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Abstract. CDCL-based SAT solvers have transformed the field of au-
tomated reasoning owing to their demonstrated efficiency at handling
problems arising from diverse domains. The success of CDCL solvers is
owed to the design of clever heuristics that enable the tight coupling
of different components. One of the core components is phase selection,
wherein the solver, during branching, decides the polarity of the branch to
be explored for a given variable. Most of the state-of-the-art CDCL SAT
solvers employ phase-saving as a phase selection heuristic, which was pro-
posed to address the potential inefficiencies arising from far-backtracking.
In light of the emergence of chronological backtracking in CDCL solvers,
we re-examine the efficiency of phase saving. Our empirical evaluation
leads to a surprising conclusion: The usage of saved phase and random
selection of polarity for decisions following a chronological backtracking
leads to an indistinguishable runtime performance in terms of instances
solved and PAR-2 score.

We introduce Decaying Polarity Score (DPS) to capture the trend of the
polarities attained by the variable, and upon observing lack of performance
improvement due to DPS, we turn to a more sophisticated heuristic
seeking to capture the activity of literals and the trend of polarities: Literal
State Independent Decaying Sum (LSIDS). We find the 2019 winning
SAT solver, Maple LCM Dist ChronoBTv3, augmented with LSIDS solves
6 more instances while achieving a reduction of over 125 seconds in PAR-2
score, a significant improvement in the context of the SAT competition.

1 Introduction

Given a Boolean formula F , the problem of Boolean Satisfiability (SAT) asks
whether there exists an assignment σ such that σ satisfies F . SAT is a funda-
mental problem in computer science with wide-ranging applications including
bioinformatics [24], AI planning [18], hardware and system verification [7,9],
spectrum allocation, and the like. The seminal work of Cook [10] showed that
SAT is NP-complete and the earliest algorithmic methods, mainly based on local
search and the DPLL paradigm [11], suffered from scalability in practice. The
arrival of Conflict Driven Clause Learning (CDCL) in the early ’90s [36] ushered
in an era of sustained interest from theoreticians and practitioners leading to a
medley of efficient heuristics that have allowed SAT solvers to scale to instances
involving millions of variables [25], a phenomenon often referred to as SAT
revolution [2,6,12,22,26,28,29,36].
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The progress in modern CDCL SAT solving over the past two decades owes
to the design and the tight integration of the core components: branching [19,35],
phase selection [32], clause learning [3,23], restarts [4,14,16,21], and memory
management [5,31]. The progress has often been driven by the improvement
of the state of the art heuristics for the core components. The annual SAT
competition [17] is witness to the pattern where development of the heuristics
for one core component necessitates and encourages the design of new heuristics
for other components to ensure a tight integration.

The past two years have witnessed the (re-)emergence of chronological back-
tracking, a regular feature of DPLL techniques, after almost a quarter-century
since the introduction of non-chronological backtracking (NCB), thanks to Nadel
and Ryvchin [29]. The impact of chronological backtracking (CB) heuristics is
evident from its quick adoption by the community, and the CB-based solver,
Maple LCM Dist ChronoBT [33], winning the SAT Competition in 2018 and and
a subsequent version, Maple LCM Dist ChronoBTv3 , the SAT Race 2019 [15]
winner. The 2nd best solver at the SAT Race 2019, CaDiCaL, also implements
chronological backtracking. The emergence of chronological backtracking necessi-
tates re-evaluation of the heuristics for the other components of SAT solving.

We turn to one of the core heuristics whose origin traces to the efforts
to address the inefficiency arising due to loss of information caused by non-
chronological backtracking: the phase saving [32] heuristic in the phase selection
component. When the solver decides to branch on a variable v, the phase selection
component seeks to identify the polarity of the branch to be explored by the
solver. The idea of phase-saving traces back to the field of constraint satisfaction
search [13] and SAT checkers [34], and was introduced in CDCL by Pipatsrisawat
and Darwiche [32] in 2007. For a given variable v, phase saving returns the polarity
of v corresponding to the last time v was assigned (via decision or propagation).
The origin of phase saving traces to the observation by Pipatsrisawat and Darwiche
that for several problems, the solver may forget a valid assignment to a subset
of variables due to non-chronological backtracking and be forced to re-discover
the earlier assignment. In this paper, we focus on the question: is phase saving
helpful for solvers that employ chronological backtracking? If not, can we design
a new phase selection heuristic?

The primary contribution of this work is a rigorous evaluation process to
understand the efficacy of phase saving for all decisions following a chronological
backtracking and subsequent design of improved phase selection heuristic. In
particular,

1. We observe that in the context of 2019’s winning SAT solver Maple LCM Dist
ChronoBTv3 (referred to as mldc henceforth)1, phase saving heuristic for

decisions following a chronological backtracking performs no better than the
random heuristic which assigns positive or negative polarity randomly with
probability 0.5.

1 acronyms in sans serif font denote solvers or solvers with some specific configurations.
mldc is used as abbreviation for Maple LCM Dist ChronoBTv3
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2. To address the inefficacy of phase saving for decisions following a chronologi-
cal backtracking, we introduce a new metric, decaying polarity score (DPS),
and DPS-based phase selection heuristic. DPS seeks to capture the trend of
polarities assigned to variables with higher priority given to recent assign-
ments. We observe that augmenting mldc with DPS leads to almost the same
performance as the default mldc, which employs phase saving as the phase
selection heuristic.

3. To meet the dearth of performance gain by DPS, we introduce a sophisticated
variant of DPS called Literal State Independent Decaying Sum(LSIDS), which
performs additive bumping and multiplicative decay. While LSIDS is inspired
by VSIDS, there are crucial differences in computation of the corresponding
activity of literals that contribute significantly to the performance. Based on
empirical evaluation on SAT 2019 instances, mldc augmented with LSIDS,
called mldc-lsids-phase solves 6 more instances and achieves the PAR-2 score
of 4475 in comparison to 4607 seconds achieved by the default mldc.

4. To determine the generality of performance improvement of mldc-lsids-phase
over mldc; we perform an extensive case study on the benchmarks arising from
preimage attack on SHA-1 cryptographic hash function, a class of benchmarks
that achieves significant interest from the security community.

The rest of the paper is organized as follows. We discuss background about the
core components of the modern SAT solvers in Section 2. Section 3 presents an
empirical study to understand the efficacy of phase saving for decisions following a
chronological backtracking. We then present DPS-based phase selection heuristic
and the corresponding empirical study in Section 4. Section 5 presents the
LSIDS-based phase selection heuristic. We finally conclude in Section 6.

2 Background

A literal is a propositional variable v or its negation ¬v. A Boolean formula F
over the set of variables V is in Conjunctive Normal Form (CNF) if F is expressed
as conjunction of clauses wherein each clause is a disjunction over a subset of
literals. A truth assignment σ : V 7→ {0, 1} maps every variable to 0 (False) or
1 (True). An assignment σ is called satisfying assignment or solution of F if
F (σ) = 1. The problem of Boolean Satisfiability (SAT) seeks to ask whether there
exists a satisfying assignment of F . Given F , a SAT solver is expected to return
a satisfying assignment of F if there exists one, or a proof of unsatisfiability [37].

2.1 CDCL solver

The principal driving force behind the so-called SAT revolution has been the
advent of the Conflict Driven Clause Learning (CDCL) paradigm introduced
by Marques-Silva and Sakallah [36], which shares syntactic similarities with the
DPLL paradigm [11] but is known to be exponentially more powerful in theory.
The power of CDCL over DPLL is not just restricted to theory, and its practical
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impact is evident from the observation that all the winning SAT solvers in the
main track have been CDCL since the inception of SAT competition [17] .

On a high-level, a CDCL-based solver proceeds with an empty set of as-
signments and at every time step maintains a partial assignment. The solver
iteratively assigns a subset of variables until the current partial assignment is
determined not to satisfy the current formula, and the solver then backtracks
while learning the reason for the unsatisfiability expressed as a conflict clause. The
modern solvers perform frequent restarts wherein the partial assignment is set to
empty, but information from the run so far is often stored in form of different
statistical metrics. We now provide a brief overview of the core components of a
modern CDCL solver.

1. Decision. The decision component selects a variable v, called the decision
variable from the set of unassigned variables and assigns a truth value, called
the decision phase to it. Accordingly, a Decision heuristic is generally a
combination of two different heuristics – a branching heuristic decides the
decision variable and a phase selection heuristic selects the decision phase. A
decision level is associated with each of the decision variables while it gets
assigned. The count for decision level starts at 1 and keeps on incrementing
with every decision.

2. Propagation. The propagation procedure computes the direct implication
of the current partial assignment. For example, some clauses become unit
(all but one of the literals are False) with the decisions recently made by
the solver. The remaining unassigned literal of that clause is asserted and
added to the partial assignment by the propagation procedure. All variables
that get assigned as a consequence of the variable v get the same decision
level as v.

3. Conflict Analysis. Propagation may also reveal that the formula is not
satisfiable with the current partial assignment. The situation is called a
conflict. The solver employs a conflict analysis subroutine to deduce the reason
for unsatisfiability, expressed as a subset of the current partial assignment.
Accordingly, the conflict analysis subroutine returns the negation of the
literals from the subset as a clause c, called a learnt clause or conflict clause
which is added to the list of the existing clauses. The clauses in the given
CNF formula essentially imply the learnt clause.

4. Backtrack. In addition to leading a learnt clause, the solver then seeks to
undo a subset of the current partial assignment. To this end, the conflict
analysis subroutine computes the backtrack decision level l, and then the
solver deletes assignment to all the variables with decision level greater than
l. As the backtrack intimates removing assignment of last decision level
only, backtracking for more than one level is also called non-chronological
backtracking or, backjumping.

The solver keeps on repeating the procedures as mentioned above until it
finds a satisfying assignment or finds a conflict without any assumption. The
ability of modern CDCL SAT solvers to solve real-world problems with millions
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of variables depends on its highly sophisticated heuristics employed in different
components of the solver. Now we discuss some terms related to CDCL SAT
solving that we use extensively in the paper.

– Variable state independent decaying sum (VSIDS) introduced in Chaff [28]
refers to a branching heuristic, where a score called activity is maintained
for every variable. The variable with the highest activity is returned as
the decision variable. Among different variations of VSIDS introduced later,
the most effective is Exponential VSIDS or, EVSIDS [8,20] appeared in
MiniSat [12]. The EVSIDS score for variable v, activity[v], gets incremented
additively by a factor f every time v appears in a learnt clause. The factor f
itself also gets incremented multiplicatively after each conflict. A constant
factor g = 1/f periodically decrements the activity of all the variables. The
act of increment is called bump, and the decrement is called decay. The
heuristic is called state independent because the activity of a variable is not
dependent of the current state (e.g., current assumptions) of the solver.

– Phase saving [32] is a phase selection heuristic used by almost all solver
modern solvers, with few exceptions such as the CaDiCaL solver in SAT
Race 19 [15]. Every time the solver backtracks and erases the current truth
assignment, phase saving stores the erased assignment. For any variable, only
the last erased assignment is stored, and the assignment replaces the older
stored assignment. Whenever the branching heuristic chooses a variable v
as the decision variable and asks phase saving for the decision phase, phase
saving returns the saved assignment.

– Chronological backtracking. When a non-chronological solver faces a conflict,
it backtracks for multiple levels. Nadel et al. [29] suggested non-chronological
backtracking (NCB) might not always be helpful, and advocated backtracking
to the previous decision level. The modified heuristic is called chronological
backtracking (CB). We distinguish a decision based on whether the last
backtrack was chronological or not. If the last backtrack is chronological, we
say the solver is in CB-state, otherwise the solver is in NCB-state.

2.2 Experimental Setup

In this work, our methodology for the design of heuristics has focused on the
implementation of heuristics on a base solver and conduction of an experimental
evaluation on a high-performance cluster for SAT 2019 benchmarks. We now
describe our experimental setup in detail. All the empirical evaluations in this
paper used this setup, unless mentioned otherwise.

1. Base Solver : We implemented the proposed heuristics on top of the
solver Maple LCM Dist ChronoBTv3 (mldc), which is the winning solver
for SAT Race 2019. Maple LCM Dist ChronoBTv3 is an modification of
Maple LCM Dist ChronoBT (2018), which implements chronological back-
tracking on top of Maple LCM Dist (2017). Maple LCM Dist, in turn, evolved
from MiniSat (2006) through Glucose (2009) and MapleSAT (2016). The
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years in parenthesis represent the year when the corresponding solver was
published.

2. Code Blocks: The writing style of this paper is heavily influenced from
the presentation of MiniSat by Eén and Sörensson [12]. Following Eén and
Sörensson, we seek to present implementation details as code blocks that are
intuitive yet detailed enough to allow the reader to implement our heuristics in
their own solver. Furthermore, we seek to present not only the final heuristic
that performed the best, but we also attempt to present closely related
alternatives and understand their performance.

3. Benchmarks : Our benchmark suite consisted of the entire suite, totaling
400 instances, from SAT Race ’19.

4. Experiments : We conducted all our experiments on a high-performance
computer cluster, with each node consists of E5-2690 v3 CPU with 24 cores
and 96GB of RAM. We used 24 cores per node with memory limit set to
4GB per core, and all individual instances for each solver were executed on
a single core. Following the timeout used in SAT competitions, we put a
timeout of 5000 seconds for all experiments, if not otherwise mentioned. In
contrast to SAT competition, the significant difference in specifications of the
system lies in the size of RAM: our setup allows 4 GB of RAM in comparison
to 128 GB of RAM allowed in SAT race ’19.
We computed the number of SAT and UNSAT instances the solver can solve
with each of the heuristics. We also calculated the PAR-2 score. The PAR-2
score, an acronym for penalized average runtime, used in SAT competitions
as a parameter to decide winners, assigns a runtime of two times the time
limit (instead of a “not solved” status) for each benchmark not solved by the
solver.2

3 Motivation

The impressive scalability of CDCL SAT solvers owes to the tight coupling
among different components of the SAT solvers wherein the design of heuristic is
influenced by its impact on other components. Consequently, the introduction
of a new heuristic for one particular component requires one to analyze the
efficacy of the existing heuristics in other components. To this end, we seek to
examine the efficacy of phase saving in the context of recently introduced heuristic,
Chronological Backtracking (CB). As mentioned in Section 1, the leading SAT
solvers have incorporated CB and therefore, we seek to revisit the efficacy of
other heuristics in light of CB. As a first step, we focus on the evaluation of
phase selection heuristic.

Phase saving was introduced to tackle the loss of precious work due to
far-backtracking [32]. Interestingly, CB was introduced as an alternative to far-
bactracking, i.e., when the conflict analysis recommends that the solver should
backtrack to a level l̂ such that |l − l̂| is greater than a chosen threshold (say,
thresh), CB instead leads the solver to backtrack to the previous level. It is

2 All experimental data are available at https://doi.org/10.5281/zenodo.3817476.

https://doi.org/10.5281/zenodo.3817476
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worth noting that if the conflict analysis returns l̂ such that l − l̂ < thresh, then
the solver does backtrack to l̂. Returning to CB, since the solver in CB-state
does not perform far-backtracking, it is not clear if phase saving in CB-state is
advantageous. To analyze empirically, we conducted preliminary experiments
with mldc, varying the phase-selection heuristics while the solver is performing
CB. We fix the phase selection to phase saving whenever the solver performs
NCB and vary the different heuristics while the solver performs CB:

1. Phase-saving : Choose the saved phase as polarity, default in mldc.
2. Opposite of saved phase : Choose the negation of the saved phase for the

variable as polarity.
3. Always false: The phase is always set to False, a strategy that was originally

employed in MiniSat 1.0.
4. Random : Randomly choose between False and True.

Our choice of Random among the four heuristics was driven by our perception
that a phase selection strategy should be expected to perform better than
Random. Furthermore, to put the empirical results in a broader context, we also
experimented with the random strategy for both NCB and CB. The performance
of different configurations is presented in Table 1, which shows a comparison in
terms of the number of SAT, UNSAT instances solved, and PAR-2 score.

Phase selection heuristic used
In NCB-state In CB-state SAT UNSAT Total PAR-2

Random Random 133 89 222 5040.59
Phase-saving Phase-saving 140 97 237 4607.61
Phase-saving Random 139 100 239 4537.65
Phase-saving Always false 139 98 237 4597.06
Phase-saving Opp. of saved phase 137 98 235 4649.13

Table 1: Performance of mldc on 400 SAT19 benchmarks while aided with different
phase selection heuristics. SAT, UNSAT, and total columns indicate the number
of SAT, UNSAT, and SAT+UNSAT instances solved by the solver when using
the heuristic. A lower PAR2 score indicates a lower average runtime, therefore
better performance of the solver.

We first observe that the mldc solves 237 instances and achieves a PAR-2
score of 4607 – a statistic that will be the baseline throughout the rest of the
paper. Next, we observe that usage of random both in CB-state and NCB-state
leads to significant degradation of performance: 15 fewer instances solved with an
increase of 440 seconds for PAR-2. Surprisingly, we observe that random phase
selection in CB-state while employing phase saving in NCB-state performs as
good as phase-saving for CB-state. Even more surprisingly, we do not notice a
significant performance decrease even when using Always false or Opposite of
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saved phase. These results strongly indicate that phase saving is not efficient
when the solver is in CB-state, and motivate the need for a better heuristic. In
the rest of the paper, we undertake the task of the searching for a better phase
selection heuristic.

4 Decaying Polarity Score for Phase Selection

To address the ineffectiveness of phase saving in CB-state, we seek to design a
new phase selection heuristic while the solver is in CB-state. As a first step, we
view phase saving as remembering only the last assigned polarity and we intend
to explore heuristic design based on the recent history of polarities assigned to
the variable of interest. Informally, we would like to capture the weighted trend of
the polarities assigned to the variable with higher weight to the recently assigned
polarity. To this end, we maintain a score, represented as a floating-point number,
for every variable and referred to as decaying polarity score (DPS). Each time the
solver backtracks to level l, the assignments of all the variables with decision level
higher than l are removed from the partial assignment. We update the respective
decaying polarity score of all these variables, whose assignment gets canceled,
using the following formula:

dps[v] = pol(v) + dec× dps[v] (1)

where,

- dps[v] represent the decaying polarity score of the variable v.
- pol(v) is +1 if polarity was set to True at the last assignment of the variable,
−1 otherwise.

- The decay factor dec is chosen from (0, 1). The greater the value of dec is,
the more preference we put on polarities selected in older conflicts.

Whenever the branching heuristic picks a variable v to branch on, the DPS-
based phase selection heuristic returns positive polarity if dps[v] is positive;
otherwise, negative polarity is returned. Note that for dec ≤ 0.5, the DPS-based
heuristic is equivalent to phase saving modulo the discrepancies arising due to
differences in floating-point arithmetic and real number arithmetic.

4.1 Implementation

The implementation of DPS-based heuristic closely resembles the implementation
of the phase saving heuristic [32]. Here we maintain an array of floating-point
numbers named dps. Each of the elements in the array corresponds to the decaying
polarity score of a variable in the formula. Whenever the solver backtracks and
erases the assignment for a variable v, the dps[v] gets updated using Equation 1.
At any later point during solving, if the branching heuristic decides to branch on
the variable v, the decaying polarity score heuristic returns a phase based on the
value of dps[v]. The methods for updating dps and picking up a literal based on
dps is shown in Figure 1.
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void Solver.cancelUntil(int bLevel) . bLevel : backtrack level
- for all elements which are getting cancelled
for (int c = trail.size()−1; c >= trailLim[bLevel]; c−−)
Var x = var(trail[c])
dps[x] ∗= dec
dps[x] += (sign(trail[c]) ? 1.0 : −1.0)

Lit pickBranchLit()
next : variable returned by branching heuristic
if (dps[next] > 0)

lit = mkLit(next, true)
else

lit = mkLit(next, false)
return lit

Fig. 1: Updating and using of decaying polarity score in MiniSat like code.

System SAT UNSAT Total PAR-2

mldc 140 97 237 4607.61
mldc-dec-phase-0.5 141 97 238 4589.66
mldc-dec-phase-0.7 141 96 237 4604.66

Table 2: Performance comparison of decaying polarity score with phase saving
on SAT19 instances. mldc-dec-phase-<value> represent the the solvers using
decaying polarity score. The <value> represent the dec used.

4.2 Experimental Results

To test the efficiency of DPS-based phase selection heuristic, we augmented3

our base solver, mldc, with DPS-based phase selection heuristic during CB. We
set the value of dec = 0.5 and 0.7 to understand the behavior with respect to
varying values of dec. As discussed in subsection 2.2, we conducted our empirical
evaluation on SAT-19 benchmarks.

Solved Instances and PAR-2 score Comparison. Table 2 presents the comparison
of the number of instances solved and PAR-2 score. We first note that the usage
of DPS did not result in a statistically significant change in the performance
of mldc. Furthermore, the impact of dec seems fairly limited as well. In light of
the above remark of equivalence of phase saving and DPC with dec ≤ 0.5, the
floating-point computations introduce non-determinism due to lack of arbitrary
precision. Table 2 indicates that the usage of DPS does not seem to enhance the
aggregate performance of mldc. It is worth noting that there are significantly many

3 https://github.com/meelgroup/duriansat/tree/decay-pol

https://github.com/meelgroup/duriansat/tree/decay-pol
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instances where mldc attains more than 20% improvement over mldc-dec-phase-0.7
and vice-versa. In 53 instances mldc-dec-phase-0.7 had 20% or more runtime
improvement, while mldc had 20% or higher performance than mldc-dec-phase-0.7
in 70 instances. The interesting behavior demonstrated by heuristic indicates,
while DPS-based phase selection heuristic fails to attain such an objective, it is
possible to design heuristics that can accomplish performance improvement over
phase saving. In the next section, we design a more sophisticated scheme that
seeks to achieve the above goal.

5 LSIDS : A VSIDS like heuristic for phase selection

We now shift to a more sophisticated heuristic that attempts to not only remember
the trend of activity but also aims to capture the activity of the corresponding
literal. To this end, we introduce a scoring scheme, called Literal State Independent
Decay Sum (LSIDS), that performs additive bumping and multiplicative decay,
à la VSIDS and EVISDS style. The primary contribution lies in the construction
of policies regarding literal bumping. We maintain activity for every literal, and
the activity is updated as follows:

1. Literal bumping refers to incrementing activity for a literal. With every
bump, the activity for a literal is incremented (additive) by inc ∗mult, where
mult is a fixed constant while at every conflict, inc gets multiplied by some
factor g > 1. Literal bumping takes place in the following two different phases
of the solver.
Reason-based bumping

When a clause c is learnt, for all the literals li appearing in c, the activity
for li is bumped. For example, if we learn the clause that consists of
literals v5, ¬v6 and v3, then we bump the activity of literals v5, ¬v6 and
v3.

Assignment-based bumping
While an assignment for a variable v gets canceled during backtrack; if
the assignment was True, then the solver bumps activity for v, otherwise
the activity for ¬v is bumped.

2. Literal decaying denotes the incident of multiplying the parameter inc by a
factor > 1 at every conflict. The multiplication of inc implies the next bumps
will be done by a higher inc. Therefore, the older bumps to activity will be
relative smaller than the newer bumps. The name decaying underscores the
fact that the effect of increasing inc is equivalent to decreasing (or, decay-ing)
the activity of all literals.

3. Literal rescoring : As the activity gets incremented by a larger and larger
factor every time, the value for activity reaches the limit of a floating-point
number at some time. At this point the activity of all the literals are scaled
down.

When the branching component returns a variable v, the LSIDS-based phase
selection return positive if activity[v] > activity[¬v], and negative otherwise. One
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void litBumpActivity(Lit l, double mult)
activity[l] += inc ∗ mult
if (activity[l] > 1e100)

litRescore()

void litDecayActivity()
inc ∗= 1/decay

void litRescore()
for (int i = 0; i < nVars(); i++)

activity[i] ∗= 1e−100
activity[¬i] ∗= 1e−100
inc ∗= 1e−100

Fig. 2: Bump, Decay and Rescore procedures for LSIDS activity.

can view the proposed scheme as an attempt to capture both the participation
of literals in learnt clause generation, in spirit similar to VSIDS, and storing the
information about trend, à la phase saving/decay polarity score.

5.1 Implementation Details

Figure 2 shows the methods to bump and decay the LSIDS scores. Figure 3
shows blocks of code from MiniSat, where the activity of literals is bumped.
Figure 4 showcases the subroutine to pick the branching literal based on LSIDS.
Of particular note is the setting of mult to 2 for assignment-based bumping while
setting mult to 0.5 for Reason-based bumping. In order to maintain consistency
with constants in EVSIDS, the constants in litRescore are the same as that of
EVSIDS employed in the context of branching in mldc.

5.2 Experimental Results

To test the efficiency of LSIDS as a phase selection heuristic, we implemented4

the heuristic on mldc, replacing the existing phase saving heuristic. We call the
mldc augmented with LSIDS phase selection heuristic as mldc-lsids-phase. Similar
to the previous section; we tested the implementations on SAT19 benchmarks
using the setup mentioned in subsection 2.2.

Solved Instances and PAR-2 Score Comparison Table 3 compares numbers of
instances solved by the solver mldc and mldc-lsids-phase. First, observe that
mldc-lsids-phase solves 243 instances in comparison to 237 instances solved by
mldc, which amounts to the improvement of 6 in the number of solved instances.
On a closer inspection, we discovered that mldc performs CB for at least 1% of

4 https://github.com/meelgroup/duriansat/tree/lsids

https://github.com/meelgroup/duriansat/tree/lsids
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Bump literal scores for literals in learnt clause
void Solver.analyze(Constr confl)

c : conflict clause
litDecayActivity()
for (int j = 0; j < c.size(); j++)
Lit q = c[j];
litBumpActivity(¬q, .5);

Bump literal scores when deleting assignment
void Solver.cancelUntil(int bLevel) . bLevel : backtrack level

- for all elements which are getting cancelled
for (int c = trail.size()−1; c >= trailLim[bLevel]; c−−)
Var x = var(trail[c])
Lit l = mkLit(x, polarity[x])
litBumpActivity(¬l, 2);

Fig. 3: Sections in MiniSat like code, where LSIDS score is bumped and decayed.

Lit pickBranchLit()
next : variable returned by branching heuristic
CBT : denotes whether the last backtrack was chronological

if (CBT)
bool pol = pickLsidsBasedPhase(next)
return mkLit(next, pol)

else
return mkLit(next, polarity[next])

bool pickLsidsBasedPhase(Var v)
if ( activity[posL] > activity[negL] )
return true

else
return false

Fig. 4: Method to choose branching literal

backtracks only in 103 instances out of 400 instances. Since mldc-lsids-phase is
identical to mldc for the cases when the solver does not perform chronological
backtracking, the improvement of 6 instances is out of the set of roughly 100
instances. It perhaps fits the often quoted paraphrase by Audemard and Simon [4]:
solving 10 or more instances on a fixed set (of size nearly 400) of instances from
a competition by using a new technique, generally shows a critical feature. In this
context, we would like to believe that the ability of LSIDS-based phase selection
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System SAT UNSAT Total PAR-2

mldc 140 97 237 4607.61
mldc-lsids-phase 147 96 243 4475.22

Table 3: Performance comparison of LSIDS based phase selection with phase
saving on 400 SAT19 instances.
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Fig. 5: Performance comparison of mldc-lsids-phase vis-a-vis mldc

to achieve improvement of 6 instances out of roughly 100 instances qualifies
LSIDS-base phase saving to warrant serious attention by the community.

Table 3 also exhibits enhancement in PAR-2 score due to LSIDS-based phase
selection. In particular, we observe mldc-lsids-phase achieved reduction 2.87% in
PAR-2 score over mldc, which is significant as per SAT competitions standards.
In particular, the difference among the winning solver and runner-up solver for
the main track in 2019 and 2018 was 1.27% and 0.81%, respectively. In Figure 5,
we show the scatter plot comparing instance-wise runtime performance of mldc
vis-a-vis mldc-lsids-phase. While the plot shows that there are more instances for
which mldc-lsids-phase achieves speedup over mldc than vice-versa, the plot also
highlights the existence of several instances that time out due to the usage of
mldc-lsids-phase but could be solved by mldc.

Solving Time Comparison. Figure 6 shows a cactus plot comparing performance of
mldc and mldc-lsids-phase on SAT19 benchmarks. We present number of instances
on x-axis and the time taken on y-axis. A point (x, y) in the plot denotes that
a solver took less than or equal to y seconds to solve y benchmarks out of the
400 benchmarks in SAT19. The curves for mldc and mldc-lsids-phase indicate, for



14 Arijit Shaw and Kuldeep S. Meel

100 120 140 160 180 200 220 240
Benchmarks

0

1000

2000

3000

4000

5000

R
un

tim
e(

s)

mldc-lsids-phase
mldc

Fig. 6: Each of the curve corresponds to the performance of a solver, by means
of number of instances solved within a specific time. At a specific runtime t, a
curve to further right denotes the solver has solved more instances by time t.

.

every given timeout, the number of instances solved by mldc-lsids-phase is greater
than or equal to mldc.

Percentage of usage and difference of selected phase. Among the instances solved
by mldc-lsids-phase, percentage of decisions taken with LSIDS phase selections
is on average 3.17% over the entire data set. Among the decisions taken with
LSIDS phase selection, the average fraction of decisions where the selected phase
differs from that of phase saving is 4.67%; It is worth remarking that maximum
achieved is 88% while the minimum is 0%. Therefore, there are benchmarks where
LSIDS and phase selection are entirely the same while there are benchmarks
where they agree for only 12% of the cases. The numbers thereby demonstrate
that the LSIDS-based phase selection can not be simply simulated by random or
choosing phase opposite of phase selection.

Applicability of LSIDS in NCB-state. The performance improvements owing
the usage of LSIDS during CB-state raise the question of whether LSIDS is
beneficial in NCB-state as well. To this end, we augmented mldc-lsids-phase
to employ LSIDS-based phase selection during both NCB-state as well as CB-
state. Interestingly, the augmented mldc-lsids-phase solved 228 instances, nine
less compared to mldc, thereby providing evidence in support of our choice of
usage of LSIDS during CB-state only.

Deciding the best combination of CB and NCB. Nadel and Ryvchin [29] inferred
that SAT solvers benefit from an appropriate combination of CB and NCB rather
than solely reliance on CB or NCB. To this end, they varied two parameters, T and
C according to the following rules to heuristically decide the best combination.
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T = 100 C = 4000
C = 2000 3000 4000 5000 T = 25 90 150 200

SAT
mldc 137 141 140 137 139 137 134 138
mldc-lsids-phase 143 139 147 139 142 141 139 142

UNSAT
mldc 98 96 97 97 98 97 95 97
mldc-lsids-phase 99 101 96 100 99 96 99 97

Total
mldc 235 237 237 234 237 233 229 235
mldc-lsids-phase 242 240 243 239 241 238 238 239

PAR-2
mldc 4663 4588 4607 4674 4609 4706 4773 4641
mldc-lsids-phase 4506 4558 4475 4575 4555 4556 4622 4583

Table 4: Performance comparison of LSIDS based phase selection with phase
saving on 400 SAT19 instances with different T and C.

– If the difference between the current decision level and backtrack level returned
by conflict analysis procedure is more than T , then perform CB.

– For the first C conflicts, perform NCB. This rule supersedes the above one.

Following the process, we experimented with different sets of T and C to determine
the best combination of T and C for mldc-lsids-phase. For each configuration (T
and C), we computed the performance of mldc too. The results are summerized
in Table 4. It turns out that T = 100, C = 4000 performs best in mldc-lsids-phase.
Interestingly, for most of the configurations , mldc-lsids-phase performed better
than mldc.

5.3 Case Study on Cryptographic Benchmarks

Following SAT-community traditions, we have concentrated on SAT-19 bench-
marks. But the complicated process of selection of benchmarks leads us to be
cautious about confidence in runtime performance improvement achieved by
LSIDS-based phase selection. Therefore, in a bid to further improve our con-
fidence in the proposed heuristic, we performed a case study on benchmarks
arising from security analysis of SHA-1 cryptographic hash functions, a class of
benchmarks of special interest to our industrial collaborators and to the security
community at large. For a message M, a cryptographic hash function F creates
a hash H = F (M). In a preimage attack, given a hash H of a messageM, we are
interested to compute the original message M. In the benchmark set generated,
we considered SHA-1 with 80 rounds, 160 bits for hash are fixed, and k bits out
of 512 message bits are fixed, 485 < k < 500. The solution to the preimage attack
problem is to give the remaining (512− k) bits. Therefore, the brute complexity
of these problems will range from O(212) to O(227). The CNF encoding of these
problems was created using the SAT instance generator for SHA-1 [30]. Note
that by design, each of the instances is satisfiable. In our empirical evaluation, we
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System Total solved PAR-2

mldc 291 9939.91
mldc-lsids-phase 299 9710.42

Table 5: Performance comparison of LSIDS based phase selection with phase
saving on 512 cryptographic instances. Name of systems are same as Table 3.

focused on a suite comprising of 512 instances5 and every experiment consisted
of running a given solver with 3 hours of timeout on a particular instance.

Table 5 presents the runtime performance comparison of mldc vis-a-vis mldc-
lsids-phase for our benchmark suite. First, we observe that mldc-lsids-phase solves
299 instances in comparison to 291 instances solved by mldc, demonstrating an
increase of 8 instances due to LSIDS-based phase selection. Furthermore, we
observe a decrease of 229 in PAR-2 score, corresponding to a relative improvement
of 2.30%, which is in the same ballpark as the improvement in PAR-2 score
observed in the context of SAT-19 instances.

6 Conclusion

In this paper, we evaluated the efficacy of phase saving in the context of the
recently emerged usage of chronological backtracking in CDCL solving. Upon
observing indistinguishability in the performance of phase saving vis-a-vis random
polarity selection, we propose a new score: Literal State Independent Decay Sum
(LSIDS) that seeks to capture both the activity of a literal arising during clause
learning and also the history of polarities assigned to the variable. We observed
that incorporating LSIDS to Maple LCM Dist ChronoBTv3 leads to 6 more solved
benchmarks while attaining a decrease of 132 seconds in PAR-2 score. The
design of a new phase selection heuristic due to the presence of CB leads us to
believe that the community needs to analyze the efficiency of heuristics for other
components in the presence of chronological backtracking.
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