2 and S3, respectively.
Now we bound the magnitude of B,

|B| =

∣∣∣∣∣∣
∑

σ∈{0,1}n

[(
1− P2(σ)

P1(σ)

)
1

(
P2(σ)
P1(σ) < 1

)
− (1− r(σ))1 (r(σ) < 1)

]
P1(σ)

∣∣∣∣∣∣
For bj > 0, we have that |∑j ajbj| ≤

∑
j |aj|bj , and thus:

|B| ≤
∑

σ∈{0,1}n

∣∣∣∣∣
[(

1− P2(σ)
P1(σ)

)
1

(
P2(σ)
P1(σ) < 1

)
− (1− r(σ))1 (r(σ) < 1)

]∣∣∣∣∣P1(σ)

We can split the summation into three terms based on the sets in which the
assignments lie. Some summands take the value 0 in a particular set, so we don’t
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include them in the term.

|B| ≤
∑

σ∈S1

1

(
P2(σ)
P1(σ) < 1

) ∣∣∣∣∣r(σ)− P2(σ)
P1(σ)

∣∣∣∣∣P1(σ)

+
∑

σ∈S2

1

(
P2(σ)
P1(σ) < 1

)(
1− P2(σ)

P1(σ)

)
P1(σ)

+
∑

σ∈S3

1 (r(σ) < 1) (1− r(σ))P1(σ)

Since we know that ∀σ ∈ S2, r(σ) > 1 and allσ ∈ S3,
P2(σ)
P1(σ) > 1, we can alter the

second and third terms of the inequality in the following way:

|B| ≤
∑

σ∈S1

1

(
P2(σ)
P1(σ) < 1

) ∣∣∣∣∣r(σ)− P2(σ)
P1(σ)

∣∣∣∣∣P1(σ)

+
∑

σ∈S2

1

(
P2(σ)
P1(σ) < 1

) ∣∣∣∣∣r(σ)− P2(σ)
P1(σ)

∣∣∣∣∣P1(σ)

+
∑

σ∈S3

1 (r(σ) < 1)
∣∣∣∣∣P2(σ)
P1(σ) − r(σ)

∣∣∣∣∣P1(σ)

|B| ≤
∑

σ∈S1∪S2∪S3

∣∣∣∣∣r(σ)− P2(σ)
P1(σ)

∣∣∣∣∣P1(σ)

Using our assumption of the event Good and Lemma 5, |B| ≤ ∑σ∈{0,1}n γ/4·P1(σ) ≤
γ/4 Since dT V (P1, P2) − A = B, we get |dT V (P1, P2) − A| ≤ γ/4. We can now
deduce that if dT V (P1, P2) ≤ ε, then A ≤ ε + γ/4 and if dT V (P1, P2) ≥ η, then
A ≥ η − γ/4.

Proof of Theorem 5.1(A)

Proof. We assume the event Good. Let σi be the sample returned by the sam-
pler Samp in the ith iteration. If r(σi) > 1, Γ[i] takes value 0, else Γ[i] = 1 −
r(σi). Thus Γ[i] is a r.v. which takes on a value from [0, 1]. We can write Γ[i] =
1 (r(σi) < 1) (1− r(σi)) The expectation of Γ[i] is:

E[Γ[i]] =
∑

σ∈{0,1}n

1 (r(σ) < 1) (1− r(σ)) · Pr[Samp(γ/(4η − 2γ), δ/4m,φ1, w1) = σ]

(5.2)

According to definition 22, and our assumption of Faili ⊂ Good, we know that
with probability 1,Pr[Samp(γ/(4η−2γ), δ/4m,φ1, w1) = σ] ≤ (1+γ/(4η−2γ))P1(σ).
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Thus we have,

E[Γ[i]] ≤
∑

σ∈{0,1}n

1 (r(σ) < 1) (1− r(σ)) · (1 + γ/(4η − 2γ))P1(σ)

Recall that in Lemma 6, we define A = ∑
σ∈{0,1}n 1 (r(σ) < 1) (1− r(σ))P1(σ).

Therefore, we can simplify the above expression as: E[Γ[i]] = (1 + γ/(4η− 2γ)) ·A.
We can then use the assumption of ε-closeness and the result of Lemma 6-1 to find
a bound on the expectation,

E[Γ[i]] ≤ (1 + γ/(4η − 2γ)) (ε+ γ/4)

= (1 + γ/(6γ + 4ε))(ε+ γ/4)

= ε+ γ/4 + (γ/(6γ + 4ε))(ε+ γ/4)

= ε+ γ/4 + γ/4(2/(3γ + 2ε))(ε+ γ/4)

= ε+ γ/4 + γ/4(2/(3η + ε))(η/4 + 7ε/4)

= ε+ γ/4 + γ/4 · 12 ·
1 + 7ε/η
3 + ε/η

(Since η/ε < 1) < ε+ γ/2

Using the linearity of expectation we get: E
[∑

i∈[m] Γ[i]
]
< m(ε+ γ/2). Teq returns

Reject when∑i∈[m] Γ[i] > m(ε+ γ) on line 13. Since the Γ[i]’s are i.i.d random vari-
ables taking values in [0, 1], we apply the Chernoff bound to find the probability
of Accept, assuming the event Good:

Pr
[
Teq returns Accept

∣∣∣∣∣ Good
]

= 1− Pr
 ∑

i∈[m]
Γ[i] > m(ε+ γ)


≥ 1− 2e−γ2m/2 ≥ 1− δ/2

The value form is taken from line 2 of Algorithm 8. Using (5.1), we see that the
probability of Teq returning Accept is:

Pr[Teq returns Accept] ≥ Pr[Teq returns Accept | Good] Pr[Good]

= (1− δ/2)(1− δ/2) ≥ 1− δ
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Proof of Theorem 5.1(B)

Proof. First we assume the event Good. Then according to definition 22, we know
that with probability 1 (since we assume event Faili ⊂ Good)

Pr[Samp(γ/(4η − 2γ), δ/4m,φ1, w1) = σ] ≥ P1(σ)
(1 + γ/(4η − 2γ))

Thus substituting into (5.2), we get

E[Γ[i]] ≥
∑

σ∈{0,1}n

1 (r(σ) < 1) (1− r(σ)) P1(σi)
1 + γ/(4η − 2γ) (5.3)

Then we use the η-farness assumption and Lemma 6-2

E[Γ[i]] ≥ η − γ/4
1 + γ/(4η − 2γ) = η − γ/2 (5.4)

The algorithm returns Accept when∑i∈[m] Γ[i] ≤ m(ε+ γ) (on line 13). Then using
(5.4) and the linearity of expectation.

E

 ∑
i∈[m]

Γ[i]]
 ≥ m(η − γ/2)

Since the Γ[i]’s are i.i.d random variables taking values in [0, 1], we apply the
Chernoff bound to find the probability of Reject, given the assumption of the event
Good:

Pr [Teq returns Reject | Good] = 1− Pr
 ∑

i∈[m]
Γ[i] ≤ m(ε+ γ)


≥ 1− Pr

m(η − γ/2)−
∑

i∈[m]
Γ[i] ≥ m(η − γ/2− ε− γ)


≥ 1− Pr

| ∑
i∈[m]

Γ[i]−m(η − γ/2)| ≥ mγ/2


≥ 1− 2e−γ2m/2 ≥ 1− δ/2 (Substitutingm as in line 2)

Hence, the probability that Algorithm 8 returns Reject is

Pr[Teq returns Reject] ≥ Pr [Teq returns Reject | Good] Pr [Good]

= (1− δ/2)(1− δ/2) ≥ 1− δ (Using (5.1))
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The following theorem states the running time of the algorithm,

Theorem 5.2. Let γ = η − ε, then the time complexity of Teq is in

O

(
TAwct(γ, δ,max(|φ1|, |φ2|)) + TSamp(γ, δ,max(|φ1|, |φ2|))

log(δ−1)
γ2

)
(5.5)

If the underlying PCs support approximate counting and sampling in polynomial time, then
the running time of Teq is also polynomial in terms of γ, log(δ−1) andmax(|φ1|, |φ2|).

Proof. Teq makes two calls to Awct on line 4 and 5 of Algorithm 8. According to
definition 21, the runtime of theAwct(

√
1 + γ/4−1, δ/8, φ, w) query isT (

√
1 + γ/4−

1, δ/8, φ) = poly((
√

1 + γ/4− 1)−1, log(δ−1), |φ|).
Using the identity 1 + x

2 −
x2

2 ≤
√

1 + x for x ≥ 0 and the fact that γ ∈ (0, 1)
1√

1 + γ/4− 1
≤ 1
γ/8− γ2/32 <

11
γ

Hence any poly((
√

1 + γ/4− 1)−1) algorithm also runs in poly(γ−1). Thus the Awct
queries run in O(poly(γ−1, log(δ−1),max(|φ1|, |φ2|)))

Teq makes m = ⌈log(2/δ)/2γ2⌉ calls to Samp on lines 7 of Algorithm 8. Ac-
cording to definition 22, the runtime of the Samp(γ/(4η − 2γ), δ/4m,φ1, w1) query
is T (γ/(4η − 2γ), δ/4m, |φ1|) = poly((γ/(4η − 2γ))−1, log((δ/4m)−1), |φ1|). First we
see that 4η−2γ

γ
< 4

γ
, thus the algorithm remains in poly(γ−1). We then see that

log(4m/δ) = log(4m) + log(δ−1). Since log(m) ∈ poly(log(γ−1), log log(δ−1)), we
know that Samp queries run in O(poly(γ−1, log(δ−1),max(|φ1|, |φ2|))).

Since each Samp call and each Awct call requires atmost polynomial time in
terms of γ−1, log(δ−1) andmax(|φ1|, |φ2|) we know that the algorithm itself runs
in time polynomial in γ−1, log(δ−1) andmax(|φ1|, |φ2|).

Using Teq to test PCs in general. Exact weighted model counting (WMC) is a
commonly supported query on PCs. In the language of PC queries, a WMC query
is known as the marginal (MAR) query. Conditional inference (CON) is another
well studied PC query. Using CON and MAR, one can sample from the distribution
encoded by a given PC. It is known that if a PC has the structural properties of
smoothness and decomposability, then the CON and MAR queries can be computed
tractably. For definitions of the above terms and further details, please refer to the
survey [37].
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5.3 Evaluation
To evaluate the performance of Teq, we implemented a prototype in Python. The
prototype uses WAPS1 [56] as a weighted sampler to sample over the input d-
DNNF circuits. The primary objective of our experimental evaluation was to seek
an answer to the following question: Is Teq able to determine the closeness of
a pair of probabilistic circuits by returning Accept if the circuits are ε-close and
Reject if they are η-far? We test our tool Teq in the following two settings:

A. The pair of PCs represent small randomly generated circuits and weight
functions.

B. The pair of PCs are from the set of publicly available benchmarks arising
from sampling and counting tasks.

Our experiments were conducted on a high performance compute cluster with
Intel Xeon(R) E5-2690 v3@2.60GHz CPU cores. For each benchmark, we use a
single core with a timeout of 7200 seconds.

5.3.1 Setting A - Synthetic benchmarks

Dataset Our dataset for experiments conducted in setting A consisted of ran-
domly generated 3-CNFs andwith random literal weights. Our dataset consisted of
3-CNFs with {14, 15, 16, 17, 18} variables. Since the circuits are small, we validate
the results by computing the actual total variation distance using brute-force.

Results Our tests terminated with the correct result in less than 10 seconds on
all the randomly generated PCs we experimented with. We present the empirical
results in Table 5.1. The first column indicates the benchmark’s name, the second
and third indicate the parameters ε and η on which we executed Teq. The fourth
column indicates the actual dT V distance between the two benchmark PCs. The
fifth column indicates the output of Teq, and the sixth indicates the expected result.
The full detailed results are presented in the appendix Section A.3.

1https://github.com/meelgroup/WAPS
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dT V

Benchmark ≤ ϵ ≥ η Actual Result Expected Result
15_3 0.75 0.94 0.804 R A/R
14_2 0.8 0.9 0.764 A A
17_4 0.75 0.9 0.941 R R
14_1 0.9 0.99 0.740 A A
18_2 0.75 0.9 0.918 R R

Table 5.1: Runtime performance of Teq. We experiment with 375 random PCs
with known dT V , and out of the 375 benchmarks we display 5 in the table and
the rest in the appendix Section A.3. In the table ‘A’ represents Accept and ‘R’
represents Reject. In the last column ‘A/R’ represents that both Accept and Reject
are acceptable outputs for Teq.

5.3.2 Setting B - Real-world benchmarks

Dataset We conducted experiments on a range of publicly available benchmarks
arising from sampling and counting tasks2. Our dataset contained 100 d-DNNF
circuits with weights. We have assigned random weights to literals wherever
weights were not readily available. For the empirical evaluation of Teq, we needed
pairs of weighted d-DNNFs with known dT V distance. To generate such a dataset,
we first chose a circuit and a weight function, and then we synthesised newweight
functions using the technique of one variable perturbation, described in the following
section.

5.3.3 One variable perturbation

Consider two weight functions w1 and w2 that differ only in the weight assigned to
the literals v0 and v1. Then, from the definition of dT V :

dT V (P (φ, w1), P (φ, w2)) = 1
2

∑
σ∈{0,1}n

∣∣∣∣∣w1(σ)
w1(φ) −

w2(σ)
w2(φ)

∣∣∣∣∣
2https://zenodo.org/record/3793090
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Let S ⊆ {0, 1}n be the set of assignments for which w1(σ)
w1(φ) >

w2(σ)
w2(φ) . Thus,

dT V (P (φ, w1), P (φ, w2)) =
∑
σ∈S

(
w1(σ)
w1(φ) −

w2(σ)
w2(φ)

)

Lets assume wlog that w1 assigns a larger weight to v1 than w2 does. Then, S
contains all and only those assignments that have literal v1, i.e. S ≡ φ ∧ v1. Thus,

dT V (P (φ, w1), P (φ, w2)) = w1(φ ∧ v1)
w1(φ) − w2(φ ∧ v1)

w2(φ)

We can rewrite w1(φ ∧ v1) = w′
1(φ) × w1(v1), where w′

1 is w1 with the weight of v1

set to 1. Using a similar transformation on w2(φ ∧ v1) we get

dT V (P (φ, w1), P (φ, w2)) = w′
1(φ)× w1(v1)

w1(φ) − w′
2(φ)× w2(v1)

w2(φ)

We know that w′
1(φ) = w′

2(φ) as w1 and w2 differed only on the one variable v1.

dT V (P (φ, w1), P (φ, w2)) = w′
1(φ)×

(
w1(v1)
w1(φ) −

w2(v1)
w2(φ)

)

All quantities in the above expression are either known constants or they are de-
finedw.r.t the already compiled d-DNNF, thus guaranteeing that dT V (P (φ, w1), P (φ, w2))
can be computed in poly-time.

Results We set the closeness parameter ε, farness parameter η and confidence
δ for Teq to be 0.01, 0.2 and 0.01, respectively. The chosen parameters imply that
if the input pair of probabilistic circuits are ≤ 0.01 close in dT V , then Teq returns
Accept with probability atleast 0.99, otherwise if the circuits are ≥ 0.2 far in dT V ,
the algorithm returns Reject with probability at least 0.99. The number of samples
required for Teq (indicated by the variablem as on line 2 of Algorithm 8) depends
only on ε, η, δ and for the values we have chosen, we find that we requirem = 294
samples.

Our tests terminated with the correct result in less than 3600 seconds on all
the PCs we experimented with. We present the empirical results in Table 5.2. The
first column indicates the benchmark’s name, and the second and third indicate
the result and runtime of Teq when presented with a pair of ε-close PCs as input.
Similarly, the fourth and fifth columns indicate the result and observed runtime
of Teq when the input PCs are η-far. The full set of results is presented in the
appendix A.3.
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dT V ≤ ε dT V ≥ η

Benchmark Result Teq(s) Result Teq(s)
or-70-10-8-UC-10 A 23.2 R 22.82

s641_15_7 A 33.66 R 33.51
or-50-5-4 A 414.17 R 408.59

ProjectService3 A 356.15 R 356.14
s713_15_7 A 24.86 R 24.41

or-100-10-2-UC-30 A 31.04 R 31.0
s1423a_3_2 A 153.13 R 152.81
s1423a_7_4 A 104.93 R 103.51
or-50-5-10 A 283.05 R 282.97

or-60-20-6-UC-20 A 363.32 R 362.8
Table 5.2: Runtime performance of Teq. We experiment with 100 PCs with known
dT V , and out of the 100 benchmarks, we display 10 in the table and the rest in
the appendix A.3. In the table, ‘A’ represents Accept and ‘R’ represents Reject. The
value of the closeness parameter is ε = 0.01, and the farness parameter is η = 0.2.

5.4 A characterization of the complexity of testing
In this section, we characterize PCs according to the complexity of closeness
and equivalence testing. We present the characterization in Table 5.3. The results
presented in the table can be separated into (1) hardness results, and (2) upper
bounds. The hardness results, presented in Section 5.4.2, are largely derived from
known complexity-theoretic results. The upper bounds, presented in Section 5.4.1,
are derived from a combination of established results, our algorithm Teq and the
exact equivalence test of Darwiche and Huang [43](presented at the end of this
section for completeness).

5.4.1 Upper bounds

In Table 5.3 we label the pair of classes of PCs that admit a poly-time closeness
and equivalence test with green symbols C and E respectively. Darwiche and
Huang [43] provided an equivalence test for d-DNNF s. From Theorem 5.1, we
know that PCs that supports the Awct and Samp queries in poly-time must also
admit a poly-time approximate equivalence test. A weighted model counting
algorithms for d-DNNFs was first provided by Darwiche [41], and a weighted
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sampler was provided by Gupta et al. [56]. Arenas et al. [5] provided the first
approximate counting and uniform sampling algorithm for SDNNFs. Using the
following lemma, we show that with the use of chain formulas, the uniform
sampling and counting algorithms extend to log-linear SDNNF distributions as
well.

Lemma 7. Given a SDNNF formula φ (with a v-tree T)3, and a weight function w,
Samp(φ, w) requires polynomial time in the size of φ.

Proof. Here we will assume that the weights are in the dyadic form i.e. they can
be represented as the fraction d/2p for d, p ∈ Z+. Then using the weighted to un-
weighted construction from [31], the problem of approximate weighted sampling
over SDNNF can be reduced to approximate uniform sampling. Given a SDNNF
φ, and a weight function w, we generate a SDNNF φw ≡ φ ∧ ∧i∈[n](¬xi ∨ C1

i ) ∧∧
i∈[n](xi ∨ C0

i ). Here, C0
i is chain formula having exactly w(¬xi) × 2p = 2p − d

satisfying assignments, and C1
i is a chain formula with w(xi)× 2p = d satisfying

assignments.
The property of decomposability on the ∧ nodes of φ is preserved as each Ci

introduces a new set of variables disjoint from the set of variables in φ and and
also from all Cj , such that j ̸= i. The ∧ nodes in the chain formula are also trivially
decomposable and structured as each chain formula variable appears exactly once
in the formula.

If σ is an assignment to the set of variables of S and if S ′ ⊆ S, then let σ↓S′

denote the projection of σ on the variables in S ′. The weighted formula φ is defined
over variable set var(φ). The formula φw defined above has the property that if
φ(σ) = 1, then |{σ′|φw(σ′) = 1 ∧ σ′

↓var(φ) = σ}|/|Rφw | = w(σ). Thus a uniform
distribution on Rφw , when projected on var(φ) induces the weighted distribution
P (φ, w). This property allows weighted sampling and counting on φwith the help
of a uniform sampler for the generated formula φw.

3A variable-tree, or v-tree, for a set of variables V is a full, rooted binary tree whose leaves are
in one-to-one correspondence with the variables in V .
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NNF PI DNNF SDNNF d-DNNF
NNF EC
PI EC UU

DNNF EC EU EU
SDNNF EC EU EU EC
d-DNNF EC UU EU EC EC

Table 5.3: Summary of results. C (resp. E) indicates that a poly-time closeness
(resp. equivalence) test exists. C (resp. E) indicates that a poly-time closeness
(equivalence) test exists only if PH collapses. ‘U ’ indicates that the existence of a
poly-time test is not known. The table is best viewed in color.

5.4.2 Hardness

In Table 5.3, we claim that the pairs of classes of PCs labeled with symbols C
and E , cannot be tested in poly-time for closeness equivalence, respectively. Our
claim assumes that the polynomial hierarchy (PH) does not collapse. To prove the
hardness of testing the labeled pairs, we combine previously known facts about
PCs and a few new arguments. Summarizing for brevity,

• We start off by observing that PC families are in a hierarchy, with CNF ⊆
NNF and DNF ⊆ SDNNF ⊆ DNNF [44].

• We then reduce the problem of satisfiability testing of CNFs (NP-hard) and
validity testing of DNFs (co-NP-hard) into the problem of equivalence and
closeness testing of PCs, in Propositions 6, 7 and 10.

• We then connect the existence of poly-time algorithms for equivalence to the
collapse of PH via a complexity result due to Karp and Lipton [62].

The NP-hardness of deciding the equivalence of pairs of DNNFs and pairs of
SDNNFs was first shown by Pipatsrisawat and Darwiche [81]. We recast their
proofs in the language of distribution testing for the sake of completeness.

Proposition 6. If there exists a poly-time randomised algorithm for deciding the equiva-
lence of a pair of PCs with at least one PC in CNF, then NP=RP.
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Proof. For CNFs, testing satisfiability is known to be NP-hard. Consider a CNF φ
defined over variables {x1, . . . , xn} and a circuit ψ s.t. ψ ≡ ∧i∈[n+1] xi. Define

φ̂ = (¬xn+1 → φ) ∧ (xn+1 →
∧

i∈[n]
xi)

We see that the size of the new CNF is |φ̂| ∈ O(|φ| + n). φ̂ has at least one sat-
isfying assignment, specifically the assignment ∀i∈[n+1]xi = 1. We notice that
dT V (P (φ̂, w), P (ψ, w)) = 0 if and only if |Rφ| = 0. Thus the existence of a poly-
time randomised algorithm for deciding whether dT V (P (φ̂, w), P (ψ, w)) = 0 would
imply NP ⊆ RP and hence NP=RP.

Proposition 7. If there exists a poly-time randomised algorithm for deciding the closeness
of a pair of PCs with at least one PC in CNF, then NP = RP.

Proof. dT V (P (φ̂, w), P (ψ, w)) ≥ 0.5 if and only if |Rφ| > 0. Assume there exists a
poly-time randomised algorithm which returns Reject if dT V (P (φ̂, w), P (ψ, w)) ≥
0.4 and Accept if dT V (P (φ̂, w), P (ψ, w)) ≤ 0.1 with probability > 2/3. Such an
algorithm would imply BPP ⊆ NP, and hence NP=RP.

Proposition 8. If there exists a poly-time randomised algorithm for deciding the equiva-
lence of a pair of PCs with at least one PC in DNF, then co-NP = co-RP.

Proof. For DNFs, deciding validity is known to be co-NP-hard. Given DNF φ and a
circuit ψ = True, the existence of a poly-time randomised algorithm for checking
the equivalence of ψ and φwould imply that co-NP ⊆ co-RP and hence co-NP =
co-RP.

Using Corollary 6.3 from [62], we see that PH collapses due to either of the
above implications. From the set inclusions DNF⊆ SDNNF⊆DNNF and CNF⊆ NNF,
we obtain all hardness results. From the fact that d-DNNFs support weighted
counting and sampling, we have the existence results.

The following lemma supports our claim in table 5.3.

Lemma 8. Given a SDNNF formula φ (with a v-tree T)4, and a weight function w,
Samp(φ, w) requires polynomial time in the size of φ.

4A variable-tree, or v-tree, for a set of variables V is a full, rooted binary tree whose leaves are
in one-to-one correspondence with the variables in V .
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5.4.3 A Test for Equivalence

For completeness, we recast the d-DNNF circuit equivalence test of Darwiche and
Huang [43] into an equivalence test for log-linear probability distributions.

Algorithm 9 Peq(φ1, w1, φ2, w2, δ)
1: m← ⌈n/δ⌉
2: θ ∼ [m]n
3: if π(φ1, w1)(θ) = π(φ2, w2)(θ) then
4: Return Accept
5: else
6: Return Reject

The algorithm: The pseudocode for Peq is shown in Algorithm 9. Peq takes as in-
put two satisfiable circuits φ1, φ2 defined over n Boolean variables, a pair of weight
functions w1, w2 and a tolerance parameter δ ∈ (0, 1). Recall that a circuit φ and a
weight function w together define the probability distribution P (φ, w). Peq returns
Acceptwith confidence 1 if the two probability distributions P (φ1, w1) and P (φ2, w2)
are equivalent, i.e. dT V (P (φ1, w1), P (φ2, w2)) = 0. If dT V (P (φ1, w1), P (φ2, w2)) > 0,
then it returns Reject with confidence at least 1− δ.

The algorithm starts by drawing a uniform random assignment θ from [m]n,
wherem = ⌈n/δ⌉. Using the procedure given in Proposition 5.4.4 (in Section 5.4.4),
Peq computes the values π(φ1, w1)(θ) and π(φ2, w2)(θ), where π(φ, w) is the network
polynomial [42]. π(φ, w) defined as:

π(φ, w) =
∑

σ∈Rφ

w(σ)
w(φ)

 ∏
xi|=σ

xi

∏
¬xj |=σ

(1− xj)


The two values are then compared on line 3, and if they are equal the algo-
rithm returns Accept and otherwise returns Reject. The central idea of the test is
that whenever the two distributions P (φ1, w1) and P (φ2, w2) are equivalent, the
polynomials π(φ1, w1) and π(φ2, w2) are also equivalent, however when they are
not equivalent, the polynomials disagree on atleast 1− δ fraction of assignments
from the set [m]n.

We formally claim and prove the correctness of Peq in Lemma 9 in the following
section.
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5.4.4 An analysis of Peq

In this section, we present the theoretical analysis of Algorithm 9 (Peq) and the
proof of the following lemma.

Lemma 9. Given two satisfiable probabilistic circuits φ1, φ2 and weight functions w1, w2,
along with confidence parameter δ ∈ (0, 1).

A. If dT V (P (φ1, w1), P (φ2, w2)) = 0, then Peq(φ1, w1, φ2, w2, δ) returns Accept with
probability 1.

B. If dT V (P (φ1, w1), P (φ2, w2)) > 0, then Peq(φ1, w1, φ2, w2, δ) returns Reject with
probability at least (1− δ).

Peq returns Accept if π(φ1, w1)(σ) = π(φ2, w2)(σ). Since P (φ1, w1) ≡ P (φ2, w2)→
π(φ1, w1) ≡ π(φ2, w2), it follows that Peq always returns Accept for two equivalent
probabilistic distributions.

For the proof of Lemma 9(B) we will first define some notation, and then we
show (in Lemma 10) that a random assignment over [m]n is likely to be a witness
for non-equivalence with probability > 1− δ. The proof immediately follows as
we know that Peq returns Reject if π(φ1, w1)(σ) ̸= π(φ2, w2)(σ).

Definition 23. π|xi=1(φ, w) is a polynomial over n− 1 variables, obtained by setting the
variable xi to 1. Similarly π|xi=0(φ, w) is obtained by setting the variable xi to 0, thus:

π(φ, w) = (1− xi)π|xi=0(φ, w) + xiπ|xi=1(φ, w)

From the definition, we can immediately infer the following proposition.

Proposition 9. If there exists a poly-time randomised algorithm for deciding the equiva-
lence of a pair of PCs with at least one PC in DNF, then co-NP = co-RP.

If π(φ1, w1) ̸≡ π(φ2, w2) then for all xi, at least one of the following must be true:

• π|xi=1(φ1, w1) ̸= π|xi=1(φ2, w2)

• π|xi=0(φ1, w1) ̸= π|xi=0(φ2, w2)
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For the proofs in this section, we will use the following notation. For a circuit φ
defined over the variables {x1, . . . , xn}, we define a polynomial P (φ, w) : {0, 1}n →
[0, 1]:

P (φ, w) =
∑

σ∈Rφ

w(σ)
w(φ)

 ∏
xi|=σ

xi

∏
¬xj |=σ

(1− xj)


Wedefine another polynomial π(φ, w)which isP (φ, w) but defined from [m]n →
Qwhere [m] = {1 . . . ,m}.

To show that the polynomial π(φ, w) can be computed in time polynomial in
the size of the representation, we will adapt the procedure given by [43].

Proposition 10. If there exists a poly-time randomised algorithm for deciding the equiva-
lence of a pair of PCs with at least one PC in DNF, then co-NP = co-RP.

Let φ be a circuit over the set X = {x1, . . . , xn} of n variables , that admits
poly-time WMC. Let w : X → Q+ be a weight function and let θ ∈ [m]n be an
assignment to the variables in X and θ(x) be the assignment to variable x ∈ X in
θ. For each node η in the circuit, define a function S(·) recursively as follows:

• S(η) = ∑
i S(ni), where η is an or-node with children ni.

• S(η) = ∏
i S(ni), where η is an and-node with children ni.

• S(η) =



0, if η is a leaf node false
1, if η is a leaf node true
w(x)θ(x), if η is a leaf node x, x ∈ X
(1− w(x))(1− θ(x)), if η is a leaf node ¬x, x ∈ X

• π(φ, w) = S(η)/w(φ), where η is the root node

We can compute the quantity w(φ) in linear time due to our assumption of poly-
time WMC, hence we can find π(φ, w)(θ) in time linear in the size of the d-DNNF.

Lemma 10. For a random assignment σ ∼ [m]n,

Pr[π(φ1, w1)(σ) ̸= π(φ2, w2)(σ) | P (φ1, w1) ̸≡ P (φ2, w2)] > 1− δ
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Proof. For n = 1, σ is an assignment to a single variable x. The polynomial on the
single variable x can be parameterised as π(φ, w)(x) = αx+ (1− α)(1− x) where
parameter α = w(x)∑

θ∈Rφ
w(θ) . Let polynomials π(φ1, w1), π(φ2, w2) be parameterised

with α1, α2, respectively. Our assumption that P (φ1, w1) ̸≡ P (φ2, w2) immediately
leads to the fact that π(φ1, w1) ̸≡ π(φ2, w2) which in turn implies that α1 ̸= α2.

The the set of inputs x for which two non-equivalent polynomials agree is
given by,

π(φ1, w1)(x) = π(φ2, w2)(x)

α1x+ (1− α1)(1− x) = α2x+ (1− α2)(1− x)

2(α1 − α2)x = α1 − α2

x = 1/2

From the initial assumption we know that x can only take integer values, hence
there are no inputs in the set [m] for which π(φ1, w1)(σ) ̸= π(φ2, w2)(σ). Thus, for
n = 1, and any σ, Pr[π(φ1, w1)(σ) ̸= π(φ2, w2)(σ) | P (φ1, w1) ̸≡ P (φ2, w2)] = 0

We now assume that the hypothesis holds for n− 1 variables. Consider poly-
nomials π(φ1, w1) ̸≡ π(φ2, w2) over n variables. From Prop 5.4.4 we know that at
least one of the following holds:

• π|xi=1(φ1, w1) ̸= π|xi=1(φ2, w2)

• π|xi=0(φ1, w1) ̸= π|xi=0(φ2, w2)

Without any loss of generality we assume the latter. Then we know that there
exists a set Σ ⊆ [m]n−1, |Σ| ≥ (m− 1)n−1, such that

∀σ∈Σ, π|xn=0(φ1, w1)(σ) ̸= π|xn=0(φ2, w2)(σ)

The set of assignments σ for which π(φ1, w1)(σ) − π(φ2, w2)(σ) = 0 can we
rewritten as

(1− xn)π|xn=0(φ1, w1)(σ) + xnπ|xn=1(φ1, w1)(σ)

= (1− xn)π|xn=0(φ2, w2)(σ) + xnπ|xn=1(φ2, w2)(σ)
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Factoring out xn,we get the following:

xn(π|xn=1(φ1, w1)(σ)− π|xn=0(φ1, w1)(σ)− π|xn=1(φ2, w2)(σ) + π|xn=0(φ2, w2)(σ))

= π|xn=0(φ2, w2)(σ)− π|xn=0(φ1, w1)(σ)

From the assumptions we know that there are at least (m− 1)n−1 assignments σ
s.t. π|xn=0(φ2, w2)(σ)− π|xn=0(φ1, w1)(σ) ̸= 0, from which we can conclude that the
RHS is non-zero. Thus for all such σ there can be at most one value of xn for which
the equality holds, which leavesm− 1 values which xn cannot take. Thus there
are at least (m− 1)× (m− 1)n−1 = (m− 1)n assignments to n variables for which
π(φ1, w1)(σ) ̸= π(φ2, w2)(σ).

Since the total number of assignments for n variables is mn, out of which
(m − 1)n witness the non-equivalence of the two probability distributions, we
know that for a randomly chosen assignment σ ∼ [m]n, we have

Pr[π(φ1, w1)(σ) ̸= π(φ2, w2)(σ) | P (φ1, w1) ̸≡ P (φ2, w2)] ≥
(m− 1)n

mn
≥
(

1− δ

n

)n

(usingm from Algorithm 9) > 1− δ
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Chapter 6

PolynomialQueryDistance Estimation
In this chapter, we are interested in the computation of (ε, δ)-approximation of
dT V (P ,Q): i.e., we would like to compute an estimate est such that

Pr[dT V (P ,Q)− ε ≤ est ≤ dT V (P ,Q) + ε] ≥ 1− δ

TV distance is a fundamental notion in probability and finds applications in the
diverse domains of computer science such as generative models [55, 57], MCMC
algorithms [4, 14, 17], and probabilistic programming [2, 83].

Theoretical investigations into the problem of TV distance computation have
revealed the intractability of exact computation: In particular, the problem is #P-
hard even when P and Q are represented as product distributions [10]. As a
consequence, the focus has been on designing approximation techniques. When
P and Q are specified explicitly, randomised polynomial time approximation
schemes are known for some classes of distributions, such as Bayesian networks
with bounded treewidth [11]. Not every practical application allows explicit rep-
resentation of probability distributions, and often, the output of some underlying
process defines probability distributions. Accordingly, the field of distribution
testing is concerned with the design of algorithmic techniques for different models
of access to the underlying processes. Furthermore, in addition to the classical
notion of time complexity, we are also concerned with the query complexity: how
many queries do we make to a given access model?

The earliest investigations focused on the classical model of access where
one is only allowed to access samples from P and Q [78, 93]; however, a lower
bound of Ω(2n/n) [91, 93] restricts the applicability of these estimators in practical
scenarios. This motivates the need to focus on more powerful models. In this
work, we will focus on the SUBCOND access model owing to its ability to capture
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the behavior of probabilistic processes in diverse settings [60, 33, 97]. Formally,
the SUBCOND oracle for a distribution P takes in a query string ρ ∈ {0, 1, ∗}n,
constructs the conditioning set Sρ = {σ ∈ {0, 1}n|(ρi = ∗) ∨ (ρi = σi)} and returns
σ ∈ Sρ with probability P(σ)∑

π∈Sρ
P(π) . It is worth remarking that while we use the

name SUBCOND to be consistent with recent literature [12], there have been
algorithmic frameworks since the late 1980s that have relied on the underlying
query model [60].

The starting point of our investigation is the observation that, on the one hand,
practical applications of distance estimation rely on heuristic methods and hence
don’t provide any guarantees. On the other hand, no known algorithm, even
when given access to the SUBCOND oracle, makes less than O(2n/n) queries. The
primary aim of our ongoing work is to address the mentioned gap: we want to
design the first algorithm that computes (ε, δ)-approximation of TV distance and
makes only polynomially many queries to SUBCOND oracle.Formally,

Given two distributions P andQ over {0, 1}n, along with parameters ε ∈ (0, 1),
and δ ∈ (0, 1), the algorithm DistEstimate(P ,Q, ε, δ) returns estimate κ such that

Pr[κ ∈ (dT V (P ,Q)± ε)] ≥ 1− δ

DistEstimate makes Õ (n3 log(1/δ)/ε4) queries to the SUBCOND oracle.
We now provide a high-level overview of DistEstimate: From the fact that,

dT V (P ,Q) = E
σ∼Q

[
max

(
1− P(σ)
Q(σ) , 0

)]

we can use the standard approach of sampling σ from Q, estimating P(σ) and
Q(σ) up to some multiplicative factor, and then setting the value of the random
variable to be max(1−P(σ)/Q(σ), 0). This approach requires a constant number
of samples from Q to compute an approximation of dT V (P ,Q). The main issue is
that it is not possible to approximate the value of Q(σ) for arbitrary σ with only
polynomially many queries to SUBCOND since Q(σ) can be arbitrarily small and
the query complexity scales inversely with Q(σ). The key technical contribution
lies in showing that using polynomially many SUBCOND oracle calls, we can
still compute estimates for P(σ) and Q(σ) at sufficiently many points to find a
theoretically guaranteed estimate.
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Weare interested in designing distance estimation techniques for the SUBCOND
model because it effectively captures the behavior of probabilistic processes in
practice. Towards this goal, we compute the precise number of queries one would
need to the test, and we find that DistEstimate offers a 107 factor speedup on prob-
lems of dimensionality n = 70, for which the baseline sample-based estimator
would require ≃ 1018 queries – a prohibitively large number. The result is pre-
sented in the Figure 6.1. Therefore, we demonstrate the application of DistEstimate
in a real-world setting. Sampling from discrete domains such as {0, 1}n under
combinatorial constraints is a challenging problem; therefore, several heuristic-
based samplers have been proposed over the years. We can view a sampler as a
probabilistic process, and consequently, one is interested in measuring how far
the distribution of a given sampler is from the ideal distribution. Our experiments
focus on combinatorial samplers, and SUBCOND is particularly well suited for
this problem. We use a prototype of DistEstimate to evaluate the quality of two
samplers for different benchmarks. Our empirical evaluation demonstrates the
promise of scalability: in particular, DistEstimate offers a 107 factor speedup on
problems of dimensionality n = 70.

Organization In Section 6.1 we define the notation we use in most of the chap-
ter, and we discuss some relevant background material. Then we present the
chapter’s main contribution, the estimator DistEstimate, along with its proof of
correctness in Section 6.2. In Section 6.3, we present the result of the evaluation of
our implementation of DistEstimate.

6.1 Notations and Preliminaries
We will focus on probability distributions over {0, 1}n. For any distribution D on
{0, 1}n and an element σ ∈ {0, 1}n, D(σ) is the probability of σ in distribution
D. Further, σ ∼ D represents that σ is sampled from D. The total variation (TV)
distance of two probability distributions P and Q is defined as: dT V (P ,Q) =
1
2
∑

σ∈{0,1}n |P(σ)−Q(σ)|. For a random variable v, the expectation is denoted as
E[v], and the variance as V[v].

For clarity of exposition, we will hide the use of the ceiling operator ⌈x⌉ wher-
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Figure 6.1: A plot comparing the sample/query complexity of the baseline non-
conditional estimator vs. our estimator DistEstimate as a function of the number
of dimensions n, for ε = 0.3. Note that the vertical axis is in the log scale.

ever integral values are required, such as the number of samples or the number of
iterations of a loop. We use [n] to represent the set {1, 2 . . . , n}.

Consider a discrete r.v. that takes the value v with probability p. The count
of trials required to observe k instances of v follows a negative binomial distribu-
tion, denoted as NB(k, p). The expected value E[NB(k, p)] is k/p, and its variance
V[NB(k, p)] is k(1−p)/p2. We alsomake use of the following tail bound for negative
binomials:

Proposition 11 ([18]). For γ > 1, Pr[NB(k, p) > γE[NB(k, p)]] ≤ exp
(
−γk(1−1/γ)2

2

)
If σ is a string of length n > 0, then σi denotes the ith element of σ, and for

1 ≤ j ≤ n, σ<i denotes the substring of σ from 1 to i− 1, σ<i = σ1 · · ·σi−1; similarly
σ≤i = σ1 · · ·σi, and σ<1 denotes the empty (length 0) string, also denoted as ⊥.

For any distribution D and string ρ, such that 0 ≤ |ρ| < n, the distribution Dρ

denotes the marginal distribution of D in the |ρ|+ 1th dimension, conditioned on
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the string ρ, i.e.,

Dρ(b) = Prσ∼D[(σ|ρ|+1 = b) ∧ (σ≤|ρ| = ρ)]
Prσ∼D[σ≤|ρ| = ρ]

Definition 24. A sampling oracle SAMP(D) takes in a distribution D, and returns a
sample σ ∈ {0, 1}n such that Pr [SAMP(D) = σ] = D(σ).

Definition 25. A subcube conditioning oracle SUBCOND(D, ρ) takes in a distribution
D, and a query string ρ with 0 ≤ |ρ| < n, and returns a sample σ ∈ {0, 1}n such that
Pr [SUBCOND(D, ρ) = σ] = 1(σ≤|ρ|=ρ)

∏n
i=|ρ|+1Dσ<i

(σi).

Definition 26. A conditional marginal oracle CM(D, ρ) takes in a distribution D, and a
query string ρwith 0 ≤ |ρ| < n, and returns a sample b ∈ {0, 1} such thatPr [CM(D, ρ) = b] =
Dρ(b).

Note that the chain rule implies that SUBCOND(D,⊥) is the same as SAMP(D).

6.1.1 Distance Approximation

We adapt the distance approximation algorithm of Bhattacharyya et al. [9], that
takes as input two distributions P and Q, and provides an (η, δ) estimate of
dT V (P ,Q). Recall that we had adapted the estimation algorithm in Theorem 5.1,
however we state and prove it again here, as we require different constants and
terminology here.

Lemma 6.1. (Theorem 3.1 in [9]) For distributions P and Q over {0, 1}n, and σ ∈
{0, 1}n, let pσ and qσ be functions such that pσ ∈ (1± η)P(σ), and qσ ∈ (1± η)Q(σ).
Given a set of samples S from Q, and η ∈ (0, 1) along with the pσ and qσ for each σ ∈ S,
let est = 1

|S|
∑

i∈S 1qσ>pσ

(
1− pσ

qσ

)
.

Pr
[
est ̸∈

(
dT V (P ,Q)± 3η

1− η

)]
≤ 2 exp

−2|S|
(

η

1− η

)2


Proof. Recall that pσ ∈ (1± η)P(σ) and qσ ∈ (1± η)Q(σ) then, using the definition
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of dT V (P ,Q),

dT V (P ,Q) =
∑

σ∈{0,1}n

1Q(σ)>P(σ)

(
1− P(σ)
Q(σ)

)
Q(σ)

=
∑

σ∈{0,1}n

1qσ>pσ

(
1− pσ

qσ

)
Q(σ) (6.1)

+
∑

σ∈{0,1}n

(
1Q(σ)>P(σ)

(
1− P(σ)
Q(σ)

)
Q(σ)− 1qσ>pσ

(
1− pσ

qσ

)
Q(σ)

)
︸ ︷︷ ︸

A

The first summand of (6.1) can be written as Eσ∼Q
[
1qσ>pσ

(
1− pσ

qσ

)]
.

To bound |A|, we will split the domain into three sets, B1 = {x : 1Q(σ)>P(σ) =
1qσ>pσ}, B2 = {x : 1Q(σ)>P(σ) > 1qσ>pσ} and B3 = {x : 1Q(σ)>P(σ) < 1qσ>pσ}.

|A| =

∣∣∣∣∣∣
∑

σ∈{0,1}n

(
1Q(σ)>P(σ)

(
1− P(σ)
Q(σ)

)
Q(σ)− 1qσ>pσ

(
1− pσ

qσ

)
Q(σ)

)∣∣∣∣∣∣
≤

∑
σ∈{0,1}n

∣∣∣∣∣
(
1Q(σ)>P(σ)

(
1− P(σ)
Q(σ)

)
Q(σ)− 1qσ>pσ

(
1− pσ

qσ

)
Q(σ)

)∣∣∣∣∣
=

∑
σ∈B1

1Q(σ)>P(σ)

∣∣∣∣∣P(σ)
Q(σ) −

pσ

qσ

∣∣∣∣∣Q(σ) +
∑

σ∈B2

1Q(σ)>P(σ)

(
1− P(σ)
Q(σ)

)
Q(σ)

+
∑

σ∈B3

1qσ>pσ

(
1− pσ

qσ

)
Q(σ)

For σ ∈ B1,
∣∣∣P(σ)

Q(σ) −
pσ

qσ

∣∣∣ ≤ 2η
1−η

P(σ)
Q(σ) ≤

2η
1−η

. For σ ∈ B2, 1 − P(σ)
Q(σ) ≤ 1 − 1−η

1+η
=

2η
1+η

, and for σ ∈ B3, 1 − P(σ)
Q(σ) ≤ 1 − 1−η

1+η
= 2η

1+η
. Thus, |A| ≤ ∑

σ∈B1
2η

1−η
Q(σ) +∑

σ∈B2
2η

1+η
Q(σ) + ∑

σ∈B3
2η

1+η
Q(σ) ≤ 2η

1+η
. Plugging the bounds on |A| back into

(6.1), we get ∣∣∣∣∣dT V (P ,Q)− E
[
1qσ>pσ

(
1− pσ

qσ

)]∣∣∣∣∣ ≤ 2η
1− η (6.2)

Hence, E
[
1qσ>pσ

(
1− pσ

qσ

)]
− 2η

1−η
≤ dT V (P ,Q) ≤ E

[
1qσ>pσ

(
1− pσ

qσ

)]
+ 2η

1−η
. The

distance estimation algorithm draws |S| samples to estimate E
[
1qσ>pσ

(
1− pσ

qσ

)]
.

We will use est to denote the empirical estimate of E
[
1qσ>pσ

(
1− pσ

qσ

)]
. Since each

sample σ is drawn independently, and 1qσ>pσ

(
1− pσ

qσ

)
is bounded in [0, 1], we can

use the Hoeffding bound as follows,

Pr
[∣∣∣∣∣est− E

[
1qσ>pσ

(
1− pσ

qσ

)]∣∣∣∣∣ ≥ η

1− η

]
≤ 1− 2 exp

−2|S|
(

η

1− η

)2
 (6.3)
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Plugging (6.2) into (6.3), we complete the proof:

Pr
[
|est− dT V (P ,Q)| ≥ 3η

1− η

]
= Pr

[
dT V (P ,Q) ̸∈

(
est± 3η

1− η

)]

≤ 2 exp
−2|S|

(
η

1− η

)2


6.1.2 Taming Distributions

Given a distribution D, we will define and construct a new distribution D′ that
has desirable properties critical for DistEstimate.

Definition 27. A distribution D′ is θ-tamed, if

∀σ ∈ {0, 1}n,∀, ℓ ∈ [n] D′
σ<ℓ

(σℓ) ∈ [θ, 1− θ]

Definition 28. For a given distribution D, and parameter θ ∈ [0, 1/n), distribution D′

is the θ-tamed sibling of D, if D′ is θ-tamed and dT V (D,D′) ≤ θn.

Henceforth, we will use D′ as shorthand to refer to the θ-tamed sibling of D
and omit mentioning θ whenever θ is evident from the context. We will now show
in the following lemma that given SUBCOND query access to distribution D,CM,
and SAMP access to D′ can be simulated efficiently.

Lemma 6.2. Given a distribution D and parameter θ ∈ [0, 1/n), every CM query to D′

can be simulated by making one SUBCOND query to D, and every SAMPquery to D′ can
be simulated by making n SUBCOND queries to D.

Proof. Our proof adapts the θ-balancing trick, devised for product distributions
in Canonne et al. [25, Thm. 6]. To simulate the CM(D′, σ<ℓ) query using SUBCOND
access toD, we use the following process: alli ≥ ℓ, given the substring σ<i, set σi =
0with probability (1−2θ)Dσ<i

(0)+θ and σi = 1with probability (1−2θ)Dσ<i
(1)+θ.

To implement the above, with probability 1− 2θ, draw ρ ∼ SUBCOND(D, σ<i) and
return ρi, else with probability 2θ draw a sample uniformly from {0, 1}.

Observe that allℓ ∈ [n], c ∈ {0, 1}, and ρ ∈ {0, 1}ℓ−1, we have D′
ρ(c) = (1 −

2θ)Dρ(c)+θ. Since θ ≤ D′
ρ(c) ≤ 1−θ, we see thatD′ is indeed θ-tamed. To simulate

SAMP(D′), we use the chain rule.
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Now we will show that D′ is close to D.

Claim 1. For distribution D and its θ-tamed sibling D′, we have dT V (D,D′) ≤ θn

Proof. Recall the definition of subcube Sρ = {w ∈ {0, 1}n : w≤|ρ| = ρ}. For any
set S ⊆ {0, 1}n, D(S) is the total probability of S in D. For any distribution D,
string ρ (with 1 ≤ |ρ| ≤ n) and ω ∈ {0, 1}n−|ρ|, the distribution Dρ denotes the
marginal distribution of SUBCOND(D, ρ) in the remaining dimensions, i.e. for any
ω ∈ {0, 1}n−|ρ|, Dρ(ω) = Prw∼SUBCOND(D,ρ)[w = ρω].

Consider the induction hypothesis that dT V (D,D′) ≤ θi if D is supported on
{0, 1}i. To verify the hypothesis for i = 1, wlog assume that D(0) ≤ D(1), then
dT V (D,D′) = D(1)−D′(1) = 2θD(1)− θ ≤ θ. Assume the hypothesis holds for all
i ∈ [n− 1]. Now, we show the hypothesis is true for i = n.

Consider a distribution D over {0, 1}n and its θ-tamed sibling D′, then:

dT V (D,D′) = 1
2

∑
σ∈{0,1}n

|D(σ)−D′(σ)| = 1
2

∑
ρ∈{0,1}

∑
ω∈{0,1}n−1

|D(ρω)−D′(ρω)|

= 1
2

∑
ρ∈{0,1}

∑
ω∈{0,1}n−1

|D(Sρ)Dρ(ω)−D′(Sρ)D′ρ(ω)|

= 1
2

∑
ρ∈{0,1}

∑
ω∈{0,1}n−1

|D(Sρ)Dρ(ω)−D(Sρ)D′ρ(ω) +D(Sρ)D′ρ(ω)−D′(Sρ)D′ρ(ω)|

≤ 1
2

∑
ρ∈{0,1}

∑
ω∈{0,1}n−1

|D(Sρ)Dρ(ω)−D(Sρ)D′ρ(ω)|+ |D(Sρ)D′ρ(ω)−D′(Sρ)D′ρ(ω)|

= 1
2

∑
ρ∈{0,1}

∑
ω∈{0,1}n−1

D(Sρ)|Dρ(ω)−D′ρ(ω)|+D′
ρ(ω)|D′(Sρ)−D(Sρ)|

= 1
2

∑
ρ∈{0,1}

(D(Sρ)2dT V (Dρ,D′ρ)) + 1
2

∑
ρ∈{0,1}

|D′(Sρ)−D(Sρ)|

≤
∑

ρ∈{0,1}
(D(Sρ)θ(n− 1)) + θ = θn

We use |a+ b| ≤ |a|+ |b| in the first inequality. In the second, we use the induction
hypothesis to bound the first summand, and for the second, we observe that for
c ∈ {0, 1}, |D′(c)−D(c)| ≤ θ.
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6.1.3 Related Work

Distance estimation is one of the many problems in the broader area of distribution
testing. Apart from estimation, there is extensive literature on the problems of
identity and equivalence testing. The problem of identity testing involves return-
ing Accept if dT V (P ,P∗) = 0 and returning Reject if dT V (P ,P∗) > ε, where P is
an unknown distribution and P∗ is known, i.e. you have a full description of P∗.
Equivalence testing is the generalization of identity testing. It is the problem of
deciding between dT V (P ,Q) = 0 and dT V (P ,Q) > ε where both P and Q are
unknown. It is worth emphasizing that for both identity and equivalence test-
ing problems, any answer from the tester (Accept or Reject) is considered valid if
0 < dT V (P ,Q) ≤ ε. Provided only sample access, the sample complexity of identity
testing is Θ

(
2n/2/ε2

)
[78, 94] and of equivalence testing is max(22n/3ε−4/3, 2n/2ε−2)

Chan et al. [32], Valiant and Valiant [94]. While testing is of theoretical interest, its
practical application faces significant limitations primarily because testers must
accept only when two given distributions are identical. In real-world scenarios,
distributions are rarely identical but often exhibit close similarity. Consequently,
a simplistic tester that consistently returns Reject can meet the specifications. A
more rigorous definition of a tester is required to address this limitation, including
estimating the distance between the two distributions. Unfortunately, this intro-
duces a considerable challenge. [93] demonstrate that in the classical sampling
model, the necessary number of queries increases to 2n/n, a significant jump from
the previous 22n/3.

To sidestep the exponential lower bounds on testing, the conditional sampling
model, or COND, was introduced independently by Chakraborty et al. [27] and
Canonne et al. [23], and has been successfully applied to various problems, in-
cluding identity and equivalence testing. In this model, the sample complexity
of identity testing is Θ(ε−2) (independent of n), while for equivalence testing the
best-known upper and lower bounds are O((log n)/ε5) [51], and Ω(

√
log n) [1]

respectively. A survey by Canonne [21] provides a detailed view of testing and
related problems in various sampling models.

Our work investigates the distance estimation problem using the SUBCOND
model, a restriction ofCOND. UnlikeCOND, which allows conditioning on arbitrary
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sets, the SUBCONDmodel allows conditioning only on sets that are subcubes of the
domain. While COND significantly improves the sample complexity, it is not easily
implementable in practice, as arbitrary subsets are not efficiently represented and
sampled from. With a view towards plausible conditional models, Canonne et al.
[23], Bhattacharyya and Chakraborty [12] came up with the SUBCOND model,
which is particularly suited to the Boolean hypercube {0, 1}n. Canonne et al. [24]
used the SUBCOND model to construct a nearly-optimal Θ(

√
n) uniformity testing

algorithm for {0, 1}n, demonstrating its natural applicability for high-dimensional
distributions. Then Chen et al. [36] used SUBCOND to study the problems of
learning and testing junta distributions supported on {0, 1}n. Bhattacharyya and
Chakraborty [12] developed a test for equivalence in the SUBCOND model, with
query complexity of O(n2/ε2). However, before this work, there was no distance
estimation algorithm in the SUBCOND oraclemodel, and indeed even in the general
COND model.

6.1.4 Lower Bound

Canonne et al. [25] show an Ω(n/ log(n)) lower bound for the problem.

Theorem 6.1 (Theorem 11 in [25]). An absolute constant ε0 < 1 exists, such that the
following holds. Any algorithm that, given a parameter ε ∈ (0, ε0], and sample access
to product distributions P ,Q over {0, 1}n, distinguishes between dT V (P ,Q) < ε and
dT V (P ,Q) > 2ε, with probability at least 2/3, requires Ω(n/ log(n)) samples. Moreover,
the lower bound still holds in the case where Q is known, and provided as an explicit
parameter.

The lower bound is shown for the case where the tester has access to samples
from a product distribution P andQ (over {0, 1}n). As observed by Bhattacharyya
and Chakraborty [12], SUBCOND access is no stronger than SAMP when it comes
to product distributions. Thus we get the relevant lower bound:

Corollary 2. Let S(ε1, ε2,P ,Q) be any algorithm that has SUBCOND access to dis-
tribution P , and explicit knowledge of Q (defined over {0, 1}n), and distinguishes be-
tween dT V (P ,Q) ≤ ε1 and dT V (P ,Q) > ε2 with probability > 2/3. Then, S makes
Ω(n/ log(n)) SUBCOND queries.

94



6.2 DistEstimate: a Distance Estimation Algorithm
We now present the pseudocode of our algorithm DistEstimate, and the SubToEval
and SubVsSub subroutines. The following subsection will provide a high-level
overview of all our algorithms and formal analysis.

Algorithm 10 DistEstimate(P ,Q, ε, δ)
1: for j = 1 to 4.5 log(2/δ) do
2: rj ← SubVsSub(P ,Q, ε)
3: κ← Medianj(rj)
4: return κ

Algorithm 11 SubVsSub(P ,Q, ε)
1: η ← ε/(ε+ 4)
2: mout ← log(24)

2

(
1−η

η

)2

3: min ← 32 log(48mout)
4: est← 0
5: for all i = 1 tomout do
6: σ ← SAMP(Q′)
7: for all j = 1 tomin do
8: pj ← SubToEval(P ′, σ, η)
9: qj ← SubToEval(Q′, σ, η)

10: p̂← Medianj(pj)
11: q̂ ← Medianj(qj)
12: if q̂ > p̂ then
13: est← est + 1− p̂/q̂
14: return est/mout

6.2.1 High-Level Overview

In Section 6.2.1.1, we introduce the main ideas of our algorithms, DistEstimate and
SubVsSub. Then, in Section 6.2.1.2, we explain the key concepts of the SubToEval
subroutine.

6.2.1.1 Outline of the DistEstimate and SubVsSub routines

The pseudocode of DistEstimate and SubVsSub is given in Alg. 10 and 11 respec-
tively. DistEstimate takes as input two distributions P and Q defined over the
support {0, 1}n, along with the parameter ε for tolerance and the parameter δ for
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Algorithm 12 SubToEval(D′, σ, η)
1: t← 0
2: k ← 4nη−2(1 + η2)
3: for all i = 1 to n do
4: xi ← 0
5: f ← 0
6: while f < k do
7: α← CM(D′, σ<i)
8: xi ← xi + 1
9: t← t+ 1
10: if t = 64n3η−2(1 + η)2ε−1 then
11: return 0

f ← f + 1(α = σi)
12: d← ∏n

i=1 k/xi

13: return d

confidence, and returns an ε-additive estimate of dT V (P ,Q) with probability at
least 1− δ.

The SubVsSub subroutine call returns an estimate rj of dT V (P ,Q) such that
Pr[rj ∈ (dT V (P ,Q) ± ε)] ≥ 2/3, and DistEstimate makes 48 log(1/δ) calls to boost
the overall probability to 1− δ, using the Chernoff bound on the median of the
estimates.

SubVsSub takes as input the distributions P and Q, and creates their ε/8n-
tamed siblings P ′ and Q′ that are ε/8 close to P and Q in TV distance, and have
the property that all of their marginal probabilities are lower bounded by Ω(ε/8n).
The bounded marginal property of P ′ and Q′ is crucial for the polynomial query
complexity of SubVsSub. The construction ofP ′ andQ′, and the claimed guarantees,
are discussed in Section 6.1.2. SubVsSub then computes the constants η,mout, and
min (the counts of iterations of the outer and inner loop).

SubVsSub then draws mout samples σ ∼ Q′, and for each sample σ, calls
SubToEvalmin times to find the (1±η) estimates ofQ′(σ) and P ′(σ). The SubToEval
subroutine puts an upper limit on the number of CM oracle calls, and the limit is
set high enough to ensure that the estimates, p̂ and q̂, are correct with the required
confidence. SubVsSub then computes the distance using these estimates as given
in Lemma 6.1.
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6.2.1.2 Outline of the SubToEval subroutine

The SubToEval subroutine takes as input an element σ ∈ {0, 1}n, a distribution D
over {0, 1}n, and a parameter η. SubToEval outputs an η-multiplicative estimate of
D(σ). The probability D(σ) can be expressed as a product of marginals, D(σ) =∏n

i=1Dσ<i
(σi), by applying the chain rule. Essentially, the subroutine approximates

each marginal Dσ<i
(σi) by k/xi for each i ∈ [n], using the CM oracle. The product∏n

i=1 k/xi is then employed as the final estimate for D(σ).
In this context, the variable xi represents the total count of CM(D, σ<i) queries

executed until k occurrences of σi are observed.Given thatDρ(b) = Prw∼CM(D,ρ)[w =
b] for any ρ (as discussed in Section 6.1), the ratio k/xi is an intuitive choice as an
estimator for Dσ<i

(σi). Moreover, to ensure the subroutine terminates, a total num-
ber of calls to the CM oracle are monitored, and if they ever exceed the threshold
64n3η−2(1 + η)2ε−1, the subroutine terminates and returns 0.

Wenowdiscuss our technical contribution - showing the correctness of SubToEval
when the threshold is set to O(n3) (for this discussion, we will set aside the depen-
dency on η). To estimate D(σ), it is essential to estimate each of the nmarginals,
Dσ<i

(σi), to within an error margin of approximately 1 + 1/n. This would require
at least n2/Dσ<i

(σi) queries for each marginal. Consequently, the total query com-
plexity would sum up to ∑n

i=1 n
2/Dσ<i

(σi). This quantity is at least Ω(n2), but it
could potentially be unbounded asDσ<i

(σi) can take arbitrarily small values. In the
forthcoming section, we reduce this complexity to O(n3) through a more nuanced
analysis.

6.2.2 Theoretical Analysis

In this section, wewill prove ourmain Theorem 6. The proof of Theorem 6 relies on
Lemma 6.3, which claims the correctness of the SubToEval subroutine and upper
bound its query complexity. We will prove the lemma later.

Lemma 6.3. SubToEval(D′, σ, η) takes as input distributionD′, σ ∈ {0, 1}n, η ∈ (0, 1/5)
and returns d, then

Pr[d ∈ (1± η)D′(σ)] ≥ 5/8

SubToEval makes O(n3/η2) CM queries to D′.
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Given two distributions P andQ over {0, 1}n, along with parameters ε ∈ (0, 1),
and δ ∈ (0, 1), the algorithm DistEstimate(P ,Q, ε, δ) returns estimate κ such that

Pr[κ ∈ (dT V (P ,Q)± ε)] ≥ 1− δ

DistEstimate makes Õ (n3 log(1/δ)/ε4) queries to the SUBCOND oracle.

Proof. We will first show that the algorithm SubVsSub(P ,Q, ε) returns est such
that

Pr[est ∈ (dT V (P ,Q)± ε)] ≥ 5/6

Since DistEstimate returns the median of the independent estimates provided
by SubVsSub, then applying the Chernoff bound,we havePr[κ ∈ (dT V (P ,Q)±ε)] ≥
1− δ.

We will now consider the events that could lead to an incorrect estimate. Re-
calling that P ′ and Q′ are ε/8n-tamed siblings of P and Q we define Badp̂

i and
Badq̂

i to be the events that in the ith iteration of SubVsSub, p̂ ̸∈ (1 ± η)P ′(σ), and
q̂ ̸∈ (1± η)Q′(σ), respectively. We bound the probability of Badp̂

i and Badq̂
i in the

following claim.

Claim 2.
Pr[Badp̂

i ] ≤ 1/24mout and Pr[Badq̂
i ] ≤ 1/24mout

Proof. For a fixed iteration j, applying Lemma 6.3 we have Pr[pj ∈ (1± η)P ′(σ)] ≥
5/8. Since p̂ is the median of independent observations pj ∈ [0, 1], over j ∈ [min],
we can use the Chernoff bound to derive the claimed bound, Pr[Badp̂

i ] ≤ 1/24mout.
The proof for the claim Pr[Badq̂

i ] ≤ 1/24mout proceedes identically.

Now we define Bad = ⋃
i∈[mout](Badp̂

i ∪ Badq̂
i ), i.e., Bad captures the event that at

least one of the estimates is incorrect. Then from Claim 2 and the union bound,

Pr[Bad] = Pr
 ⋃

i∈[mout]
(Badp̂

i ∪ Badq̂
i )


≤
∑

i∈[mout]
(Pr[Badp̂

i ] + Pr[Badq̂
i ]) ≤ mout

( 1
24mout

+ 1
24mout

)
≤ 1

12

Now, let’s assume the event Bad. We have a set ofmout samples from Q′, and
for each sample σ we have p̂ and q̂ such that p̂ ∈ (1± η)P ′(σ) and q̂ ∈ (1± η)Q′(σ).
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This fulfills the condition of Lemma 6.1, and hence substituting |S| = mout (Line 2
of Alg.11) we have,

Pr
[
est ̸∈

(
dT V (P ′,Q′)± 3η

1− η

)
∩ Bad

]

≤ 2 exp
−2mout

(
η

1− η

)2
 ≤ 2 exp (− log(24)) = 1

12

Substituting η = ε
ε+4 from Alg.11, we have,

Pr
[
est ̸∈

(
dT V (P ′,Q′)± 3ε

4

)
∩ Bad

]
≤ 1

12

Then,

Pr
[
est ̸∈

(
dT V (P ′,Q′)± 3ε

4

)]
≤ Pr

[
est ̸∈

(
dT V (P ′,Q′)± 3ε

4

)
∩ Bad

]
+ Pr[Bad]

≤ 1/12 + 1/12 = 1/6

Since P ′ andQ′ are ε/8n-tamed siblings of P andQ, from Lemma 6.2 we know
that dT V (P ′,P) ≤ ε/8 and dT V (Q′,Q) ≤ ε/8. Then, from the triangle inequality,
we have the bounds on dT V (P ,Q):

dT V (P ′,Q′) ∈ dT V (P ,Q)± (dT V (P ′,P) + dT V (Q′,Q))

∈ dT V (P ,Q)± ε/4

Combining the two, we get that Pr[est ̸∈ (dT V (P ,Q)± ε)] ≤ 1/6, and hence
we have our claim.

Now, we will complete the proof by showing an upper bound on the query
complexity. The total number of CM queries made by SubToEval(D′, σ, η) in a sin-
gle invocation is 64n3η−2(1 + η)2ε−1 = O(n3ε−3). Then SubVsSub(P ,Q, ε) makes
minmout = O(ε−2 log(ε−1)) many calls to SubToEval. Finally, DistEstimate calls
SubVsSub 48 log(1/δ) many times. Thus the total number of queries to the CM
oracle made by DistEstimate is O (n3 log(1/δ) log(ε−1)/ε5).

Proof of Lemma 6.3. Consider the subroutine SubToEval1(D′, σ, η) (Alg. 13), that is
the same as SubToEval(D′, σ, η) (Alg. 12) except in one critical aspect: the termi-
nation condition on Line 10 of SubToEval has been removed. This implies that
while SubToEval(D′, σ, η) terminates if the number of calls to the CMoracle exceeds

99



the threshold 64n3η−2(1 + η)2ε−1, SubToEval1(D′, σ, η) does not enforce this restric-
tion, thereby allowing an unlimited number of calls to the CMoracle. Note that
we use variable names d1 and t1 in SubToEval’ to distinguish them from d of t of
SubToEval. This modification is critical for our analysis as it leads to the variable
xi in SubToEval1(D′, σ, η) following the negative binomial distribution.

Algorithm 13 SubToEval1(D′, σ, η)
1: t1 ← 0
2: k ← 4nη−2(1 + η2)
3: for all i = 1 to n do
4: xi ← 0
5: f ← 0
6: while f < k do
7: α← CM(D′, σ<i)
8: xi ← xi + 1
9: t1 ← t1 + 1
10: f ← f + 1(α = σi)
11: d1 ←

∏n
i=1 k/xi

12: return d1

Remark 3. Henceforth we will use t1 and xi to denote the final values of t1 and xi,
as on Line 11.

We will now show that the SubToEval1(D′, σ, η) correctly estimates D′(σ) with
highprobability (Lemma6.4) and thenwe show that itmakes fewer than 64n3η−2(1+
η)2ε−1 calls to CM oracle with high probability (Lemma 6.5). These results will
help us establish analogous results for the subroutine SubToEval(D, σ, η) and in
validating our Lemma 6.3.

Observation 1. Comparing SubToEval and SubToEval1, we observe that SubToEval
returns an incorrect estimate d in two cases. Either SubToEval returns incorrect d1, or
else SubToEval1 makes more than 64n3η−2(1 + η)2ε−1 queries. Stated formally,

Pr[d ̸∈ (1± η)D′(σ)] ≤ Pr [d1 ̸∈ (1± η)D′(σ)] + Pr
[
t1 ≥ 64n3η−2(1 + η)2ε−1

]
Our proof will use the following propositions and lemmas

Proposition 12. For i ∈ [n], the value of xi (in Alg. 13) is distributed as NB(k,Dσ<i
(σi))

Proof. Fix any i ∈ [n]. In Alg. 13, the r.v α takes the value σi with probability
Dσ<i

(σi). Note that while the value of xi increments by one in every iteration of the
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loop (lines 6-11), while the value of f increases by one only when α = σi. Since
the loop runs until the value of f is k, the distribution of xi is NB(k,Dσ<i

(σi)).

Lemma 6.4. Pr[d1 ∈ (1± η)D′(σ)] ≥ 2/3.

Proof. We use a variance reduction technique introduced by Dyer and Frieze
[48]. xi on Line 11 is distributed according to NB(k,D′

σ<i
(σi)), so we have E[xi] =

k/D′
σ<i

(σi), and hence, k/E[xi] = D′
σ<i

(σi). Now since d1 = ∏n
j=1 k/xi, we have

E[1/d1] = E[∏n
i=1 xi/k] = ∏n

i=1 1/D′
σ<i

(σi).

V[1/d1]
E[1/d1]2

= E[1/d2
1]

E[1/d1]2
− 1

=
n∏

i=1

E[(xi/k)2]
E[xi/k]2 − 1

=
n∏

j=1

(
1 + V[xi/k]

E[xi/k]2

)
− 1

Using the fact that xi is negative binomial, we substitute V[xi/k] and E[xi/k]2,

V[1/d1]
E[1/d1]2

=
n∏

j=1

1 +
(1−D′

σ<i
)/kD′2

σ<i

(1/D′
σ<i

)2

− 1

=
n∏

j=1

(
1 + 1−D′

σ<i
(σi)

k

)
− 1

≤
n∏

j=1

(
1 + 1

k

)
− 1

Substituting the value of k from the algorithm, we have

V[1/d1]
E[1/d1]2

≤
(

1 + η2

4n(1 + η)2

)n

− 1

≤ exp
(
η2

4

)
− 1

≤ η2

3(1 + η)2 (6.4)

The last inequality comes from the fact that for r ∈ (0, 1), s > 1, exp
(

r
s+1

)
≤ 1 + r

s
.

Recall that from the chain rule we have D′(σ) = ∏n
j=1D′

σ<i
(σi), then E[1/d1] =

101



1/D′(σ).

Pr[d1 ∈ (1± η)D′(σ)] = Pr
[

1
d1
∈
[

1
1 + η

,
1

1− η

]
1
D′(σ)

]

= Pr
[

1
d1
− E

[ 1
d1

]
∈
[
− η

1 + η
,

η

1− η

]
E
[ 1
d1

]]

≥ Pr
[∣∣∣∣E [ 1

d1

]
− 1
d1

∣∣∣∣ ≤ η

1 + η
E
[ 1
d1

]]

≥ 1− (1 + η)2

η2

V
[

1
d1

]
E
[

1
d1

]2
≥ 1− 1

3 = 2
3 (6.5)

Weuse theChebyshev bound to get the second to last inequality and then substitute
(6.4).

Note that in every iteration, t1 gets incremented by the value of xi. In the
following lemma, we claim that t1, the number of queries made by SubToEval1,
exceeds the threshold on Line 10 of SubToEval with low probability.

Lemma 6.5.
Pr[t1 ≥ 64n3η−2(1 + η)2ε−1] ≤ 1/24

Proof. The number of CMcalls made by SubToEval1 in the ith iteration is captured
by xi. Recall from Prop 12 that xi is drawn from NB(k,D′

σ<i
(σi)), and therefore we

have,

E[xi] = k/D′
σ<i

(σi) = 4nη−2(1 + η)2/D′
σ<i

(σi) (Using k from Line 2 of SubToEval1)

From the fact that the distribution is ε/8n-tamed, we know that D′
σ<i

(σi) ≥
ε/8n. Hence we have E[xi] ≤ 32n2η−2(1 + η)2ε−1. Since t1 = ∑

i∈[n] xi, we have that
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E[t1] = E[∑i∈[n] xi] = nE[xi] ≤ 32n3η−2(1 + η)2ε−1. Thus,

Pr[t1 ≥ 64n3η−2(1 + η)2ε−1] = Pr [t1 ≥ 2E[t1]]

≤ Pr
∑

i∈[n]
xi ≥ 2E

∑
i∈[n]

xi


≤
∑
i∈[n]

Pr [xi ≥ 2E[xi]]

(Prop. 11) ≤
∑
i∈[n]

exp(−2k(1− 1/2)2/2)

= n exp(−k/4)

(Substituting k and η ≤ 1/5, ε < 1) ≤ n exp(−nη−2(1 + η)2ε−1)

≤ n exp(−9n) ≤ 1/24

In the last inequality we used the fact that for s > 0, xe−sx ≤ 1/es.

Putting together lemmas 6.4 and 6.5 along with the observation 1 , we complete
the proof:

Pr[d ̸∈ (1± η)D′(σ)] ≤ Pr [d1 ̸∈ (1± η)D′(σ)] + Pr
[
t1 ≥ 64n3η−2(1 + η)2ε−1

]
≤ 1

3 + 1
24 = 3

8

6.2.3 The Discrete Hypergrid Σn

This section extends our results beyond the hypercube {0, 1}n to the hypergrid Σn,
where Σ is any discrete set. This line of investigation is motivated by the fact that
in modern ML, distributions models are frequently described over hypergrids.
For instance, language models are defined to be distributions over Σn where Σ
is the set of tokens, and n the length of the generated string. Furthermore, the
SUBCOND oracle is particularly suitable for use in ML applications as it models
autoregressive generation.

The SUBCOND oracle for D supported on Σn, takes a query string ρ ∈ {Σ∪∗}n

and draws samples from the set of strings that match all the non-∗ characters
of ρ. As noted in [35], algorithms for {0, 1}n do not immediately translate into
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algorithms for Σn, because the SUBCOND oracle does not work with the natural
reduction of replacing elements c ∈ Σ with their binary encoding. Nevertheless,
SubVsSub can be extended to distributions over Σn, incurring a linear dependence
on |Σ|.

We will now restate our result adapted to the new setting: Given two distribu-
tionsP andQ over Σn, along with parameters ε ∈ (0, 1), δ ∈ (0, 1/2), the algorithm
DistEstimate(P ,Q, ε, δ), and with probability at least 1− δ returns κ, s.t.

Pr[κ ∈ (dT V (P ,Q)± ε)] ≥ 1− δ

DistEstimate(P ,Q, ε, δ) makes Õ (n3|Σ| log(1/δ)/ε5) SUBCOND queries.
The only change required in DistEstimate to make it work for distributions over

theΣn is in the construction of the tamed siblingsP ′, andQ′. We update the taming
parameter from ε/8n to ε/8n|Σ|. Since the query complexity is proportional to 1/θ,
we observe a linear dependence on |Σ|.

6.3 Experiments
We implemented DistEstimate in Python. We focus on distributions generated by
state-of-the-art combinatorial samplers STS[49] and CMSGen[53]. Our assessment
included two datasets: (1) scalable comprising random Boolean functions over n
variables, with n ranging from 30 to 70, and (2) real-world, containing instances
from the ISCAS89 dataset, a standard in combinatorial testing and sampling eval-
uations [69]. To determine the ground truth TV distance for the above instances,
we implement a learning-based distance estimator [22].

For our experiments, we set the tolerance ε = 0.3 and confidence δ = 0.4 as the
default throughout the evaluation. These parameters indicate that the estimate
returned by DistEstimateis expected to be within ±0.3 of the ground truth, with a
probability of at least 0.6.

The experiments were conducted on a cluster with AMD EPYC 7713 CPU cores.
We use 32 cores with 4GB of memory for each benchmark and a 24-hour timeout
per instance.

Our aim was to answer the question: To what extent does DistEstimate scale,
i.e., how many dimensions can the estimator handle while providing guarantees?
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Table 6.1: The sample complexity and runtime performance of DistEstimate on
real-world instances.
Benchmark Dimensions STS CMSGen

# of samples time (in s) # of samples time (in s)
s1196a_3_2 33 1.8e+09 4.1e+05 1.9e+09 5.3e+05
53.sk_4_32 33 1.7e+09 2.5e+05 1.9e+09 1.6e+06
27.sk_3_32 33 1.7e+09 1.9e+05 1.9e+09 1.0e+06
s1196a_7_4 33 1.8e+09 4.6e+05 1.9e+09 5.5e+05
s420_15_7 35 2.1e+09 4.2e+05 2.3e+09 4.0e+05
111.sk_2_36 37 2.2e+09 3.5e+05 8.3e+08 6.6e+05

We found that DistEstimate scales to n = 70 dimensional problems, a regime
where the baseline sample-based estimators would require 107×more samples.
The estimates are empirically confirmed to be of high quality when compared
against the ground truth, falling within the allowed tolerance bound in all cases
where we could determine the ground truth.

Table 6.1 details the performance of DistEstimate on 6 real-world benchmarks.
The algorithm successfully finished on all benchmarks with dimensionality up to
n = 37. The table specifies the benchmark name, dimensionality, sample count,
and processing time for both STS and CMSGen.

The sample complexity of DistEstimate relative to a baseline sample-based
estimator is illustrated in Figure 6.1. For this, we use scalable benchmarks. Re-
markably, for the largest instance handled (n = 70 dimensions), DistEstimate
outperformed the baseline by a factor greater than 107.
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Appendix A

Extended table of results

A.1 From Chapter 3

A.1.1 Comparing sample complexity.

“A”(“R”) representBarbarik2 returningAccept(Reject). “DNS” is used against those
instances on which the indicated sampler Did Not Sample. “-” indicates that
Barbarik2 timed out on that particular instance on the indicated sampler. Note that
“DNS” is different from“-” as “DNS” indicates the failure of the underlying sampler
to sample the initial set of samples, while “-” indicates the failure of Barbarik2 to
finish within the timeout period. The timeout was set to 50,000 seconds for wSTS
and wQuicksampler, while for wUnigen it was 24 hours.

Table A.1: The Extended Table

Barbarik2

Benchmark tilt
(maxSamp)

wUnigen
(samples)

wSTS
(samples)

wQuicksampler
(samples)

107.sk_3_90 1
(2e+05) DNS R

(5146)
R

(6009)

tableBasedAddition.sk 1
(2e+05) DNS R

(6009)
R

(24534)

55.sk_3_46 1
(2e+05) DNS R

(8911)
R

(4354)

111.sk_2_36 1
(2e+05) DNS R

(23543)
R

(5150)
continued . . .
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Barbarik2

Benchmark tilt
(maxSamp)

wUnigen
(samples)

wSTS
(samples)

wQuicksampler
(samples)

17.sk_3_45 1
(2e+05) DNS R

(1e+05)
R

(4677)

80.sk_2_48 1
(2e+05) DNS R

(4284)
R

(4627)

27.sk_3_32 1
(2e+05)

A
(1e+05)

R
(25329)

R
(6009)

70.sk_3_40 1
(2e+05) DNS R

(10402)
R

(17704)

32.sk_4_38 1
(2e+05)

A
(1e+05)

R
(18081)

R
(14682)

84.sk_4_77 1
(2e+05) DNS R

(5146)
R

(4354)

53.sk_4_32 1
(2e+05)

A
(1e+05)

R
(35618)

R
(6009)

s35932_3_2 3
(6e+05) DNS TO R

(11756)

s35932_7_4 3
(6e+05) DNS TO R

(11756)

s832a_3_2 3
(6e+05)

A
(1e+05)

R
(8708)

R
(54138)

109.sk_4_36 8
(3e+06) DNS R

(26218)
R

(6009)

77.sk_3_44 11
(5e+06) DNS R

(47582)
R

(47907)

s35932_15_7 12
(6e+06) DNS TO R

(4354)

s832a_7_4 15
(8e+06)

A
(1e+05)

R
(4393)

R
(13350)

51.sk_4_38 18
(1e+07)

A
(78661)

R
(4284)

R
(4627)

29.sk_3_45 26
(2e+07) DNS R

(4284)
R

(55989)

81.sk_5_51 27
(3e+07) DNS R

(28409)
A

(2e+05)
continued . . .
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Barbarik2

Benchmark tilt
(maxSamp)

wUnigen
(samples)

wSTS
(samples)

wQuicksampler
(samples)

s349_3_2 28
(3e+07)

A
(1e+05)

A
(1e+05)

R
(22854)

s298_3_2 32
(3e+07)

A
(1e+05)

R
(80883)

R
(26491)

s820a_3_2 37
(5e+07)

A
(96212)

R
(87997)

A
(2e+05)

s298_15_7 44
(6e+07)

A
(1e+05)

R
(42520)

R
(53107)

63.sk_3_64 58
(1e+08) DNS R

(4393)
R

(4677)

s820a_15_7 79
(2e+08)

A
(84310)

R
(2e+05)

R
(16714)

s1488_15_7 110
(4e+08)

A
(86152)

R
(17168)

R
(7341)

s1488_3_2 132
(6e+08)

A
(89686)

A
(89236)

R
(7341)

s382_15_7 138
(6e+08)

A
(92159)

R
(2e+05)

R
(6009)

UserServiceImpl.sk_8_32 140
(6e+08)

A
(1e+05)

R
(1e+05)

R
(4393)

20.sk_1_51 144
(7e+08) DNS R

(30895)
R

(5146)

s820a_7_4 167
(9e+08)

A
(95566)

A
(1e+05)

R
(6009)

s832a_15_7 194
(1e+09)

A
(96984)

R
(9434)

R
(13350)

s1488_7_4 206
(1e+09)

A
(1e+05)

R
(4677)

R
(4627)

s344_15_7 218
(2e+09)

A
(90183)

R
(94481)

R
(4354)

LoginService2.sk_23_36 232
(2e+09)

A
(1e+05)

R
(38044)

R
(13350)

s420_new1_15_7 265
(2e+09) DNS R

(19224)
A

(3e+05)
continued . . .
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Barbarik2

Benchmark tilt
(maxSamp)

wUnigen
(samples)

wSTS
(samples)

wQuicksampler
(samples)

s349_15_7 412
(5e+09)

A
(99215)

R
(28400)

R
(14682)

s444_15_7 501
(8e+09)

A
(1e+05)

A
(1e+05)

R
(26627)

s349_7_4 603
(1e+10)

A
(75555)

R
(4284)

R
(5150)

s444_7_4 644
(1e+10) DNS R

(4393)
R

(4354)

s420_new1_7_4 982
(3e+10)

A
(1e+05)

R
(4354)

R
(18473)

s298_7_4 986
(3e+10)

A
(83681)

R
(8638)

R
(6009)

s420_new1_3_2 1226
(5e+10) DNS A

(1e+05)
R

(5150)

s382_7_4 1283
(5e+10)

A
(92307)

R
(26491)

R
(7341)

s420_3_2 1552
(8e+10)

A
(1e+05)

R
(14756)

R
(48983)

s1238a_7_4 1856
(1e+11)

A
(95095)

R
(5150)

R
(7341)

s1238a_3_2 1965
(1e+11)

A
(1e+05)

R
(28848)

R
(4627)

s444_3_2 2028
(1e+11)

A
(1e+05)

R
(2e+05)

R
(9500)

s1238a_15_7 2317
(2e+11) DNS R

(9020)
R

(88233)

s420_new_15_7 2317
(2e+11)

A
(99198)

R
(1e+05)

R
(4393)

30.sk_5_76 2453
(2e+11) DNS R

(5216)
R

(4677)

s344_7_4 2607
(2e+11)

A
(1e+05)

R
(14170)

R
(16818)

s344_3_2 3300
(3e+11)

A
(1e+05)

R
(59952)

R
(5150)

continued . . .

119



Barbarik2

Benchmark tilt
(maxSamp)

wUnigen
(samples)

wSTS
(samples)

wQuicksampler
(samples)

s420_new_7_4 3549
(4e+11)

A
(82312)

A
(96659)

R
(49955)

s953a_7_4 8984
(3e+12) DNS A

(2e+05)
R

(4627)

s953a_15_7 10596
(4e+12) DNS R

(11734)
R

(59735)

10.sk_1_46 15268
(7e+12) DNS R

(35179)
R

(1e+05)

s420_new_3_2 17449
(1e+13)

A
(1e+05)

R
(44937)

R
(5150)

19.sk_3_48 18253
(1e+13) DNS R

(59014)
R

(4627)

s953a_3_2 20860
(1e+13) DNS R

(51161)
R

(1e+05)

s641_3_2 1e+06
(5e+16) DNS R

(14454)
R

(4627)

ProjectService3.sk_12_55 5e+06
(7e+17) DNS R

(9020)
R

(4393)

71.sk_3_65 1e+07
(3e+18) DNS R

(1e+05)
R

(4284)

s838_7_4 1e+07
(5e+18) DNS R

(4393)
R

(4284)

s838_15_7 3e+07
(3e+19) DNS R

(5150)
R

(4393)

s713_3_2 6e+07
(1e+20) DNS R

(56386)
R

(5827)

s713_7_4 6e+07
(1e+20) DNS R

(5827)
R

(37419)

s641_7_4 9e+07
(3e+20) DNS R

(8747)
A

(1e+06)

s838_3_2 2e+08
(1e+21) DNS R

(9504)
R

(4627)

54.sk_12_97 4e+11
(6e+27) DNS R

(14012)
R

(4627)
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A.1.2 Comparing the runtime performance

In each of the following tables we compare the runtime of Barbarik2 against the
runtime of the baseline approach. The runtime of Barbarik2 on Reject instances
depends on which iteration the tester terminated on. The runtime of the baseline
is extrapolated from the expected number of samples and the average sampling
rate of the sampler. To do this we use the ℓ1-testing algorithm given in [7]. In
the current context, the algorithm assumes black box sample access to a uniform
sampler over the models of a Boolean formula φ, and the sampler under test, and
requires O(#φ2/3(η − ε)−8/3 log(#φ/δ)) samples, where #φ is the model count,
(ε, η) are the closeness and farness parameters, and δ is the confidence parameter.

A.1.2.1 For wSTS

Benchmark Baseline Barbarik2(s) Speedup
s349_7_4 16457 5 3428.58
s420_new1_7_4 5.4E+6 6 8.6E+5
s298_7_4 705 8 94.02
s444_7_4 1.1E+7 8 1.3E+6
s832a_7_4 3725 10 372.53
s1488_7_4 184 12 15.16
s344_7_4 24751 15 1683.77
s420_3_2 2.2E+6 17 1.3E+5
s1238a_7_4 1.4E+6 20 66538.64
s832a_3_2 2149 22 98.60
s832a_15_7 15121 24 622.29
s838_15_7 2.9E+13 27 1.1E+12
s349_15_7 16457 28 587.76
s838_7_4 3.7E+13 29 1.3E+12
s382_7_4 14915 32 469.03
s298_15_7 384 32 12.09
s420_new1_15_7 4.1E+6 33 1.3E+5
27.sk_3_32 79531 34 2346.06
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Benchmark Baseline Barbarik2(s) Speedup
s1238a_15_7 1.8E+6 37 49906.05
111.sk_2_36 2.9E+8 42 6.8E+6
51.sk_4_38 2.0E+6 44 45904.52
80.sk_2_48 6.0E+7 46 1.3E+6
s1488_15_7 128 48 2.67
s953a_15_7 1.1E+9 49 2.2E+7
s344_3_2 15750 51 309.45
s298_3_2 229 52 4.42
s838_3_2 2.7E+13 57 4.8E+11
s420_new_3_2 2.9E+6 65 44288.35
84.sk_4_77 3.4E+13 68 5.0E+11
s641_3_2 4.1E+10 70 5.9E+8
55.sk_3_46 2.0E+7 70 2.9E+5
s349_3_2 30563 73 416.96
107.sk_3_90 1.7E+15 86 1.9E+13
s1238a_3_2 2.2E+6 87 25824.41
s344_15_7 24751 91 271.10
32.sk_4_38 5.8E+5 94 6228.23
10.sk_1_46 6.5E+7 112 5.8E+5
29.sk_3_45 2.2E+8 150 1.5E+6
s420_new_7_4 4.1E+6 152 27272.30
s1488_3_2 52 163 0.32
s953a_3_2 6.4E+8 165 3.9E+6
s420_new_15_7 4.5E+6 186 24014.34
70.sk_3_40 2.9E+6 201 14544.89
s444_15_7 13470 202 66.82
s420_new1_3_2 2.6E+6 211 12084.36
s820a_3_2 2189 221 9.91
s444_3_2 11186 247 45.22
s713_3_2 8.8E+10 255 3.5E+8
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Benchmark Baseline Barbarik2(s) Speedup
109.sk_4_36 6.6E+5 269 2459.36
s820a_7_4 4240 277 15.33
63.sk_3_64 5.8E+11 282 2.1E+9
s641_7_4 8.2E+10 311 2.6E+8
53.sk_4_32 55060 313 176.08
s382_15_7 33182 343 96.86
s820a_15_7 4154 370 11.23
ProjectService3.sk_12_55 1.3E+10 458 2.9E+7
s35932_3_2 3.6E+2 TO -
s35932_7_4 3.6E+2 TO -
s35932_15_7 3.6E+2 TO -
s953a_7_4 5.7E+8 689 8.3E+5
UserServiceImpl.sk_8_32 479 720 0.67
30.sk_5_76 7.0E+14 1116 6.2E+11
77.sk_3_44 5.3E+6 1687 3156.66
tableBasedAddition.sk_240 3.8E+14 1832 2.1E+11
81.sk_5_51 5.0E+9 2099 2.4E+6
LoginService2.sk_23_36 12951 2368 5.47
20.sk_1_51 1.1E+10 2568 4.1E+6
19.sk_3_48 3.1E+8 2760 1.1E+5
17.sk_3_45 4.5E+7 3016 14948.13
71.sk_3_65 4.7E+12 4365 1.1E+9
54.sk_12_97 2.7E+18 4688 5.8E+14
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A.1.2.2 For wQuicksampler

Benchmark Baseline Barbarik2(s) Speedup
s344_3_2 24751.45 3 8534.98
s344_15_7 24751.45 4 7071.84
s349_7_4 28212.36 4 7624.96
s298_7_4 512.82 4 119.26
s420_new1_3_2 5.1E+6 4 1.2E+6
s420_new_3_2 2.2E+6 4 5.1E+5
s420_new_15_7 3.5E+6 4 7.8E+5
s382_7_4 12429.39 5 2589.46
s444_7_4 51980.83 5 10192.32
s820a_7_4 2283.19 5 430.79
s1488_7_4 128.07 6 20.99
s444_3_2 8700.57 6 1359.46
s838_7_4 1.3E+13 7 1.8E+12
27.sk_3_32 48942.42 7 6797.56
s1238a_3_2 1.6E+6 7 2.2E+5
s953a_7_4 6.6E+8 8 8.8E+7
s1488_3_2 65.65 8 8.31
s838_3_2 1.9E+13 8 2.4E+12
s1488_15_7 60.56 9 6.80
s349_15_7 35265.44 9 3833.20
s344_7_4 22501.32 9 2393.76
s349_3_2 14106.18 10 1424.87
55.sk_3_46 4.5E+7 10 4.3E+6
s1238a_7_4 1.1E+6 11 97431.59
s298_3_2 534.49 11 46.89
s832a_7_4 4139.28 12 344.94
111.sk_2_36 5.2E+5 12 41613.34
s838_15_7 2.6E+13 12 2.1E+12
s420_new1_7_4 2.2E+6 13 1.7E+5
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Benchmark Baseline Barbarik2(s) Speedup
s832a_15_7 13861.52 14 1011.79
UserServiceImpl.sk_8_32 326.81 14 23.68
s382_15_7 27149.56 15 1859.56
53.sk_4_32 91767.04 16 5595.55
s820a_15_7 5665.59 17 335.24
84.sk_4_77 2.1E+13 18 1.2E+12
51.sk_4_38 1.8E+6 19 91363.08
s444_15_7 14817.06 19 763.77
109.sk_4_36 6.6E+5 20 33425.00
107.sk_3_90 1.6E+15 21 7.4E+13
71.sk_3_65 1.3E+12 27 5.0E+10
s641_3_2 2.8E+10 28 1.0E+9
s298_15_7 1153.85 30 38.98
32.sk_4_38 1.2E+6 34 36689.91
s420_3_2 4.5E+6 34 1.3E+5
s420_new_7_4 3.5E+6 36 96896.05
80.sk_2_48 2.1E+8 37 5.7E+6
s832a_3_2 2149.58 45 47.66
19.sk_3_48 4.5E+8 50 9.0E+6
63.sk_3_64 2.1E+11 51 4.0E+9
17.sk_3_45 8.3E+7 55 1.5E+6
s713_3_2 9.4E+10 56 1.7E+9
s953a_15_7 6.7E+8 79 8.5E+6
20.sk_1_51 4.0E+9 82 4.8E+7
70.sk_3_40 4.3E+6 101 42475.10
s1238a_15_7 1.0E+6 107 9614.31
10.sk_1_46 7.1E+7 128 5.5E+5
s953a_3_2 3.4E+8 132 2.6E+6
s820a_3_2 1167.90 137 8.54
30.sk_5_76 3.0E+14 210 1.4E+12
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Benchmark Baseline Barbarik2(s) Speedup
ProjectService3.sk_12_55 6.4E+9 219 2.9E+7
LoginService2.sk_23_36 12692.30 229 55.52
s420_new1_15_7 3.2E+6 232 13726.91
77.sk_3_44 1.2E+7 409 30125.88
29.sk_3_45 1.3E+8 658 2.0E+5
54.sk_12_97 4.0E+17 690 5.8E+14
s641_7_4 6.8E+10 1117 6.1E+7
s35932_15_7 1.4E+356 1182 1.2E+353
tableBasedAddition.sk_240 3.0E+13 1430 2.1E+10
s35932_7_4 1.2E+356 2227 5.5E+352
s35932_3_2 1.1E+356 2346 4.5E+352
81.sk_5_51 2.0E+9 2461 8.3E+5
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A.1.2.3 For wUnigen

Benchmark Baseline Barbarik2(s) Speedup
s1488_3_2 229.78 6648 0.03
s298_7_4 7564.11 10758 0.70
s1488_15_7 643.45 11493 0.06
s298_15_7 2948.72 12325 0.24
s349_7_4 1.8E+06 12858 136.40
s820a_15_7 48724.11 14070 3.46
s344_15_7 3.8E+05 14074 27.18
s1488_7_4 853.78 15049 0.06
s820a_7_4 42728.33 16124 2.65
s349_15_7 3.9E+05 17690 21.80
s382_7_4 9.7E+05 21785 44.45
s349_3_2 3.0E+05 22395 13.54
s832a_15_7 5.6E+05 23036 24.45
s420_new_7_4 4.0E+09 24092 1.7E+5
s344_7_4 1.7E+06 26423 64.55
51.sk_4_38 2.7E+09 26612 1.0E+5
s820a_3_2 2.3E+05 27408 8.47
s298_3_2 2061.62 30262 0.07
s344_3_2 5.0E+05 32378 15.29
s1238a_7_4 1.5E+09 33689 45408.69
s832a_7_4 76990.55 34315 2.24
s382_15_7 1.0E+07 39024 263.98
s1238a_3_2 7.1E+08 40406 17575.38
s420_new_15_7 4.9E+09 40725 1.2E+5
27.sk_3_32 7.4E+06 41997 176.26
s832a_3_2 74844.43 42696 1.75
UserServiceImpl.sk_8_32 21547.88 45090 0.48
32.sk_4_38 4.9E+08 45126 10872.88
s420_new1_7_4 2.8E+08 48911 5639.38
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Benchmark Baseline Barbarik2(s) Speedup
s444_3_2 1.9E+06 55017 34.61
LoginService2.sk_23_36 1.3E+06 56229 22.38
s420_3_2 2.3E+09 68048 33247.50
53.sk_4_32 2.2E+07 70590 312.87
s420_new_3_2 1.2E+10 75284 1.6E+5

A.2 From Chapter 4

A.2.1 Comparing Barbarik2 and Barbarik3

Performance of Barbarik3. We experiment with 87 benchmarks, and out of the 87
benchmarks. In the table ‘TO’ represents that either the tester timed out or asked
for more than 108 samples. The value of the parameter for closeness is ε = 0.05,
for farness is η = 0.9 and for confidence is δ = 0.2. Here R denotes Reject, and A
denotes Accept.

Barbarik2 Barbarik3

Benchmark Dimensions Result # of samples Time(in s) Result # of samples Time(in s)

SetTest 21 R 2817 170 R 58000 2290
s27_15_7 7 R 4789 0.99 R 30000 6.14
s27_7_4 7 R 4789 1.06 R 30000 6.43

polynomial.sk 25 R 4789 8.41 R 66000 95.0
Pollard.sk_1_10 10 R 7606 168 R 36000 525

s298_3_2 17 R 57431 50.75 R 50000 61.53
s27_3_2 7 R 62220 10.75 R 30000 6.49

s27_new_15_7 7 R 128264 19.04 R 30000 11.79
s526a_3_2 24 R 848148 1373 R 64000 191
s444_3_2 24 R 848148 1161 R 64000 142
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s27_new_3_2 7 R 905579 138 R 30000 7.16
s510_15_7 25 R 12708989 18844 R 66000 206
s1488_15_7 14 R 12708989 38070 R 44000 198
s298_7_4 17 R 12708989 10186 R 50000 63.58

s27_new_7_4 7 A 23997012 3558 R 30000 7.24
s298_15_7 17 R 38126967 36140 R 50000 72.77
s349_7_4 24 TO - 0.28 R 64000 130

110.sk_3_88 88 TO - 2.98 R 190000 5082
s344_3_2 24 TO - 0.33 R 64000 127
s526_3_2 24 TO - 0.38 R 64000 169
53.sk_4_32 32 TO - 0.32 R 80000 224
s420_7_4 34 TO - 0.31 R 83000 297
10.sk_1_46 46 TO - 0.4 R 107000 521
17.sk_3_45 45 TO - 0.9 R 105000 801
s349_15_7 24 TO - 0.51 R 64000 161
s820a_7_4 23 TO - 0.28 R 62000 221
s832a_15_7 23 TO - 0.43 R 62000 281
80.sk_2_48 48 TO - 0.58 R 111000 656
s344_15_7 24 TO - 0.87 R 64000 145
81.sk_5_51 51 TO - 6.71 R 117000 13505
s420_3_2 34 TO - 0.25 R 83000 275

s420_new1_15_7 34 TO - 0.39 R 83000 335
UserService 32 TO - 0.7 R 80000 706
111.sk_2_36 36 TO - 0.33 R 87000 257
s349_3_2 24 TO - 0.3 R 64000 120
s953a_7_4 45 TO - 0.71 R 105000 783
s444_7_4 24 TO - 1.9 R 64000 153
77.sk_3_44 44 TO - 0.82 R 103000 862
51.sk_4_38 38 TO - 1.04 R 91000 1689
109.sk_4_36 36 TO - 0.69 R 87000 843
s832a_7_4 23 TO - 0.3 R 62000 237
s526a_15_7 24 TO - 86.82 R 64000 291
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s420_new_7_4 34 TO - 0.27 R 83000 276
s382_3_2 24 TO - 0.24 R 64000 142
s641_3_2 54 TO - 19.96 R 123000 951

s420_new_3_2 34 TO - 0.26 R 83000 286
LoginService2 36 TO - 18.86 R 87000 6639
s832a_3_2 23 TO - 0.34 R 62000 233

s420_new_15_7 34 TO - 0.29 R 83000 324
s420_new1_3_2 34 TO - 0.26 R 83000 277

s838_3_2 66 TO - 0.7 R 147000 1640
70.sk_3_40 40 TO - 0.4 R 95000 450
s820a_15_7 23 TO - 0.39 R 62000 216
29.sk_3_45 45 TO - 3.29 R 105000 6514
19.sk_3_48 48 TO - 3.51 R 111000 2259
57.sk_4_64 64 TO - 0.98 R 143000 1501
s444_15_7 24 TO - 0.48 R 64000 169
s1238a_3_2 32 TO - 0.92 R 80000 493
s526_7_4 24 TO - 46.45 R 64000 216
s382_7_4 24 TO - 0.31 R 64000 138
s1238a_7_4 32 TO - 1.1 R 80000 537
7.sk_4_50 50 TO - 0.68 R 115000 834
55.sk_3_46 46 TO - 0.44 R 107000 512
s713_7_4 54 TO - 198 R 123000 1288

s420_new1_7_4 34 TO - 0.35 R 83000 290
s641_7_4 54 TO - 240 R 123000 1300

s1196a_15_7 32 TO - 2.29 R 80000 613
ProjectService3 55 TO - 184 R 125000 5557
s1196a_3_2 32 TO - 0.91 R 80000 490
s1238a_15_7 32 TO - 2.39 R 80000 664
s526_15_7 24 TO - 122 R 64000 318
s820a_3_2 23 TO - 0.32 R 62000 188
27.sk_3_32 32 TO - 0.24 R 80000 196
s510_3_2 25 TO - 0.28 R 66000 176
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s1196a_7_4 32 TO - 1.15 R 80000 546
s344_7_4 24 TO - 0.32 R 64000 130
s713_3_2 54 TO - 44.5 R 123000 1027
s953a_3_2 45 TO - 0.65 R 105000 731
s526a_7_4 24 TO - 44.16 R 64000 224
s420_15_7 34 TO - 0.39 R 83000 346
s953a_15_7 45 TO - 0.95 R 105000 912
s838_7_4 66 TO - 0.81 R 147000 1552
56.sk_6_38 38 TO - 0.52 R 91000 526
32.sk_4_38 38 TO - 0.35 R 91000 358
s382_15_7 24 TO - 8.83 R 64000 190
s1488_3_2 14 TO - 0.42 R 44000 154
63.sk_3_64 64 TO - 3.33 R 143000 9191

A.3 From Chapter 5
The timeout for all our experiments was set to 7200 seconds.

A.3.1 Synthetic PCs

In the following table, the first column indicates the benchmark, the second and
the third indicate the closeness parameter ε and η used in the test. The fourth
column indicates actual dT V distance between the two benchmark PCs . The fifth
column indicates the test outcome and the sixth represents the expected outcome.
‘A’ represents Accept and ‘R’ represents Reject and ‘A/R’ represents that both ‘A’
and ‘R’ are acceptable outputs.

Table A.6: Extended Table of Results

Benchmark ε η Actual dT V Result Expected
Result

14_4 0.9 0.99 0.773 A A

17_2 0.75 0.99 0.998 R R
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14_2 0.9 0.99 0.764 A A

18_3 0.75 0.96 0.930 R A/R

17_4 0.75 0.99 0.941 R A/R

18_3 0.8 0.99 0.930 R A/R

17_1 0.8 0.96 0.874 R A/R

17_0 0.85 0.94 0.968 A A/R

14_2 0.85 0.94 0.764 A A

14_4 0.85 0.94 0.773 A A

15_4 0.9 0.94 0.941 R R

16_2 0.9 0.99 0.987 A A/R

14_0 0.75 0.96 0.771 A A/R

16_3 0.8 0.9 0.879 A A/R

17_2 0.75 0.96 0.998 R R

15_0 0.8 0.9 0.984 R R

18_0 0.75 0.94 0.994 R R

17_4 0.75 0.96 0.941 R A/R

18_4 0.75 0.99 0.907 R A/R

18_2 0.75 0.99 0.918 R A/R

14_1 0.75 0.99 0.740 A A

16_1 0.85 0.9 0.918 R R

17_0 0.85 0.96 0.968 A A/R

15_4 0.85 0.94 0.941 R R

17_0 0.8 0.94 0.968 A A/R

17_0 0.85 0.99 0.968 A A/R

14_0 0.9 0.94 0.771 A A
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16_4 0.75 0.96 0.833 A A/R

15_1 0.85 0.96 0.927 R A/R

14_4 0.9 0.96 0.773 A A

14_3 0.8 0.96 0.852 A A/R

14_2 0.9 0.96 0.764 A A

16_4 0.75 0.9 0.833 A A/R

17_3 0.9 0.94 0.914 A A/R

15_1 0.85 0.9 0.927 R R

16_4 0.9 0.96 0.833 A A

14_3 0.8 0.94 0.852 A A/R

16_1 0.8 0.99 0.918 R A/R

16_2 0.85 0.96 0.987 A A/R

15_3 0.75 0.99 0.804 R A/R

14_3 0.75 0.94 0.852 A A/R

16_4 0.85 0.96 0.833 A A

18_0 0.8 0.9 0.994 R R

18_4 0.8 0.94 0.907 R A/R

18_4 0.85 0.99 0.907 A A/R

18_0 0.9 0.99 0.994 R R

15_1 0.9 0.99 0.927 R A/R

14_3 0.85 0.96 0.852 A A/R

16_2 0.75 0.94 0.987 R R

15_0 0.9 0.96 0.984 R R

18_4 0.8 0.96 0.907 R A/R

17_0 0.75 0.9 0.968 R R

133



18_1 0.9 0.96 0.993 R R

18_0 0.9 0.96 0.994 R R

17_3 0.8 0.99 0.914 A A/R

18_3 0.85 0.9 0.930 R R

17_2 0.85 0.94 0.998 R R

15_1 0.75 0.94 0.927 R A/R

14_3 0.75 0.9 0.852 R A/R

15_3 0.8 0.99 0.804 R A/R

17_3 0.85 0.94 0.914 A A/R

14_3 0.8 0.9 0.852 R A/R

17_3 0.75 0.99 0.914 R A/R

14_3 0.9 0.99 0.852 A A

17_0 0.75 0.94 0.968 R R

18_2 0.8 0.99 0.918 R A/R

17_0 0.8 0.96 0.968 A A/R

17_1 0.85 0.94 0.874 A A/R

16_3 0.8 0.94 0.879 A A/R

14_1 0.85 0.94 0.740 A A

16_3 0.85 0.99 0.879 A A/R

18_0 0.85 0.96 0.994 R R

15_3 0.9 0.94 0.804 A A

16_4 0.8 0.9 0.833 A A/R

14_1 0.75 0.96 0.740 A A

16_2 0.8 0.9 0.987 R R

17_1 0.75 0.96 0.874 R A/R
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15_1 0.8 0.9 0.927 R R

15_4 0.8 0.96 0.941 R A/R

18_2 0.9 0.94 0.918 R A/R

18_4 0.85 0.94 0.907 R A/R

18_4 0.85 0.96 0.907 R A/R

16_3 0.9 0.99 0.879 A A

14_0 0.75 0.99 0.771 A A/R

16_0 0.85 0.9 0.954 R R

14_4 0.85 0.99 0.773 A A

16_1 0.8 0.9 0.918 R R

17_1 0.8 0.94 0.874 R A/R

17_1 0.85 0.99 0.874 A A/R

16_4 0.9 0.99 0.833 A A

14_1 0.9 0.94 0.740 A A

17_0 0.8 0.9 0.968 R R

14_2 0.75 0.96 0.764 A A/R

15_0 0.85 0.96 0.984 R R

14_0 0.8 0.96 0.771 A A

14_4 0.75 0.96 0.773 A A/R

16_3 0.75 0.9 0.879 R A/R

17_2 0.9 0.94 0.998 R R

15_2 0.85 0.9 0.905 A A/R

14_4 0.8 0.94 0.773 A A

14_2 0.8 0.94 0.764 A A

16_0 0.8 0.99 0.954 R A/R
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17_2 0.85 0.9 0.998 R R

16_3 0.85 0.96 0.879 A A/R

14_2 0.75 0.94 0.764 A A/R

18_1 0.8 0.94 0.993 R R

18_1 0.85 0.99 0.993 R R

18_1 0.9 0.99 0.993 R R

16_4 0.75 0.99 0.833 A A/R

15_0 0.9 0.99 0.984 R A/R

15_1 0.9 0.96 0.927 R A/R

16_0 0.9 0.94 0.954 A A/R

17_1 0.75 0.9 0.874 R A/R

15_0 0.8 0.94 0.984 R R

17_4 0.8 0.99 0.941 R A/R

18_2 0.85 0.9 0.918 R R

14_2 0.75 0.9 0.764 A A/R

15_0 0.8 0.99 0.984 R A/R

14_2 0.8 0.9 0.764 A A

14_4 0.8 0.9 0.773 A A

14_1 0.85 0.9 0.740 A A

17_0 0.75 0.99 0.968 A A/R

14_0 0.85 0.9 0.771 A A

17_1 0.75 0.94 0.874 R A/R

18_1 0.85 0.94 0.993 R R

18_1 0.8 0.99 0.993 R R

18_1 0.75 0.9 0.993 R R

136



17_3 0.8 0.96 0.914 R A/R

18_3 0.9 0.96 0.930 R A/R

16_2 0.8 0.94 0.987 A A/R

14_0 0.85 0.94 0.771 A A

16_2 0.85 0.99 0.987 A A/R

16_4 0.8 0.94 0.833 A A/R

18_1 0.85 0.96 0.993 R R

16_4 0.85 0.99 0.833 A A

15_2 0.9 0.94 0.905 A A/R

15_0 0.75 0.9 0.984 R R

16_0 0.9 0.99 0.954 A A/R

15_4 0.8 0.9 0.941 R R

17_0 0.75 0.96 0.968 R R

15_3 0.8 0.96 0.804 R A/R

18_3 0.9 0.94 0.930 R A/R

18_3 0.85 0.94 0.930 R A/R

16_0 0.8 0.96 0.954 A A/R

17_4 0.85 0.96 0.941 R A/R

14_3 0.75 0.99 0.852 A A/R

17_2 0.85 0.96 0.998 R R

17_4 0.8 0.94 0.941 R R

16_2 0.8 0.96 0.987 A A/R

17_4 0.85 0.99 0.941 R A/R

16_3 0.8 0.96 0.879 A A/R

17_1 0.8 0.9 0.874 R A/R
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16_2 0.75 0.96 0.987 R R

15_3 0.85 0.96 0.804 A A

17_2 0.8 0.94 0.998 R R

14_1 0.8 0.96 0.740 A A

14_0 0.85 0.99 0.771 A A

16_2 0.75 0.9 0.987 R R

15_2 0.85 0.94 0.905 A A/R

14_3 0.85 0.99 0.852 A A/R

15_3 0.85 0.9 0.804 R A/R

14_2 0.85 0.99 0.764 A A

16_3 0.8 0.99 0.879 A A/R

17_3 0.85 0.9 0.914 A A/R

16_0 0.85 0.96 0.954 A A/R

14_1 0.75 0.94 0.740 A A

18_4 0.8 0.9 0.907 R R

18_0 0.8 0.94 0.994 R R

14_3 0.8 0.99 0.852 A A/R

18_0 0.85 0.99 0.994 R R

18_2 0.9 0.99 0.918 R A/R

16_3 0.75 0.99 0.879 A A/R

15_3 0.9 0.99 0.804 A A

16_4 0.75 0.94 0.833 A A/R

15_2 0.9 0.96 0.905 A A/R

16_1 0.9 0.94 0.918 R A/R

18_2 0.8 0.96 0.918 R A/R
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17_2 0.9 0.96 0.998 R R

15_1 0.8 0.94 0.927 R A/R

17_3 0.9 0.99 0.914 A A/R

15_1 0.75 0.96 0.927 R A/R

15_1 0.8 0.99 0.927 R A/R

14_1 0.8 0.9 0.740 A A

17_4 0.75 0.94 0.941 R R

18_0 0.75 0.96 0.994 R R

17_1 0.75 0.99 0.874 R A/R

17_2 0.75 0.94 0.998 R R

18_0 0.8 0.99 0.994 R R

18_0 0.75 0.9 0.994 R R

17_2 0.8 0.96 0.998 R R

18_2 0.9 0.96 0.918 R A/R

16_1 0.8 0.94 0.918 R A/R

16_1 0.85 0.99 0.918 R A/R

18_2 0.85 0.96 0.918 R A/R

15_1 0.9 0.94 0.927 R A/R

15_1 0.75 0.9 0.927 R R

16_1 0.9 0.99 0.918 R A/R

14_3 0.75 0.96 0.852 A A/R

18_3 0.75 0.94 0.930 R A/R

15_2 0.8 0.96 0.905 A A/R

18_0 0.9 0.94 0.994 R R

18_1 0.75 0.99 0.993 R R

139



18_2 0.85 0.94 0.918 R A/R

17_3 0.85 0.96 0.914 A A/R

14_2 0.75 0.99 0.764 A A/R

15_3 0.85 0.94 0.804 A A

17_2 0.8 0.9 0.998 R R

16_3 0.75 0.96 0.879 A A/R

14_2 0.85 0.9 0.764 A A

15_2 0.85 0.96 0.905 A A/R

14_1 0.9 0.96 0.740 A A

16_1 0.75 0.9 0.918 R R

17_4 0.9 0.94 0.941 R R

15_4 0.85 0.9 0.941 R R

16_4 0.8 0.99 0.833 A A/R

15_0 0.75 0.99 0.984 R A/R

15_0 0.85 0.9 0.984 R R

16_2 0.8 0.99 0.987 A A/R

17_0 0.85 0.9 0.968 A A/R

16_1 0.85 0.96 0.918 R A/R

14_0 0.75 0.94 0.771 A A/R

16_2 0.9 0.96 0.987 A A/R

18_3 0.8 0.9 0.930 R R

18_3 0.8 0.94 0.930 R A/R

14_2 0.8 0.99 0.764 A A

16_1 0.9 0.96 0.918 R A/R

18_3 0.85 0.99 0.930 R A/R
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14_4 0.8 0.99 0.773 A A

16_0 0.9 0.96 0.954 A A/R

18_3 0.9 0.99 0.930 R A/R

16_2 0.75 0.99 0.987 A A/R

14_0 0.85 0.96 0.771 A A

15_2 0.9 0.99 0.905 A A/R

16_1 0.75 0.94 0.918 R A/R

16_4 0.9 0.94 0.833 A A

15_3 0.9 0.96 0.804 A A

16_2 0.9 0.94 0.987 A A/R

18_3 0.8 0.96 0.930 R A/R

17_3 0.9 0.96 0.914 A A/R

15_2 0.8 0.94 0.905 A A/R

17_0 0.8 0.99 0.968 A A/R

15_2 0.75 0.94 0.905 R A/R

18_4 0.85 0.9 0.907 R R

15_4 0.8 0.99 0.941 R A/R

15_4 0.75 0.94 0.941 R R

14_4 0.75 0.9 0.773 A A/R

14_0 0.8 0.9 0.771 A A

14_0 0.9 0.99 0.771 A A

18_1 0.75 0.96 0.993 R R

17_3 0.75 0.94 0.914 R A/R

18_3 0.75 0.9 0.930 R R

17_4 0.85 0.94 0.941 R R
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16_0 0.8 0.94 0.954 A A/R

15_0 0.85 0.99 0.984 R A/R

16_0 0.85 0.99 0.954 A A/R

15_4 0.75 0.9 0.941 R R

15_1 0.85 0.99 0.927 R A/R

18_3 0.85 0.96 0.930 R A/R

15_0 0.9 0.94 0.984 R R

15_2 0.75 0.9 0.905 R R

15_2 0.85 0.99 0.905 A A/R

15_2 0.8 0.9 0.905 A A/R

15_3 0.85 0.99 0.804 A A

18_2 0.75 0.94 0.918 R A/R

18_4 0.75 0.94 0.907 R A/R

15_1 0.8 0.96 0.927 R A/R

18_1 0.9 0.94 0.993 R R

18_0 0.75 0.99 0.994 R R

14_3 0.85 0.9 0.852 A A/R

16_3 0.85 0.9 0.879 A A/R

16_1 0.8 0.96 0.918 R A/R

14_1 0.85 0.99 0.740 A A

15_0 0.85 0.94 0.984 R R

17_2 0.85 0.99 0.998 R R

14_2 0.9 0.94 0.764 A A

14_4 0.9 0.94 0.773 A A

17_3 0.8 0.9 0.914 R R
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16_0 0.75 0.96 0.954 R A/R

14_0 0.9 0.96 0.771 A A

17_1 0.9 0.94 0.874 A A

16_0 0.75 0.9 0.954 R R

14_1 0.8 0.94 0.740 A A

15_1 0.75 0.99 0.927 R A/R

17_1 0.85 0.9 0.874 R A/R

18_2 0.8 0.9 0.918 R R

18_2 0.8 0.94 0.918 R A/R

14_1 0.8 0.99 0.740 A A

18_2 0.85 0.99 0.918 R A/R

18_4 0.9 0.99 0.907 A A/R

16_1 0.75 0.99 0.918 R A/R

14_1 0.85 0.96 0.740 A A

16_0 0.75 0.94 0.954 R R

15_4 0.9 0.96 0.941 R A/R

17_2 0.75 0.9 0.998 R R

16_3 0.9 0.94 0.879 A A

18_0 0.8 0.96 0.994 R R

17_4 0.75 0.9 0.941 R R

15_3 0.8 0.94 0.804 R A/R

17_1 0.8 0.99 0.874 R A/R

18_1 0.85 0.9 0.993 R R

15_3 0.75 0.94 0.804 R A/R

14_1 0.75 0.9 0.740 A A
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17_1 0.9 0.99 0.874 A A

15_3 0.75 0.96 0.804 R A/R

18_4 0.75 0.96 0.907 R A/R

14_1 0.9 0.99 0.740 A A

18_2 0.75 0.96 0.918 R A/R

18_4 0.8 0.99 0.907 R A/R

18_4 0.75 0.9 0.907 R R

18_2 0.75 0.9 0.918 R R

17_4 0.8 0.96 0.941 R A/R

14_3 0.85 0.94 0.852 A A/R

18_4 0.9 0.96 0.907 A A/R

17_3 0.75 0.9 0.914 R R

17_4 0.9 0.96 0.941 R A/R

15_3 0.75 0.9 0.804 R A/R

16_0 0.8 0.9 0.954 R R

17_3 0.75 0.96 0.914 R A/R

15_3 0.8 0.9 0.804 R A/R

18_1 0.75 0.94 0.993 R R

16_1 0.85 0.94 0.918 R A/R

16_3 0.85 0.94 0.879 A A/R

18_4 0.9 0.94 0.907 A A/R

15_0 0.8 0.96 0.984 R R

16_0 0.85 0.94 0.954 A A/R

14_4 0.85 0.9 0.773 A A

18_3 0.75 0.99 0.930 R A/R
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17_0 0.9 0.96 0.968 A A/R

18_0 0.85 0.94 0.994 R R

17_1 0.9 0.96 0.874 A A

16_4 0.8 0.96 0.833 A A/R

16_2 0.85 0.9 0.987 A A/R

17_1 0.85 0.96 0.874 A A/R

14_4 0.75 0.99 0.773 A A/R

16_4 0.85 0.9 0.833 A A

17_3 0.8 0.94 0.914 R A/R

15_1 0.85 0.94 0.927 R A/R

17_3 0.85 0.99 0.914 A A/R

14_3 0.9 0.94 0.852 A A

17_4 0.8 0.9 0.941 R R

16_1 0.75 0.96 0.918 R A/R

15_4 0.85 0.96 0.941 R A/R

14_2 0.8 0.96 0.764 A A

14_3 0.9 0.96 0.852 A A

17_0 0.9 0.94 0.968 A A/R

14_4 0.8 0.96 0.773 A A

16_3 0.9 0.96 0.879 A A

15_4 0.75 0.99 0.941 R A/R

14_0 0.8 0.94 0.771 A A

17_4 0.85 0.9 0.941 R R

15_2 0.75 0.99 0.905 A A/R

14_4 0.75 0.94 0.773 A A/R
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17_4 0.9 0.99 0.941 A A/R

18_1 0.8 0.9 0.993 R R

15_4 0.85 0.99 0.941 R A/R

14_0 0.8 0.99 0.771 A A

17_2 0.9 0.99 0.998 R R

14_0 0.75 0.9 0.771 A A/R

14_4 0.85 0.96 0.773 A A

16_0 0.75 0.99 0.954 R A/R

14_2 0.85 0.96 0.764 A A

15_4 0.9 0.99 0.941 A A/R

16_3 0.75 0.94 0.879 R A/R

16_4 0.85 0.94 0.833 A A

18_1 0.8 0.96 0.993 R R

15_0 0.75 0.96 0.984 R R

16_2 0.85 0.94 0.987 A A/R

15_4 0.8 0.94 0.941 R R

17_2 0.8 0.99 0.998 R R

18_0 0.85 0.9 0.994 R R

15_0 0.75 0.94 0.984 R R

15_4 0.75 0.96 0.941 R A/R

17_0 0.9 0.99 0.968 A A/R

15_2 0.8 0.99 0.905 A A/R

15_2 0.75 0.96 0.905 R A/R
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A.3.2 Real-world PCs

In the following table, the first column indicates the benchmark, the second indi-
cates the time required for the test, and the third column indicates the test outcome.
‘A’ represents Accept and ‘R’ represents Reject.

Table A.7: Extended Table of Results for Real-world PCs

Benchmark Teq(s) Result

or-70-10-8-UC-10_0 23.2 A
or-70-10-8-UC-10_1 22.72 R
or-70-10-8-UC-10_2 22.92 R
or-70-10-8-UC-10_3 22.87 R
or-70-10-8-UC-10_4 22.78 R
or-70-10-8-UC-10_5 23.06 R
or-70-10-8-UC-10_6 22.99 R
or-70-10-8-UC-10_7 22.93 R
or-70-10-8-UC-10_8 22.82 R
or-70-10-8-UC-10_9 22.82 R
s641_15_7_0 33.66 A
s641_15_7_1 33.4 R
s641_15_7_2 33.45 R
s641_15_7_3 33.32 R
s641_15_7_4 33.51 R
s641_15_7_5 33.21 R
s641_15_7_6 33.46 R
s641_15_7_7 33.23 R
s641_15_7_8 33.61 R
s641_15_7_9 33.51 R
or-50-5-4_0 414.17 A
or-50-5-4_1 414.84 R
or-50-5-4_2 410.16 R
or-50-5-4_3 414.15 R
or-50-5-4_4 410.07 R
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or-50-5-4_5 412.27 R
or-50-5-4_6 414.77 R
or-50-5-4_7 415.19 R
or-50-5-4_8 416.84 R
or-50-5-4_9 408.59 R
ProjectService3.sk_12_55_0 356.58 A
ProjectService3.sk_12_55_1 353.77 R
ProjectService3.sk_12_55_2 355.93 R
ProjectService3.sk_12_55_3 356.11 R
ProjectService3.sk_12_55_4 356.15 A
ProjectService3.sk_12_55_5 355.64 R
ProjectService3.sk_12_55_6 357.89 R
ProjectService3.sk_12_55_7 356.69 R
ProjectService3.sk_12_55_8 353.36 R
ProjectService3.sk_12_55_9 356.14 R
s713_15_7_0 24.56 R
s713_15_7_1 24.68 R
s713_15_7_2 24.28 R
s713_15_7_3 24.47 R
s713_15_7_4 24.65 R
s713_15_7_5 24.32 R
s713_15_7_6 24.4 R
s713_15_7_7 24.39 R
s713_15_7_8 24.86 A
s713_15_7_9 24.41 R
or-100-10-2-UC-30_0 31.11 R
or-100-10-2-UC-30_1 31.16 R
or-100-10-2-UC-30_2 31.04 R
or-100-10-2-UC-30_3 31.13 R
or-100-10-2-UC-30_4 31.14 R
or-100-10-2-UC-30_5 31.04 A
or-100-10-2-UC-30_6 31.03 R
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or-100-10-2-UC-30_7 31.13 R
or-100-10-2-UC-30_8 31.17 R
or-100-10-2-UC-30_9 31.0 R
s1423a_3_2_0 153.8 R
s1423a_3_2_1 152.37 R
s1423a_3_2_2 152.01 R
s1423a_3_2_3 150.96 R
s1423a_3_2_4 152.64 R
s1423a_3_2_5 153.13 A
s1423a_3_2_6 151.52 R
s1423a_3_2_7 152.53 R
s1423a_3_2_8 152.4 R
s1423a_3_2_9 152.81 R
s1423a_7_4_0 104.28 R
s1423a_7_4_1 103.4 R
s1423a_7_4_2 103.82 R
s1423a_7_4_3 104.18 R
s1423a_7_4_4 103.95 R
s1423a_7_4_5 103.59 R
s1423a_7_4_6 104.31 R
s1423a_7_4_7 104.93 R
s1423a_7_4_8 104.93 A
s1423a_7_4_9 103.51 R
or-50-5-10_0 282.09 R
or-50-5-10_1 282.49 R
or-50-5-10_2 279.63 R
or-50-5-10_3 281.8 R
or-50-5-10_4 280.69 R
or-50-5-10_5 279.91 R
or-50-5-10_6 283.05 A
or-50-5-10_7 282.69 R
or-50-5-10_8 279.65 R
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or-50-5-10_9 282.97 R
or-60-20-6-UC-20_0 359.89 R
or-60-20-6-UC-20_1 362.3 R
or-60-20-6-UC-20_2 363.1 R
or-60-20-6-UC-20_3 363.11 R
or-60-20-6-UC-20_4 362.76 R
or-60-20-6-UC-20_5 358.76 R
or-60-20-6-UC-20_6 363.32 A
or-60-20-6-UC-20_7 358.41 R
or-60-20-6-UC-20_8 358.8 R
or-60-20-6-UC-20_9 362.8 R
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