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In today’s digital age, it is becoming increasingly prevalent to retain digital footprints in the cloud indefinitely.

Nonetheless, there is a valid argument that entities should have the authority to decide whether their personal

data remains within a specific database or is expunged. Indeed, nations across the globe are increasingly

enacting legislation to uphold the “Right To Be Forgotten” for individuals. Investigating computational

challenges, including the formalization and implementation of this notion, is crucial due to its relevance in

the domains of data privacy and management.

This work introduces a new streaming model: the ‘Right to be Forgotten Data Streaming Model’ (RFDS

model). The main feature of this model is that any element in the stream has the right to have its history

removed from the stream. Formally, the input is a stream of updates of the form (𝑎,Δ) where Δ ∈ {+,⊥}
and 𝑎 is an element from a universe 𝑈 . When the update Δ = + occurs, the frequency of 𝑎, denoted as 𝑓𝑎 , is

incremented to 𝑓𝑎 + 1. When the update Δ = ⊥, occurs, 𝑓𝑎 is set to 0. This feature, which represents the forget

request, distinguishes the present model from existing data streaming models.

This work systematically investigates computational challenges that arise while incorporating the notion

of the right to be forgotten. Our initial considerations reveal that even estimating F1 (sum of the frequencies

of elements) of the stream is a non-trivial problem in this model. Based on the initial investigations, we focus

on a modified model which we call 𝛼-RFDS where we limit the number of forget operations to be at most 𝛼

fraction. In this modified model, we focus on estimating F0 (number of distinct elements) and F1. We present

algorithms and establish almost-matching lower bounds on the space complexity for these computational

tasks.
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1 INTRODUCTION
In the era of rapid and unprecedented digitization, data has emerged as a pivotal and invaluable asset.

This significance is underscored by the widely acknowledged assertion in the digital domain that

“Data Is the New Oil” [1]. Irrespective of the validity of equating data to oil, it is an incontrovertible

truth that corporations globally are zealously accumulating and storing extensive volumes of

personal data. The first two decades of the 21st century have seen a troubling trend where it seems

that the digital activities and footprints of individuals and entities could be perpetually stored in

the cloud.

In response to these growing concerns, governments and regulatory bodies worldwide have

shifted their focus toward developing regulatory frameworks and legislations that empower in-

dividuals to regain control over the use of their personal data. A significant achievement in this

effort is the European Union’s enactment of the General Data Protection Regulation (GDPR), which

grants individuals the ‘Right to be Forgotten’ [17]. Following this, other countries have considered

implementing similar privacy-centric laws. While the concept of the Right to be Forgotten (RTBF)

initially centered on search engines, recent advocacy by privacy activists has expanded its scope,

calling for more comprehensive privacy laws. In this evolving context, it is crucial to explore the

computational challenges associated with concepts like RTBF in various computational settings.

This work initiates the exploration of the concept of forgetting within the data streaming model. The
streaming model is characterized by computations with constrained storage capacity, where data

arrives as a continuous flow of elements. The objective is to develop algorithms with efficient update

time complexity (i.e., the time required to process each stream element) and space complexity.

The streaming model of computation has facilitated fundamental breakthroughs, leading to the

deployment of systems in various domains such as data mining [6], network monitoring [13],

security, and similar fields [15].

Our work’s primary conceptual contribution is the introduction of a new streaming model: the

Right to be Forgotten Data Streaming Model (RFDS model). This model empowers the end-user to

execute a forget operation, enabling them to request, at any point, the omission of a specific data

element, referred to as “𝑎”, from the stream. This requirement obligates the system to execute

computations as if the element “𝑎” had never been part of the stream. Users are permitted to make

an unlimited number of such requests for any number of elements.

It is vital to underscore that the RFDS model diverges significantly from standard models such

as the insertion and the turnstile model. For example, while the classic insertion model does not

accommodate element deletion, the turnstile model does allow for the user-specified reduction

in the frequency of an element. However, achieving a frequency reduction to zero necessitates

that users track the element’s frequency throughout, which contradicts the fundamental principle

of streaming computation. This requirement would render it more practical for users to perform

computations on their own.

We explore the classical problem of estimating frequency moments under the RFDS model. Our

first set of results highlights a challenging aspect of frequency estimation within the RFDS model.

Specifically, we demonstrate that in this model, any randomized algorithm estimating the 𝑘𝑡ℎ

frequency moment for any 𝑘 requires Ω(𝑛) space, where 𝑛 is the size of the universe from which

the stream elements originate.

Considering this somewhat pessimistic lower bound, one might naturally question the practical

viability of the RFDS model. It is crucial to understand the basis of these robust lower bounds. In

simpler terms, this negative outlook originates from scenarios where almost every user requests

their data to be forgotten. This situation is analogous to banking systems facing significant chal-

lenges during a bank run, when a substantial proportion of customers try to withdraw their funds
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simultaneously. Modern banking systems are designed to handle withdrawals up to a specific

threshold of the bank’s total deposits.

We introduce an (𝛼, F𝑘 )-RFDS model, ensuring that forget requests do not cause the corre-

sponding frequency moment (of F𝑘 ) to fall below a multiplicative factor of (1 − 𝛼) of what the
frequency moment would have been in the absence of forget requests. For example, in designing a

data structure to monitor distinct elements (i.e., F0) for a website, our model guarantees that the

proportion of customers making a forget request never exceeds an 𝛼 fraction of the total number

of distinct visitors.

In alignment with our desiderata, we demonstrate the feasibility of designing efficient algorithms

within the (𝛼, F𝑘 )-RFDS model. We introduce efficient streaming algorithms for estimating the

functions F0 and F1. For F0, we present an algorithm in the (𝛼, F0)-RFDS model with a space

complexity of 𝑂

(
1

1−𝛼 ·
log𝑛

𝜀2
· log

1

𝛿

)
. Similarly, for F1, we propose an algorithm in the (𝛼, F1)-RFDS

model, requiring 𝑂

(
1

1−𝛼 ·
log𝑛

𝜀2
· log

𝑚
𝛿

)
space complexity, where𝑚 is the total number of updates

in the stream. Further, we explore lower bounds, obtaining Ω
(

1

𝜀2 (1−𝛼) + log𝑛

)
for F0 estimation

and Ω
(

1

1−𝛼 ·
1

𝜀2
+ log log𝑚

)
for F1 estimation in the (𝛼, F0) and (𝛼, F1) models respectively.

A primary motivation for our research was to evaluate the practicality of integrating the ‘right

to be forgotten’ concept into streaming computations. This integration would enable regulatory

bodies to mandate internet companies to adopt variants of the RFDS model in their systems. Our
key finding is that incorporating the ‘right to be forgotten’ in streaming systems is feasible, provided
that forget requests are bounded. Additionally, from a technical standpoint, the (𝛼, F𝑘 )-RFDS model

presents intriguing technical challenges, particularly the notable gaps between the lower and

upper bounds for both F0 and F1. Future research directions include investigating the possibility

of achieving poly(log𝑛)-space complexity for F2 in the (𝛼, F2)-RFDS model, as well as higher

moments.

We conclude this introduction with a brief discussion of earlier studied models that are directly

related to RFDS model. The work of Hoffman, Muthukrishnan, and Raman [8] studied a model

known as the reset model. Here each stream element is an update of the form (𝑎, 𝑣) implying that

the frequency of 𝑎 in the stream is updated to 𝑣 . It is easy to see that a forget operation can be

simulated via a reset update: forget operation of an item 𝑎 can be replaced with an update (𝑎, 0).
However, critically the reset model does not support insertion update (incrementing frequency

by a positive value). Observe that RFDS model can simulate the reset model by first forgetting the

item and then incrementing its frequency by insertions. Thus, the RFDS model generalizes the

reset model. In addition, in [8], the authors restricted their focus to monotone update model, i.e. the
frequency of an item never goes down. In particular, the forget operation is not supported in the

monotone update model and their techniques and results are not applicable in the RFDS model. A

recent work of Jayaram and Woodruff is related, but distinct, to the 𝛼-RFDS model. They examined

a variant of the turnstile model called the bounded deletion model [10], which limits the number of

deletions in the turnstile model.

2 PRELIMINARIES
We denote the set {1, . . . , 𝑛} as [𝑛]. For a string 𝑎 ∈ {0, 1}𝑛 , the Hamming weight of 𝑎, represented

as |𝑎 |, is the count of ’1’s in the string 𝑎. We define two well-established data stream models to

provide a comprehensive framework for comparing and contrasting different stream models. Each

stream element is considered a tuple (𝑎,Δ), where 𝑎 belongs to the universe 𝑈 of size 𝑛, and Δ is

an element of a constant sized set of actions. We assume the universe 𝑈 to be [𝑛] for simplicity.
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For any element 𝑎 from the universe, its frequency in the stream is denoted by 𝑓𝑎 , which is initially

zero for all 𝑎. Upon arrival of a stream item (𝑎,Δ), the frequency 𝑓𝑎 is updated based on Δ. In
the standard insertion-only stream model, the data stream A = ⟨(𝑎1,Δ1), (𝑎2,Δ2), . . . , (𝑎𝑚,Δ𝑚)⟩
comprises elements 𝑎𝑖 ∈ [𝑛] and Δ𝑖 ∈ {+}. The frequency 𝑓𝑎 is incremented by 1 when (𝑎,Δ)
arrives. The turnstile model, another model relevant to our work, allows Δ ∈ {+,−} for each stream

item (𝑎,Δ). In this case, the frequency vector is updated as 𝑓𝑎 ← 𝑓𝑎 − 1 when (𝑎,−) arrives. Other
related models include the strict-turnstile model and the cache register model. We refer to [5] for a

detailed survey on various streaming models.

One of the most explored problems in data streaming models is frequency moment estimation.

The 𝑘-th frequency moment F𝑘 of the stream, defined as F𝑘 =
∑
𝑎∈[𝑛] |𝑓𝑎 |𝑘 , is the 𝑘-th moment of the

frequency vector ⟨𝑓1, . . . , 𝑓𝑛⟩. This paper primarily focuses on F0 and F1, which count the number

of items with non-zero frequency and the sum of all frequencies, respectively. Given 𝜀, 𝛿 ∈ [0, 1], a
streaming algorithm is an (𝜀, 𝛿)-estimator (or outputs an (𝜀, 𝛿)-estimate) of F𝑘 of the stream if it

produces a number Est at the stream’s end such that, with at least (1−𝛿) probability, Est ∈ (1±𝜀)F𝑘 .
Note that by employing standard techniques, a (𝜀, 1/3)-estimator of F𝑘 can be amplified to a success

probability of 1 − 𝛿 , with a multiplicative factor of log
1

𝛿
in the space complexity, thus achieving an

(𝜀, 𝛿)-estimator.

Pair-wise independent hash functions play a central role in the design of data stream algorithms.

Definition 2.1. A family of hash functionsH(𝑘) is 2-wise independent if, for all distinct 𝑥1, 𝑥2 ∈
{0, 1}𝑘 and 𝛼1, 𝛼2 ∈ {0, 1}𝑘 , with ℎ

𝑅←− H(𝑘), Pr[(ℎ(𝑥1) = 𝛼1) ∧ (ℎ(𝑥2) = 𝛼2)] = 1

2
2𝑘

We use a standard explicit family of hash functions [4].

2.1 Communication Complexity
We employ communication complexity lower bounds to establish our streaming algorithms’ space

requirements. Typically, we use the one-way communication complexity model, where Alice and

Bob jointly compute a function on their concatenated inputs, with the only communication being

one-way from Alice to Bob. The following communication problem is of interest to us:

Definition 2.2. In the GapANDindex𝜀,𝑟,𝑑 problem, Alice is given x = 𝑥1, . . . , 𝑥𝑟 ∈ {0, 1}𝑑 , and Bob
is given an index vector i = 𝑖1, . . . , 𝑖𝑟 along with a bit vector b = 𝑏1, . . . , 𝑏𝑟 . They must compute

(with at least 2/3 probability) the GapANDindex𝜀,𝑟,𝑑 (x, i, b), a partial function defined as:

GapANDindex𝜀,𝑟,𝑑 (x, i, b) =
{

1 if

∑𝑟
𝑗=1
(𝑥 𝑗
𝑖 𝑗
∧ 𝑏 𝑗 ) ≥ 𝑟

4
+𝐶𝜀𝑟

0 if

∑𝑟
𝑗=1
(𝑥 𝑗
𝑖 𝑗
∧ 𝑏 𝑗 ) ≤ 𝑟

4
−𝐶𝜀𝑟

This problem was introduced in [16], where they utilized the one-way communication complex-

ity lower bound of the GapANDindex problem to derive a lower bound for the set intersection

estimation problem. The authors established the following lower bound result, which we will use:

Theorem 2.3 ([16]). The lower bound for the one-way communication complexity of theGapANDindex𝜀,𝑟,𝑑
problem, for the case 𝑟 = 𝜃 (1/𝜀2), is Ω(𝑑𝑟 ). This lower bound also holds with each 𝑥𝑖 having a Hamming
weight of Θ(𝑑).
Remark: The work in [16] did not explicitly state that the lower bound holds when each 𝑥𝑖 has a

Hamming weight of 𝜃 (𝑑). However, their proof readily extends to this case, as the lower bound

input instances for Alice and Bob are randomly constructed. With high probability, the Hamming

weight of each 𝑥𝑖 is Θ(𝑑), thus extending their proof to the case stated in the above theorem.

Another problem of interest in this paper is the well investigated Index problem:
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Definition 2.4. In the Index problem, Alice has a set 𝐴 ⊆ [𝑛], and Bob has 𝑖 ∈ [𝑛]. The task is to

determine if 𝑖 ∈ 𝐴 or not, with Alice sending a single message to Bob.

A straightforward algorithm is for Alice to send a characteristic string of 𝐴 to Bob using 𝑛 bits

of communication. This is asymptotically the best strategy, even in a randomized setting.

Theorem 2.5 ([12]). The randomized one-way communication complexity of Index is Ω(𝑛).

2.2 Concentration Inequalities
Let 𝑋 be a random variable. We denote E(𝑋 ) and Var(𝑋 ) as the expectation and variance of 𝑋 ,

respectively. We will use the following three standard concentration inequalities to prove the

correctness of our algorithms:

Theorem 2.6 (Markov’s Ineqality). If 𝑋 is a non-negative random variable and 𝑎 > 0, then
Pr [𝑋 ≥ 𝑎] ≤ E(𝑋 )

𝑎
.

Theorem 2.7 (Chebyshev’s Ineqality). For any random variable 𝑋 , and any positive real
number 𝐾 , Pr [|𝑋 − E(𝑋 ) | ≥ 𝐾] ≤ Var(𝑋 )

𝐾2
.

Theorem 2.8 (Chernoff Bound). Suppose 𝑣1, ..., 𝑣𝑛 are independent random variables taking
values in {0, 1}. Let 𝑉 =

∑𝑛
𝑖=1
𝑣𝑖 and 𝜇 = E[𝑉 ]. Then,

Pr ( |𝑉 − 𝜇 | ≥ 𝛿𝜇) ≤ 2𝑒−
𝛿2𝜇

3 for 0 < 𝛿 < 1

3 RFDSMODEL OF DATA STREAMING
We first formalize the Right to Be Forgotten Data Streaming Model (RFDS). In this model, the stream

elements are members of a universe 𝑈 of size 𝑛. For any element 𝑎 ∈ 𝑈 , let 𝑓𝑎 denote its frequency,

i.e., the number of times 𝑎 appears in the stream.

Definition 3.1. In the right to be forgotten data streaming model, input is a stream of updates of

the form (𝑎,Δ) where Δ ∈ {+,⊥}. If Δ = +, then the frequency of 𝑎, 𝑓𝑎 , gets updated to 𝑓𝑎 + 1. If

Δ = ⊥, then 𝑓𝑎 is reset to 0.

Comparison to Existing Models:We now examine the relationship of the RFDS model with respect to

existing models extensively studied in the literature: (1) the insertion model, (2) the turnstile model.
In the insertion model, the only permissible updates are of the form (𝑎, +). That is, each item of

the stream is an element 𝑎 from the universe, and upon its arrival, the frequency 𝑓𝑎 is incremented

to 𝑓𝑎 + 1. Consequently, the Right to Be Forgotten model extends the insertion model.

In the turnstile model, the input stream comprises updates of the form (𝑎,Δ) where 𝑎 is an

element in the universe and Δ ∈ {+,−}. If Δ = +, 𝑓𝑎 is incremented to 𝑓𝑎 + 1, and if Δ = −, 𝑓𝑎 is
decremented to 𝑓𝑎 − 1. The key distinction between the RFDS model and the turnstile model lies

in the nature of updates: while updates in the turnstile model are linear operations, in the RFDS

model, the ⊥ update is non-linear, eliminating every occurrence of the element 𝑎 and resetting its

frequency to 0. This distinction is particularly evident when considering the computation of F1.

In insertion and turnstile streaming models, there is a very easy and space-efficient deterministic

algorithm to exactly compute F1 that keeps a counter. However, we observe that in the RFDS model,

surprisingly, F1 and F0 are computationally equivalent.

Proposition 3.2. (1) F0 reduces to F1: There is a constant space streaming algorithm that takes a
RFDS stream D and outputs another RFDS stream D ′ such that F1 (D ′) = F0 (D). (2) F1 reduces to
F0: There is a 𝑂 (log𝑚)-space streaming algorithm that takes a RFDS stream D as input and outputs
a RFDS stream D ′ such that F0 (D ′) = F1 (D). Here𝑚 is the number of updates of stream D.
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Proof. For (1), let D be a RFDS stream. Construct a new stream D ′ as follows: For an update

(𝑎, +) in D, introduce updates (𝑎,⊥) and (𝑎, +) in D ′. For an update (𝑎,⊥) in D, keep the same

update in D ′. This algorithm operates in constant space. It is easy to see that F1 of D ′ is the
same as F0 of D. This is because all the occurrences of an item, other than its last occurrence, are

deleted from D ′. For (2), construct a new stream as D ′ from D as follows: Maintain a counter 𝑐

that keeps track of the number of updates of the stream. When an update (𝑎, +) arrives, introduce
update (⟨𝑎, 𝑐⟩, +), where 𝑐 is the value of the counter. When (𝑎,⊥) arrives, introduce updates

(⟨𝑎, 1⟩,⊥). . . . (⟨𝑎, 𝑐 − 1⟩,⊥) (this could blow the stream length by a quadratic factor)
1
. Again it is

easy to see that F0 (D ′) equals F1 (D). Since the conversion algorithm keeps track of the counter 𝑐 ,

it uses 𝑂 (log𝑚) space. □

This suggests that RFDS model is different from existing models. Indeed, we establish that the

randomized complexity of estimating frequency moments is asymptotically larger in the RFDS

model than in the turnstile model. On the other hand, we also note that the deterministic complexity

of estimating F0 (number of elements with non-zero frequency), is asymptotically smaller than the

RFDS model than the turnstile model. Finally, note that we can augment the turnstile model with a

forget operation to get a more general model, however, in this work we only consider augmenting

the insertion model with a forget operation.

3.1 Initial Considerations
The model as defined, while very natural, has limitations. In particular, the fact that every element

in the universe has the right to be forgotten gives rise to the situation where even deciding

whether there is an element with non-zero frequency becomes difficult without essentially storing

information about all possible elements. This leads to the result that estimating F𝑘 for any 𝑘 requires
Ω(𝑛) space. This is in stark contrast to other models where sub-linear space algorithms are known

for estimating frequency moments.

3.1.1 Randomized Complexity of Estimating F𝑘 in the RFDS Model.

Theorem 3.3. Any randomized algorithm that decides whether the stream is empty (the frequency
vector is the 0 vector) or not in the RFDS model requires Ω(𝑛) space.

We will use communication complexity as a tool to establish this lower bound. In particular, we

will use the problem SetInclusion, which we define next.

Definition 3.4 (SetInclusion). Alice has a set 𝐴 and Bob has a set 𝐵 over a universe [𝑛]. The goal
is to decide whether 𝐴 ⊆ 𝐵.

Fact 1. The randomized one-way communication complexity of SetInclusion is Ω(𝑛).

Proof. We reduce Index to SetInclusion. An instance (𝐴, 𝑖) for Indexwill reduce to (𝐴, 𝐵) where
𝐵 = [𝑛] \ {𝑖}. Now 𝑖 ∉ 𝐴 if and only if 𝐴 ⊆ 𝐵. □

Proof. (of Theorem 3.3) Let A be an algorithm that decides whether an RFDS stream is empty

or not that uses 𝑠 bits of space. We can use this algorithm to design a 𝑠-bit one-way communication

protocol for SetInclusion as follows. Alice who has set𝐴will generate a stream of the form ⟨𝑎, +⟩ for
every 𝑎 ∈ 𝐴 and simulate the algorithm A on this stream. Alice sends the state 𝑆 of the algorithm

to Bob. Bob will generate the following stream: For every 𝑏 ∈ 𝐵, generate a stream ⟨𝑏, +⟩ followed
by the stream ⟨𝑏,⊥⟩. Now Bob will continue the simulation of algorithm A (starting from state 𝑆)

on this stream. Bob declares that 𝐴 ⊆ 𝐵 if an only if the output of algorithm A is 0. Observe that

1
This reduction from F1 to F0 is pointed to us by an anonymous researcher.
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the stream is empty if and only if 𝐴 ⊆ 𝐵. Thus Bob can decide whether 𝐴 ⊆ 𝐵 or not by 𝑠 bits of

communication. Since randomized one-way communication complexity of SetInclusion is Ω(𝑛),
𝑠 = Ω(𝑛). □

An immediate corollary to the above lower bound is that there are no space-efficient algorithms

to estimate frequency moments in the RFDS model. This is because the frequency moments are

non-zero if and only if the stream is non-empty. Thus if there is an algorithm with space 𝑠 for

estimating the frequency moments within a multiplicative factor of 1 + 𝜀 for any 𝜀 > 0, then that

algorithm can be used to decide the emptiness of the stream.

Corollary 3.5. For any 𝑘 , any randomized algorithm that estimates F𝑘 in the RFDS requires Ω(𝑛)
space.

In particular, randomized space complexity of F0 estimation in the RFDS model is Ω(𝑛). However,
it is known that in turnstile model F0 can be estimated using poly(log𝑛) space (when the approxi-

mation parameter 𝜀 and the confidence parameter 𝛿 is constant) [3, 7, 9]. Thus for randomized 𝐹0

estimation, there is an exponential gap between the turnstile and RFDS models.

3.2 Deterministic Complexity of Estimating F0: Turnstile vs RFDS
We investigate the deterministic space complexity of estimating F0 in RFDS model. Somewhat

surprisingly we show that in the deterministic realm, the space complexity in RFDS model is slightly

smaller than the space complexity in the turnstile model. In the RFDS model, F0 can be computed

exactly using 𝑂 (𝑛) space. We next prove that the deterministic complexity of estimating F0 in the

turnstile model is Θ(𝑛 log𝑚). This result is perhaps known in the community. However, we have

not encountered a proof. Hence we present it here.

Theorem 3.6. Deterministic complexity of computing F0 of a stream of length𝑚 in RFDS model is
Θ(𝑛) where 𝑛 is the size of the universe. On the other hand, any deterministic algorithm that estimates
F0 in the turnstile model (support of the frequency vector) within a relative error of 1/4 requires
Ω(𝑛 log𝑚) space.

Proof. In the RFDSmodel, we can store an𝑛-bit vector that keeps track of whether the frequency

of each item is 0 or not. Start with all 0 vector and then if an update + comes flip the corresponding

bit to 1. If a ⊥ comes, set it back to 0. The lowerbound of Ω(𝑛) follows from the result in the earlier

section where it is shown that randomized space complexity (even for approximating F0) is Ω(𝑛).
Now we show that any deterministic algorithm for estimating F0 within a relative error of 1/4 in

the turnstile model requires Ω(𝑛 log𝑚) space. Consider the following promise problem (Π𝑦,Π𝑛).
Π𝑦 = {D | F0 (D) ≤ 𝑛/2} and Π𝑛 = {D | F0 (D) = 𝑛}. Any deterministic algorithm that estimates

F0 within a relative error of 1/4 can be easily modified to accept all strings from Π𝑦 and reject all

strings from Π𝑛 . Let 𝐴 be a streaming algorithm that solves this promise problem.

The technique is to model the algorithm 𝐴 that uses 𝑠 space as a deterministic finite state

automaton F𝐴 with 2
𝑠
states and alphabet Σ = [𝑛] × {−1, +1}. In this automaton, for two states 𝑠1

and 𝑠2, there is a transition from 𝑠1 to 𝑠2 if the algorithm 𝐴 with memory state 𝑠1 on update (𝑎, 𝑏)
changes the memory state to 𝑠2. Consider those states where 𝐴 accepts as accepting states.

We will use the Myhil-Nerode theorem to prove the lower bound. For two strings, 𝑥,𝑦 over Σ, we
say 𝑥 ≡ 𝑦 if for all strings 𝑧 over Σ, F𝐴 accepts 𝑥𝑧 if and only if it accepts 𝑦𝑧. Then by Myhil-Nerode

theorem, the number of states of F𝐴 is at least the number of equivalence classes of this equivalence

relation.

We will construct a set of strings where each string belongs to different equivalence classes. For

this, consider the following fact.
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Fact 2. Let 𝑛 be an integer and 𝑝 > 𝑛 be a prime number. For any large enough 𝑛, there is set of 𝑆
consisting of of 𝑛-tuples of the form ⟨ℓ1, ℓ2, . . . , ℓ𝑛⟩ where each ℓ𝑖 ∈ [𝑝] with the following properties.
(1) |𝑆 | ≥ 𝑝𝑛/2.
(2) Any distinct pair of tuples 𝑡, 𝑟 ∈ 𝑆 differ at least in 𝑛/2 places.

Proof of the above fact can be established via error-correcting codes, specifically Reed-Solomon

codes. Let 𝑞(𝑥) be the polynomial of degree 𝑛/2 over the field 𝐺𝐹 (𝑝). For each such polynomial,

associate a tuple 𝑡 obtained by evaluating the polynomial 𝑞 on the first 𝑛 elements of the field. Two

different polynomials give two different tuples. Since any two polynomials of degree 𝑛/2 evaluate

to the same value at fewer than 𝑛/2 places, it follows that tuples corresponding to two distinct

polynomials differ in at least 𝑛/2 places. Since the number of such polynomials is ≥ 𝑝𝑛/2, the above
statement follows.

For every tuple 𝑡 = ⟨ℓ1, ℓ2, · · · , ℓ𝑛⟩ ∈ 𝑆 , we associate a 𝑥𝑡 a string over the alphabet of F𝐴 which is

Σ = [𝑛] × {−1, +1}. The string 𝑥𝑡 has ℓ𝑖 many symbols of the form ⟨𝑖, +⟩ ℓ𝑖 times, for 1 ≤ 𝑖 ≤ 𝑛. We

will argue that for two distinct tuples 𝑡 = ⟨ℓ1 . . . ℓ𝑛⟩ and 𝑟 = ⟨ℓ ′1 . . . ℓ ′𝑛⟩, the strings 𝑥𝑡 and 𝑥𝑟 belong
to two different equivalence classes of F𝐴. Since 𝑡 and 𝑟 are distinct tuples from 𝑆 , they differ in at

least 𝑛/2 indices. Let 𝐼 be the set of such indices, note |𝐼 | ≥ 𝑛/2. Consider the string 𝑧 defined as

follows: For every 𝑗 ∈ 𝐼 , 𝑧 contains the symbol ⟨ 𝑗,−⟩ 𝑙 𝑗 times. Now consider the strings 𝑥𝑡𝑧 and

𝑥𝑟𝑧. Notice that F0 (𝑥𝑡𝑧) ≤ 𝑛/2 and F0 (𝑥𝑟𝑧) = 𝑛. Thus 𝑥𝑡 and 𝑥𝑟 belong to two different equivalence

classes. Since the size of 𝑆 is 𝑝𝑛/2, it follows that the number of equivalence classes is 𝑝𝑛/2. Thus
the number of states of F𝐴 is at least 𝑝𝑛/2. This implies that the 𝑠 ≥ 𝑛

2
log𝑝 . Note that the size of

the stream𝑚 ≤ 2𝑝𝑛. Since 𝑝 > 𝑛, this gives a Ω(𝑛 log𝑚) lower bound on the space complexity in

the turnstile model. □

3.3 A Refinement: The Bounded Forget Model
Building upon the findings earlier in this section, it becomes evident that in the RFDS model, no

substantial statistics of the stream can be computed in sub-linear space. The primary reason for this

limitation is that the model accommodates requests equating to ‘forgetting all the data.’ However,

as highlighted in the introduction, realistic scenarios typically involve only a fraction of the data

being subject to forget requests. This observation leads us to propose a refined version of the model,

termed the 𝛼-RFDS model. This new model is conceptualized within the context of computing a

generic statistical function G over the frequency vector of the data stream.

Let D be a stream in the RFDS model. Let D ′ be the stream obtained by removing all the forget

updates. The forget-factor of D with respect to G is defined as G(D)/G(D ′).

Definition 3.7 ((𝛼,G)-RFDSmodel). For a parameter 𝛼 : 0 ≤ 𝛼 < 1 and a statistics G, a stream D
is a (𝛼,G)-RFDS stream if the forget factor of D with respect to G is ≥ 1 − 𝛼 .

In this work, much of our focus is on estimating the F0 and F1 in the stream. Thus, we will focus

on the (𝛼, F0)-RFDS and the (𝛼, F1)-RFDS models.

To reiterate, in the (𝛼, F0)-RFDS model, at the end of the stream, it is guaranteed that at most

𝛼-fraction of the distinct elements seen in the stream will be forgotten. On the other hand, in

the (𝛼, F1)-RFDS model, at the end of the stream, it is guaranteed that at most 𝛼-fraction of the

elements seen in the stream will be forgotten. For the sake of brevity when the statistic under

consideration (that is F0 and F1) is clear from the context we will call the model the 𝛼-RFDS model.

So F0 estimation in the 𝛼-RFDS model would actually mean F0 estimation in the (𝛼, F0)-RFDS model.

Simlarly F1 estimation in the 𝛼-RFDS model means F1 estimation in the (𝛼, F1)-RFDS model.

Remark. As mentioned, in the RFDS model, 𝐹0 and 𝐹1 are reducible to each other. However, these

reductions do not preserve the forget factor, and we do not know of reductions between these two
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problems that preserve the forget factor. Thus we need to establish upper and lower bounds for 𝐹0

and 𝐹1 separately in the 𝛼-RFDS model.

4 F0 ESTIMATION IN THE 𝛼-RFDSMODEL
In this section, we study the complexity of the classic problem of estimating the number of distinct

elements in the 𝛼-RFDS model. Our main contribution is an upper bound on the space complexity

and a matching lower bound with respect to 𝛼 and 𝜀.

4.1 Algorithm for F0 estimation in the 𝛼-RFDSModel
Theorem 4.1. There is an algorithm F0Estimate that given inputs 𝜀 ∈ (0, 1) and a stream D in the
(𝛼, F0)-RFDS model, outputs a value Est such that

Pr [(1 − 𝜀)F0 (D) ≤ Est ≤ (1 + 𝜀)F0 (D)] ≥
2

3

.

The algorithm F0Estimate uses at most 𝑂
(

1

1−𝛼 ·
log𝑛

𝜀2

)
space.

The algorithm and its proof closely follow the BJKST algorithm for F0 estimation in the insertion-

only model [3, 7]. The main idea of the BJKST algorithm is to ensure that every distinct element

in the stream is selected into a bucket with a certain probability 𝑝 . The value of 𝑝 is adaptively

changed so that (1) it is small enough to limit the number of elements selected into the bucket

to ensure that the space complexity is bounded, and (2) it is large enough so that the number

of elements selected is at least 1/𝜀2
to ensure a (1 ± 𝜀) multiplicative estimate of F0. To satisfy

condition (1), the value of 𝑝 is adaptively decreased as soon as the bucket size crosses a certain

threshold. The threshold in BJKST is set so that at any point in the stream, the value of 𝑝 is around

1/(𝐾𝜀2), where 𝐾 is the F0 of the stream so far, and this satisfies the requirement (2).

In the case of the 𝛼-RFDS model, the F0 of the stream can suddenly drop by a factor of 𝛼 . This

may occur when all the forget updates follow all the insertion updates. For such a stream, after the

insertion updates, the bucket size is 𝑂 ( 1

𝜀2
). When a forget update arrives, the forgotten element (if

exists) should be removed from the bucket. However, this causes the expected number of selected

elements to fall below the 1/𝜀2
by a factor of (1 − 𝛼). This violates requirement (2), leading to an

error in the final estimate. To compensate for this sudden drop in F0, we have to ensure that the

value of 𝑝 always has a slack by a factor of
1

1−𝛼 . We accomplish this by increasing the threshold by

a factor of
1

1−𝛼 .

Proof. (Of Theorem 4.1)

We follow the proof outline given in [5]. In the following for a binary string 𝑥 , Zero(𝑥) is the
number of leading zeros of 𝑥 .

Let 𝑋𝑎,𝑟 be a RV defined as follows: If Zeros(ℎ(𝑎)) ≥ 𝑟 , then 𝑋𝑎,𝑟 = 1, else 𝑋𝑎,𝑟 = 0. Let

𝑌𝑟 =
∑
𝑎,𝑓𝑎>0

𝑋𝑎,𝑟 . Let 𝑧
∗
be the sampling level (value of 𝑧) when the algorithm terminates. Note

that the output of the algorithm is 𝑌𝑧∗2
𝑧∗
.

Let 𝑑 be the value of F0 at the end of the stream and let 𝑑 ′ be the F0 value of the stream if we

discard all (·,⊥) from the stream. Note that 𝑑 ≥ (1 − 𝛼)𝑑 ′. Let 𝑠 be a sampling level such that the

following holds

12

𝜀2
≤ (1 − 𝛼)𝑑

′

2
𝑠

≤ 24

𝜀2

The goal is to bound the probability that |𝑌𝑧∗2𝑧
∗ − 𝑑 | ≥ 𝜀𝑑 . Note that 𝐸 [𝑌𝑟 ] = 𝑑

2
𝑟 for all 𝑟 . Thus

Pr[|𝑌𝑧∗2𝑧
∗ − 𝑑 | ≥ 𝜀𝑑] = Pr[|𝑌𝑧∗ −

𝑑

2
𝑧∗
| ≥ 𝜀𝑑

2
𝑧∗
]
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Algorithm 1 F0Estimate(D, 𝜀, 𝛼)
1: Pick ℎ : [𝑛] → [𝑛] from a pair-wise independent hash family

2: B ← ∅, Thresh← 1

(1−𝛼) ·
𝑐
𝜀2
, 𝑧 ← 0

3: while not End-of-Stream do
4: Upon update (𝑎,Δ)
5: if Δ = ⊥ then B ← B \ {𝑎}
6: else if Zero(ℎ(𝑎)) ≥ 𝑧 then B ← B ∪ {𝑎}
7: if |B| > Thresh then
8: 𝑧 ← 𝑧 + 1

9: Remove all 𝑎s from B for which Zero(ℎ(𝑎)) > 𝑧
10: Output |B|2𝑧

Pr

[
|𝑌𝑧∗ −

𝑑

2
𝑧∗
| ≥ 𝜀𝑑

2
𝑧∗

]
=

𝑟=log𝑛∑︁
𝑟=0

Pr

[(
|𝑌𝑟 =

𝑑

2
𝑟
| ≥ 𝜀𝑑

2
𝑟

)
∩ (𝑧∗ = 𝑟 )

]
≤

𝑠−1∑︁
𝑟=1

Pr

[
|𝑌𝑟 −

𝑑

2
𝑟
| ≥ 𝜀𝑑

2
𝑟

]
+

log𝑛∑︁
𝑟=𝑠

Pr [𝑧∗ = 𝑟 ]

=

𝑠−1∑︁
𝑟=1

Pr

[
|𝑌𝑟 − 𝐸 [𝑌𝑟 ] | ≥

𝜀𝑑

2
𝑟

]
+ Pr

[
𝑌𝑠−1 ≥

𝑐

(1 − 𝛼)𝜀2

]
We will bound both parts separately. Bounding the first sum:

𝑠−1∑︁
𝑟=1

Pr

[
|𝑌𝑟 − 𝐸 [𝑌𝑟 ] | ≥

𝜀𝑑

2
𝑟

]
≤

𝑠−1∑︁
𝑟=1

Var(𝑌𝑟 ) ·
2

2𝑟

𝜀2𝑑2

≤
𝑠−1∑︁
𝑟=1

𝑑

2
𝑟
· 2

2𝑟

𝜀2𝑑2
≤ 2

𝑠

𝜀2𝑑
≤ 1

𝜀2
· 2

𝑠

𝑑 ′(1 − 𝛼) ≤
1

12

To bound the second quantity, we will rely on Markov Inequality,

Pr[𝑌𝑠−1 ≥
𝑐

(1 − 𝛼)𝜀2
] ≤ 𝐸 [𝑌𝑠−1] ·

(1 − 𝛼)𝜀2

𝑐

=
𝑑

2
𝑠−1
· (1 − 𝛼)𝜀

2

𝑐
≤ 𝑑 ′

2
𝑠−1
· (1 − 𝛼)𝜀

2

𝑐

≤ 48

𝑐
≤ 1

5

(for 𝑐 = 240)

□

The above algorithm and analysis gives a constant probability of success. This can be amplified

to 1 − 𝛿 probability with a multiplicative factor of log
1

𝛿
using standard techniques. We remark that

we could use a double hashing technique as is done by the BJKST algorithm ([3]) to further reduce

the space complexity. We formally state the space complexity below and present a proof sketch.

Theorem 4.2. The algorithm F0Estimate can be modified so that its space complexity is

𝑂

(
log𝑛 + 1

(1 − 𝛼)𝜀2

(
log log𝑛 + log

1

𝜀
+ log

1

1 − 𝛼

))
.
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Proof Sketch. The main space usage of algorithm F0Estimate is the storage of bucket B which

keeps 𝑂 ( 1

(1−𝛼) ·
1

𝜀2
) elements of the universe and each element needs 𝑂 (log𝑛) space. The idea

to reduce the space is to store the hash values of elements (in the bucket), as opposed to the

elements themselves. The main observation is that the expected number of elements, during the

execution of the algorithm, that can get into the bucket is 𝑂 (Thresh · log𝑛

1−𝛼 ). Thus we pick another

pairwise independent hash function 𝑔 : [𝑛] → [10 · (Thresh · logn1−𝛼 )
2]. When an update ⟨𝑎, +⟩

arrives, compute ℎ(𝑎) and 𝑔(𝑎) and store ⟨𝑔(𝑎),Zeros(ℎ(𝑎))⟩ in the bucket B. When ⟨𝑎,⊥⟩ arrives,
remove ⟨𝑔(𝑎), ·⟩ from the bucket. The correctness proof proceeds exactly as before, except that

we have to account for the collisions due to the hash function 𝑔. Since the range of 𝑔 is large

enough, the collision probability can be bounded by 1/10. Thus the probability that we output a

good approximation will be 2/3− 1/10. The total space is determined by:𝑂 (log𝑛) to store the hash
functionsℎ and𝑔,𝑂 (log log𝑛+log

1

𝜀
+log

1

1−𝛼 ) to store each element (of the form ⟨𝑔(𝑎),Zeros(ℎ(𝑎)⟩)
of the bucket.

4.2 Lower Bound of F0 Estimation in the 𝛼-RFDSModel
In this section, we establish that the upper bound of 𝑂 ( 1

1−𝛼
log𝑛

𝜀2
) is optimal with respect to the

parameters 𝛼 and 𝜀.

Theorem 4.3. Any streaming algorithm that computes a (𝜀, 1/3)-approximation of F0 in the (𝛼, F0)-
RFDS model uses a space of Ω( 1

1−𝛼 ·
1

𝜀2
+ log𝑛).

The Ω(log𝑛) bound comes from the same known lower bound for F0 in the insertion model.

Hence we will focus on Ω( 1

1−𝛼 ·
1

𝜀2
) bound. We will use communication complexity bound to

establish this. One of the most well-studied problems in communication complexity is the set

disjointness problem, where Alice and Bob are given two sets (from the universe Ω) and they

have to check if their sets are disjoint. One of the celebrated works in communication complexity

states that the communication complexity of the set disjointness problem is Θ( |Ω |) [12]. A harder

problem is the set intersection problem, where Alice is given a set 𝐴 and Bob is given a set 𝐵 and

they have to compute the size of |𝐴 ∩ 𝐵 |. A related problem to set intersection estimation problem

is about estimating the size of the intersection of the two sets within a factor of (1 ± 𝜀). It is easy to

see that these variants - the set intersection and set intersections estimation problems - are harder

than the set disjointness problem and hence has communication complexity Θ( |Ω |). But if one
is guaranteed an additional condition that the size of |𝐴 ∩ 𝐵 | is known to be bigger than some

quantity (say (1−𝛼) |Ω |), then the problem becomes much easier. In this paper, we use this problem

as a stepping stone to prove the lower bound on the 𝛼-RFDS model.

Definition 4.4 (Large-Set-Intersection-Estimation). Alice has a set 𝐴 ⊆ Ω and Bob has a set

𝐵 ⊆ Ω and it is promised that |𝐴| ≥ 𝜂 |Ω | and |𝐴 ∩ 𝐵 | ≥ (1 − 𝛼) |𝐴| ≥ (1 − 𝛼)𝜂 |Ω |. The task is to

output an estimate Est such that (1 − 𝜀) |𝐴 ∩ 𝐵 | ≤ Est ≤ (1 + 𝜀) |𝐴 ∩ 𝐵 |, with probability 2/3.

Before we obtain bounds on the communication complexity of the Large-Set-Intersection-
Estimation Problem we show that a lower bound on the communication on Large-Set-Intersection-
Estimation translates to a lower bound on the space complexity of the 𝛼-RFDS model.

Lemma 4.5. The one-way communication complexity of the Large-Set-Intersection-Estimation is a
lower bound on the space complexity of the 𝛼-RFDS model.

Proof. Let 𝐴 and 𝐵 be an instance of Large-Set-Intersection-Estimation. That is 𝐴 and 𝐵 are

two subsets of Ω such that |𝐴| ≥ 𝜂 |Ω | and 𝜂 is some constant. Consider the following stream: (1)

The first |𝐴| elements of the stream are of the form (𝑎, +) for all 𝑎 ∈ 𝐴, (2) The next |𝐵 | elements of
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the stream are of the form (𝑏, +) for all 𝑏 ∉ 𝐵, and (3) The next |𝐵 | elements of the stream are of the

form (𝑏,⊥) for all 𝑏 ∉ 𝐵.

In other words, all the elements of 𝐴 have their frequency first increased by 1, elements of 𝐵

have their frequency first increased by 1 and then all the elements of 𝐵 is forgotten. Note that in

the end the F0 of the stream is |𝐴 ∩ 𝐵 |. While the total number of distinct elements seen in the

stream is |𝐴 ∪ 𝐵 | which is at least 𝜂 |Ω | and |𝐴 ∩ 𝐵 | ≥ (1 − 𝛼)𝜂 |Ω |.
So if we assume that Alice sees the first |𝐴| number of items in the stream and Bob sees rest

- then the problem of 𝜀-estimation of F0 of the stream reduces to estimating (within (1 ± 𝜀) the
size of |𝐴 ∩ 𝐵 | when Alice and Bob are given sets 𝐴 and 𝐵 respectively and it is promised that

|𝐴 ∩ 𝐵 | ≥ (1 − 𝛼)𝜂 |Ω |.
Thus as long as 𝜂 is some constant a lower bound of

1

(1−𝛼)𝜂𝜀2
on the communication complexity

of Large-Set-Intersection-Estimation gives an asymptotically same lower bound to the space

complexity for 𝜀-estimation of F0 in the 𝛼-RFDS model. □

One can get an upper bound of
1

𝜀2 (1−𝛼) on the communication complexity for Large-Set-Intersection-

Estimation. But we are interested in lower bound of
1

𝜀2 (1−𝛼) on the communication complexity. We

state the required theorem below. The proof is in the Appendix.

Theorem 4.6. Alice has set 𝐴 and Bob has set 𝐵 with 𝐴, 𝐵 ⊂ Ω with the following guarantees:

• |𝐴| ≥ |Ω |/3
• |𝐴 ∩ 𝐵 | ≥ (1 − 𝛼) |𝐴 ∪ 𝐵 |

The communication of complexity of computing the 𝜀 approximation of |𝐴 ∩ 𝐵 | is Ω
(

1

𝜀2 (1−𝛼)

)
.

Proof. We will prove the theorem by reducing an instance of GapANDindex𝜀,𝑟,𝑑 (where 𝑟 =

Θ(1/𝜀2) and 𝑑 = 1/(1 − 𝛼)) to the Large-Set-Intersection-Estimation problem.

Assume that Alice is given x = 𝑥1, . . . , 𝑥𝑟 ∈ {0, 1}𝑑 and Bob is given index vector i = 𝑖1, . . . , 𝑖𝑟
along with a bit vector b = 𝑏1, . . . , 𝑏𝑟 and they have to computeGapANDindex𝜀,𝑟,𝑑 (x, i, b). Consider
the following reduction.

• Ω := {𝑑𝑖 + 𝑗 : where 𝑖 ∈ [𝑟 ] and 𝑗 ∈ [𝑑]}.
• Alice and Bob constructs sets 𝐴, 𝐵 ⊆ Ω respectively.

• Alice constructs 𝐴 as 𝐴 :=

{
𝑑𝑖 + 𝑗 | 𝑥𝑖𝑗 = 1

}
• Bob constructs 𝐵 as 𝐵 :=

{
𝑑 𝑗 + 𝑖 𝑗 | 𝑏 𝑗 = 1

}
Note the following properties of 𝐴 and 𝐵,

• |Ω | = 𝑑𝑟
• |𝐴| is the number of 1s in x which is Θ(𝑑𝑟 )
• |𝐴 ∩ 𝐵 | = ∑𝑟

𝑗=1
(𝑥 𝑗
𝑖 𝑗
∧ 𝑏 𝑗 ). So we are guaranteed that |𝐴 ∩ 𝐵 | = Θ(𝑟 ) = Θ( |𝐴 |

𝑑
) which is

Θ( |𝐴 ∪ 𝐵 |/𝑑) as |𝐴| ≥ Ω/3.
• So if GapANDindex𝜀,𝑟,𝑑 (x, i, b) = 1 then |𝐴 ∩ 𝐵 | ≥ 𝑟

4
+𝐶𝜀𝑟 , and

• if GapANDindex𝜀,𝑟,𝑑 (x, i, b) = 0 then |𝐴 ∩ 𝐵 | ≤ 𝑟
4
−𝐶𝜀𝑟

• And if one can estimate the |𝐴 ∩ 𝐵 | within an additive error of 𝐶𝜀𝑟 then one can compute

GapANDindex𝜀,𝑟,𝑑 (x, i, b)
Hence by Theorem 2.3 we have that the communication of complexity of computing the 𝜀 approxi-

mation of |𝐴 ∩ 𝐵 | is Ω( 𝑑
𝜀2
). Thus we have our theorem.

□
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5 F1 ESTIMATION IN THE 𝛼-RFDSMODEL
In this section, we delve into the complexity of estimating the number of elements, specifically F1,

in the 𝛼-RFDS model. Contrasting with standard models such as the insertion-only and turnstile

models, where computing F1 of a stream is straightforward using only log𝑚 space (where𝑚 is the

number of elements in the stream), the task is significantly more complex in the RFDS model. We

demonstrate in Section 5.2 that estimating F1 in the RFDS model is as challenging as estimating

F0 in both the RFDS and 𝛼-RFDS models. This establishes a lower bound on the space complexity

for computing an (𝜀, 1/3)-estimate of F0 in the 𝛼-RFDS model. On the other hand, we present an

upper bound on the space complexity, along with a matching lower bound, in relation to 𝛼 and 𝜀.

5.1 Algorithm
Theorem 5.1. There is an algorithm F1Estimate that given inputs 𝜀 ∈ (0, 1) and a stream D in the
(𝛼, F1)-RFDS model and an upper bound,𝑚, on the total number of updates in the stream D, outputs
a value Est such that

Pr [(1 − 𝜀)F1 (D) ≤ Est ≤ (1 + 𝜀)F1 (D)] ≥
2

3

.

The algorithm F1Estimate uses at most 𝑂
(

1

1−𝛼 ·
log𝑛

𝜀2
· log𝑚

)
space.

Algorithm 2 F1Estimate(D, 𝜀, 𝛼)
1: B ← 𝜙 , Thresh← ⌈ 12

𝜀2 (1−𝛼) log(24𝑚)⌉, 𝑝 ← 1

2: while not End-of-Stream do
3: Upon seeing (𝑎,Δ)
4: if Δ = ⊥ then Remove all copies of 𝑎 from B
5: if Δ = + then
6: With probability 𝑝 , add a copy of 𝑎 to B
7: while |B| = Thresh do
8: 𝑝 ← 𝑝

2

9: for 𝑎 ∈ 𝐵 do
10: Remove 𝑎 from B with probability 1/2

11: Output |B|/𝑝

Proof. The algorithm and its proof closely follow the sampling-based algorithm of [14] for F0

estimation in the insertion model.

Firstly, observe that the algorithm F1Estimate stores at most Thresh number of items (counting

different number of copies of the same item) in B. Since one needs log𝑛 number of bits to store

the information of one item in the stream, so the space complexity of the algorithm is at most

Thresh · log𝑛, as claimed in the theorem statement.

Before we continue to prove the correctness of the algorithm F1Estimate, one may observe that

there is a non-zero probability of the algorithm not halting, the while loop in lines 7 to 10 may

not terminate. We will prove later that this can be appropriately fixed. We will observe that the

stopping probability follows the geometric distribution with a expectation less than 1 and also low

variance. So if one makes the algorithm halt, abort, and output ⊥ after one round of the while
loop, we can prove that the probability of the while loop(s) in lines 7 to 10 not terminating after 1

round. And this would imply that the probability that the algorithm F1Estimate (as stated) and the

modified algorithm differ is very low.
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So, let us now prove the correctness of the algorithm F1Estimate. Consider the event:

Error : ‘The algorithm F1Estimate does not return a value in the range [(1 − 𝜀)F1, (1 + 𝜀)F1]’
We will show Pr[Error] ≤ 1

6
.

Intuitively the algorithm at any point stores a sample of items that are in the stream. The idea

is that, at any point in time each copy of each element of the stream (after removal of those that

have been forgotten) is independently sampled with probability 𝑝 and stored in B. So at the end
the expected size of B is F1 · 𝑝 . So one expects that |B|/𝑝 would be a good estimate of the F1.

The last statement is true and can be formalized appropriately if the value of 𝑝 is not less than

log(24𝑚)/𝜀2F1. The value of Thresh is chosen such that this bound on 𝑝 can be ensured.

Observe that the algorithm gives a joint distribution over the state of B and the value of 𝑝 .

To prove that every element of the stream (after removal of those that has been forgotten) is

independently sampled with probability 𝑝 and stored in B we have to formalize it carefully.

To obtain the desired bound on Pr[Error] let us denote by 𝑌 𝑖𝑗 the set B after 𝑖 elements have

been seen in the stream and when 𝑝 = 2
−𝑗
. Note that there are two moves that happen:

• Go from 𝑌 𝑖𝑗 to 𝑌
𝑖+1
𝑗 (Line 4 and 6)

• Go from 𝑌 𝑖𝑗 to 𝑌
𝑖
𝑗+1 (Line 7 to 10)

When the algorithm moves from 𝑌 𝑖𝑗 to 𝑌
𝑖+1
𝑗 , it can happen either in Line 4 or in Line 6. In Line 4

we throw away all traces of the elements that are forgotten. And in Line 6 we pick the (𝑖 + 1)th
element with probability 𝑝 . Thus, for any fixed 𝑗 , every entry in the stream (that are not forgotten)

so far (upto the 𝑖th element of the stream) is in 𝑌 𝑖𝑗 independently with probability 1/2𝑗 .
Now, let Bad be the event “The value of 𝑝 at line 11 in Algorithm 2 is less than

Thresh(1−𝛼)
4F1

.” Note

that the value of 𝑝 goes down by 1/2 every time the size of B is equal to Thresh. Consider the first
time the value of 𝑝 goes down below

T ⟨∇⌉∫ ⟨(1−𝛼)
4F1

. So at that time the expected number of elements

in B must is at most
Thresh(1−𝛼)

4F1

times the number of elements that has ever come in the stream,

which is at most F1/(1 − 𝛼). In other words, when the first time the value of 𝑝 goes down below

Thresh(1−𝛼)
4F1

the expected number of elements in B is at most
Thresh(1−𝛼)

4F1

· F1

1−𝛼 which is Thresh/4.
Using Chernoff Bound (Theorem 2.8) and Union Bound we can bound the probability of event Bad
to be at most 1/12.

Also by Chernoff bound (Theorem 2.8) we observe that if the value of 𝑝 is at least
𝜀−2

log 12

F1

then

the probability of event Error ∩ Bad is at most 1/12. Thus Pr[Error] ≤ 1/6. □

Ensuring that the algorithm always halts. As noted earlier while the algorithm outputs an (𝜀, 1/3)-
estimate of F1, the runtime of the algorithm is not bounded in the worst case. But that can be

fixed easily by ensuring that the while loop (lines 7 to 10) exists after one iteration. The modified

algorithm is presented in Algorithm 3.

Note that the Algorithm 2 and 3 on differ in case when the size of B does not go below Thresh
after every item of B is thrown away independently with probability 1/2.

Consider the event, Fail : ‘The algorithm F1-Estimate outputs ⊥.’
We will prove that Pr[Fail] ≤ 1

24
. Also note that what we proved in the correctness of Algorithm 2

is the same as the correctness of Algorithm 3 when Fail does not happen.
Thus showing that Pr[Fail] is at most

1

24
suffices, since this coupled with the fact that Pr[Error] ≤

1

6
, implies the correctness of Algorithm 3. So we conclude the proof by showing Pr[Fail] ≤ 1

24
.

Let Fail𝑗 denote the event that Algorithm 3 returns ⊥ when 𝑖 = 𝑗 . Formally, Fail𝑗 : ‘|B| = Thresh
and none of the elements of B are thrown away at line 10 for 𝑖 = 𝑗 ’. The probability that Fail𝑗
happens is

(
1

2

)Thresh
. Therefore,Pr[Fail] ≤ ∑𝑚

𝑗=1
Pr[Fail𝑗 ] ≤ 𝑚 ·

(
1

2

)Thresh ≤ 1

24
.
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Algorithm 3Modified-F1Estimate(D, 𝜀, 𝛼)
1: B ← 𝜙 , Thresh← ⌈ 12

𝜀2 (1−𝛼) log(24𝑚)⌉, 𝑝 ← 1

2: while not End-of-Stream do
3: Upon seeing (𝑎,Δ)
4: if Δ = ⊥ then Remove all copies of 𝑎 from B
5: if Δ = + then
6: With probability 𝑝 , add a copy of 𝑎 to B
7: if |B| = Thresh then
8: 𝑝 ← 𝑝

2

9: for 𝑎 ∈ 𝐵 do
10: Remove 𝑎 from B with probability 1/2

11: if |B| = Thresh then
12: Return ⊥
13: Output |B|/𝑝

5.2 A Lower Bound for F1 in the 𝛼-RFDSModel
We show that the lower bound of estimating F0 (without Ω(log𝑛)) in the 𝛼-RFDS model carries

over to the estimation of F1 also. Proof of the following theorem appears in the appendix.

Theorem 5.2. Any streaming algorithm that computes a (𝜀, 2/3)-approximation of F1 in the (𝛼, F1)-
RFDS model uses a space of Ω( 1

1−𝛼 ·
1

𝜀2
+ log log𝑚) .

Proof. The main observation is that the streams for which we proved space lower bounds for F0

have all the elements distinct and hence has the same F1. Moreover, the forget-factor with respect

to F0 is only a constant factor different from the forget-factor with respect to F1. Recall that the

streams for which we established the lower bound for F0 is the following. For two subsets 𝐴 and 𝐵

of Ω such that |𝐴| ≥ 𝜂 |Ω | for some constant 𝜂, the stream D is the following:

• The first |𝐴| elements of the stream are of the form (𝑎, +) for all 𝑎 ∈ 𝐴
• The next |𝐵 | elements of the stream are of the form (𝑏, +) for all 𝑏 ∉ 𝐵.

• The next |𝐵 | elements of the stream are of the form (𝑏,⊥) for all 𝑏 ∉ 𝐵.

Thus the stream consists of elements of 𝐴 ∩ 𝐵 exactly once. Hence F1 (𝐷) = F0 (𝐷). Moreover, we

are also promised that forget factor of D is at least (1 − 𝛼) (that is, |𝐴 ∩ 𝐵 | ≥ (1 − 𝛼) |𝐴 ∪ 𝐵 |). Now
let us compare the forget factors with respect to both F1 and F0. Let D ′ be the stream in which all

the forget updates (updates of the form (𝑏,⊥)) are removed. Note that F1 (D ′) ≤ 2F0 (D ′). Thus
F1 (𝐷) = F0 (𝐷) ≥ (1 − 𝛼)F0 (𝐷) ≥ (1−𝛼)

2
F1 (𝐷 ′). Let 1 − 𝜅 = (1 − 𝛼)/2. Thus if there is an algorithm

for estimating F1 with space complexity 𝑜 ( 1

1−𝜅 ·
1

𝜀2
), the same algorithm also gives an estimate of

F0 with space complexity 𝑜 ( 1

1−𝜅 ·
1

𝜀2
) = 𝑜 ( 1

1−𝛼 ·
1

𝜀2
) which is a contradiction to the lower bound for

F0. □

6 CONCLUSION
In this paper, our objective was to formulate a model that embodies the ‘Right to be Forgotten’

concept within streaming computation. This task required a careful balance between adhering to the

concept’s essence and ensuring its applicability in algorithmic design. To evaluate the effectiveness

of our formalization, we focused on the fundamental problem of frequency estimation, particularly

F0 and F1. Initially, we demonstrated the impracticality of creating efficient data structures that can

handle an unlimited number of “forget” requests. Inspired by the existing data streaming literature
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and the design principles of contemporary banking systems, we proposed the 𝛼-RFDS model. This

model limits forget requests to a maximum fraction of 𝛼 . The 𝛼-RFDS model introduces unique

technical challenges. For example, unlike the straightforward computation of F1 in standard models

like insertion and turnstile, computing F1 in the 𝛼-RFDS model is non-trivial. Additionally, our

lower and upper bounds for F0 prompt further inquiries for frequency moments. We highlight

some of these research questions as follows:

Optimal Bound for F0:We established a lower bound of Ω(log𝑛 + 1

𝜀2 (1−𝛼) ) and an upper bound

of �̃� (log𝑛 + log log𝑛

𝜀2 (1−𝛼) ). A pertinent question is how to narrow this gap. Similar efforts in the inser-

tion model took considerable time and culminated in a significant result by Kane, Nelson, and

Woodruff [11].

Optimal Bound for F1: The lower bound for F1 stands at Ω( 1

1−𝛼 ·
1

𝜀2
+ log log𝑚), while the upper

bound is 𝑂

(
1

1−𝛼 ·
log𝑛

𝜀2
· log𝑚

)
. A significant line of future research would be to bridge this gap

between the lower and upper bounds.

Poly-Logarithmic Algorithms for F2: The sampling-based method proposed by Alon, Matias,

and Szegedy[2] for F𝑘 (where 𝑘 > 1) might be adapted to the 𝛼-RFDS model, potentially leading to

algorithms with dependence on 𝑛1−1/𝑘
. A captivating question arises: is it possible to develop a

poly(log𝑛) space algorithm for F2 in the 𝛼-RFDS model, akin to other models?
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