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Abstract

As engineered systems expand, become more interdependent, and operate in real-time, reliability
assessment is key to inform investment and decision making. However, network reliability prob-
lems are known to be #P-complete, a computational complexity class believed to be intractable,
and thus motivate the quest for approximations. Based on their theoretical foundations, reliability
evaluation methods can be grouped as: (i) exact or bounds, (ii) guarantee-less sampling, and (iii)
probably approximately correct (PAC). Group (i) is well regarded due to its useful byproducts,
but it does not scale in practice. Group (ii) scales well and verifies desirable properties, such as
the bounded relative error, but it lacks error guarantees. Group (iii) is of great interest when pre-
cision and scalability are required. We introduceK-RelNet, an extended counting-based method
that delivers PAC guarantees for the K-terminal reliability problem. We also put our develop-
ments in context relative to classical and emerging techniques to facilitate dissemination. Then,
we test in a fair way the performance of competitive methods using various benchmark systems.
We note the range of application of algorithms and suggest a foundation for future computational
reliability and resilience engineering, given the need for principled uncertainty quantification in
complex systems.

Keywords: network reliability, FPRAS, PAC, relative variance, uncertainty, model counting,
satisfiability

1. Introduction

Modern societies rely on physical and technological networks such as transportation, power,
water, and telecommunication systems. Quantifying their reliability is imperative in design,
operation, and resilience enhancement. Typically, networks are modeled using a graph where
vertices and edges represent unreliable components. Network reliability problems ask: what is
the probability that a complex system with unreliable components will work as intended under
prescribed functionality conditions?

In this paper, we focus on the K-terminal reliability problem [1]. In particular, we consider
an undirected graph G = (V, E,K), where V is the set of vertices, E ⊆ V × V is the set of edges,
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and K ⊆ V is the set of terminals. We let G(P) be a stochastic graph, where every edge e ∈ E
vanishes from G with respective probabilities P = (pe)e∈E . We assume a binary-system, and say
G(P) is unsafe if a subset of vertices in K becomes disconnected, and safe otherwise. Thus,
given instance (G, P) of the K-terminal reliability problem, we are interested in computing the
unreliability of G(P), denoted uG(P), and defined as the probability that G(P) is unsafe.

If |Θ| is the cardinality of set Θ, then n = |V | and m = |E| are the number of vertices and
edges, respectively. Also, when |K| = n and |K| = 2, the K-terminal reliability problem reduces
to the all-terminal and two-terminal reliability problems, respectively. These are well-known and
proven to be #P-complete problems [1, 2]. The more general K-terminal reliability problem is
#P-hard, so ongoing efforts to compute uG(P) focus on practical bounds and approximations.

Exact and bounding methods are limited to networks of small size, or with bounded graph
properties such as treewidth and diameter [3, 4]. Thus, for large G of general structure, re-
searchers and practitioners lean on simulation-based estimates with acceptable Monte Carlo
error [5]. However, in the absence of an error prescription, simulation applications can use
unjustified sample sizes and lack a priori rigor on the quality of the estimates, thus becoming
guarantee-less methods.

A formal approach to guarantee quality in Monte Carlo applications relies on the so-called
(ε, δ) approximations, where ε and δ are user specified parameters regarding the relative error and
confidence, respectively. As an illustration, for Y as a random variable (RV), say we are interested
in computing its expected value E[Y] = µY . Then, after we specify parameters ε, δ ∈ (0, 1), an
(ε, δ) approximation returns estimate µY such that Pr(|µY/µY − 1| ≥ ε) ≤ δ. In other words,
an (ε, δ) approximation returns an estimate with relative error below ε with at least confidence
1− δ. We term Probably Approximately Correct (PAC) the family of methods whose algorithmic
procedures deliver estimates with (ε, δ) guarantees.2

Having a formal notion of error, we can rigorously address a key issue in Monte Carlo appli-
cations: the sample size, herein denoted N. Using standard probability arguments, and positive
finite µY as the only assumption,3 we derive: N = O(σ2

Y/µ
2
Yε
−2 log 1/δ) (See appendix, Theo-

rem 6), exposing Monte Carlo’s weakness when required to guarantee results. To make it self-
evident, let us model our binary-system as Y , a Bernoulli RV, such that µY = uG(P). Then, note
that the substitution of µY and σ2

Y in N leads to N ∝ 1/uG(P), which can be prohibitively large as
engineered systems are highly-reliable by design.

The sample size issue is a well researched subject of rare-event simulation, and we refer
readers to Chapter 2 [7] and Chapter 1 [8] for more background. Attempts to make simulation
more affordable include: the Multilevel Splitting method [9, 10], the recursion-based Importance
Sampling method [11], the Permutation Monte Carlo-based method [12] and its Splitting Se-
quential Monte Carlo extension [13], among others. Some of these techniques verify desired
properties, such as the Bounded Relative Variance (BRV) or σ2

Y/µ
2
Y = O(1), and the Vanishing

Relative Variance (VRV) or σ2
Y/µ

2
Y = o(1), where Y denotes the Monte Carlo estimate returned

by a sampling technique.4 Despite being effective in the rare-event setting, these methods of-
ten appeal to the central limit theorem and do not assure quality of error or performance, thus
remaining guarantee-less to users.

Naturally, a method that overcomes the rare-event issue while delivering rigorous error guar-
antees would be of great use in reliability applications. In other words, system reliability is

2We borrow the PAC terminology from the field of artificial intelligence [6].
3In this paper µY will be a probability, such as network unreliability uG(P).
4Where the little-o notation f (n) = o(g(n)) stands for f /g→ 0, for n > n0, n, n0 ∈ N.
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calling for efficient PAC methods for a rigorous treatment of uncertainties. Theoretically speak-
ing, an efficient method runs in polynomial time as a function of the size of (G, P), 1/ε, and
log(1/δ). In the computer science literature, such a routine is called a fully polynomial random-
ized approximation scheme (FPRAS) for network unreliability. Clearly, efficient in theory does
not imply efficient in practice, e.g., the order of the polynomial function bounding the worst-time
complexity can be arbitrarily large. Thus, it is imperative to complement theoretically sound de-
velopments with computer evaluations. To the best of our knowledge, there is no known FPRAS
for the K-terminal reliability problem. However, there is a precedent, where Karger gave the
first FPRAS for the all-terminal reliability case [14].

To tackle computational and precision issues, this paper develops K-RelNet, a counting-
based PAC method for network unreliability that inherits properties of state-of-the-art approx-
imate model counters in the field of computational logic [? ]. Our approach delivers rigorous
(ε, δ) guarantees and is efficient when given access to an NP-oracle: a black-box that solves
nondeterministic polynomial time decision problems. The use of NP-oracles for randomized
approximations, first proposed by Stockmeyer [15], is increasingly within reach as in practice
we can leverage efficient solvers for Boolean satisfiability (SAT) that are under active develop-
ment. Given the variety of methods to compute uG(P), we showcase our developments against
alternative approaches. In the process, we highlight methodological connections missed in the
engineering reliability literature, key theoretical properties of our method, and unveil practical
performance through fair computational experiments by using existing and our own benchmarks.

The rest of the manuscript is structured as follows. Section 2 gives background on network re-
liability evaluation and its (ε, δ) approximation, as well as the necessary background on Boolean
logic before introducing our new counting-based approach: K-RelNet, an efficient PAC method
for theK-terminal reliability problem. Section 3 contextualizes our contribution relative to other
techniques for network reliability evaluation. We highlight key properties for users and draw
important connections in the literature. Section 4 presents the main results of our computational
evaluation. Section 5 rounds up this study with conclusions and promising research directions.

2. Counting-Based Network Reliability Evaluation

We begin this section with relevant mathematical background and notation, then we introduce the
new method, termedK-RelNet. We do so through a fully worked out example for counting-based
reliability estimation.

2.1. Principled network reliability approximation

Given instance (G, P) of the K-terminal reliability problem, we represent a realization of the
stochastic graph G(P) as an m-bit vector X = (xe)e∈E , with m = |E|, such that xe = 0 if edge
e ∈ E is failed, and xe = 1 otherwise. Note that Pr(xe = 0) = pe, and that the set of possible
realizations is Ω = {0, 1}m. Furthermore, let Φ : Ω 7→ {0, 1} be a function such that Φ(X) = 0
if some subset of K becomes disconnected, i.e. X is unsafe, and Φ(X) = 1 otherwise. Also, we
define the failure and safe domains as Ω f = {X ∈ Ω : Φ(X) = 0} and Ωs = {X ∈ Ω : Φ(X) = 1},
respectively. In practice, we can evaluate Φ efficiently using breadth-first-search.

Network reliability, denoted as rG(P), can be computed as follows:

rG(P) = 1 − uG(P) =
∑
X∈Ω

Φ(X) · Pr(X), (1)
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Pr(X) =
∏
ei∈E

p(1−xi)
ei

· (1 − pei )
xi , (2)

where Eq. (2) assumes independent edge failures. Clearly, the number of terms |Ω| = 2m of
Eq. (1) grows exponentially, rendering the brute-force approach useless in practice, and motivat-
ing the development of network reliability evaluation methods that can be grouped into: exact or
bounds, guarantee-less simulation, and probably approximately correct (PAC).

When exact methods fail to scale in reliability calculations, simulation is the preferred alter-
native. However, mainstream applications of simulation lack performance guarantees on error
and computational cost. Typically, users embark on a trial and error process for choosing the
sample size, trying to meet, if at all possible, a target empirical measure of variance such as the
coefficient of variation. However, similar approaches have been shown to be unreliable [16],
jeopardizing reliability applications at a time when uncertainty quantification is key, as systems
are increasingly complex [17].

To secure a rigorous application of the Monte Carlo method, we use (ε, δ) approximation
methods, which use no assumptions such as the central limit theorem, and that give guarantees
of approximation in the non-asymptotic regime, i.e., they deliver provably sound approximations
with a finite number of samples. Formally, for input parameters ε, δ ∈ (0, 1), we define a PAC
method for network unreliability evaluation as one that outputs estimate ûG(P) such that:

Pr
(
|ûG(P) − uG(P)|

uG(P)
≥ ε

)
≤ δ. (3)

Recently, the authors introduced RelNet [18], a counting based framework for approximating
the two-terminal reliability problem that issues (ε, δ) guarantees. In this paper, we introduce K-
RelNet, an extension that, to the best of our knowledge, is the first efficient PAC method for the
general K-terminal reliability problem.

Next, we survey important background in Boolean logic definitions before introducing K-
RelNet.

2.2. Boolean logic
A Boolean formula ψ : X ∈ {0, 1}n → {0, 1} is in conjunctive normal form (CNF) when written
as ψ(X) = C1∧· · ·∧Cm, with each clause Ci a disjunction of literals, e.g., C1 = x1∨¬x2∨ x3. We
are interested in solving the #SAT (“Sharp SAT”) problem, which counts the number of variable
assignments satisfying a CNF formula. Formally, #ψ =

∣∣∣{X ∈ {0, 1}n|ψ(X) = 1
}∣∣∣. For example,

consider the expression x1 , x2. Its CNF representation is ψ(X) = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2), and
the number of satisfying assignments of ψ is #ψ = 2.

Furthermore, for Boolean vectors of variables X = (x1, . . . , xn) and S = (s1, . . . , sp), define
a Σ1

1 formula as one that is expressed in the form F(X, S ) = ∃S [ψ(X, S )], with ψ a CNF formula
over variables X and S . Similarly, we are interested in its associated counting problem, called
projected counting or “#∃SAT.” Formally, #F =

∣∣∣{X ∈ {0, 1}n|∃S such that ψ(X, S ) = 1
}∣∣∣. We

use Σ1
1 formulas because they let us introduce needed auxiliary variables (S ) for global-level

Boolean constraints, such as reliability, but count strictly over the problem variables (X). As
an example, consider the expression [(x1 OR s1) , x2]. Its CNF representation is ψ(X, S ) =

(x1∨s1∨x2)∧(¬x1∨¬s1∨¬x2), and note the difference between the associated counts #ψ = 6 and
#F = 4. The latter is smaller because the quantifier ∃ over variables S “projects” the count over
variables X. To better grasp this projection, observe that F(X, S ) = ∃S [ψ(X, S )] is equivalent
to

∨
S∈{0,1}p [ψ(X, S )], which in our example simplifies to (¬x1 ∨ ¬x2) ∨ (x1 ∨ x2) = 1, i.e., for
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a

b

c

d

pe1 = 1/2

pe2 = 3/8

pe3 = 1/2

pe4 = 1/2

(G, P)

(a) Weighted instance.

a

b

v1

c

d

e1

e2

e3

e4e5

e6

(G′, P1/2)

(b) Unweighted instance.

Ce1 = (sa ∧ xe1 → sb) ∧ (sb ∧ xe1 → sa), Ce2 = (sa ∧ xe2 → sc) ∧ (sc ∧ xe2 → sa).
Ce3 = (sb ∧ xe3 → sd) ∧ (sd ∧ xe3 → sb), Ce4 = (sc ∧ xe4 → sd) ∧ (sd ∧ xe4 → sc).
Ce5 = (sa ∧ xe5 → sv1 ) ∧ (sv1 ∧ xe5 → sa), Ce6 = (sv1 ∧ xe6 → sc) ∧ (sc ∧ xe6 → sv1 ).
S = {sa, sb, sc, sd, sv}, FK = ∃S

(
(sa ∨ sd) ∧ (¬sa ∨ ¬sd) ∧

∧6
i=1 Cei

)
.

#FK = 33, uG(P) = #FK/2|E
′ | = 33/64.

(c) Terms of Σ1
1 formula FK and exact counting calculations.

Figure 1: K-RelNet example with K={a, b}. (a) Original instance, (b) its reduction to pe = 1/2, ∀e ∈ E′, and (c) exact
counting #FK .

every assignment of variables X ∈ {0, 1}2, there is S ∈ {0, 1} such that F(X, S ) = 1, and thus
#F = 4. The equivalent form is shown only for illustration purposes, as it is intractable to work
with due to its length growing exponentially in the number of variables in S . Instead, we feed
F(X, S ) = ∃S [ψ(X, S )] to a state-of-the-art approximate model counter [19].

Next, we introduce FK , a Σ1
1 formula encoding the unsafe property of a graph G, and show

that #FK = |Ω f |. Recall Ω f is the network failure domain Ω f = {X ∈ Ω : Φ(X) = 0}. Moreover,
using a polynomial-time reduction to address arbitrary edge failure probabilities, we solve the
K-terminal reliability problem by computing #FK . The problem of counting the number of satis-
fying assignments of a Boolean formula is hard in general, but it can be approximated efficiently
via state-of-the-art PAC counters with access to an NP-oracle. In practice, an NP-oracle is a SAT
solver capable of handling formulas with up to million a variables, which is orders of magnitude
larger than typical network reliability instances.

2.3. Reducing network reliability to counting
Next we introduce the K-RelNet formulation. Given propositional variables S = (su)u∈V and
propositional variables X = (xe)e∈E , then define:

Ce =
[
(su ∧ xe)→ sv

]
∧

[
(sv ∧ xe)→ su

]
,∀e ∈ E, (4)

FK = ∃S [ψ(X, S )] = ∃S
[(∨

j∈K

s j

)
∧

( ∨
k∈K

¬sk

)
∧

∧
e∈E

Ce

]
, (5)

where in Eq. 4, each edge e ∈ E has end vertices u, v ∈ V . Propositional edge variable xe

encodes the state of edge e ∈ E, such that xe is true iff e is not failed, which is consistent with
5



the representation of a realization of the stochastic graph G(P) introduced earlier. An example
of FK is given in Figure 1b-1c. Note that FK is a Σ1

1 formula,5 and we define its associated set of
satisfying assignments as RFK = {X ∈ Ω|(∃S )ψ(X, S ) = 1

}
, such that #FK = |RFK |. Also, recall

that the notation for the complement of set Θ is Θ. The next Lemma proves the core result of our
reduction.

Lemma 1. For a graph G = (V, E,K), edge failure probabilities P = (pe)e∈E , and FK and Ω f as
defined above, we have #FK = |Ω f |. Moreover, for P1/2 = (1/2)e∈E , we have

uG(P1/2) =
#FK
2|E|

.

Proof. We use ideas from our previous work [18], which deals with the special case |K| = 2.
First, note that for sets A and B such that |A|+|A| = |B|+|B|, we have |A| = |B| iff there is a bijective
mapping from A to B. Moreover, the number of unquantified variables in Eq. (5) is |E|, so we
can establish the next equivalence between the number of distinct edge variable assignments and
system states: |RFK | + |RFK | = |Ω f | + |Ω f | = 2|E|. Next, we prove X ∈ RFK ⇐⇒ X ∈ Ω f ,∀X ∈
{0, 1}|E|, via a bijective mapping.

1) Case Ω f → RFK : assume X ∈ Ω f , i.e. φ(X) = 1 or G is K-connected. Next, we show
that X ∈ RFK , i.e., FK (X, S ) evaluates to false for all possible assignments of variables S , due to
Eqs. 4-5. We show this by way of contradiction. Assume there is an assignment S ∈ {0, 1}|V | such
that FK (X, S ) is true. We deduce this happens iff (i) ∃ j, k ∈ K such that s j , sk, from Eq. (5),
and (ii) for every edge e ∈ E with end-vertices u, v ∈ V we have sv = 1 (resp. su = 1) whenever
xe and su (resp. sv) are equal to 1, due to clause Ce in Eq. (4). Without loss of generality, we
satisfy condition (i) setting s j = 1 and sk = 0, with j, k ∈ K . Recall X ∈ Ω f , i.e. φ(X) = 1, so
there is a path P = { j, . . . , k} ⊆ V connecting vertices j, k ∈ K and traversing edges T ⊆ E such
that xe = 1,∀e ∈ T . By iterating over constraints Ce, ∀e ∈ T , and since s j = 1, we are forced
to assign si = 1,∀i ∈ P, to satisfy condition (ii). This assignment results into sk = 1, which
contradicts condition (i) when we have set sk = 0 at the beginning. Thus, an S ∈ {0, 1}|V | such
that FK (X, S ) is true does not exists, and X ∈ RFK .

2) Case RFK → Ω f : assume X ∈ RFK , i.e. FK (X, S ) is false, to show that X ∈ Ω f . Again,
by way of contradiction, we assume X ∈ Ω f and using the arguments from above we deduce that
the set of edges T = {e ∈ E|xe = 1} connects every pair of vertices i, j ∈ K , i.e. φ(X) = 1 by
definition of φ. This contradicts the definition ΩF = {X ∈ {0, 1}|E||φ(X) = 0}. Thus, we conclude
X ∈ Ω f .

Since we established a bijective mapping between RFK and Ω f , we conclude #FK = |Ω f |.
The last part of the lemma follows by noting that Pr(X) = 1/2|E| when P = P1/2, so that uG(P) =∑

x∈Ω(1 − Φ(X)) · Pr(X) = |Ω f | · 1/2|E| = #FK/2|E|.

Now we generalize uG(P1/2) = #FK/2|E| to arbitrary edge failure probabilities. To this end,
we use a weighted to unweighted transformation [18].

2.4. Addressing arbitrary edge failure probabilities
The next definitions will be useful for stating our weighted-to-unweighted transformation. Let
0.b1 · · · bm be the binary representation of probability q ∈ (0, 1), i.e. q =

∑m
k=1 bk/2k. Define zk

5Use identity (a ∧ b)→ c ≡ ¬a ∨ ¬b ∨ c for constraints Ce in Eq. (4).
6



(z̄k) as the number of zeros (ones) in the first k decimal bits of the binary representation. Formally,
zk = k −

∑k
i=1 bi and z̄k = k − zk, ∀k ∈ L, with L = {1, . . . ,m}. Moreover, for V = {v0, . . . , vzm+1},

define a function η : L → V × V such that η(k) = (vzk−1 , vzk ) if bk = 0, and η(k) = (vzk−1 , vzm+1)
otherwise. We will show that, for E =

⋃
k∈L η(k) and K = {v0, vzm+1}, G(V, E,K) is a series-

parallel graph such that rG(P1/2) = q. Thus, our weighted-to-unweighted transformation entails
replacing every edge e ∈ E with failure probability different from 1/2 with a reliability preserving
series-parallel graph Ge.

For example, from Figure 1a, the binary representation of 1 − pe = 5/8 is 0.101, so we have
m = 3, zm = 1, and z̄m = 2. Also, we replace edge e2 with a series parallel graph Ge2 using
the construction from above, which yields Ve2 = {v0, v1, v2}, Ee2 = {(v0, v2), (v0, v1), (v1, v2)}, and
terminal set K e2 = {v0, v2}. Since uGe2 (P1/2) = 3/8, we replace e2 by Ge2 as shown in Figure 1b,
where v0 = a and v2 = c, for consistency with the global labeling of the figure. The next lemma
proves the correctness of this transformation.

Lemma 2. Given probability q = 0.b1 · · · bm in binary form, graph G = (V, E,K) such that
V = {v0, . . . , vzm+1}, E = {η(1), . . . , η(m)} and K = {v0, vzm+1}, and P1/2 = (1/2)e∈E , we have
rG(P1/2) = q and |V | + |E| = zm + 2 + m.

Proof. Define Gk = (Vk, Ek),∀k ∈ L, with Ek = {η(1), . . . , η(k)} and Vk = ∪k
i=1{v j : v j ∈ η(i)}.

Clearly, V = Vm and E = Em. The key observation is that G is a series-parallel graph and that we
can enumerate all paths from v0 to vzm+1 in G. Let k1 = min{k ∈ L : bk1 = 1}. Then, the edge set
ET1 = Ek1 forms a path from v0 to vzm+1, denoted T1, with vertex sequence (v0, . . . , vzk1

, vzm+1),
size |ET1 | = zk1 + 1, and Pr(T1) = 1/2zk1 +1. Next, for k2 the second smallest element of L
such that bk2 = 1, Gk2 contains a total of two paths, T1 and T2, with T1 as before and ET2 =

Ek2 \ {(vzk1
, vm+1)} of size zk2 + 1. Also, Ek2 = ET1 ∪ ET2 and ET1 ∩ ET2 = ET1 \ {(vzk1

, vm+1)}.
Thus, the event T 1T2 happens iff edge (vzk1

, vm+1) fails and edges in ET2 do not fail, letting us
write Pr(T 1T2) = 1/2 · 1/2zk2 +1. For k j the j-th smallest element of L such that bk j = 1, Gk j has
a total of j = z̄k j paths, with ET j = Ek j \ ∪

j−1
i=1 {(vzki

, vm+1)}, |ET j | = zkk + 1, and Ek j = ∪
j
i=1ETi .

Furthermore, event T 1 · · · T j−1T j happens iff edges in ∪ j−1
i=1 {(vzki

, vm+1)} fail and edges in ET j do
not fail. Thus, Pr(T 1 · · · T j−1T j) = 1/2z̄k j−1

· 1/2zk j +1
= 1/2k j .This leads to rG(P) = Pr(T1) +

Pr(T 1T2) + · · ·+ Pr(T 1 · · · T z̄m−1S z̄m ) =
∑z̄m

i=1 1/2ki . Rewriting the summation over all k ∈ L yields
rG(P) =

∑m
k=1 bk/2k, which is the decimal form of q = 0.bk · · · bm. Furthermore, |V | = zm + 2 and

|E| = m from their definitions.

Now we leverage Lemma 2 to introduce our general counting-based algorithm for the K-
terminal reliability problem.

2.5. The new algorithm: K-RelNet

K-RelNet is presented in Algorithm 1. Theorem 3 proves its correctness. Figure 1 illustrates
the exact version beginning with the reduction to failure probabilities of 1/2, and rounding up
with the construction of FK and exact counting of its satisfying assignments. In Algorithm 1,
however, we use an approximate counter giving (ε, δ) guarantees [? , Chapter 4].

Theorem 3. Given an instance (G, P) of the K-terminal reliability problem and M defined as in
Algorithm 1:

uG(P) = #FK/2M .
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Proof. The proof follows directly from Lemmas 1 and 2. First, note that the transformation in
step 1 of K-RelNet outputs an instance (G′, P1/2) so that uG(P) = uG′ (P1/2), where P1/2 denote
edges in E′ that fail with probability 1/2 (Lemma 2). Then, step 2 takes G′ to output FK such
that uG′ (P1/2) = |RFK |/2

M (Lemma 1). Finally, uG(P) = |RFK |/2
M .

Algorithm 1 K-RelNet

Input: Instance (G, P) and (ε, δ)-parameters.
Output: PAC estimate ûG(P).

1: Construct G′=(V ′, E′,K) replacing every edge e ∈ E by Ge such that 1 − pe = 0.b1 · · · bme

and uGe (P1/2) = pe (Lemma 2).
2: Let M =

∑
e∈E me = |E′|, and construct FK using G′ from Eq. 5.

3: Invoke ApproxMC2, a hashing-based counting technique [? , Chapter 4], to compute #FK ,
an approximation of #FK with (ε, δ) guarantees.
ûG(P)← #FK/2|M|

Steps 1-2 run in polynomial time on the size of (G, P). Step 3 invokes ApproxMC2 [? ]
to approximate #FK . In turn, ApproxMC2 has access to a SAT-oracle, running in polynomial
time on log 1/δ, 1/ε, and |FK |. Thus, relative to a SAT-oracle, K-RelNet approximates uG(P)
with (ε, δ) guarantees in the FPRAS theoretical sense. Also, we note that ApproxMC2’s (ε, δ)
guarantees are for the multiplicative error Pr(1/(1 + ε)uG(P) ≤ ûG(P) ≤ (1 + ε)uG(P)) ≥ 1 − δ [?
]. This is a tighter error constraint than the relative error of Eq. (3), as one can show that 1 − ε ≤
1/(1 + ε) for ε ∈ (0, 1). Thus, if an approximation method satisfies the multiplicative error
guarantees, then it also satisfies the relative error guarantees. The converse is not true, and
herein we will omit this advantage of K-RelNet over other methods for ease of comparison.
Moreover, a SAT-oracle is a SAT-solver able to answer satisfiability queries with up to a million
variables in practice. FK has |V ′|+ |E′| variables. K-RelNet’s theoretical guarantees now demand
context relative to other existing methods, to then perform computational experiments verifying
its performance in practice.

3. Context Relative to Competitive Methods

This section briefly contextualizes our work relative to competitive techniques for network
reliability evaluation, so as to facilitate the comparative analyses in Section 4. We arrange meth-
ods into three groups: exact or bounds, guarantee-less simulation, and probably approximately
correct (PAC).

3.1. Group (i): Exact or Bounds

Network reliability belongs to the computational complexity class #P-complete, which is largely
believed to be intractable. This means that the task of computing uG(P) efficiently is seemingly
hopeless. While of limited application, the most popular techniques in this group employ ap-
proaches such as state enumeration [20], direct decomposition [21], factoring [22], or compact
data structures like binary-decision-diagrams (BDD) [3]. We refer the reader to the cited litera-
ture for a survey of exact methods [20, 23].
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The intractability of reliability problems motivates exploiting properties from graph theory.
For example, in the case of bounded therewidth and degree, there are efficient algorithms avail-
able [3, 4]. Another promising family of methods issues fast converging bounds [21, 24], an ap-
proach that demonstrates practical performance even in earthquake engineering applications [25],
and that is applicable beyond connectivity-based reliability as part of the more general state-
space-partition principle [26, 27].

3.2. Group (ii): Guarantee-less simulation

When exact methods fail, guarantee-less simulations have found wide applicability. In the con-
text of unbiased estimators,6 a key property is the relative variance σ2

Y/µ
2
Y , with Y a random-

ized Monte Carlo procedure such that E[Y] = uG(P). From Theorem 6 (Appendix), we know
that should a method verify the bounded relative variance (BRV) property, i.e., σ2

Y/µ
2
Y ≤ C

for C some constant, then an efficient (ε, δ) approximation is guaranteed with a sample size of
N = O(ε−2 log 1/δ). While certain methods verify the BRV property, the value of C is typically
unknown for general instances of the K-terminal reliability problem, and thus the central limit
theorem is often invoked for drawing confidence intervals despite known caveats [16]. Some
techniques verifying the BRV property include the permutation Monte Carlo-based Lomonosov’s
Turnip (LT) [8] and its sequential splitting extension, the Split-Turnip (ST) [13], and the impor-
tance sampling variants of the recursive variance reduction (RVR) algorithm [28]. They signif-
icantly outperform the crude Monte Carlo (CMC) method in the rare event setting, with RVR
even displaying the VRV property in select instances, as evidenced in empirical evaluations.

As we noted, the number of samples in the crude Monte Carlo approach scales like 1/uG(P),
which can be problematic in highly-reliable systems. A more promising approach leverages the
Markov Chain Monte Carlo method and the product estimator [29, 30], where the small uG(P) es-
timation is bypassed by estimating the product of larger quantities. Significantly, the sample size
roughly scales like log 1/uG(P) [31]. The product estimator is popularly referred to as multilevel
splitting as it has independently appeared in other disciplines [32–34], and even more recently
in the civil and mechanical engineering fields under the name of subset simulation [35]. In the
case of network reliability, the latent variable formulation by Botev et al. [9], termed generalized
splitting (GS), delivers unbiased estimates of uG(P). The similar approach by Zuev et al. [10] is
not readily applicable to the K-terminal reliability and delivers biased samples, which can be an
issue to rigorously assess confidence.

3.3. Group (iii): PAC methods

In a breakthrough paper, Karger gave the first efficient approximation for the all-terminal network
unreliability problem [14]. However, Karger’s algorithm is not always practical despite recent
improvement [36]. Also, unlike K-RelNet, Karger’s algorithm is not readily applicable to the
more general K-terminal network reliability problem.

Besides our network reliability PAC approximation technique,K-RelNet, and that is special-
ized to the K-terminal reliability problem, there are general Monte Carlo sampling schemes that
deliver (ε, δ) guarantees. The reminder of this subsection highlights relevant methods that are
readily implementable in Monte Carlo-based network reliability calculations.

6The quality of a guarantee-less method being unbiased is key, as boosting confidence by means of repeating experi-
ments leveraging the central limit theorem would lack justification otherwise.

9



Denoting Y the random samples produced by unbiased sampling-based estimators, traditional
simulation approaches take the average of i.i.d. samples of Y . Such estimators can be integrated
into optimal Monte Carlo simulation (OMCS) algorithms [37]. An algorithm A is said to be op-
timal (up to a constant factor) when its sample size NA is not proportionally larger in expectation
than the sample size NB of any other algorithm B that is also an (ε, δ) randomized approximation
of µY , and that has access to the same information as A, i.e., E[NA] ≤ c ·E[NB] with c a universal
constant.

Algorithm 2 Stopping Rule Algorithm (SRA) [37].
Input: ε, δ ∈ (0, 1) and random variable Y .
Output: Estimate ûG(P) with PAC guarantees.
Let {Yi} be a set of i.i.d samples of Y .
Compute constants Υ = 4(e − 2) log(2/δ)1/ε2, Υ1 = 1 + (1 + ε) · Υ.
Initialize S ← 0, N ← 0.
while (S < Υ1) do: N ← N + 1, S ← S + YN .
ûG(P)← Υ1/N

A simple and general purpose black box algorithm to approximate uG(P) with PAC guar-
antees is the Stopping Rule Algorithm (SRA) introduced by Dagum et al. [37]. The conver-
gence properties of SRA were shown through the theory of martingales and its implementation is
straightforward (Algorithm 2).

Even though SRA is optimal up to a constant factor for RVs with support {0, 1}, a different al-
gorithm and analysis leads to the Gamma Bernoulli Approximation Scheme (GBAS) [38], which
improves the expected sample size by a constant factor over SRA and demonstrates superior
performance in practice due to improved lower order terms in its guarantees. GBAS has the addi-
tional advantage with respect to SRA of being unbiased, and it is relatively simple to implement.
The core idea of GBAS is to construct a RV such that its relative error probability distribution
is known. The procedure is shown in Algorithm 3, I is the indicator function, Unif(0, 1) is a
random draw from the uniform distribution bounded in [0, 1], and Exp(1) is a random draw from
an exponential distribution with parameter λ = 1. Also, Algorithm 3 requires parameter k, which
is set as the smallest value that guarantees δ ≥ Pr(µY/µ̂Y < (1 + ε)2 or µY/µ̂Y > (1 − ε)2) with
µY/µ̂Y ∼ Gamma(k, k − 1) [38]. In practice, values of k for relevant (ε, δ) pairs can be tabulated.
Alternatively, if one can evaluate the cumulative density function (cdf) of a Gamma distribution,
galloping search can be used to find the optimal value of k with logarithmic overhead (on the
number of cdf evaluations).

Algorithm 3 Gamma Bernoulli Approximation Scheme (GBAS) [38].
Input: k parameter.
Output: Estimate ûG(P) with PAC guarantees.
Let {Yi} be a set of independent samples.
Initialize S ← 0, R← 0, N ← 0.
while (S , k) do

N ← N + 1, B← I(Unif(0, 1) ≤ YN)
S ← S + B, R← R + Exp(1)

end while
ûG(P)← Υ1/N
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Note that SRA and GBAS give PAC estimates with optimal expected number of samples for
RVs with support {0, 1}, yet they disregard the variance reduction properties of more advanced
techniques. Thus, one can ponder, is there a way to exploit a randomized procedure Y such
that σY � σYCMC in the context of OMCS? The Approximation Algorithm (AA), introduced
by Dagum et al. [37], and based on sequential analysis [39], gives a partially favorable answer.
In particular, steps 1 and 2 (Algorithm 4) are trial experiments that give rough estimates of µY

and σ2
Y/µ

2
Y , respectively. Then, step 3 is the actual experiment that outputs ûG(P) with PAC

guarantees. AA assumes Y ∈ [0, 1], and it was shown to be optimal up to a constant factor.
The downside of AA, or any OMCS algorithm as AA is optimal, is that it requires in

expectation NAA = O(max{σ2
Y/µ

2
Y , ε/µY } · ε

−2 ln 1/δ) samples. Thus, despite considering the
relative variance σ2

Y/µ
2
Y , OMCS algorithms become impractical in the rare-event regime. For

example, consider the case in which edge failure probabilities tend to zero and 1/µY goes to
infinity. If a technique delivers Y that meets the BRV property, i.e., σ2

Y/µ
2
Y ≤ C for C some

constant, then, from Theorem 6 (Appendix), we know a sample of N = O(ε−2 ln 1/δ) suffices,
meanwhile NAA → ∞.

Algorithm 4 The Approximation Algorithm (AA) [37].

Input: (ε, δ)-parameters.
Output: Estimate ûG(P) with PAC guarantees.
Let {Yi} and {Y ′i } be two sets of independent samples of Y .

1: ε′ ← min{1/2,
√
ε}, δ′ ← δ/3

µ̂Y ← SRA(ε′, δ′)
2: Υ← 4(e − 2) log(2/δ)1/ε2

Υ2 ← 2(1 +
√
ε)(1 + 2

√
ε)(1 + ln(3/2)/ ln(2/δ))Υ

N ← Υ2 · ε/µ̂Y , S ← 0
for (i = 1, . . . ,N) do: S ← S + (Y ′2i−1 − Y ′2i)

2/2
r̂∗Y ← max{S/N, εµ̂Y }/µ̂

2
Y

3: NAA ← Υ2 · r̂∗Y
for (i = 1, . . . ,NAA) do: S ← S + Yi

ûG(P)← S/N

We will use GBAS for CMC with (ε, δ) guarantees, and useAA, given its generality, to turn
various existing techniques into PAC methods themselves. ForAA, note that the rough estimate
µ̂Y in step 1 is computed using YCMC as it is the cheapest, but from step 2 and on, the estimator
that is intended to be tested is used, but the reported runtime will be that of step 3 to measure
variance reduction and runtime without trial experiments.

4. Computational Experiments

A fair way to compare methods is to test them against challenging benchmarks and quantify
empirical measures of performance relative to their theoretical promise. We take this approach
to test K-RelNet alongside competitive methods. The following subsections describe our exper-
imental setting, listing implemented methods, and their application to various benchmarks.

4.1. Implemented estimation methods
Table 1 lists reliability evaluation methods that we consider in our numerical experiments.

Exact methods run until giving an exact estimate or best bounds until timeout. Each guarantee-
11



Table 1: Methods used in computational experiments, and corresponding parameters.

Group Methods IDs Parameters Ref.
i BDD-based Network Reliability HLL n/a [3, 40]

ii

Lomonosov’s-Turnip LT N = NS [8]
Sequential Splitting Monte Carlo ST B = 100, N = NS /B [13]
Generalized Splitting GS s = 2,N0 = 103,N = NS [9]
Recursive Variance Reduction RVR N = NS /

(
|K|

2

)
[28]

iii
Karger’s 2-step Algorithm K2Simple ε, δ [36]

iii Optimal Monte Carlo Simulation GBAS,AA ε, δ [37, 38]
Counting-based Network Unreliability K-RelNet ε, δ This paper

less simulation method uses a custom number of samples N that depends on the shared parameter
NS (Table 1). This practice, borrowed from Vaisman et al. [13], tries to account for the varying
computational cost of samples among methods.

PAC algorithmsAA or GBAS are use in combination with guarantee-less sampling methods
to compare runtime given a target precision. For example, GBAS(YCMC) denotes Algorithm 3
when samples are drawn from the CMC estimator. Experiments withAA use (ε, δ) = (0.2, 0.2).
Experiments embedded in GBAS use two configurations: (0.2, 0.2) and (0.2, 0.05). K-RelNet
uses (0.8, 0.2) to avoid time outs. As we will verify, in practice, PAC-methods issue estimates
with better precision than the input theoretical (ε, δ)-guarantees.

To the best of our knowledge, methods in Table 1 are some of the best in their categories
as evidenced in the literature. We implemented all methods in a Python prototype for uniform
comparability and ran all experiments in the same machine—a 3.60GHz quad-core Intel i7-4790
processor with 32GB of main memory and each experiment was run on a single core.

4.2. Estimator Performance Measures
We use the next empirical measures to assess the performance of reliability estimation meth-

ods. Let û be an approximation of u. We measure the observed multiplicative error εo as
(û − u)/u if û > u, and (û − u)/û otherwise. Also, for a fixed PAC-method, target relative error
ε, and independent measures ε(1)

o , . . . , ε(M)
o , we compute the observed confidence parameter δo as

1/M ·
∑M

i=1 1(|ε(i)
o | ≥ ε). Satisfaction of (ε, δ) is guaranteed, but εo and δo can expose theoretical

guarantees that are too conservative.
Furthermore, for guarantee-less sampling methods we measure εo but not δo, as these do not

support confidence a priori. Thus, we use empirical measures of variance reduction to assess the
desirability of sampling techniques over the canonical method (CMC). Letσ2

YCMC = µY ·(1−µY )/N
be the variance associated to CMC, and let σ2

YA be the sample associated to method A. Clearly,
σ2

YCMC/σ
2
YA > 1 will favor A over CMC. However, this is not the only important consideration in

practice. For respective CPU times τYCMC and τYA , a ratio τYCMC/τYA < 1 would imply a higher
computational cost for A. To account for both, variance and CPU time, we use the efficiency
ratio, defined as ER(YA) =

(
σ2

YCMC/σ
2
YA ) ·

(
τYCMC/τYA ) [41]. In practice, when ER(YA) < 1, one

prefers the more straightforward CMC. A similar measure in the literature is the work normalized
relative variance [9], defined as wnrv(Y) = τYσ

2
Y/µ

2
Y , which is related to the efficiency ratio

via ER(YA) = wnrv(YCMC)/wnrv(YA). We prefer ER(YA) over wnvr(YA) as it is, ipso facto, a
measure of adequacy of A over CMC, informing users on whether they need to implement a
more sophisticated method than CMC.7

7The ratio σ2
YCMC/σ

2
YA in the ER is also the ratio of the relative variances of YCMC and YA, shedding light on how

many times larger (or smaller) the sample associated to CMC needs to be with respect to A from Theorem 6 (Appendix).
12



(a) All-Terminal (b) Two-Terminal (c) K-Terminal

Figure 2: Example of an N × N grid graph, with N = 4. Darkened nodes belong to the terminal set K .

The next subsections introduce the benchmarks we use and discussion of results. Also, in our
benchmarks we consider sparse networks, i.e. |E| = O(|V |), which resemble engineered systems.

4.3. Rectangular Grid Networks
We consider N×N square grids (Figure 2) because they are irreducible (via series-parallel

reductions) for N > 2, their tree-width is exactly N, and they can be grown arbitrarily large until
exact methods fail to return an estimate. Also, failure probabilities can be varied to challenge
simulation methods. Our goal is to increase N and vary failure probabilities uniformly to verify
running time, scalability, and quality of approximation. We evaluate performance until methods
fail to give a desirable answer. In particular, we consider values of N in the range 2 to 100. Also,
assume all edges fail with probability 2−i, for i ∈ {1, 3, . . . , 15}. Furthermore, we consider ex-
treme cases of K (Figure 2), namely, all-terminal and two-terminal reliability, and a K-terminal
case with terminal nodes distributed in a checkerboard pattern.

4.3.1. Exact calculations
For reference, we obtained exact unreliability calculations using the BDD-based method by
Hardy, Lucet, and Limnios [3], herein termed HLL due to its authors. We computed uG(P)
for N = 2, .., 10 and all values of pe. Figure 3 shows a subset of exact estimates (a-b) and ex-
ponential scaling of running time (c). Several other exact methods we studied and referenced in
Section 3, were used, but HLL was the only one that managed to estimate uG(P) exactly for all
N ≤ 10. However, HLL became memory-wise more consuming for N > 10. Thus, if memory is
the only concern, the state-space partition can be used instead to get anytime bounds on uG(P) at
the expense of larger runtime, but storing at most O(|E|) vectors X ∈ {0, 1}m simultaneously [26].
Next, we use these exact estimates to compute εo and ER for guarantee-less simulation methods,
and to compute εo and δo for PAC methods.

4.3.2. Guarantee-less simulation methods
Figure 4 shows values of εo for the case of two-terminal reliability and setting NS = 104. Most
values are below the εo = 0.2 threshold. For RVR we observed values of εo in the order of the
float-point precision for the largest values of i. We attribute this to the small number of cuts with
maximum probability (2-4 in our case) that, together with the fact that RVR finds them all in
the decomposition process, endows RVR with the VRE property in this case. Conversely, other
methods do not rely as heavily on these small number of cuts.

Moreover, the CPU time varied among methods as shown in Figure 5. The only method
whose single sample computation is affected by the values of i is GS, consistent with the ex-
pected number of levels, which scales as log 1/uG(P). However, matrix exponential operations
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Figure 3: (a-b) Exact estimates of uG(P) and (c) CPU time using HLL for all-, two-, and K-terminal cases.
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Figure 4: Multiplicative error εo for guarantee-less simulation methods in the two-terminal reliability case.
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(d) RVR

Figure 5: CPU time for guarantee-less simulation methods in the two-terminal reliability case.
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Figure 6: ER for guarantee-less simulation methods in the two-terminal reliability case.

for handling more cases of i added overhead in LT and ST; the sharp time increase from N = 5
to N = 6 is due to this operation, consistent with findings by Botev et al. [9]. Instead, RVR does
not suffer from numerical issues and appears to verify the VRV property in this grid topology.

Also, to compare all methods in a uniform fashion we used the efficiency ratio (Figure 6).
Values of σ2

YCMC for computing the efficiency ratio are exact from HLL, and CPU time τYCMC is
based on 104 samples. Estimates below the horizontal line are less reliable than those obtained
with CMC for the same amount of CPU time. In particular, we note that for less rare failure
probabilities (2−7 ≈ 0.008) some methods fail to improve over CMC. Missing values for RVR
show improvements above 107 in the efficiency ratio which, again, can be attributed to it meeting
the VRE property in these benchmarks. Furthermore, an interesting trend among simulation
methods is that there is a downward trend in their efficiency ratio as N grows. Thus, we can
construct an arbitrarily large squared grid for some N that will, ceteris paribus, yield an efficiency
ratio below 1 in favor of CMC. We attribute this to the time complexity of CMC samples in sparse
graphs, which can be computed in O(|V |) time, whereas other techniques run in O(|V |2) time or
worse. Thus, the larger the graph the far greater the cost per sample by more advanced techniques
with respect to CMC.

4.3.3. Probably approximately correct (PAC) methods
Next, we embedded simulation methods in AA, except CMC which was run using GBAS be-
cause the latter is optimal for Bernoulli RVs such as YCMC. Figure 7 shows the runtime for meth-
ods embedded intoAA. We were able to feasible compute PAC-estimates for edge failure prob-
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Figure 7: CPU time for PAC-ized sampling methods viaAA setting ε = δ = 0.2 (all-terminal reliability).
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Figure 8: (a-b) Multiplicative error for GBAS(YCMC) setting ε = δ = 0.2, and (c) respective running time for various
sizes.

abilities of 2−5 ≈ 0.03 or larger. The approximation guarantees turned out to be rather conserva-
tive, obtaining far better precision in practice. Variance reduction through AA can only reduce
sample size by a factor of O(1/ε) with respect to the Bernoulli case (i.e. NZO), thus PAC-estimates
with advanced simulation methods usingAA seem to be confined to cases where uG(P) ≥ 0.005
for the square grids benchmarks. However, conditioned on disruptive events such as natural
disasters in which failure probabilities are larger,AA can deliver practical PAC-estimates.

On the other hand, GBAS(YCMC) turned out to be practical for more cases, and the analysis
used by Huber [38] seems to be tight as evidenced by our estimates of δo (Figure 8, a-b). Yet, as
expected, the running time is heavily penalized by a factor 1/uG(P) in the expected sample size
as shown in Figure 8 (c).

Furthermore, we used K-RelNet to approximate uG(P) in all cases of K thanks to our new
developments. Figure 9(b) shows runtimes as well as (δo, εo) values for edge failure probability
cases of 2−1, 2−3, 2−5. The weighted to unweighted transformation appears to be the current
bottleneck as it considerably increases the number of extra variables in FK . However, note that,
unlike K2Simple that is specialized for the all-terminal case, K-RelNet is readily applicable to
any K-terminal reliability problem instance. Also, K-RelNet is the only method that, due to its
dependence on an external Oracle, can exploit on-going third-party developments, as constrained
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(a) K2Simple (ε = 0.2 and δ = 0.05)
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Figure 9: K-RelNet CPU time and εo values for K-terminal reliability case.
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Figure 10: εo values and CPU time for GBAS(YCMC) setting (ε, δ) = (0.2, 0.05).

SAT and weighted model counting are very active areas of research. 8 Also, SAT-based methods
are uniquely positioned to exploit breakthroughs in quantum hardware and support a possible
quantum version of K-RelNet [42].

Furthermore, our experimental results suggest that the analysis of both, K2Simple and K-
RelNet, is not tight. This is observed by values of (εo, δo), which are far better than the theoretical
input guarantees. This calls for further refinement in their theoretical analysis. Conversely,
GBAS delivers practical guarantees that are much closer to the theoretical ones, as demonstrated
in Figures 8 and 10, where the target error can be exceeded still satisfying the target confidence
overall.

The square grids gave us insight on the relative performance of reliability estimation meth-
ods. Next, we use a dataset of power transmission networks to test methods on instances with
engineered system topologies.

4.4. U.S. Power Transmission Networks
We consider a dataset with 58 power transmission networks in cities across the U.S. A sum-

mary discussion of their structural graph properties can be found elsewhere [43]. Also, we con-
sidered the two-terminal reliability problem. To test the robustness of methods, for each instance
(G, P), we considered every possible s, t ∈ V pair as a different experiment. Thus, totaling

(
n
2

)
ex-

periments per network instance, where n = |V |. We used a single edge failure probability across

8See past and ongoing competitions: https://www.satcompetition.org/
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Figure 11: Two-terminal reliability approximations using GBAS setting ε = δ = 0.2
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Figure 12: Two-terminal reliability approximations using K-RelNet with (0.8, 0.2).

experiments of pe = 2−3 = 0.125 to keep overall computation time practical. Using HLL and
preprocessing of networks, we were able to get exact estimates for some of the experiments. We
used these to measure the observed multiplicative error εo when possible. Computational times
are reported for all experiments, even if multiplicative error is unknown.

Figure 11 shows PAC-estimates using GBAS. As expected, the variation in CPU time was
proportional to 1/uG(P). Furthermore, we usedK-RelNet to obtain PAC-estimates and observed
consistent values of the multiplicative error (Figure 12). In some instances, however, K-RelNet
failed to return an estimate before timeout. We also tested simulation methods setting NS = 103.
Despite the lack of guarantees they performed well in terms of εo and CPU time (Figures 13-14,
first 5 benchmarks for brevity). However, the efficiency ratio is reduced as the size of instances
grows.

4.5. Analysis of results and outlook

Exact methods are advantageous when a topological property is known to be bounded. HLL
proved useful not only for medium-sized grids (N × N = 100), but also it was instrumental when
computing exact estimates for many streamlined power transmission networks. Our research
shows that methods exploiting bounded properties, together with practical upper bounds, deliver
competitive exact calculations for many engineered systems. In power transmission networks,
HLL was able to exploit their relatively small treewidth.

Among guarantee-less sampling methods, there are multiple paths for improvement. In the
cases of LT and ST methods, even when the exponential matrix offers a reliable approach to
compute the convolution of exponential random variables, numerically stable computations rep-
resent the main bottleneck of the algorithms and in many cases, they are not needed. Thus,
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Figure 13: Multiplicative error for simulation methods setting NS = 103.
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Figure 14: Running time for simulation methods setting NS = 103.

future research could devise ways to diagnose these issues and fall-back to the exponential ma-
trix only when needed, or use approximate integration (as in Gertsbakh et al. [44]), or use a more
arithmetically robust algorithm (e.g. round-off algorithms for the sample variance [45]). More-
over, GS was competitive but its requirement to run a preliminary experiment with an arbitrary
number of trajectories N0 to define intermediate levels, and without a formal guidance on its
values, can represent a practical barrier when there is no knowledge in the order of magnitude of
uG(P). Future research could devise splitting mechanisms that use all samples towards the final
experiments while retaining its unbiased properties. Finally, RVR was very competitive; how-
ever, we noted that (i) the number of terminals adds a considerable overhead in the number of
calls to the minimum cut algorithm, and (ii) its performance is tied to the number of maximum
probability cuts because larger cuts do not contribute meaningfully towards computing uG(P).
Future work could use Karger’s minimum cut approximation [46] and an adaptive truncation of
the recursion found in the RVR estimator to address (i) and (ii), respectively. We are currently
investigating this very issue and recognized the RVR estimator as an special, yet randomized,
case of state-space-partition algorithms [26].

Among PAC-methods, we found GBAS to be tight in its theoretical analysis and competitive
in practice. Outside the extremely rare-event regime, we contend that the usage of PAC algo-
rithms such as GBAS would benefit the reliability and system safety community as they give
exact confidence intervals without the need of asymptotic assumptions and arbitrary choices on
the number of samples and replications. Karger’s newly suggested algorithms demonstrated prac-
tical performance even in the rare-event regime, yet it appears that their theoretic guarantees are
still too conservative. Equipping K2Simple with GBAS at the first recursion level would instantly
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yield a faster algorithm for non-small failure probabilities. However, the challenge of proving
tighter bounds on the relative variance for the case of small failure probabilities remains. The
same argument on theoretic guarantees being too conservative extends to RelNet, which cannot
be set too tight in practice. But we expect RelNet to gain additional competitiveness as orthog-
onal advances in approximate weighted model counting continue to accrue. RelNet remains
competitive in the non rare-event regime, delivering rigorous PAC-guarantees for theK-terminal
reliability problem. Also, its SAT-based formulation makes it uniquely suitable for quantum al-
gorithmic developments, at a time when major technological developers, such as IBM, Google,
Intel, etc., are increasing their investment on quantum hardware [47].

5. Conclusions and Future Work

We introduced a new logic-based method for the K-terminal reliability problem, K-RelNet,
which offers rigorous guarantees on the quality of its approximations. We examined this method
relative to several other competitive approaches. For non-exact methods we emphasized desired
relative variance properties: bounded by a polynomial on the size of the input instance (FPRAS),
bounded by a constant (BRV), or tending to zero (VRV). We turned popular estimators in the
literature into probably approximately correct (PAC) ones by embedding them into an optimal
Monte Carlo algorithm, and showed their practical performance using a set of benchmarks.

Our tool, K-RelNet, is the first approximation of the K-terminal reliability problem, giving
strong performance guarantees in the FPRAS sense (relative to a SAT-oracle). Also, K-RelNet
gives rigorous multiplicative error guarantees, which are more conservative than relative error
guarantees. However, its performance in practice remains constrained to not too small edge
failure probabilities (≈ 0.1), which remains practical when conditioned on catastrophic hazard
events. Thus, our future work will pursue a more efficient encoding and solution approaches,
especially when edge failure probabilities become smaller. Moreover, promising advances in
approximate model counting and SAT solvers will render K-RelNet more efficient over time,
given its reliance on SAT oracles.

Embedding estimators with desired relative variance properties into PAC methods proved to
be an effective strategy in practice, but only when failure probabilities are not rare. Despite this
relative success, the strategy becomes impractical when uG(P) approaches zero. Thus, future
research can address these issues in two fronts: (i) establishing parameterized upper bounds on
the relative variance of new and previous estimators when they exist, and (ii) develop new PAC-
methods with faster convergence guarantees than those of the canonical Monte Carlo approach.

PAC-estimation is a promising yet developing approach to system reliability estimation. Be-
yond the K-terminal reliability problem, its application can be challenging in the rare event
regime, but in all other cases it can be used much more frequently as an alternative to the less
rigorous—albeit pervasive—empirical study of the variance through replications and asymptotic
assumptions appealing to the central limit theorem. In fact, methods such as GBAS deliver exact
confidence intervals using all samples at the user’s disposal. In future work, the authors will ex-
plore general purpose PAC-methods that can be employed in the rare-event regime, developing a
unified framework to conduct reliability assessments with improved knowledge of uncertainties
and further promote engineering resilience and align it with the measurement sciences.
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Proof of Theorem 6

The next two lemmas are useful towards proving Theorem 6. Lemma 4 shows how the
variance in a Monte Carlo estimator reduces as a function of the number of samples.

Lemma 4. For Y a random variable with mean µY and variance σ2
Y , define Yn as follows:

Yn =
1
n

n∑
i=1

Yi,

with Yi ∼ Y and n ∈ N. Then, we have that σ2
Yn

= 1
nσ

2
Y .

Proof. The variance of Yn is:

σ2
Yn

= E[(Yn − µYn )2]

= E[Y2
n ] − µ2

Yn
.

Note that µYn = µY , and using the property of linearity in the expectation operator write:

σ2
Yn

=
1
n2

n∑
i, j

E
[
YiY j

]
− µ2

Y

=
1
n2

( n∑
i

E
[
Y2

i
]
+

n∑
i, j:i, j

E
[
YiY j

])
− µ2

Y .

Now, recall that every Yi is i.i.d as Y and σ2
Y = E[Y2] − µ2

Y . Then,

σ2
Yn

=
1
n2

(
n · E[Y2] + n(n − 1) · µ2

Y

)
− µ2

Y

=
1
n

(
E[Y2] + (n − 1) · µ2

Y − n · µ2
Y

)
=

1
n
(
E[Y2] − µ2

Y )

=
1
n
σ2

Y .

Lemma 5 shows the link between the number of repetitions of a experiment and the success
probability of the majority of repetitions. We will use this argument for constructing a median-
based estimate.

Lemma 5. Let X be a Bernoulli random variable with success probability s ∈ [0, 1]. Define the
random variable:

Xr =

r∑
i=1

Xi,

with r ∈ N. Then, the probability of at most br/2c successes is:

Pr(Xr ≤ r/2) =

br/2c∑
i=0

(
r
i

)
(s)i(1 − s)r−i
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Proof. The proof is straightforward if one realizes that Xr is a Binomial random variable with
parameters s and r. The desired probability is the cumulative distribution function evaluated at
r/2.

Next, we are ready to prove Theorem 6.

Theorem 6. For a random variable Y with mean µY and variance σ2
Y , and user specified param-

eters ε, δ ∈ (0, 1), it suffices to draw O(σ2
Y/µ

2
Yε
−2 log 1/δ) i.i.d samples to compute an estimate

µY such that:

Pr
(
|µY − µY |

µY
≥ ε

)
≤ δ

Proof. From the well known Markov (or Chebyshev) inequality, we can write:

Pr
(
|Y − µY | ≥ k

)
≤
σ2

Y

k2 .

For our purposes, we let k = εµY with positive µY . Then, we write:

Pr
(
|Y − µY |

µY
≥ ε

)
≤

σ2
Y

ε2µ2
Y

.

If we substitute Y by Yn such that n =
σ2

Y

(1−s)ε2µ2
Y

(Lemma 4), then:

Pr
(
|Yn − µY |

µY
≥ ε

)
≤
σ2

Y/n

ε2µ2
Y

= 1 − s.

Since the experiment’s success probability is at least s, we boost it up to 1 − δ via Lemma 5.
First, let µY be the median of r samples of Yn. Then, note that estimate µY “fails”—lays outside
the interval µY (1 ± ε)—if and only if r/2 or more samples lay outside µY (1 ± ε). Thus, choosing
s ∈ (0.5, 1), the probability that µY fails is at most:

br/2c∑
i=0

(
r
i

)
(s)i(1 − s)r−i ≤

br/2c∑
i=0

(
r
i

)
(s)r/2(1 − s)r/2

≤ (s − s2)r/2
br/2c∑
i=0

(
r
i

)
≤ (s − s2)r/2 · 2−r

≤ (4s − 4s2)r/2

We use the previous bound to choose r such that (4s − 4s2)r/2 ≤ δ. In particular, for s = 3/4, we
find:

r =
2

log(4/3)
log(1/δ)

To recap: construct a single experiment Yn using n = O(σ2
Y/µ

2
Yε
−2) samples, repeat the exper-

iment r = O(log 1/δ) times, and return median µY . Using O(σ2
Y/µ

2
Yε
−2 log 1/δ) samples, we

showed this procedure returns µY in the range (1 ± ε) · µY with at least probability 1 − δ.
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